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Abstract

Any gradient descent trained neural net with a fully-connected input layer is rotation invariant when
initialized with a rotation invariant distribution. This means that if the input instances are rotated
then the trained weight vectors at the input layer counter rotate and the effect is vacuous. We show
that learning with a rotation invariant algorithm is fundamentally limited in that such an algorithm
cannot sample efficiently learn sparse linear functions. In contrast, there are simple non-rotation
invariant updates for a single linear neurons that learn sparse linear functions exponentially faster.
Also gradient descent on a 2-layer linear network where each hidden node is connected to a single
input can achieve the same feat.

In the lower bounds, we give the algorithm a rotated version of the input instances and then
prove that the Bayes optimal algorithm for this setup has a certain lower bound for linear sparse
targets that can be easily be avoided by simple non-rotation invariant algorithms. We believe that
this general proof technique will be useful for proving lower bounds for other families of algorithms
that admit other classes of invariances.

Keywords: rotation invariance, gradient descent, feed forward neural networks, lower bounds,
multiplicative updates, sparsity.

1. Introduction

In (Warmuth et al., 2021) a lower bound was proven for any algorithm that predicts with a rotation
invariant function. This lower bound on the expected square loss of a random example is essentially
1 — k/d when learning a sparse linear function, where d is the input dimension and 1 < k < d is the
number of training examples seen. The lower bound is surprising because it holds for predicting with
any gradient descent trained neural net with a fully-connected input layer whose initial distribution
is rotation invariant. In particular the lower bound holds for any structure of the hidden layers and
transfer functions at the hidden nodes. However the lower bound is of limited interest because it
becomes vacuous when the number of training examples k is at least the input dimension d. This is
of course the case in most applications.

In this paper we prove lower bounds for the same class of algorithms for the more relevant over
constraint case. The target class used is now sparse linear plus Gaussian noise. We clearly show
that the rotation invariance of the algorithm is responsible for the lower bound:

1. Our lower bound technique creates a Bayesian setup where the learning is presented with a
randomly rotated version of the input instances and we prove a lower bound on the Bayes
optimal algorithm for this case.

2. We show that there are trivial non-rotation invariant algorithm that can learn noisy sparse
linear much more efficiently: Multiplicative updates on a linear neuron or gradient descent on
a two-layer linear net in which every hidden node is connected to exactly one input node (The
gradient flow case gradient descent on such networks is equivalent to multiplicative updates
on a linear neuron (Amid and Warmuth, 2020)).
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Thus the lower bound can be circumvented by pivoting away from gradient descent to a multiplica-
tive update on just a linear neuron or by changing the structure of the network so that gradient
descent can access individual features. Both methods are of course not rotation invariant. Our
proof technique is interesting in its own right and is different from the technique used for the under-
constrained case. So far we have no unified proof method for both the under and over constraint
cases.

ADDITIONAL RELATED WORK:

There is a long history for contrasting the generalization ability of additive versus multiplicative up-
dates (See e.g. Kivinen et al. (1997); Kivinen and Warmuth (1997)). Additive (or gradient descent)
updates subract multiples of the gradient from the weight vectors and multiplicative updates multi-
ply the weights by factors that have a multiple of the same gradients in the exponent. Multiplicative
updates perform dramatically better when the target is sparse. Surprisingly there is a connection be-
tween both update families discovered recently: Roughly when the weights are products of param-
eters, then the algorithms is biased towards sparsity (Gunasekar et al., 2017; Kerekes et al., 2021).
In the gradient flow case, multiplicative updates on a linear neuron have been

shown to be equivalent to gradient descent on a two-layer net in which every

hidden node is connect to exactly one input. One property of additive updates is

that they are rotation invariant when the loss depends on dot products between Figure 1: Spindly.
the instances and weight vectors. The purpose of this research is to show that this invariance has a
downside because such algorithms can only make use of dot products between instances and cannot
access individual features which is necessary for learning sparse targets efficiently.

i
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2. The lower bound method

2.1. Rotation invariance and problem setup

An example (x,y) is a d-dimensional vector, followed by a real-valued label y € R. We specify a

training set as a tuple (Xl; , Y) containing n training examples, where the rows of input matrix X are
n,a n
the n (transposed) input vectors and the target y is a vector of their labels.

A learning algorithm, is a mapping, which given the training set (X, y), produces a real-valued
prediction function R* 5 x y(x) € R. To accentuate the fact that the prediction function
depends on the training data, we will sometimes denote it by (x| X, y). With a slight abuse of the
definition, we allow the function value of 7 to be randomized (a random variable), based on some
internal randomness of the algorithm (such as the initialization of weight vectors).

A learning algorithm y(- | X, y) is called rotation invariant (Warmuth and Vishwanathan, 2005;
Warmuth et al., 2021) if for any orthogonal matrix dU;l and any input € R%:

JUz | XU, y) =5(z|X,y) (1

In other words, the prediction y(x| X, y) for any input & remains the same if we rotate both x
and all examples from X by the same orthogonal matrix U. If the algorithm is randomized, with
random variable Z denoting the entire internal randomization of the algorithm,' then 7 is a random

1. For example, in the neural networks Z would correspond to a random initialization of the parameter vector.
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variable given by some function y(e| X, y) = fz..,x,y(Z), and the equality sign in equation (1)
of the above definition of rotation invariance should be interpreted as “identically distributed”.

