
Proceedings of Machine Learning Research vol XYZ:1–21, 2024 35th International Conference on Algorithmic Learning Theory

The downside of rotation invariance in neural net training

author names withheld

Editor: Under Review for ALT 2024

Abstract
Any gradient descent trained neural net with a fully-connected input layer is rotation invariant when
initialized with a rotation invariant distribution. This means that if the input instances are rotated
then the trained weight vectors at the input layer counter rotate and the effect is vacuous. We show
that learning with a rotation invariant algorithm is fundamentally limited in that such an algorithm
cannot sample efficiently learn sparse linear functions. In contrast, there are simple non-rotation
invariant updates for a single linear neurons that learn sparse linear functions exponentially faster.
Also gradient descent on a 2-layer linear network where each hidden node is connected to a single
input can achieve the same feat.

In the lower bounds, we give the algorithm a rotated version of the input instances and then
prove that the Bayes optimal algorithm for this setup has a certain lower bound for linear sparse
targets that can be easily be avoided by simple non-rotation invariant algorithms. We believe that
this general proof technique will be useful for proving lower bounds for other families of algorithms
that admit other classes of invariances.
Keywords: rotation invariance, gradient descent, feed forward neural networks, lower bounds,
multiplicative updates, sparsity.

1. Introduction

In (Warmuth et al., 2021) a lower bound was proven for any algorithm that predicts with a rotation
invariant function. This lower bound on the expected square loss of a random example is essentially
1− k/d when learning a sparse linear function, where d is the input dimension and 1 ≤ k ≤ d is the
number of training examples seen. The lower bound is surprising because it holds for predicting with
any gradient descent trained neural net with a fully-connected input layer whose initial distribution
is rotation invariant. In particular the lower bound holds for any structure of the hidden layers and
transfer functions at the hidden nodes. However the lower bound is of limited interest because it
becomes vacuous when the number of training examples k is at least the input dimension d. This is
of course the case in most applications.

In this paper we prove lower bounds for the same class of algorithms for the more relevant over
constraint case. The target class used is now sparse linear plus Gaussian noise. We clearly show
that the rotation invariance of the algorithm is responsible for the lower bound:

1. Our lower bound technique creates a Bayesian setup where the learning is presented with a
randomly rotated version of the input instances and we prove a lower bound on the Bayes
optimal algorithm for this case.

2. We show that there are trivial non-rotation invariant algorithm that can learn noisy sparse
linear much more efficiently: Multiplicative updates on a linear neuron or gradient descent on
a two-layer linear net in which every hidden node is connected to exactly one input node (The
gradient flow case gradient descent on such networks is equivalent to multiplicative updates
on a linear neuron (Amid and Warmuth, 2020)).

© 2024 .

Thus the lower bound can be circumvented by pivoting away from gradient descent to a multiplica-
tive update on just a linear neuron or by changing the structure of the network so that gradient
descent can access individual features. Both methods are of course not rotation invariant. Our
proof technique is interesting in its own right and is different from the technique used for the under-
constrained case. So far we have no unified proof method for both the under and over constraint
cases.

ADDITIONAL RELATED WORK:

There is a long history for contrasting the generalization ability of additive versus multiplicative up-
dates (See e.g. Kivinen et al. (1997); Kivinen and Warmuth (1997)). Additive (or gradient descent)
updates subract multiples of the gradient from the weight vectors and multiplicative updates multi-
ply the weights by factors that have a multiple of the same gradients in the exponent. Multiplicative
updates perform dramatically better when the target is sparse. Surprisingly there is a connection be-
tween both update families discovered recently: Roughly when the weights are products of param-
eters, then the algorithms is biased towards sparsity (Gunasekar et al., 2017; Kerekes et al., 2021).

ui

vi

Figure 1: Spindly.

In the gradient flow case, multiplicative updates on a linear neuron have been
shown to be equivalent to gradient descent on a two-layer net in which every
hidden node is connect to exactly one input. One property of additive updates is
that they are rotation invariant when the loss depends on dot products between
the instances and weight vectors. The purpose of this research is to show that this invariance has a
downside because such algorithms can only make use of dot products between instances and cannot
access individual features which is necessary for learning sparse targets efficiently.

2. The lower bound method

2.1. Rotation invariance and problem setup

An example (x, y) is a d-dimensional vector, followed by a real-valued label y ∈ R. We specify a
training set as a tuple (X

n,d
,y
n
) containing n training examples, where the rows of input matrix X are

the n (transposed) input vectors and the target y is a vector of their labels.
A learning algorithm, is a mapping, which given the training set (X,y), produces a real-valued

prediction function Rd ∋ x 7→ ŷ(x) ∈ R. To accentuate the fact that the prediction function
depends on the training data, we will sometimes denote it by ŷ(x|X,y). With a slight abuse of the
definition, we allow the function value of ŷ to be randomized (a random variable), based on some
internal randomness of the algorithm (such as the initialization of weight vectors).

A learning algorithm ŷ(· |X,y) is called rotation invariant (Warmuth and Vishwanathan, 2005;
Warmuth et al., 2021) if for any orthogonal matrix U

d,d
and any input x ∈ Rd:

ŷ(Ux |XU⊤,y) = ŷ(x |X,y) (1)

In other words, the prediction ŷ(x|X,y) for any input x remains the same if we rotate both x
and all examples from X by the same orthogonal matrix U . If the algorithm is randomized, with
random variable Z denoting the entire internal randomization of the algorithm,1 then ŷ is a random

1. For example, in the neural networks Z would correspond to a random initialization of the parameter vector.

2

LOWER BOUNDS FOR ROTATION INVARIANCE

variable given by some function ŷ(xte|X,y) = fxte,X,y(Z), and the equality sign in equation (1)
of the above definition of rotation invariance should be interpreted as “identically distributed”.

Our lower bounds in sections 2.2-2.3 will hold for any rotation invariant algorithm. In particular,
Warmuth et al. (2021) have shown that any neural network with a fully-connected input layer (and
arbitrary remaining layers), in which the nodes in the input layer are initialized randomly with
a rotation invariant distribution (e.g. i.i.d. Gaussians), which is trained by gradient descent, is
rotation invariant, and is thus subject to our lower bound. That is, learning with any function of the
following form is rotation invariant: f(w1 ·x,w2 ·x, . . . ,wh ·x,θ), where the wi are initialized by
a rotationally symmetric distribution, are updated with gradient descent and the additional weights
θ are updated in any manner that depends on the input only via wi ·x (i.e., via the computation in the
first layer). The reason is that the gradient ∇wif is equal to the instance x times a scalar that depends
on x only via wi · x. Therefore it is easy to show, by induction on t, that rotating all instances by
some orthogonal matrix U results in the same rotation of wi,t for all i and t, and therefore that the
rotation has no effect on x · wi. In contrast learning with f(u1v1x1, u2v2x2, . . . , udvdxd) (with
parameters u,v) is not rotation invariant.

