Two-temperature logistic regression based on the Tsallis divergence G Ehsan Amid, Manfred Warmuth, & Sriram Srinivasan University of California, Santa Cruz Google Brain, Zürich ## Problem and Motivation - · Convex losses are not generally robust to outliers - Non-convex losses are more desirable, i.e. those that do not grow indefinitely & thus ignore extreme outliers - We would like to be able to control the level of non-convexity and maintain properties such as Bayes-consistency and properness ## **Properties** - The normalization constant for probabilities can be determined efficiently using an iterative algorithm - Loss is Bayes-consistent, even in the non-convex case - The loss is not proper in general, but the correct distribution can be recovered using a simple transformation - · Quasi-convex loss is significantly more robust to noise # Background Generalized log and exponential functions $$\log_t x = \frac{1}{1-t}(x^{1-t}-1)$$ $$\exp_t(x) = [1 + (1-t)x]_+^{1/(1-t)}$$ Tsallis divergence $$D_t(p||q) = -\int p(\mathbf{x}) \log_t \frac{q(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x}$$ ## Approach Two-temperature surrogate loss $$\frac{1}{N} \sum_n \underbrace{\left[-\log_{t_1} \exp_{t_2}(\mathbf{w}_{c_n}^{\top} \mathbf{x}_n - G_{t_2}(\mathbf{W}^{\top} \mathbf{x}_n)) \right]}_{\xi_{t_1}^{t_2}(\mathbf{x}_n, c_n \,|\, \mathbf{W})}$$ - Loss is bounded when 0 < t₁ < 1 - Distribution has a heavier tail when t₂ > 1 - Loss is convex when t₂ = t₁ ≥ 1 and quasi-convex when t₂ > t₁. Also, t₁ = t₂ = 1 recovers logistic loss ## Results #### Accuracy in the presence of instance noise ### Classification accuracy with 10% label noise | $\begin{array}{c} \textbf{Dataset} \\ (\# \text{instances}, \# \text{dira}) \end{array}$ | Noise Type | Classification Accuracy (%) | | | | | |--|--------------|-----------------------------|------------------|------------------|------------------|--| | | | hinge | logistic | t-LR | 2TLR | | | Fashion MNIST
(20K, 784) | random. | 96.42 ± 0.59 | 96.42 ± 0.59 | 94.09 ± 0.48 | 99.80 ± 0.12 | | | | small-margin | 98.50 ± 0.26 | 98.50 ± 0.26 | 97.35 ± 0.42 | 99.13 ± 0.37 | | | | large-margin | 96.42 ± 0.59 | 96.42 ± 0.59 | 94.09 ± 0.48 | 99.80 ± 0.12 | | | CIFAR-10
(10.8K, 1024) | random | 84.27 ± 1.12 | 84.29 ± 1.17 | 82.11 ± 1.01 | 87.75 ± 1.40 | | | | small-margin | 84.94 ± 0.97 | 84.94 ± 0.99 | 84.22 ± 0.79 | 86.28 ± 1.18 | | | | lorge-margin | 77.79 ± 1.20 | 77.77 ± 1.20 | 72.58 ± 1.44 | 88.56 ± 1.20 | | | Fonts
(143K, 411) | rondom. | 83.78 ± 0.28 | 83.78 ± 0.28 | 84.14 ± 0.27 | 84.14 ± 0.27 | | | | small-margin | 83.60 ± 0.34 | 83.60 ± 0.34 | 83.38 ± 0.36 | 83.60 ± 0.34 | | | | large-margin | 72.39 ± 0.32 | 72.39 ± 0.32 | 72.61 ± 0.30 | 72.61 ± 0.30 | | | Covertype
(287K, 54) | random. | 97.52 ± 0.88 | 97.52 ± 0.88 | 99.26 ± 0.05 | 99.26 ± 0.05 | | | | small-margin | 96.79 ± 0.11 | 96.79 ± 0.11 | 97.25 ± 0.05 | 97.25 ± 0.05 | | | | large-margin | 83.59 ± 0.24 | 83.59 ± 0.24 | 84.79 ± 0.20 | 94.03 ± 0.13 | | #### Runtime comparison | Dataset
(#instances, #dim) | Runtime (s) | | | | | | | |-------------------------------|-----------------|------------------|------------------|-----------------|--|--|--| | | hinge | logistic | t-LR. | 2TLR | | | | | Fashion MNIST
(20K, 784) | 4.40 ± 0.28 | 4.57 ± 0.12 | 7.02 ± 0.29 | 7.35 ± 1.21 | | | | | CIFAR-10
(10.5K, 1024) | 31.90 ± 0.22 | 31.86 ± 0.29 | 35.08 ± 0.81 | 28.34±10.56 | | | | | Fonts
(143K, 411) | 49.47 ± 4.92 | 49.75 ± 4.99 | 82.85 ± 4.98 | 58.78 ± 6.14 | | | | | Covertype
(287K, 54) | 6.45 ± 0.17 | 6.42 ± 0.18 | 66.96 ± 1.20 | 24.53 ± 1.2 | | | |