Our lower bounds in sections 2.2-2.3 will hold for any rotation invariant algorithm. In particular,
Warmuth et al. (2021) have shown that any neural network with a fully-connected input layer (and
arbitrary remaining layers), in which the nodes in the input layer are initialized randomly with
a rotation invariant distribution (e.g. i.i.d. Gaussians), which is trained by gradient descent, is
rotation invariant, and is thus subject to our lower bound. That is, learning with any function of the
following form is rotation invariant: f(w; -z, ws-x,...,wy-x,d), where the w; are initialized by
a rotationally symmetric distribution, are updated with gradient descent and the additional weights
0 are updated in any manner that depends on the input only via w; -« (i.e., via the computation in the
first layer). The reason is that the gradient V,, f is equal to the instance x times a scalar that depends
on x only via w; - . Therefore it is easy to show, by induction on ¢, that rotating all instances by
some orthogonal matrix U results in the same rotation of w; ; for all < and ¢, and therefore that the
rotation has no effect on « - w;. In contrast learning with f(ujvi21, ugvaxe, ..., ugvsxry) (with
parameters u, v) is not rotation invariant.

2.2. Lower bounds for rotation invariant algorithms

Our method for proving lower bounds builds on the following observation: Given any rotation in-
variant algorithm and any learning problem, the algorithm will achieve the same loss on all rotated
versions of that problem. We can therefore consider a Bayesian setting where the problem is sam-
pled uniformly from all rotated versions, and the optimal solution provides a lower bound on the
loss of the algorithm. Intuitively, being rotation invariant forces an algorithm to be agnostic over all
possible rotations of the problem, and hedging its bets in this way prevents it from excelling at any
specific problem instance. In Section 2.3 we apply this reasoning to linear regression to show that
a rotation invariant algorithm cannot efficiently learn sparse solutions, because it must be equally
efficient at finding any other solution (including rotated, non-sparse ones).

Formally, let the learning problem be defined by (a) a rotationally symmetric input distribution

pin(X) with the input matrix Xl' .= [X, x| consisting of the training matrix X of size n and
n+1,

the test example @, (b) an observation model ¢(#| X') which gives the joint conditional distribution

over n training outcomes and a test outcome, Y = [y, Yte], and (c) a loss function L£(y,y). The
n+1
task of any algorithm will be to produce predictions y(zie| X, y) to minimize the loss on the test

outcomes, L(¥, yte ). Note that this setup allows arbitrary conditional dependencies among observa-
tions (not just iid problems), including dependencies between the training and the test sets.
For any orthogonal gz’ define the rotated observation model

qu (g1 X) = q(g|XU")

Now define a new learning problem by first sampling U uniformly (under the Haar measure pyy)
and then generating observations according to g¢7. This is equivalent to a symmetrized observation
model ¢ that is a mixture over all g

§§1X) = / qu (51X dpu(U)



The Bayes optimal prediction can be expressed by computing a posterior over U and integrating
expected loss over this posterior:

Y (zie| X, y) = arg mgin/EyteNqU(.@,y) (LY yee)Ip(U| X, y)dU .

Thus ¢ is difficult, especially for large d, because equal prior probability must be given to all possible
rotations. We define the optimal expected loss on this problem as

o

LB(q) = EX"‘pimﬂNa("X) [[:(/y\k(wte’X7 y)7 yte)]~

Our first result is that the performance of any rotation invariant algorithm on the original problem,
defined by ¢, is lower bounded by Lz(q).

Theorem 1 Given a rotationally symmetric pi,(X ), an observation model q(§| X)), a loss function
L, and a rotationally invariant learning algorithm y, (| X, y), define the expected loss

Ly(q) = EXNp,mqu(.\X)Z['C(/y\(xte‘Xa Y), e,
This loss is bounded by
Ly(q) > Lp(q)
Proof For any orthogonal U, the algorithm’s expected loss is

Li(qu) = Ex . gma (13,21 L0 (@ X, 1), Yre)]
= EXNpm,QNq(-|XUT),Z[E@(azte\X, Y), Yee)]
= Exr (10,2 L0 (@ X ), )]
= Ly(q),

where X’ = XU " (we alsoused X’ = XU " and xi, = Uxye), and where the fourth line uses
rotational symmetry of pj, and rotational invariance of 7. Therefore, presented with the problem ¢,
the algorithm will achieve expected loss L (q) regardless of the value of U. This implies that L;(q)

cannot be less than the optimal value Lz (q). |

As we show in the remainder of this paper, a consequence of Theorem 1 is that rotational in-
variance prevents efficient learning of problems characterized by properties that are not rotationally
invariant, such as sparsity. Algorithms with inductive biases for such properties are necessarily not
rotation invariant and can give dramatically better performance. Although we have stated the theo-
rem in terms of rotational invariance, it is easily extended to other transformation groups 7 on the
input (by replacing U with elements of 7 and requiring pj, to be symmetric under 7). For example,
natural gradient descent (NGD) is often touted for being invariant to arbitrary smooth reparameteri-
zation (Amari and Douglas, 1998), but this invariance comes at a cost of being unable to efficiently
learn in environments that are not invariant in this way. In particular, natural gradient on network in
Fig. 1 is rotation invariant (See discussion in (Kerekes et al., 2021)). Thus the below lower bounds
for sparse linear apply to the natural gradient algorithm, whereas vanilla gradient descent on this
network approximates EGU* and we will show it breaks the lower bound.
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2.3. Lower bound for least-squares regression

We demonstrate how the bound implied by Theorem 1 can provide a quantitative lower bound for a
specific class of learning problems. We then show how this bound is easily beaten by non-rotation-
invariant algorithms in Section 3.

In the specific problem class we consider, the number of training examples is n = md for some
integer m, and X consists of m stacked copies of a matrix H = \/Zi(}/:i (ie. X = [H;...; H)),

Xm
where V' is a random orthogonal matrix (distributed according to the Haar measure). The test input

is one of the rows of H, xt, = hy, with index k drawn uniformly at random. As the input distribu-
tion is based on drawing a random orthogonal matrix V/, its rotational symmetry is straightforward
to verify. We assume that the labels are the first feature of X plus Gaussian noise, that is

(G| X) = NG| Xer,0I,41), where e; = (1,0,...,0)7, ()
which can be be equivalently written as

y=Xe +& &~ N(0,0°I,4)
Yo = by 1+ &e,  Ee ~ N(0,07).