2.2. Lower bounds for rotation invariant algorithms

Our method for proving lower bounds builds on the following observation: Given any rotation in-
variant algorithm and any learning problem, the algorithm will achieve the same loss on all rotated
versions of that problem. We can therefore consider a Bayesian setting where the problem is sam-
pled uniformly from all rotated versions, and the optimal solution provides a lower bound on the
loss of the algorithm. Intuitively, being rotation invariant forces an algorithm to be agnostic over all
possible rotations of the problem, and hedging its bets in this way prevents it from excelling at any
specific problem instance. In Section 2.3 we apply this reasoning to linear regression to show that
a rotation invariant algorithm cannot efficiently learn sparse solutions, because it must be equally
efficient at finding any other solution (including rotated, non-sparse ones).

Formally, let the learning problem be defined by (a) a rotationally symmetric input distribution
pin(X̃) with the input matrix X̃

n+1,d
= [X,x⊤

te] consisting of the training matrix X of size n and

the test example xte (b) an observation model q(ỹ|X̃) which gives the joint conditional distribution
over n training outcomes and a test outcome, ỹ

n+1
= [y, yte], and (c) a loss function L(ŷ, y). The

task of any algorithm will be to produce predictions ŷ(xte|X,y) to minimize the loss on the test
outcomes, L(ŷ, yte). Note that this setup allows arbitrary conditional dependencies among observa-
tions (not just iid problems), including dependencies between the training and the test sets.

For any orthogonal U
d,d

, define the rotated observation model

qU (ỹ|X̃) = q(ỹ|X̃U⊤)

Now define a new learning problem by first sampling U uniformly (under the Haar measure pH)
and then generating observations according to qU . This is equivalent to a symmetrized observation
model

◦
q that is a mixture over all qU :

◦
q(ỹ|X̃) =

∫
qU (ỹ|X̃)dpH(U)

3

The Bayes optimal prediction can be expressed by computing a posterior over U and integrating
expected loss over this posterior:

ŷ⋆(xte|X,y) = argmin
ŷ

∫
Eyte∼qU (·|X̃,y)[L(ŷ, yte)]p(U |X̃,y)dU .

Thus
◦
q is difficult, especially for large d, because equal prior probability must be given to all possible

rotations. We define the optimal expected loss on this problem as

LB(
◦
q) = E

X̃∼pin,ỹ∼
◦
q(·|X̃)

[L(ŷ⋆(xte|X,y), yte)].

Our first result is that the performance of any rotation invariant algorithm on the original problem,
defined by q, is lower bounded by LB(

◦
q).

Theorem 1 Given a rotationally symmetric pin(X̃), an observation model q(ỹ|X̃), a loss function
L, and a rotationally invariant learning algorithm ŷn(·|X,y), define the expected loss

Lŷ(q) = EX̃∼pin,ỹ∼q(·|X̃),Z [L(ŷ(xte|X,y), yte)],

This loss is bounded by

Lŷ(q) ≥ LB(
◦
q)

Proof For any orthogonal U , the algorithm’s expected loss is

Lŷ(qU) = EX̃∼pin,ỹ∼qU (·|X̃),Z [L(ŷ(xte|X,y), yte)]

= EX̃∼pin,ỹ∼q(·|X̃U⊤),Z [L(ŷ(xte|X,y), yte)]

= EX̃′∼pin,ỹ∼q(·|X̃′),Z [L(ŷ(x
′
te|X ′,y), yte)]

= Lŷ(q),

where X̃ ′ = X̃U⊤ (we also used X ′ = XU⊤ and x′
te = Uxte), and where the fourth line uses

rotational symmetry of pin and rotational invariance of ŷ. Therefore, presented with the problem
◦
q,

the algorithm will achieve expected loss Lŷ(q) regardless of the value of U . This implies that Lŷ(q)

cannot be less than the optimal value LB(
◦
q).

As we show in the remainder of this paper, a consequence of Theorem 1 is that rotational in-
variance prevents efficient learning of problems characterized by properties that are not rotationally
invariant, such as sparsity. Algorithms with inductive biases for such properties are necessarily not
rotation invariant and can give dramatically better performance. Although we have stated the theo-
rem in terms of rotational invariance, it is easily extended to other transformation groups T on the
input (by replacing U with elements of T and requiring pin to be symmetric under T). For example,
natural gradient descent (NGD) is often touted for being invariant to arbitrary smooth reparameteri-
zation (Amari and Douglas, 1998), but this invariance comes at a cost of being unable to efficiently
learn in environments that are not invariant in this way. In particular, natural gradient on network in
Fig. 1 is rotation invariant (See discussion in (Kerekes et al., 2021)). Thus the below lower bounds
for sparse linear apply to the natural gradient algorithm, whereas vanilla gradient descent on this
network approximates EGU± and we will show it breaks the lower bound.

4

LOWER BOUNDS FOR ROTATION INVARIANCE

2.3. Lower bound for least-squares regression

We demonstrate how the bound implied by Theorem 1 can provide a quantitative lower bound for a
specific class of learning problems. We then show how this bound is easily beaten by non-rotation-
invariant algorithms in Section 3.

In the specific problem class we consider, the number of training examples is n = md for some
integer m, and X consists of m stacked copies of a matrix H =

√
dV
d,d

(i.e. X = [H; . . . ;H
×m

]),

where V is a random orthogonal matrix (distributed according to the Haar measure). The test input
is one of the rows of H , xte = hk, with index k drawn uniformly at random. As the input distribu-
tion is based on drawing a random orthogonal matrix V , its rotational symmetry is straightforward
to verify. We assume that the labels are the first feature of X̃ plus Gaussian noise, that is

q(ỹ|X̃) = N (ỹ|X̃e1, σ
2In+1), where e1 = (1, 0, . . . , 0)⊤, (2)

which can be be equivalently written as

y = Xe1 + ξ, ξ ∼ N(0, σ2Imd)

yte = h⊤
k e1 + ξte, ξte ∼ N(0, σ2).

Note that while the inputs are shared in the training and the test parts, the test label is generated
using a ‘fresh’ copy of the noise variable ξte. The choice of e1 as opposed to any other ei is made
w.l.o.g. Indeed, Theorem 1 implies that a rotationally invariant algorithm will have the same loss
for Xe1 as it will for Xw for any other unit vector w.

The accuracy of prediction ŷ = ŷ(·|X,y) on the test set (hk, yte) is measured by the squared
loss L(ŷ, yte) = (ŷ − yte)

2. For any choice of a random row index k ∈ {1, . . . , d}, denote the
corresponding prediction as ŷk = ŷ(hk|X,y), and let ŷ = (ŷ1, . . . , ŷd) denote the vector of all
such predictions. Similarly, let yte denote the vector of test labels for all choices of k, i.e., ytek =
h⊤
k e1 + ξte, which can be jointly written as yte = He1 + ξte1 with 1 = (1, . . . , 1). The expected

value of the loss over the random choice of k ∈ {1, . . . , d} and over the independent test label noise
is given by:

Ek,ξte [L(ŷ, yte)] =
1

d
Eξte

[
∥ŷ − yte∥2

]
=

1

d
Eξte

[
∥ŷ −He1 + ξte1∥2

]
=

1

d
∥ŷ −He1∥2 +

2

d
Eξte [ξte]︸ ︷︷ ︸

=0

(ŷ −He1)
⊤1+

1

d
Eξte

[
ξ2te

]︸︷︷︸
σ2

∥1∥2

=
1

d
∥ŷ −He1∥2 + σ2.

