

Two-temperature logistic regression based on the Tsallis divergence

G

Ehsan Amid, Manfred Warmuth, & Sriram Srinivasan University of California, Santa Cruz Google Brain, Zürich

Problem and Motivation

- · Convex losses are not generally robust to outliers
- Non-convex losses are more desirable, i.e. those that do not grow indefinitely & thus ignore extreme outliers
- We would like to be able to control the level of non-convexity and maintain properties such as Bayes-consistency and properness

Properties

- The normalization constant for probabilities can be determined efficiently using an iterative algorithm
- Loss is Bayes-consistent, even in the non-convex case
- The loss is not proper in general, but the correct distribution can be recovered using a simple transformation
- · Quasi-convex loss is significantly more robust to noise

Background

Generalized log and exponential functions

$$\log_t x = \frac{1}{1-t}(x^{1-t}-1)$$

$$\exp_t(x) = [1 + (1-t)x]_+^{1/(1-t)}$$

Tsallis divergence

$$D_t(p||q) = -\int p(\mathbf{x}) \log_t \frac{q(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x}$$

Approach

Two-temperature surrogate loss

$$\frac{1}{N} \sum_n \underbrace{\left[-\log_{t_1} \exp_{t_2}(\mathbf{w}_{c_n}^{\top} \mathbf{x}_n - G_{t_2}(\mathbf{W}^{\top} \mathbf{x}_n)) \right]}_{\xi_{t_1}^{t_2}(\mathbf{x}_n, c_n \,|\, \mathbf{W})}$$

- Loss is bounded when 0 < t₁ < 1
- Distribution has a heavier tail when t₂ > 1
- Loss is convex when t₂ = t₁ ≥ 1 and quasi-convex when t₂ > t₁. Also, t₁ = t₂ = 1 recovers logistic loss

Results

Accuracy in the presence of instance noise

Classification accuracy with 10% label noise

$\begin{array}{c} \textbf{Dataset} \\ (\# \text{instances}, \# \text{dira}) \end{array}$	Noise Type	Classification Accuracy (%)				
		hinge	logistic	t-LR	2TLR	
Fashion MNIST (20K, 784)	random.	96.42 ± 0.59	96.42 ± 0.59	94.09 ± 0.48	99.80 ± 0.12	
	small-margin	98.50 ± 0.26	98.50 ± 0.26	97.35 ± 0.42	99.13 ± 0.37	
	large-margin	96.42 ± 0.59	96.42 ± 0.59	94.09 ± 0.48	99.80 ± 0.12	
CIFAR-10 (10.8K, 1024)	random	84.27 ± 1.12	84.29 ± 1.17	82.11 ± 1.01	87.75 ± 1.40	
	small-margin	84.94 ± 0.97	84.94 ± 0.99	84.22 ± 0.79	86.28 ± 1.18	
	lorge-margin	77.79 ± 1.20	77.77 ± 1.20	72.58 ± 1.44	88.56 ± 1.20	
Fonts (143K, 411)	rondom.	83.78 ± 0.28	83.78 ± 0.28	84.14 ± 0.27	84.14 ± 0.27	
	small-margin	83.60 ± 0.34	83.60 ± 0.34	83.38 ± 0.36	83.60 ± 0.34	
	large-margin	72.39 ± 0.32	72.39 ± 0.32	72.61 ± 0.30	72.61 ± 0.30	
Covertype (287K, 54)	random.	97.52 ± 0.88	97.52 ± 0.88	99.26 ± 0.05	99.26 ± 0.05	
	small-margin	96.79 ± 0.11	96.79 ± 0.11	97.25 ± 0.05	97.25 ± 0.05	
	large-margin	83.59 ± 0.24	83.59 ± 0.24	84.79 ± 0.20	94.03 ± 0.13	

Runtime comparison

Dataset (#instances, #dim)	Runtime (s)						
	hinge	logistic	t-LR.	2TLR			
Fashion MNIST (20K, 784)	4.40 ± 0.28	4.57 ± 0.12	7.02 ± 0.29	7.35 ± 1.21			
CIFAR-10 (10.5K, 1024)	31.90 ± 0.22	31.86 ± 0.29	35.08 ± 0.81	28.34±10.56			
Fonts (143K, 411)	49.47 ± 4.92	49.75 ± 4.99	82.85 ± 4.98	58.78 ± 6.14			
Covertype (287K, 54)	6.45 ± 0.17	6.42 ± 0.18	66.96 ± 1.20	24.53 ± 1.2			