Note that while the inputs are shared in the training and the test parts, the test label is generated
using a ‘fresh’ copy of the noise variable &i.. The choice of e; as opposed to any other e; is made
w.l.o.g. Indeed, Theorem 1 implies that a rotationally invariant algorithm will have the same loss
for Xe; as it will for X w for any other unit vector w.

The accuracy of prediction ¥ = y(-| X, y) on the test set (hy, yt) is measured by the squared
loss L(Y,yte) = (¥ — ye)?. For any choice of a random row index k € {1,...,d}, denote the
corresponding prediction as y, = y(hy|X,y), and let y = (y1,...,yq) denote the vector of all
such predictions. Similarly, let yi. denote the vector of test labels for all choices of k, i.e., Y, =
h,;rel + &te, Which can be jointly written as y,e = Hej + &1 with 1 = (1,...,1). The expected
value of the loss over the random choice of k£ € {1, ..., d} and over the independent test label noise
is given by:

R 1 R 1 R
Ek o [L(T Yte)] = = Bero (1T — weell’] = = Ee. [[|7 — Her + &el|)?]

d d
1 2 . 1
= S5 — Heill® + 5 Ee, [6)(5 — Her) 1+ Be,, [62] 1)
T \g_/

1,
= gHy—H61H2 + o2

Clearly, the expression above is minimized by setting the prediction vector to y* = H ey, and thus
the smallest achievable expected loss is equal to o2, Subtracting this loss, we get the expression for
the excess risk of the learning algorithm, which we call the error of y:

. . P 1.
e(y) = Ek,étc[[’(y7yte)} - Ek,ﬁtc[ﬁ(y 7yte)] = g”y - H61H2



When the prediction is linear, § = Hw for some weight vector w € RY, we can also refer to the
error of w as the error of its predictions:

~ 1 N 1 ~ N
e(w) = gHHw — H81H2 = g(w — el)T HTH(w —e) =|w-— €1H2 3)
aI

The proof of the lower bound for this problem closely follows Section 2.2 and uses Theorem 1.

1. We start with a Bayesian setting with the rotated observation model q(gj\X U") for arandom
orthogonal matrix U. However, in the considered linear regression setup, this is equivalent
to simply rotating the target weight vector by U ', because XU'e, = X (UTey). This
means that we can equivalently consider a linear model y = Xw + £, where w is generated
randomly from a prior distribution uniform over a unit sphere S~! = {w € R?: ||w|| = 1}.
Given the square loss function and linear observation model, the optimal Bayes predictor is
based on the posterior mean, Ejw| X, y].

2. Even though the posterior mean does not have a simple analytic form for prior distribution
over a unit sphere, we use the results from (Marchand, 1993; Dickel, 2016) to show that the
Ridge Regression (RR) predictor (which is the Bayes predictor for the Gaussian prior) with
appropriately chosen regularization constant has the expected error by at most ég;’jm larger
than that of the Bayes predictor. Thus, it suffices to analyze the RR predictor.

3. We show that the error of the RR predictor is at least % This means that the Bayes error
0.2
o2+m

is at least % , and no other algorithm can achieve any better error for this problem.

4. Due to the rotation-symmetric distribution of the inputs, we can now apply Theorem 1 which

. . . . . . _ 2 ..
implies that every rotation invariant algorithm has error at least 451 —Z— for the original
d o?+m

sparse linear regression problem y = Xe; + é .

Theorem 2 Let Xi be a random orthogonal matrix, and let H = \/dV'. Let (X, y) be the training

set with )gd = [H;...; H] with labels y generated according to (2). Then the expected error of
md,

any rotation-invariant learning algorithm (with respect to V' and the noise in the labels) is at least

2
By ¢le@)] 2 7.
Note the lower bound does not hold for any fixed choice of X (of full rank) such as stacked version
of the d dimensional Hadamard matrix (which is a fixed rotation of VdI ). Hadamard matrices were
used extensively in previous lower bound proofs for sparse problems (Kivinen et al., 1997; Warmuth
and Vishwanathan, 2005). For any fixed full-rank X, there exists a row vector v s.t. v X = ef. Now
the linear algorithm (x| X , y) = v X z achieves minimal loss o while being trivially rotationally
invariant because v XU ' Uz = vX x.

Proof of Theorem 2: We consider the aforementioned rotated observational model, which can be
defined as follows. Let w € R? be a weight vector drawn uniformly from a unit sphere S~1 =
{w € RY: |[w|| = 1}. The algorithm is given data set (X,y) with X = [H;...; H] being m
copies of H = v/dV, and y = Hw + &, where £ ~ N (0,021, is a vector of Gaussian i.i.d.
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noise variables, each having zero mean and variance 0. Given vy, the algorithm is supposed to
produce a vector of predictions g € R? and is evaluated by means of the squared error, e(y|w) =
é”@ — Hw||?. We first note that without loss of generality, the algorithm produces a weight vector
w, based on which the predictions are generated, y = Hw; this is due to the fact that H is
invertible (as multiplicity of an orthogonal matrix), so for every ¥, one can have a corresponding
weight vector @ = H ~'4y. Thus, using (3) the error can be equivalently written as

e(w|w) = ||@ — w|.

It is well-known (see, e.g., Berger (1985)) that the expected squared error, E,, ¢ [e(w|w)] (with
expectation with respect to the prior and the label noise) is minimized by the posterior mean w* =
[Ep|y[w], that is the mean value of w with respect to the posterior distribution ¢(w|X,y). Even
though the posterior mean does not have a nice analytic form, we can still lower bound its expected
squared error using a technique borrowed from (Marchand, 1993; Dickel, 2016). Let wgp be the
ridge regression estimator:

Wrr = (XX +0%d) ' X Ty,

which is the posterior mean itself (and thus optimal) when the prior over w is Gaussian with zero
mean and covariance 5T (the covariance is multiplied by factor d~! to have E[[|w||?] = E[ww ']
tr(éI ) = 1 as in the unit sphere prior case). Even though the Gaussian prior differs from the
uniform prior over a unit sphere, it turns out that the RR predictor has error only slightly larger than
that of the optimal Bayes predictor w*:

Lemma 3

~ R 1 02
Bup ¢ [e(@ra/w)] < By [e(@"[w)] + 5 ——.