Clearly, the expression above is minimized by setting the prediction vector to ŷ⋆ = He1, and thus
the smallest achievable expected loss is equal to σ2. Subtracting this loss, we get the expression for
the excess risk of the learning algorithm, which we call the error of ŷ:

e(ŷ) = Ek,ξte [L(ŷ, yte)]− Ek,ξte [L(ŷ⋆, yte)] =
1

d
∥ŷ −He1∥2

5

When the prediction is linear, ŷ = Hŵ for some weight vector ŵ ∈ Rd, we can also refer to the
error of ŵ as the error of its predictions:

e(ŵ) =
1

d
∥Hŵ −He1∥2 =

1

d
(ŵ − e1)

⊤H⊤H︸ ︷︷ ︸
dI

(ŵ − e1) = ∥ŵ − e1∥2 (3)

The proof of the lower bound for this problem closely follows Section 2.2 and uses Theorem 1.

1. We start with a Bayesian setting with the rotated observation model q(ỹ|X̃U⊤) for a random
orthogonal matrix U . However, in the considered linear regression setup, this is equivalent
to simply rotating the target weight vector by U⊤, because X̃U⊤e1 = X̃(U⊤e1). This
means that we can equivalently consider a linear model ỹ = X̃w + ξ̃, where w is generated
randomly from a prior distribution uniform over a unit sphere Sd−1 = {w ∈ Rd : ∥w∥ = 1}.
Given the square loss function and linear observation model, the optimal Bayes predictor is
based on the posterior mean, E[w|X,y].

2. Even though the posterior mean does not have a simple analytic form for prior distribution
over a unit sphere, we use the results from (Marchand, 1993; Dickel, 2016) to show that the
Ridge Regression (RR) predictor (which is the Bayes predictor for the Gaussian prior) with
appropriately chosen regularization constant has the expected error by at most 1

d
σ2

σ2+m
larger

than that of the Bayes predictor. Thus, it suffices to analyze the RR predictor.

3. We show that the error of the RR predictor is at least σ2

σ2+m
. This means that the Bayes error

is at least d−1
d

σ2

σ2+m
, and no other algorithm can achieve any better error for this problem.

4. Due to the rotation-symmetric distribution of the inputs, we can now apply Theorem 1 which
implies that every rotation invariant algorithm has error at least d−1

d
σ2

σ2+m
for the original

sparse linear regression problem ỹ = X̃e1 + ξ̃.

Theorem 2 Let V
d,d

be a random orthogonal matrix, and let H =
√
dV . Let (X,y) be the training

set with X
md,d

= [H; . . . ;H] with labels y generated according to (2). Then the expected error of

any rotation-invariant learning algorithm (with respect to V and the noise in the labels) is at least

EV ,ξ[e(ŷ)] ≥
d− 1

d

σ2

σ2 +m
.

Note the lower bound does not hold for any fixed choice of X (of full rank) such as stacked version
of the d dimensional Hadamard matrix (which is a fixed rotation of

√
dI). Hadamard matrices were

used extensively in previous lower bound proofs for sparse problems (Kivinen et al., 1997; Warmuth
and Vishwanathan, 2005). For any fixed full-rank X , there exists a row vector v s.t. vX = e⊤1 . Now
the linear algorithm ŷ(x|X,y) = vX x achieves minimal loss σ2 while being trivially rotationally
invariant because vXU⊤Ux = vX x.

Proof of Theorem 2: We consider the aforementioned rotated observational model, which can be
defined as follows. Let w ∈ Rd be a weight vector drawn uniformly from a unit sphere Sd−1 =
{w ∈ Rd : ∥w∥ = 1}. The algorithm is given data set (X,y) with X = [H; . . . ;H] being m
copies of H =

√
dV , and y = Hw + ξ, where ξ ∼ N(0, σ2Idm) is a vector of Gaussian i.i.d.

6

LOWER BOUNDS FOR ROTATION INVARIANCE

noise variables, each having zero mean and variance σ2. Given y, the algorithm is supposed to
produce a vector of predictions ŷ ∈ Rd and is evaluated by means of the squared error, e(ŷ|w) =
1
d∥ŷ −Hw∥2. We first note that without loss of generality, the algorithm produces a weight vector
ŵ, based on which the predictions are generated, ŷ = Hŵ; this is due to the fact that H is
invertible (as multiplicity of an orthogonal matrix), so for every ŷ, one can have a corresponding
weight vector ŵ = H−1ŷ. Thus, using (3) the error can be equivalently written as

e(ŵ|w) = ∥ŵ −w∥2.

It is well-known (see, e.g., Berger (1985)) that the expected squared error, Ew,ξ [e(ŵ|w)] (with
expectation with respect to the prior and the label noise) is minimized by the posterior mean ŵ⋆ =
Ew|y[w], that is the mean value of w with respect to the posterior distribution q(w|X,y). Even
though the posterior mean does not have a nice analytic form, we can still lower bound its expected
squared error using a technique borrowed from (Marchand, 1993; Dickel, 2016). Let ŵRR be the
ridge regression estimator:

ŵRR = (X⊤X + σ2dI)−1X⊤y,

which is the posterior mean itself (and thus optimal) when the prior over w is Gaussian with zero
mean and covariance 1

dI (the covariance is multiplied by factor d−1 to have E[∥w∥2] = E[ww⊤] =
tr(1dI) = 1 as in the unit sphere prior case). Even though the Gaussian prior differs from the
uniform prior over a unit sphere, it turns out that the RR predictor has error only slightly larger than
that of the optimal Bayes predictor ŵ⋆:

Lemma 3

Ew,ξ [e(ŵRR|w)] ≤ Ew,ξ [e(ŵ
⋆|w)] +

1

d

σ2

σ2 +m
.

Proof Dickel (2016) considered a Bayesian setting similar to ours, with σ2 = 1 and w distributed
uniformly over τSd−1 = {w : ∥w∥ = τ}. To account for this setting, we note that in our setup,

σ−1y = X⊤(σ−1w) + σ−1ξ︸ ︷︷ ︸
∼N(0,Idm)

,

so that we can set τ = σ−1 and assume unit variance of the noise. Their ‘oracle ridge estimator’ is
thus ŵRR. Furthermore, since ∥ŵ−w∥2 = σ2∥σ−1ŵ−σ−1w∥2, we need to multiply their bound
by σ2. We use their Theorem 2 (adapted to the modifications stated above):

Theorem 4 (Theorem 2 by Dickel (2016), Theorem 3.1 by Marchand (1993)) Let n = md and let
s1 ≥ . . . ≥ sd denote the eigenvalues of n−1X⊤X . Then

Ew,ξ [e(ŵRR|w)] ≤ Ew,ξ [e(ŵ
⋆|w)] +

σ2

d

s1
sd

tr
{
(X⊤X + dσ2In)

−1
}
.