Proof Dickel (2016) considered a Bayesian setting similar to ours, with 02 = 1 and w distributed
uniformly over 784! = {w: ||w| = 7}. To account for this setting, we note that in our setup,

-1 T/ —1 -1
oy=X'(c-w) + o & ,
——
NN(OvIdm)
so that we can set 7 = o' and assume unit variance of the noise. Their ‘oracle ridge estimator’ is

thus Wrg. Furthermore, since || — w||?> = o2||c '@ — o~ 'w||?, we need to multiply their bound
by 2. We use their Theorem 2 (adapted to the modifications stated above):

Theorem 4 (Theorem 2 by Dickel (2016), Theorem 3.1 by Marchand (1993)) Let n = md and let
$1 > ... > sq denote the eigenvalues ofnleTX. Then

. . o?s _
Eue [e(@rr|w)] < By g [e(@*w)] + Fs—itr {(XTX + doI,) 1} .

Since X ' X =nlI,wehave s; = sy =1land (X' X + I,)~! = (n + do?)~'I,, and thus,

o2 1 o

= FEugle(@* -
s = Bugle(@*w)] +

2

B ¢ [e(Wrr[w)] < By g [e(w™|w)] + ol

7



Now, we compute the expected error of Wrp. Since X ' X = mdlI, we get

. 1 - 1 T mdw + X '€
WRR =g + o02d Y= d + o2d (Xw +£) md + o2d "’
and thus
. N , | XTe— 2w
e(Wrrlw) = |Wrr —wW||" = | ———5—

md + o2d
X2 mdw' X¢  o'd?||lwl?

(md+ o2d)2  (md+o2d)?2  (md+ o2d)?’

We take the expectation over w, under which the middle term in the last line vanishes (as E[w] = 0
over a unit sphere) and use ||w|| = 1 to get

1X "€|? otd?
md + o2d)?2  (md + 02d)?

Ewle(Wrrlw)] = (
We further take an expectation over £ and use
E[| X €)% = Eltr(X €€ X)) = tr(X T E[¢€]X) = tr(X ' X) = md tr(I) = md®,
to get:

md> N otd? _o*d(md+o?%d)  o?
md+ o2d)?2  (md+o2d)2"  (md+o2d)2  m+o?

Ew ¢le(@Wrr|w)] = (

Using this together with Lemma 3 gives the lower bound on the Bayes optimal predictor in the
rotated observational model.

o d—1 o?
Euw ¢le(w™|w)] = 4 2 m

We now use the fact that that H = /dV with orthogonal matrix V' of size d x d, drawn uniformly
at random (with respect to Haar measure), so that our input distribution is rotation symmetric. This
means that we can apply Theorem 1 and conclude that any rotation invariant algorithm has the

2 .. .
expected error at least % 020+m on the original problem, that is for w = e;. |

Note that the proof would significantly simplify if we assumed from the start that the target
weight vector w is generated from a Gaussian distribution N (0, 4 I;) rather than from a unit sphere
S4=1 (both priors give unit squared norm of w on expectation), as the Bayes predictor would be
exactly the RR predictor, giving even a better lower bound of Ufm, without the need to apply
results from Marchand (1993); Dickel (2016). This would, however, result in a random norm of the
sparse target vector. In our proof we opted for a bound with a fixed, unit norm of w.
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3. Upper bounds

2 . .
We now show how to break the above lower bound of d%dl 02"+m on the error (excess risk) of rotation

invariant algorithms. We do this with an approximated version of the unnormalized multiplicative
update EGU*. We use the same setup as in the lower bound, i.e. X consists of m stacked copies of
a matrix H = v/dV, when V is a rotation matrix and y is sparse linear (the first component) plus
Gaussian noise with variance 0. The only difference is that for the lower bound, V' was randomly
chosen, but the upper bounds hold for any rotation matrix V. The upper bound on the error that we
obtain? is essentially O (0?'%5%),

We begin with a bound for the normalized version of the multiplicative update called EG*. The
proof relies on the fact that, with high probability, the smallest coordinate of the gradient is the
first one, and with large learning rate, EG* becomes argmax over the negative gradient coordinates,
which is e;. EGT makes use of the fact that the norm of the linear target e is 1 and this additional
knowledge allows the speedup.®> We then prove our main upper bound for the unnormalized EGU®.

3.1. Upper bound for the Exponentiated Gradient update

We consider a batch version of the 2-sided Exponentiated Update algorithm (EGT) (Kivinen and
Warmuth, 1997). The batch EG* algorithm keeps track of two vectors, v;” and v, , and its predic-
tion vector is given by w; = v;” — v; . It starts with a set of weights v{ = v; = Ql—dl (so that
|lvi|l1 + [|v1 |l1 = 1, and updates according to

+ + —nVL(w — — VL(w
v xv ©e (we) v xv Oel (we)

where ® is component-wise multiplication, and the normalization ensures that ||v;", |1 +||vg, |1 =
1, while L(w) is the average total loss on the training sample:

1
L(w) = ~ | Xw — y|*
n
Theorem 5 The expected error of the batch EG* algorithm after the first iteration is bounded by

md
e(wsg) < 2de™" + 8de” 3242

Proof sketch: The gradient of the loss can be written down as 2(w — e; — ¢), where ¢ are i.i.d.
Gaussian noise variables which are combinations of the original noise variables. Using the deviation
bound for Gaussians together with union bound, with probability at least 1 — 2d exp{—md/(320?)}
all noise variables are bounded by 1/4. Thus, the first coordinate of the negative gradient is larger
than all other coordinates by at least 1, so that the first weight exponentially dominates all the other
weights already after one step of the algorithm, and the error drops down to 2de~". If the high
probability even does not hold, we bound the error by its maximum value 4. |

2. Note that at this point, we do not consider general input matrices X in the upper bounds. The arbitrary covariance
structure makes the analysis much more complicated and the general case is left for future research.

3. We can also provide an upper bound on the error of the online version of EG® for an arbitrary input matrix X with
fixed feature range via a standard worst-case regret analysis followed by the online-to-batch conversion (See e.g.
Kivinen and Warmuth (1997)). The bound so obtained would however give a slower rate of order O(/log d/(dm),
which still has a substantially better dependence on dimension d than the lower bound from the previous section.



3.2. Upper bound for the Approximated Unnormalized Exponentiated Gradient update

We now drop the normalization of EG* and use the approximation exp(z) ~ 1+ x.* The resulting
approximation of the unnormalized EGU™ algorithm updates its weights as follows:

Wy = Wy — m/wt2 + 462 VL(wy), 4)

where 5 > 0 is a parameter and all operations (squaring the weights and taking square root) are
done component-wise. This update is closely related to Gradient Descent on the spindly network of
Figure 1. We start with w; = 0. Note that as opposed to EGT, the update does not constrain its
weights by normalizing. Nevertheless, we will show that the algorithm achieves an upper bound on
the error, which is essentially O(&) better than the error of any rotation invariant algorithm:

Theorem 6 Assume d > 4 is such that \/d is an integer. Consider the Approximated EGU* algo-
rithm (4) with B = 1/(2d) and learning rate n = 1/4 and let m > 802 In %d = Q0% log(d/s)) .
With probability at least 1 — 8, the algorithm run by T = 4+/d steps, achieves error bounded by:

e(wrsy) < 1002 ]n%d 4 967%ﬂ+2lnd _ O(loﬂ + 67\/&)
md md

Proof sketch: Similarly as for EG*, with high probability all noise variables are small. We can in-
terpret the weight update (4) as the gradient descent update on the weights with the effective learning
rates n\/w; + 4/32. Since 3 = 1/(2d), and w; = 0, these learning rates are initially small and of
order O(1/d). We then show by a careful analysis of the update, that for all coordinates except the
first one, the weights w;; (¢ > 1) remain small and so do the associated learning rates. Therefore,
after T' steps, the algorithm does not move significantly away from zero on these coordinates. In
turn, the weight on the first coordinate w; 1 increases towards 1. While the initial rate of increase is

small as well, it accelerates over time as 17, /w?; + 4/32 increases due o increasing w 1. Eventually
wry1,1 gets very close to 1 after 1" steps of the algorithm. |

4. Experimental visualization

The main focus of this paper is the lower bound for rotation invariant algorithms and how it can be
circumvented. Nevertheless some experimental visualization of the behavior of the algorithms is
helpful. Figure 2 shows the behavior of two rotation-invariant algorithms (GD and ridge regression)
and three non-invariant ones (EGU¥, the Approximated EGU* analyzed in Theorem 6, and gradient
descent on the Spindly network of Figure 1) on the regression problem from Sections 2.3 and 3. The
rotation invariant algorithms both reach but do not beat the lower bound of Theorem 2 while the non-
rotation invariant algorithms greatly outperform the upper bound of Theorem 6, showing that the
bound we were able to prove is weak (conservative). Note that all algorithms here require early
stopping to minimize their error, although the dips in the loss curves for GD and ridge regression
are too small to be visible.

4. This approximated version of EGU was introduced in (Kivinen and Warmuth, 1997). It was also used in the normal-
ized update PROD (Cesa-Bianchi et al., 2007).

10
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In Theorem 5 we also prove exponential convergence of the error of EGT. We deemphasize
this algorithm because it normalizes based on the norm of the true weight vector and this may be
unreasonable. Indeed using learning rate n = 200, EGT achieves error below 1073 (not shown).
Larger learning rates cause numerical instabilities.

Finally, the bounds of Sections 2.3 and 3 and the curves of Figure 2 assume the instance matrix
X comprises m copies of a scaled d dimensional rotation matrix. This unusual setup was needed

for technical reasons. However if we instead use a Gaussian instance matrix X together with
md,d

sparse linear targets plus Gaussian noise, then the curves are nearly identical to those in Figure 2
(not shown).

= GD

= Ridge

== Approx EGU*

— EGU*

Spindly

------ Rot-inv lower bound
----- Approx-EGU* upper bound |3

Mean error

L I L L L L L
0 5 10 15 2 25 30 35 40 45 50

Step (t)

Figure 2: Excess test loss averaged over 100 runs of the linear regression problem in sections 2.3-3, using d = 1024,
m = 100, 0 = 1/2. Learning rates are 16p = 0.1, Napprox kgt = 1/2 (per Theorem 6, also § = 1/2d), gy = 1.
Nspindly = 1/4. Ridge regression is plotted with regularization parameter A = 10° /¢. Dotted lines show the lower bound
for rotationally invariant algorithms from Theorem 2 (applies to GD and Ridge) and the upper bound for Approximated
EGU® from Theorem 6 (using 6 = .001).

5. Noise experiments on Fashion MNIST

We perform experiments on the Fashion MNIST (Xiao et al., 2017) dataset using a multilayer feed-
forward network with two hidden layers of size 256 each. We consider two cases for the input
layer weights: 1) fully-connected (each 1st layer hidden node is connected to all inputs) and 2)
“spindly” (each 1st layer hidden node is connected to all inputs via the network of Figure 1). In the
noise-free case, both variants of the network behave similarly, although the fully-connected network
achieves higher test accuracy (85% for fully-connected vs. 81% for spindly). Next, we double the
number of features of the examples by augmenting each example with uniformly sampled noise in
the range [—1, 1]. With noisy augmentation, the spindly network achieves 80% test accuracy while
the fully-connected network gets only to 69%. In addition, the learned weights by the two net-
works are significantly different: The fully-connected network assigns almost the same magnitude
of weights to the noisy features as to the image features, while the spindly network allocates much
larger weights to the image features. This shows that Gradient Descent has a harder time ignoring
the noisy features.