Since X⊤X = nI , we have s1 = sd = 1 and (X⊤X + In)
−1 = (n+ dσ2)−1In, and thus,

Ew,ξ [e(ŵRR|w)] ≤ Ew,ξ [e(ŵ
⋆|w)] +

σ2

n+ dσ2
= Ew,ξ [e(ŵ

⋆|w)] +
1

d

σ2

m+ σ2
.

7

Now, we compute the expected error of ŵRR. Since X⊤X = mdI , we get

ŵRR =
1

md+ σ2d
X⊤y =

1

md+ σ2d
X⊤(Xw + ξ) =

mdw +X⊤ξ

md+ σ2d
,

and thus

e(ŵRR|w) = ∥ŵRR −w∥2 =
∣∣∣∣X⊤ξ − σ2dw

md+ σ2d

∥∥∥∥2
=

∥X⊤ξ∥2

(md+ σ2d)2
− mdw⊤X⊤ξ

(md+ σ2d)2
+

σ4d2∥w∥2

(md+ σ2d)2
.

We take the expectation over w, under which the middle term in the last line vanishes (as E[w] = 0
over a unit sphere) and use ∥w∥ = 1 to get

Ew[e(ŵRR|w)] =
∥X⊤ξ∥2

(md+ σ2d)2
+

σ4d2

(md+ σ2d)2
.

We further take an expectation over ξ and use

E[∥X⊤ξ∥2] = E[tr(X⊤ξξ⊤X)] = tr(X⊤ E[ξξ⊤]X) = tr(X⊤X) = md tr(I) = md2,

to get:

Ew,ξ[e(ŵRR|w)] =
md2

(md+ σ2d)2
+

σ4d2

(md+ σ2d)2
. =

σ2d(md+ σ2d)

(md+ σ2d)2
=

σ2

m+ σ2
.

Using this together with Lemma 3 gives the lower bound on the Bayes optimal predictor in the
rotated observational model.

Ew,ξ[e(ŵ
⋆|w)] ≥ d− 1

d

σ2

σ2 +m
.

We now use the fact that that H =
√
dV with orthogonal matrix V of size d× d, drawn uniformly

at random (with respect to Haar measure), so that our input distribution is rotation symmetric. This
means that we can apply Theorem 1 and conclude that any rotation invariant algorithm has the
expected error at least d−1

d
σ2

σ2+m
on the original problem, that is for w = e1.

Note that the proof would significantly simplify if we assumed from the start that the target
weight vector w is generated from a Gaussian distribution N(0, 1dId) rather than from a unit sphere
Sd−1 (both priors give unit squared norm of w on expectation), as the Bayes predictor would be
exactly the RR predictor, giving even a better lower bound of σ2

σ2+m
, without the need to apply

results from Marchand (1993); Dickel (2016). This would, however, result in a random norm of the
sparse target vector. In our proof we opted for a bound with a fixed, unit norm of w.

8

LOWER BOUNDS FOR ROTATION INVARIANCE

3. Upper bounds

We now show how to break the above lower bound of d−1
d

σ2

σ2+m
on the error (excess risk) of rotation

invariant algorithms. We do this with an approximated version of the unnormalized multiplicative
update EGU±. We use the same setup as in the lower bound, i.e. X consists of m stacked copies of
a matrix H =

√
dV , when V is a rotation matrix and y is sparse linear (the first component) plus

Gaussian noise with variance σ2. The only difference is that for the lower bound, V was randomly
chosen, but the upper bounds hold for any rotation matrix V . The upper bound on the error that we
obtain2 is essentially O(σ2 log d

md).
We begin with a bound for the normalized version of the multiplicative update called EG±. The

proof relies on the fact that, with high probability, the smallest coordinate of the gradient is the
first one, and with large learning rate, EG± becomes argmax over the negative gradient coordinates,
which is e1. EG± makes use of the fact that the norm of the linear target e1 is 1 and this additional
knowledge allows the speedup.3 We then prove our main upper bound for the unnormalized EGU±.

3.1. Upper bound for the Exponentiated Gradient update

We consider a batch version of the 2-sided Exponentiated Update algorithm (EG±) (Kivinen and
Warmuth, 1997). The batch EG± algorithm keeps track of two vectors, v+

t and v−
t , and its predic-

tion vector is given by wt = v+
t − v−

t . It starts with a set of weights v+
1 = v−

1 = 1
2d1 (so that

∥v+
1 ∥1 + ∥v−

1 ∥1 = 1, and updates according to

v+
t+1 ∝ v+

t ⊙ e−η∇L(wt), v−
t+1 ∝ v−

t ⊙ eη∇L(wt),

where ⊙ is component-wise multiplication, and the normalization ensures that ∥v+
t+1∥1+∥v−

t+1∥1 =
1, while L(w) is the average total loss on the training sample:

L(w) =
1

n
∥Xw − yt∥2.

Theorem 5 The expected error of the batch EG± algorithm after the first iteration is bounded by

e(w2) ≤ 2de−η + 8de−
md
32σ2 .

Proof sketch: The gradient of the loss can be written down as 2(w − e1 − ζ), where ζ are i.i.d.
Gaussian noise variables which are combinations of the original noise variables. Using the deviation
bound for Gaussians together with union bound, with probability at least 1−2d exp{−md/(32σ2)}
all noise variables are bounded by 1/4. Thus, the first coordinate of the negative gradient is larger
than all other coordinates by at least 1, so that the first weight exponentially dominates all the other
weights already after one step of the algorithm, and the error drops down to 2de−η. If the high
probability even does not hold, we bound the error by its maximum value 4.

2. Note that at this point, we do not consider general input matrices X in the upper bounds. The arbitrary covariance
structure makes the analysis much more complicated and the general case is left for future research.

3. We can also provide an upper bound on the error of the online version of EG± for an arbitrary input matrix X with
fixed feature range via a standard worst-case regret analysis followed by the online-to-batch conversion (See e.g.
Kivinen and Warmuth (1997)). The bound so obtained would however give a slower rate of order O(

√
log d/(dm),

which still has a substantially better dependence on dimension d than the lower bound from the previous section.

9

3.2. Upper bound for the Approximated Unnormalized Exponentiated Gradient update

We now drop the normalization of EG± and use the approximation exp(x) ≈ 1+ x.4 The resulting
approximation of the unnormalized EGU± algorithm updates its weights as follows:

wt+1 = wt − η
√
w2

t + 4β2 ∇L(wt), (4)

where β > 0 is a parameter and all operations (squaring the weights and taking square root) are
done component-wise. This update is closely related to Gradient Descent on the spindly network of
Figure 1. We start with w1 = 0. Note that as opposed to EG±, the update does not constrain its
weights by normalizing. Nevertheless, we will show that the algorithm achieves an upper bound on
the error, which is essentially O(d

log d) better than the error of any rotation invariant algorithm:

Theorem 6 Assume d ≥ 4 is such that
√
d is an integer. Consider the Approximated EGU± algo-

rithm (4) with β = 1/(2d) and learning rate η = 1/4 and let m ≥ 8σ2 ln 2d
δ = Ω(σ2 log(d/δ)) .