Finally, to further compare the different sensitivity to the informativeness of features, we aug-
ment each example on top of the noise with its one-hot representation of the 10 target class labels.
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This splits the features into three categories in terms of their informativeness: 1) highly informative
label features, 2) less informative image features, and 3) noise features with no (structured) informa-
tion. The spindly network achieves 100% test accuracy while the fully-connected network gets to
98%. We observe that the spindly network assigns much larger weights (in magnitude) to the label
features while almost ignoring the rest. This phenomenon is less prominent in the fully-connected
network. We defer all the details to the appendix.

6. Conclusion and open problems

We gave a lower bound for rotation invariant neural nets. Our work suggests the following ap-
proach: The structure of the network plus the weight update imply a certain set of invariances and
the invariances lead to lower bounds for the Bayes optimal algorithm of the model constructed
from the invariances. For example a certain two-sided invariance characterizes the matrix version
of multiplicative updates (Warmuth et al., 2014). Is it thus possible to prove lower bounds for
these algorithms for dense linear targets that are beaten by vanilla gradient descent? A more im-
mediate question is what are the invariances when the fully-connected bottom layer of a gradient
descent trained neural net uses convolution. Can such networks learn sparse linear problems? Also
transformers (Vaswani et al., 2017) should be investigated with this method. Transformers clearly
have an ability to access individual tokens. The question is which structural feature of transformers
enables them to do that and learn sparse linear problems. Partial results along this line recently
appeared in Abernethy et al. (2023).

Another interesting question is when transforming the instances (i.e. a kernelization) “helps”
rotation invariant algorithms. Note that linear neurons that are fed transformed instances when
updated with gradient descent again have the 1 — ¥/d lower bound in the noise-free underconstraint
case (Warmuth and Vishwanathan, 2005). Proving similar lower bounds for the noisy over constraint
case as done in this paper would be a first step.

Finally, the updates discussed in this paper focus on mirror descent and its approximations.
However there is large body of work based on L; regularization that is also biased towards sparsity
(See e.g. Tibshirani (2015); Axiotis and Yasuda (2023); Hoff (2017)). How these updates are related
to mirror descent is an interesting research topic.

Recall that multiplicative update are mirror descent using the log link functions. By streching
the link in the EG™ version it was shown that EGT has gradient descent as a special case (Ghai
et al., 2020). Actually we observe that this stretching method can be used to enhance any mirror
descent update with a hyper parameter that can realize gradient descent as a special case. However
no practical algorithm have been developed based on this observation.

Finally, the ”full versions” of many commonly optimization algorithms (Abdulkadirov et al.,
2023) such as AdaGrad, Fisher, Adam, RMS Prop are all rotation invariant. However in practice
diagonalized versions of these updates are used. The inductive biases of all these algorithms need to
be analyzed. For example, in our preliminary work (not shown) we see that diagonalized AdaGrad
is biased away from sparsity in the weight vectors. Using sparsity as a yard stick, we show that
dramatic differences can occur that provably cannot be overcome by enhancing gradient descent
with any number of hidden layers. Therefore a thorough investigation of mirror descent for training
neural nets should also achieve large differences that have not been explored.
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Appendix A. Proof of Theorem 5

Here we prove that the batch version of EG* achieves small error already after one trail, when the
learning rate is set to a sufficiently large value (Theorem 5)

The (batch) EG™ algorithm keeps track of two vectors, v;” and v, , and its prediction vector is
given by w; = v, — v; . It starts with a set of weights v = v = 2—1dl, and updates according to

—nV L(wt) NV L(wt)
) )

1 T - —~
Vi XU O€ Uiy XU Oe€

where ® is component-wise multiplication, and the normalization ensures that ||v;", |1 +||vg, 4 [[1 =
1, while L(w) is the average total loss on the training sample:

1
L(w) = — || Xw — y|%
(w) = —— |1 Xw -y
We compute the expression for the gradient:

VL(w Z\fVT (VdVw — ;) Z\fVT (VdV (w — ey) — &)

m

2 2
= ; (d(w —e)+ \/EVT&) =2(w—e1) — 7

14


http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

LOWER BOUNDS FOR ROTATION INVARIANCE

where
£ =

m o2
th ~ N (07 I> )
t=1 m

and the reduction of variance is due to averaging i.i.d. noise variables. Furthermore, we rewrite

3=

VL(w) =2(w - e; = (), (5)

where the noise vector { = ﬁVTé has distribution

O'2 0'2
¢ ~N(0,—V'V)] =N[0,—T).
md md

We also bound the error of the algorithm from above:
e(wy) = Jw —er|” = [lwe]|* — 2w/ e + |ler]* < 22w/ e = 2(1 —we1) = 21— v}f; +ovyy).

So it suffices to upper-bound 1 — v;’ pand ;.