With probability at least 1− δ, the algorithm run by T = 4
√
d steps, achieves error bounded by:

e(wT+1) ≤
10σ2 ln 2d

δ

md
+ 9e−

8
3

√
d+2 ln d = O(

log d

md
+ e−

√
d)

Proof sketch: Similarly as for EG±, with high probability all noise variables are small. We can in-
terpret the weight update (4) as the gradient descent update on the weights with the effective learning
rates η

√
w2

t + 4β2. Since β = 1/(2d), and w1 = 0, these learning rates are initially small and of
order O(1/d). We then show by a careful analysis of the update, that for all coordinates except the
first one, the weights wt,i (i > 1) remain small and so do the associated learning rates. Therefore,
after T steps, the algorithm does not move significantly away from zero on these coordinates. In
turn, the weight on the first coordinate wt,1 increases towards 1. While the initial rate of increase is

small as well, it accelerates over time as η
√
w2
t,1 + 4β2 increases due o increasing wt,1. Eventually

wT+1,1 gets very close to 1 after T steps of the algorithm.

4. Experimental visualization

The main focus of this paper is the lower bound for rotation invariant algorithms and how it can be
circumvented. Nevertheless some experimental visualization of the behavior of the algorithms is
helpful. Figure 2 shows the behavior of two rotation-invariant algorithms (GD and ridge regression)
and three non-invariant ones (EGU±, the Approximated EGU± analyzed in Theorem 6, and gradient
descent on the Spindly network of Figure 1) on the regression problem from Sections 2.3 and 3. The
rotation invariant algorithms both reach but do not beat the lower bound of Theorem 2 while the non-
rotation invariant algorithms greatly outperform the upper bound of Theorem 6, showing that the
bound we were able to prove is weak (conservative). Note that all algorithms here require early
stopping to minimize their error, although the dips in the loss curves for GD and ridge regression
are too small to be visible.

4. This approximated version of EGU was introduced in (Kivinen and Warmuth, 1997). It was also used in the normal-
ized update PROD (Cesa-Bianchi et al., 2007).

10

LOWER BOUNDS FOR ROTATION INVARIANCE

In Theorem 5 we also prove exponential convergence of the error of EG±. We deemphasize
this algorithm because it normalizes based on the norm of the true weight vector and this may be
unreasonable. Indeed using learning rate η = 200, EG± achieves error below 10−300 (not shown).
Larger learning rates cause numerical instabilities.

Finally, the bounds of Sections 2.3 and 3 and the curves of Figure 2 assume the instance matrix
X comprises m copies of a scaled d dimensional rotation matrix. This unusual setup was needed
for technical reasons. However if we instead use a Gaussian instance matrix X

md,d
together with

sparse linear targets plus Gaussian noise, then the curves are nearly identical to those in Figure 2
(not shown).

Figure 2: Excess test loss averaged over 100 runs of the linear regression problem in sections 2.3-3, using d = 1024,
m = 100, σ = 1/2. Learning rates are ηGD = 0.1, ηApprox EG± = 1/2 (per Theorem 6, also β = 1/2d), ηEGU± = 1,
ηSpindly = 1/4. Ridge regression is plotted with regularization parameter λ = 105/t. Dotted lines show the lower bound
for rotationally invariant algorithms from Theorem 2 (applies to GD and Ridge) and the upper bound for Approximated
EGU± from Theorem 6 (using δ = .001).

5. Noise experiments on Fashion MNIST

We perform experiments on the Fashion MNIST (Xiao et al., 2017) dataset using a multilayer feed-
forward network with two hidden layers of size 256 each. We consider two cases for the input
layer weights: 1) fully-connected (each 1st layer hidden node is connected to all inputs) and 2)
“spindly” (each 1st layer hidden node is connected to all inputs via the network of Figure 1). In the
noise-free case, both variants of the network behave similarly, although the fully-connected network
achieves higher test accuracy (85% for fully-connected vs. 81% for spindly). Next, we double the
number of features of the examples by augmenting each example with uniformly sampled noise in
the range [−1, 1]. With noisy augmentation, the spindly network achieves 80% test accuracy while
the fully-connected network gets only to 69%. In addition, the learned weights by the two net-
works are significantly different: The fully-connected network assigns almost the same magnitude
of weights to the noisy features as to the image features, while the spindly network allocates much
larger weights to the image features. This shows that Gradient Descent has a harder time ignoring
the noisy features.

Finally, to further compare the different sensitivity to the informativeness of features, we aug-
ment each example on top of the noise with its one-hot representation of the 10 target class labels.

11

This splits the features into three categories in terms of their informativeness: 1) highly informative
label features, 2) less informative image features, and 3) noise features with no (structured) informa-
tion. The spindly network achieves 100% test accuracy while the fully-connected network gets to
98%. We observe that the spindly network assigns much larger weights (in magnitude) to the label
features while almost ignoring the rest. This phenomenon is less prominent in the fully-connected
network. We defer all the details to the appendix.

6. Conclusion and open problems

We gave a lower bound for rotation invariant neural nets. Our work suggests the following ap-
proach: The structure of the network plus the weight update imply a certain set of invariances and
the invariances lead to lower bounds for the Bayes optimal algorithm of the model constructed
from the invariances. For example a certain two-sided invariance characterizes the matrix version
of multiplicative updates (Warmuth et al., 2014). Is it thus possible to prove lower bounds for
these algorithms for dense linear targets that are beaten by vanilla gradient descent? A more im-
mediate question is what are the invariances when the fully-connected bottom layer of a gradient
descent trained neural net uses convolution. Can such networks learn sparse linear problems? Also
transformers (Vaswani et al., 2017) should be investigated with this method. Transformers clearly
have an ability to access individual tokens. The question is which structural feature of transformers
enables them to do that and learn sparse linear problems. Partial results along this line recently
appeared in Abernethy et al. (2023).

Another interesting question is when transforming the instances (i.e. a kernelization) “helps”
rotation invariant algorithms. Note that linear neurons that are fed transformed instances when
updated with gradient descent again have the 1− k/d lower bound in the noise-free underconstraint
case (Warmuth and Vishwanathan, 2005). Proving similar lower bounds for the noisy over constraint
case as done in this paper would be a first step.

Finally, the updates discussed in this paper focus on mirror descent and its approximations.
However there is large body of work based on L1 regularization that is also biased towards sparsity
(See e.g. Tibshirani (2015); Axiotis and Yasuda (2023); Hoff (2017)). How these updates are related
to mirror descent is an interesting research topic.

Recall that multiplicative update are mirror descent using the log link functions. By streching
the link in the EG± version it was shown that EG± has gradient descent as a special case (Ghai
et al., 2020). Actually we observe that this stretching method can be used to enhance any mirror
descent update with a hyper parameter that can realize gradient descent as a special case. However
no practical algorithm have been developed based on this observation.

Finally, the ”full versions” of many commonly optimization algorithms (Abdulkadirov et al.,
2023) such as AdaGrad, Fisher, Adam, RMS Prop are all rotation invariant. However in practice
diagonalized versions of these updates are used. The inductive biases of all these algorithms need to
be analyzed. For example, in our preliminary work (not shown) we see that diagonalized AdaGrad
is biased away from sparsity in the weight vectors. Using sparsity as a yard stick, we show that
dramatic differences can occur that provably cannot be overcome by enhancing gradient descent
with any number of hidden layers. Therefore a thorough investigation of mirror descent for training
neural nets should also achieve large differences that have not been explored.

12

LOWER BOUNDS FOR ROTATION INVARIANCE

References

Ruslan Abdulkadirov, Pavel Lyakhov, and Nikolay Nagornov. Survey of optimization algorithms in
modern neural networks, 04 2023.

Jakob Abernethy, Alekh Agarwal, Teodor V. Marinov, and Manfred K. Warmuth. A mechanism for
sample-efficient in-context learning for sparse retrieval tasks. arXiv preprint arXiv:2305.17040,
2023.

S. Amari and S.C. Douglas. Why natural gradient? In Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP ’98 (Cat. No.98CH36181),
volume 2, pages 1213–1216 vol.2, 1998.

Ehsan Amid and Manfred K. Warmuth. Reparameterizing mirror descent as gradient descent. In
Proceedings of Advances in Neural Information Processing Systems, volume 33, pages 8430–
8439, 2020.

Kyriakos Axiotis and Taisuke Yasuda. Performance of ℓ1 regularization for sparse convex optimiza-
tion, 2023.

James O. Berger. Statistical decision theory and Bayesian analysis. Springer, 1985.

Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for pre-
diction with expert advice. Machine Learning, 66(2-3):321–352, 2007.

Lee H. Dickel. Ridge regression and asymptotic minimax estimation over spheres of growing di-
mension. Bernoulli, 22(1):1–37, 2016.

Udaya Ghai, Elad Hazan, and Yoram Singer. Exponentiated gradient meets gradient descent. In
Conference on Learning Theory (COLT), volume 117, pages 1–23. PMLR, 2020.

Suriya Gunasekar, Blake E. Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Sre-
bro. Implicit regularization in matrix factorization. In Proceedings of Advances in Neural Infor-
mation Processing Systems (NeurIPS), pages 6151–6159, 2017.

Peter D. Hoff. Lasso, fractional norm and structured sparse estimation using a hadamard product
parametrization. Computational Statistics & Data Analysis, 115:186–198, 2017.

Anna Kerekes, Anna Mészáros, and Ferenc Huszár. Depth without the magic: Inductive bias of
natural gradient descent. ArXiv, abs/2111.11542, 2021.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Information and Computation, 132(1):1–63, 1997.

Jyrki Kivinen, Manfred K. Warmuth, and Peter Auer. The Perceptron algorithm versus Winnow:
linear versus logarithmic mistake bounds when few input variables are relevant. Artificial Intelli-
gence, 97(1-2):325–343, 1997.

Eric Marchand. Estimation of a multivariate mean with constraints on the norm. The Canadian
Journal of Statistics, 21(4):359–366, 1993.

13

R. J. Tibshirani. A general framework for fast stagewise algorithms. Journal of Machine Learning
Research, 16(Dec):2543–2588, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc., 2017.

Manfred K. Warmuth and S.V.N. Vishwanathan. Leaving the span. In Proceedings of the 18th
Annual Conference on Learning Theory (COLT), pages 366–381, 2005.

Manfred K. Warmuth, Wojciech Kotłowski, and Shuisheng Zhou. Kernelization of matrix updates.
Journal of Theoretical Computer Science, 558:159–178, 2014.

Manfred K. Warmuth, Wojciech Kotłowski, and Ehsan Amid. A case where a spindly two-layer
linear network decisively outperforms any neural network with a fully connected input layer. In
32th International Conference on Algorithmic Learning Theory (ALT), volume 132, pages 1–32.
PMLR, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms, 2017. URL http://arxiv.org/
abs/1708.07747. cite arxiv:1708.07747Comment: Dataset is freely available at
https://github.com/zalandoresearch/fashion-mnist Benchmark is available at http://fashion-
mnist.s3-website.eu-central-1.amazonaws.com/.

Appendix A. Proof of Theorem 5

Here we prove that the batch version of EG± achieves small error already after one trail, when the
learning rate is set to a sufficiently large value (Theorem 5)

The (batch) EG± algorithm keeps track of two vectors, v+
t and v−

t , and its prediction vector is
given by wt = v+

t − v−
t . It starts with a set of weights v+

1 = v−
1 = 1

2d1, and updates according to

v+
t+1 ∝ v+

t ⊙ e−η∇L(wt), v−
t+1 ∝ v−

t ⊙ eη∇L(wt),

where ⊙ is component-wise multiplication, and the normalization ensures that ∥v+
t+1∥1+∥v−

t+1∥1 =
1, while L(w) is the average total loss on the training sample:

L(w) =
1

dm
∥Xw − yt∥2.

We compute the expression for the gradient:

∇L(w) =
2

dm

m∑
t=1

√
dV ⊤(

√
dV w − yt) =

2

dm

m∑
t=1

√
dV ⊤(

√
dV (w − e1)− ξt)

=
2

dm

m∑
t=1

(
d(w − e1) +

√
dV ⊤ξt

)
= 2(w − e1)−

2√
d
V ⊤ξ̄,

14

http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

LOWER BOUNDS FOR ROTATION INVARIANCE

where

ξ̄ =
1

m

m∑
t=1

ξt ∼ N

(
0,

σ2

m
I

)
,

and the reduction of variance is due to averaging i.i.d. noise variables. Furthermore, we rewrite

∇L(w) = 2(w − e1 − ζ), (5)

where the noise vector ζ = 1√
d
V ⊤ξ̄ has distribution

ζ ∼ N

(
0,

σ2

md
V ⊤V

)
= N

(
0,

σ2

md
I

)
.

We also bound the error of the algorithm from above:

e(wt) = ∥wt−e1∥2 = ∥wt∥2−2w⊤
t e1+∥e1∥2 ≤ 2−2w⊤

t e1 = 2(1−wt,1) = 2(1−v+t,1+v−t,1).

So it suffices to upper-bound 1− v+t,1 and v−t,1.
Consider the weights of the batch EG± algorithm after just a single trial, that is v+

2 and v−
2

Using (5) and noting that w1 = 0, and v+1,i = v−1,i =
1
2d for all i, we can concisely write v+2,1 and

v−2,1 as:

v+2,1 =
e2η(1+ζ1)

Z2
, v−2,1 =

e−2η(1+ζ1)

Z2
, Z2 =

d∑
i=1

e2η(δ1i+ζi) + e−2η(δ1i+ζi), (6)

We will now lower-bound v+2,1, and later use a relation which directly follows from (6):

v−2,1 = e−4η(1+ζ1)v+2,1. (7)

Using the deviation bound for zero-mean Gaussian z ∼ N(0, τ2), P (|z| ≥ γ) ≤ 2 exp
{
− γ2

2τ2

}
,

we get that for any i = 1, . . . , d,

P (|ζi| ≥ 1/4) ≤ 2 exp

{
−mdγ2

32σ2

}
.

Taking the union bound over i = 1, . . . , i, we have

P (∃i |ζi| ≥ 1/4) ≤ 2d exp

{
−mdγ2

32σ2

}
.

Denoting the probability on the right-hand side by δ, we conclude that with probability at least 1−δ,
all noise variables ζi are bounded by 1/4. Let us call this event E, and we condition everything what
follows on the fact that E happened.