Consider the weights of the batch EG™ algorithm after just a single trial, that is v;’ and vy
Using (5) and noting that w; = 0, and vf i = U = Tld for all 7, we can concisely write U;: 1 and
Vg as:

20(14¢1) —2n(14¢1) d
¢ - € 2n(d1i+Gs —2n(61i 4G
vgrl:TQ, V21 T T Z2=;_16n(1+<)+€ o) (6)

We will now lower-bound v; 1> and later use a relation which directly follows from (6):

vy = e Iy 7

)

Using the deviation bound for zero-mean Gaussian z ~ N (0,72), P(|]z| > 7) < 2exp {— % }
we get that forany i = 1,...,d,

mdy? }

PllGl 2 1/4) < 2exp { -7

Taking the union bound over ¢ = 1, ..., ¢, we have

. mdr?
P(3i |G| = 1/4) < 2dexp {—3202} .
Denoting the probability on the right-hand side by J, we conclude that with probability at least 1 — 4,
all noise variables (; are bounded by 1/4. Let us call this event F, and we condition everything what
follows on the fact that £ happened.
Note that for any 7 > 2,

1 2l (em _ efznci) 7
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which is decreasing for (; > 0 and increasing for (; < 0. So, to lower-bound v{ 1> conditioning on
event E, we set (; = 1/4 for all i > 2 in (6) ((; = —1/4 would result in the same value of these
weights). This gives:

. e2n(1+¢1)
>
Y21 = (1) + e=2n014C1) 4 (d — 1)(en/2 + e=n/2)
1
T 1+ e Mn(HC) =2 (4 — 1)(e/2 + e 1/2)
1
=7 + e~4n(1=1/4) 4 e=2(1=1/4)(d — 1)(en/2 + e~/2)
S 1
T 14 e 34 em3/212(d — 1)en/2
S 1 > ! @®)
T l4e3n42(d—1)e T 1+ (2d—1)en
This gives:
2d —1)e" 1
1S T d- e Treed-n) - 4T

To upper-bound v, ;, we use (7). Conditioning on £,

vy, = 6*477(1+C1)v;‘1 < e~ 4n(1+C1) <e 2,

) )

Thus, with probability at least 1 — &, the error can be bounded by:
e(wy) <2(1— v2+71 + vil) <(2d—1)e "+ e 21 < 2de™"
To get the expected error (with respect to the training data), we bound

Ele(ws)]

Ele(ws)|E]P(E) + Ele(ws)|E'|P(E') < Ele(ws)|E] + 6 Ele(ws)|E']
Ele(ws)| E] + 26 = 2de™" + 8de” 57

2
7%y

IN

where we used the fact that e(ws) < 2(1 —vil —H}Q_J) <4as U;,p Uy € [0, 1], and that maximizing
convex function e(w) give w Thus, taking sufficiently large 7, we can drop the error arbitrarily close

md

to 8de™ 3202,

Appendix B. Derivation of the Approximated (EGU%) algorithm

We derive the Approximated EGU* algorithm defined by (4) as a first-order approximation of the
unnormalized Exponentiated Gradient update.

The vanilla EGU™ algorithm keeps track of two vectors, v;” and v, , and the prediction vector
is given by w; = v;” — v; . Let 3 denote the initial value of weights, that is v;” = v; = S1. The
weights are updated according to

v?fi-l — ’U?: ® eP?VL(wt) — Be:F?? 25:1 VL(wj)‘ ©)
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At every timestamp we have v;"v, = 2, which together with w; = v;” — v, , allows us to express

v;"andv; in terms of wy:

+
v, =

wi + / th + 42 _ Twit vy 'w? +45° (10)
2 ’ 2 )

Expanding the EGU* update (9) in the learning rate we get
vy = v V) = o (1L F 9V L(wn) + O ().

Dropping the O(n?) term and using (10) gives

v v = Vw? 4462,

so that the update becomes (4):

W1 = W — N/ th + 462 VL(wt)

Appendix C. Proof of Theorem 6
Using (5), VL(w;) = 2(w; — e + ), the update (4) becomes:

Wi = wy — 20/ w? + 482 (w; — e + ¢) an

We set 3 = 1/(2d), 7 = 1/4, and the number of steps of the algorithm 7' = 4+/d. Note
that d > 4 Using the deviation bound for zero-mean Gaussian z ~ N(0,72), P(z > —v) <

42 ) mdry? . .
exp § —gz ¢, we get that P(|(;] > 7) < 2expq{—-g . Taking the union bound we have

P(3i ¢ > v) < 2dexp {—md72 } Denoting the probability on the left-hand side by 4, we

802

can solve for ~:
2d
n%

TN a

This means the with probability at least 1 — 0, |(;| < yforall = 1,...,d. Let us call this event
E, and we condition everything what follows on the fact that 2 happened. Furthermore, due to our
assumption that m grows at least logarithmically with d, m > 802 In Q(S—d, we have v < —

NCTA
We rewrite the update (11) in terms of s; = w; — e — ¢

si1 = (1 =20/ (st +e1 4+ ¢)2 +452)s; (12)

The analysis for ‘zero signal’ direction. Since every weights evolves independently of the other
weights, we can analyze each coordinate separately. We start with any coordinate ¢ > 2 (’zero
signal” weights), for which the update becomes

Str1 = (1 — 277\/(3t,i + Gi)? 4+ 452) st
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with 541 = —(1. Now, w.l.o.g. assume (; < O (the analysis for ¢; > 0 is analogous). This means
that s1; > 0, and s; ; is positive and monotonically decreasing as long as 27 \/ (St + G2 +4ct <
1; this condition is ensured by noticing that

1 1
(16 +G)* +48* <G +d 77 <7+ 7 <o,
so that using learning rate 7 < /2/2 will do the trick (remind that we use n = 1/4). Since we
know that s; ; is positive and monotonically decreasing, we can bound:

St41,4 > (1 — 277\/(ST+1,Z‘ + Gi)? +458?)s¢4,

so that

sr41: > (1 — 277\/(5T+1,i + )2 482 s> (1 - 277T\/(8T+1,z‘ + G2+ 482G,

where we used the Bernoulli inequality (1 + z)™ > 1 + zn. Returning to the original variable