Note that for any i ≥ 2,

∂v+2,1
∂ζi

= −
v+2,1
Z2

2η
(
e2ηζi − e−2ηζi

)
,

15

which is decreasing for ζi > 0 and increasing for ζi < 0. So, to lower-bound v+2,1, conditioning on
event E, we set ζi = 1/4 for all i ≥ 2 in (6) (ζi = −1/4 would result in the same value of these
weights). This gives:

v+2,1 ≥
e2η(1+ζ1)

e2η(1+ζ1) + e−2η(1+ζ1) + (d− 1)(eη/2 + e−η/2)

=
1

1 + e−4η(1+ζ1) + e−2η(1+ζ1)(d− 1)(eη/2 + e−η/2)

≥ 1

1 + e−4η(1−1/4) + e−2η(1−1/4)(d− 1)(eη/2 + e−η/2)

≥ 1

1 + e−3η + e−3/2η2(d− 1)eη/2

≥ 1

1 + e−3η + 2(d− 1)e−η
≥ 1

1 + (2d− 1)e−η
(8)

This gives:

1− v+2,1 ≤
(2d− 1)e−η

1 + (2d− 1)e−η
=

1

1 + eη/(2d− 1)
≤ (2d− 1)e−η.

To upper-bound v−2,1, we use (7). Conditioning on E,

v−2,1 = e−4η(1+ζ1)v+2,1 ≤ e−4η(1+ζ1) ≤ e−2η.

Thus, with probability at least 1− δ, the error can be bounded by:

e(w2) ≤ 2(1− v+2,1 + v−2,1) ≤ (2d− 1)e−η + e−2η ≤ 2de−η

To get the expected error (with respect to the training data), we bound

E[e(w2)] = E[e(w2)|E]P (E) + E[e(w2)|E′]P (E′) ≤ E[e(w2)|E] + δ E[e(w2)|E′]

≤ E[e(w2)|E] + 2δ = 2de−η + 8de−
md
32σ2 ,

where we used the fact that e(w2) ≤ 2(1−v+2,1+v−2,1) ≤ 4 as v+2,1, v
−
2,1 ∈ [0, 1], and that maximizing

convex function e(w) give w Thus, taking sufficiently large η, we can drop the error arbitrarily close
to 8de−

md
32σ2 .

Appendix B. Derivation of the Approximated (EGU±) algorithm

We derive the Approximated EGU± algorithm defined by (4) as a first-order approximation of the
unnormalized Exponentiated Gradient update.

The vanilla EGU± algorithm keeps track of two vectors, v+
t and v−

t , and the prediction vector
is given by wt = v+

t − v−
t . Let β denote the initial value of weights, that is v+

1 = v−
1 = β1. The

weights are updated according to

v±
t+1 = v±

t ⊙ e∓η∇L(wt) = βe∓η
∑t

j=1 ∇L(wj). (9)

16

LOWER BOUNDS FOR ROTATION INVARIANCE

At every timestamp we have v+
t v

−
t = β2, which together with wt = v+

t −v−
t , allows us to express

v+
t andv

−
t in terms of wt:

v+
t =

wt +
√
w2

t + 4β2

2
, v−

t =
−wt +

√
w2

t + 4β2

2
. (10)

Expanding the EGU± update (9) in the learning rate we get

v±
t+1 = v±

t e
∓η∇L(wt) = v±

t (1∓ η∇L(wt)) +O(η2).

Dropping the O(η2) term and using (10) gives

v+
t + v−

t =
√
w2 + 4β2,

so that the update becomes (4):

wt+1 = wt − η
√
w2

t + 4β2 ∇L(wt).

Appendix C. Proof of Theorem 6

Using (5), ∇L(wt) = 2(wt − e1 + ζ), the update (4) becomes:

wt+1 = wt − 2η
√
w2

t + 4β2 (wt − e1 + ζ) (11)

We set β = 1/(2d), η = 1/4, and the number of steps of the algorithm T = 4
√
d. Note

that d ≥ 4 Using the deviation bound for zero-mean Gaussian z ∼ N(0, τ2), P (z ≥ −γ) ≤
exp

{
− γ2

2τ2

}
, we get that P (|ζi| ≥ γ) ≤ 2 exp

{
−mdγ2

8σ2

}
. Taking the union bound we have

P (∃i |ζi| ≥ γ) ≤ 2d exp
{
−mdγ2

8σ2

}
. Denoting the probability on the left-hand side by δ, we

can solve for γ:

γ = σ

√
ln 2d

δ

md
.

This means the with probability at least 1 − δ, |ζi| ≤ γ for all i = 1, . . . , d. Let us call this event
E, and we condition everything what follows on the fact that E happened. Furthermore, due to our
assumption that m grows at least logarithmically with d, m ≥ 8σ2 ln 2d

δ , we have γ ≤ 1√
8d

.
We rewrite the update (11) in terms of st = wt − e1 − ζ

st+1 = (1− 2η
√
(st + e1 + ζ)2 + 4β2)st (12)

The analysis for ‘zero signal’ direction. Since every weights evolves independently of the other
weights, we can analyze each coordinate separately. We start with any coordinate i ≥ 2 (’zero
signal’ weights), for which the update becomes

st+1,i = (1− 2η
√
(st,i + ζi)2 + 4β2)st,i,

17

with st,1 = −ζ1. Now, w.l.o.g. assume ζi < 0 (the analysis for ζi > 0 is analogous). This means
that s1,i > 0, and st,i is positive and monotonically decreasing as long as 2η

√
(st,i + ζi)2 + 4c2 <

1; this condition is ensured by noticing that

(st,i + ζi)
2 + 4β2 ≤ ζ2i + d−2 ≤ γ2 +

1

4
≤ 1

2
,

so that using learning rate η <
√
2/2 will do the trick (remind that we use η = 1/4). Since we

know that st,i is positive and monotonically decreasing, we can bound:

st+1,i ≥ (1− 2η
√
(sT+1,i + ζi)2 + 4β2)st,i,

so that

sT+1,i ≥ (1− 2η
√
(sT+1,i + ζi)2 + 4β2)T s1,i ≥ (1− 2ηT

√
(sT+1,i + ζi)2 + 4β2)ζi,

where we used the Bernoulli inequality (1 + x)n ≥ 1 + xn. Returning to the original variable
wt,i = st,i + ζi gives

wT+1,i ≥ 2ηTζi

√
w2
T+1,i + 4β2.

Since we also know that wT+1,i < 0 (because st,i = wt,i − ζi was decreasing in t with s1,i = −ζi
and w1,i = 0), we have

w2
T+1,i ≤ 4η2T 2ζ2i (w

2
T+1,i + 4β2),

which can be solved for w2
T+1,i:

w2
T+1,i ≤

16β2η2T 2ζ2i
1− 4η2T 2ζ2i

=
1

d2
4η2T 2γ2

1− 4η2T 2γ2

This expression is increasing in ζ2i so we can upper-bound it by

w2
T+1,i ≤

1

d2
4η2T 2γ2

1− 4η2T 2γ2

Since η = 1/4, T = 4
√
d and γ ≤ 1√

8d
, the denominator is bounded from below

1− 4η2T 2γ2 ≥ 1− 1

2
≥ 1

2
,

so that, using γ = σ

√
ln 2d

δ
md ,

w2
T+1,i ≤

1

d2
8d · σ2 ln 2d

δ

md
=

8σ2 ln 2d
δ

md2
.