Wy = 8¢ + i gives
W41, = 277T<i\/ w%+17i + 4/82~

Since we also know that w71 ; < 0 (because s;; = w;; — (; was decreasing in t with s1; = —(;
and wy ; = 0), we have
WF 1 < AT (W, +46%),
which can be solved for w#, ;:
5 - 16ﬁ2772T2C22 _ 1 4?”]2T2’)/2
UTHLE = T 222 T 21— AT
1
This expression is increasing in (? so we can upper-bound it by
9 - 1 4772T2’)/2
Wrii = 27— 42722

Sincen =1/4,T = 4+/d and v < %, the denominator is bounded from below

T
1.1
1 -4’2 >1— = > =
Lty 2 5= 5
. In 2d
so that, using v = 0\/ -5,
, _18d-0"m¥ 8o’
e
Thus, the total error from ‘zero-signal’ coordinates is
i 9 < 802 1In %d (13)
2 Wy > md

We also need to show that the same amount of error comes from the first coordinate.
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Analysis for the ‘signal’ coordinate. Using (12), we have for s;1 =1 — (; — wy 1:

spp10 = (1— 2"7\/(1 — 51— Gi)? +4B8%)s4.1,

with 511 = 1—(;. Asbefore, we note that s; ; is decreasing in ¢, as long as 277\/(1 — 541 — Gi)?+4p2% <
1. However, this condition is satisfied for our choice of of = 1/4, because

o= s — G 46 < 2= GIF +45% < 51+ 206l + 2+ d-2

Now, we need to carefully analyze the update. Initially s;1 decreases slowly, as the square root

term is essentially of order 1/d. At some point, however, s¢,1 falls below a certain constant (say,

st = 1/2), and the square root term is of order O(1), and the convergence becomes exponential.
First, to simplify analysis we simply denote s;; by s;; moreover, define r = 1 — (;, so that the

update becomes
Str1 = (1 =20/ (r — s¢)? + 43254, s1=r, (14)

Already after the first iteration,

2d —1
r

sp=(1—1/2d71)s; = 57"

so that (r — s2)? = 1/(4d?) becomes comparable with 432 = 1/d? term. So we can drop the 43>
term from the square root in (14) and upper bound

Ser1 < (1 —2n(r — s¢))s¢ (15)
To get some insight into this expression we solve the corresponding differential equation:
s=—2n(r—s)s,

which give:

St _ T
=Ce " = St = o
r— 8 1+ Ce?nm

Inspired by this we will bound

‘—. From (15) we get:

s
r—sg’

r— 81 > — (L =2n(r —s¢)sg = (14 2nsy)(r — s¢),

St1 1—=2n(r—s) Sy
r—Sii1 1+ 2ns; r—s; /)

:ZAt

so that:

We will now bound A; independent of s;. To this end, note that A; is maximized when s; = r.
Indeed,
A 1+ 2ns —2nr 2nr < 290 1

YT 14 2ms, 0 1+2nps, 0 1+42pr 1420

19



This way, we get an upper bound:

B S (1+ 2777,)*(7"*1)872 = (2d — 1)(1 + 2nr)~ T,

T — 8741 T — 82
or by solving for s71,

r
<
~ 14 (2d—-1)"1(1+ 2nr)
The expression above is decreasing in r for T' > 4 (can be verified by computing the derivative), so
we we will upper-bound it by lower-bounding r, thatisr =1 —(; > 1 — \/%. Taking 7 = 1/4 and
p 424 1
Ve 2 e
sry1 < (2d _ 1)6—(T—1)/3 < 61/3+1n26—T/3+1nd < 36—T/3+lnd.

ST+1 7 <r(2d-1)(1+ 2nr)_(T_1).

3 1/3

using 1 — we get 1 +2nr >= 5 — 8—\1/5 > e/” (checked numerically). Therefore,

Using the fact that T' = 4v/d, we get

4
ST41 < 3675\/3+1nd

To bound (1 — wTH’l)Q we use
27 2d
20 ln S ‘
md

Bound the error of Spindly algorithm The final error of the algorithm is obtained by summing
(13) and (16):

8
(1 — wry11)? = (5741 + G)* < 28%,,, + 26 < 9~ 5Vd+2nd | (16)

21 2d 21 2d
8 20¢1In 80 1n
||wT+1 _ 61H2 < 9675\/&+21nd+ ) + )

md md
2 2d

4 ge—g\/a—FQ In d‘
md

Appendix D. Fashion MNIST experiment details

In our experiments, we use a constant learning rate (which we tune for each case). We use the full
batch of 60000 training examples and train each network for 1000 epochs. We first provide some
visualization of the weights for the noisy case where each example is augmented with unifrom
noise. Figure 3 shows a subset of the weights for each network where the top slice corresponds to
the image feature weights and the bottom slice corresponds to the noise feature weights. For the
spindly network, the average maximum absolute value of the effective weights (i.e., the product of
the two weights within each spindle) for each input neuron is 0.0182 for the image weights and
0.0025 for the noise features. The difference is less drastic for the fully-connected network, where
the values are 0.0627 and 0.0568, respectively.

Next, we show the results when adding extra one-hot embeddings of the labels as features.
Figure 4 shows a subset of the image and label weights for each network, along with the weights
corresponding to the labels at the bottom. The spindly network assigns relatively larger weights to
the label features. The average maximum absolute value of the weights for each neuron is 0.7834 for
the label weights, whereas the image and noise weights have values 0.0057 and 0.0025, respectively.
Again, the difference between the label weights and the rest is less prominent for the fully-connected
network: The average maximum absolute values are 0.4213 for label weights and 0.0604 and 0.0584
for the image and noise weights, respectively.
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(a) Fully-connected (b) Spindly

Figure 3: The weights of the first layer when trained with images augmented with noise. The top slice corresponds to
the image feature weights and the bottom slice corresponds to the noise feature weights.

(a) Fully-connected (b) Spindly

Figure 4: The weights of the first layer when trained with images augmented with noise and one-hot representation of the
labels. The top slice corresponds to the image feature weights, the middle slice corresponds to the noise feature weights,
and the bottom corresponds to the label weights.
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