Thus, the total error from ‘zero-signal’ coordinates is

d∑
i=2

w2
T+1,i ≤

8σ2 ln 2d
δ

md
(13)

We also need to show that the same amount of error comes from the first coordinate.

18

LOWER BOUNDS FOR ROTATION INVARIANCE

Analysis for the ‘signal’ coordinate. Using (12), we have for st,1 = 1− ζi − wt,1:

st+1,1 = (1− 2η
√
(1− st,1 − ζi)2 + 4β2)st,1,

with s1,1 = 1−ζi. As before, we note that st,i is decreasing in t, as long as 2η
√
(1− st,1 − ζi)2 + 4β2 <

1. However, this condition is satisfied for our choice of of η = 1/4, because

2η
√
(1− st,1 − ζi)2 + 4β2 ≤ 2η

√
(1− ζi)2 + 4β2 ≤ 1

2

√
1 + 2|ζi|+ ζ2i + d−2

≤ 1

2

√
1 +

1√
2d

+
9

8d2

d≥4
≤ 1

2

√
1 +

1

8
+

9

128
< 1.

Now, we need to carefully analyze the update. Initially st,1 decreases slowly, as the square root
term is essentially of order 1/d. At some point, however, st,1 falls below a certain constant (say,
st,1 = 1/2), and the square root term is of order O(1), and the convergence becomes exponential.

First, to simplify analysis we simply denote st,i by st; moreover, define r = 1 − ζi, so that the
update becomes

st+1 = (1− 2η
√
(r − st)2 + 4β2st, s1 = r, (14)

Already after the first iteration,

s2 = (1− 1/2d−1)st =
2d− 1

2d
r,

so that (r − s2)
2 = 1/(4d2) becomes comparable with 4β2 = 1/d2 term. So we can drop the 4β2

term from the square root in (14) and upper bound

st+1 ≤ (1− 2η(r − st))st (15)

To get some insight into this expression we solve the corresponding differential equation:

•
s = −2η(r − s)s,

which give:
st

r − st
= Ce−ηrt =⇒ st =

r

1 + Ce2ηrt
.

Inspired by this we will bound st
r−st

. From (15) we get:

r − st+1 ≥ r − (1− 2η(r − st)st = (1 + 2ηst)(r − st),

so that:
st+1

r − st+1
≤

(
1− 2η(r − st)

1 + 2ηst

)
︸ ︷︷ ︸

=:At

(
st

r − st

)
.

We will now bound At independent of st. To this end, note that At is maximized when st = r.
Indeed,

At =
1 + 2ηst − 2ηr

1 + 2ηst
= 1− 2ηr

1 + 2ηst
≤ 1− 2ηr

1 + 2ηr
=

1

1 + 2ηr
.

19

This way, we get an upper bound:
sT+1

r − sT+1
≤ (1 + 2ηr)−(T−1) s2

r − s2
= (2d− 1)(1 + 2ηr)−(T−1),

or by solving for sT+1,

sT+1 ≤
r

1 + (2d− 1)−1(1 + 2ηr)T−1
≤ r(2d− 1)(1 + 2ηr)−(T−1).

The expression above is decreasing in r for T ≥ 4 (can be verified by computing the derivative), so
we we will upper-bound it by lower-bounding r, that is r = 1− ζi ≥ 1− 1√

8d
. Taking η = 1/4 and

using 1− 1√
8d

d≥4
≥ 1− 1

4
√
2
, we get 1+2ηr >= 3

2 −
1

8
√
2
> e1/3 (checked numerically). Therefore,

sT+1 ≤ (2d− 1)e−(T−1)/3 ≤ e1/3+ln 2e−T/3+ln d ≤ 3e−T/3+ln d.

Using the fact that T = 4
√
d, we get

sT+1 ≤ 3e−
4
3

√
d+ln d

To bound (1− wT+1,1)
2 we use

(1− wT+1,1)
2 = (sT+1,i + ζi)

2 ≤ 2s2T+1,i + 2ζ2i ≤ 9e−
8
3

√
d+2 ln d +

2σ2 ln 2d
δ

md
. (16)

Bound the error of Spindly algorithm The final error of the algorithm is obtained by summing
(13) and (16):

∥wT+1 − e1∥2 ≤ 9e−
8
3

√
d+2 ln d +

2σ2 ln 2d
δ

md
+

8σ2 ln 2d
δ

md

=
10σ2 ln 2d

δ

md
+ 9e−

8
3

√
d+2 ln d.

Appendix D. Fashion MNIST experiment details

In our experiments, we use a constant learning rate (which we tune for each case). We use the full
batch of 60000 training examples and train each network for 1000 epochs. We first provide some
visualization of the weights for the noisy case where each example is augmented with unifrom
noise. Figure 3 shows a subset of the weights for each network where the top slice corresponds to
the image feature weights and the bottom slice corresponds to the noise feature weights. For the
spindly network, the average maximum absolute value of the effective weights (i.e., the product of
the two weights within each spindle) for each input neuron is 0.0182 for the image weights and
0.0025 for the noise features. The difference is less drastic for the fully-connected network, where
the values are 0.0627 and 0.0568, respectively.

Next, we show the results when adding extra one-hot embeddings of the labels as features.
Figure 4 shows a subset of the image and label weights for each network, along with the weights
corresponding to the labels at the bottom. The spindly network assigns relatively larger weights to
the label features. The average maximum absolute value of the weights for each neuron is 0.7834 for
the label weights, whereas the image and noise weights have values 0.0057 and 0.0025, respectively.
Again, the difference between the label weights and the rest is less prominent for the fully-connected
network: The average maximum absolute values are 0.4213 for label weights and 0.0604 and 0.0584
for the image and noise weights, respectively.

20

LOWER BOUNDS FOR ROTATION INVARIANCE

(a) Fully-connected (b) Spindly

Figure 3: The weights of the first layer when trained with images augmented with noise. The top slice corresponds to
the image feature weights and the bottom slice corresponds to the noise feature weights.

(a) Fully-connected (b) Spindly

Figure 4: The weights of the first layer when trained with images augmented with noise and one-hot representation of the
labels. The top slice corresponds to the image feature weights, the middle slice corresponds to the noise feature weights,
and the bottom corresponds to the label weights.

21

	Introduction
	The lower bound method
	Rotation invariance and problem setup
	Lower bounds for rotation invariant algorithms
	Lower bound for least-squares regression

	Upper bounds
	Upper bound for the Exponentiated Gradient update
	Upper bound for the Approximated Unnormalized Exponentiated Gradient update

	Experimental visualization
	Noise experiments on Fashion MNIST
	Conclusion and open problems
	Proof of Theorem 5
	Derivation of the Approximated (EGU) algorithm
	Proof of Theorem 6
	Fashion MNIST experiment details

