
Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

A. Bound for Online Gradient Descent with Per-Dimension Learning Rates
We remind the update of OGD with per-dimension learning rates:

wt+1,i = wt,i − ηi∇t,i, i = 1, . . . , d,

with w1 = 0. For any ui ∈ R, we have:

(ui − wt+1,i)
2 − (ui − wt,i)2 = (ui − wt,i + ηi∇t,i)2 − (ui − wt,i)2 = 2ηi∇t,i(ui − wt,i) + η2

i∇2
t,i.

Summing over trials t = 1, . . . , T and rearranging:

2ηi

T∑
t=1

∇t,i(wt,i − ui) = u2
i − (ui − wT+1,i)

2 + η2
i

T∑
t=1

∇2
t,i.

Dividing by 2ηi, upper bounding and summing over i = 1, . . . , d:

T∑
t=1

∇>t (wt − u) ≤
d∑
i=1

(
u2
i

2ηi
+
ηi
2

T∑
t=1

∇2
t,i

)
.

Finally, using (3) shows that the right-hand side of the above upper bounds the regret.

B. Scale Invariance of Algorithm 1 and Algorithm 2
Let {(xt, yt)}Tt=1 be a data sequence and define a transformed sequence {(Axt, yt)}Tt=1, where A = diag(a1, . . . , ad)
with a1, . . . , ad > 0. We will show that the sequence of predictions ŷ1, . . . , ŷT generated by the algorithms on the original
and the transformed data sequences are the same. This can easily be done inductively: assuming ŷ1, . . . , ŷt are the same on
both sequences, this implies g1, . . . , gt are also the same (as gt = ∂ŷt`(yt, ŷt), while yt are the same in both sequences).
Given that, a closer inspection of the algorithms lets us determine the behavior of all maintained statistics under the feature
transformation xt,i 7→ aixt,i.

For both algorithms we have:

Mt,i = max
j≤t
|xj,i| 7→ aiMt,i, S2

t,i =
∑
j≤t

(gjxj,i)
2 7→ a2

iS
2
t,i, Gt,i = −

∑
j≤t

gjxj,i 7→ aiGt,i,

This means that for Algorithm 1:
βt,i 7→ βt,i, θt,i 7→ θt,i, wt,i 7→ a−1

i wt,i,

so that xt,iwt,i 7→ xt,iwt,i and thus ŷt = x>t wt is invariant under the scale transformation.

Similarly, for Algorithm 2 we have:

ηt,i 7→ ηt,i, θi,i 7→ θt,i, wt,i 7→ a−1
i wt,i,

and the scale invariance follows.

C. Proof of Theorem 3.1
Before proving the theorem, we need two auxiliary results:

Lemma C.1. Let f(x) = α
(
e|x|/γ − |x|/γ − 1

)
with α, γ > 0. Its Fenchel conjugate is given by:

f∗(u)
def
= sup

x
{ux− f(x)}

= (|u|γ + α) ln(1 + |u|γ/α)− |u|γ
≤ |u|γ ln(1 + |u|γ/α).

(6)

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

Proof. Note that since f(x) is symmetric in x,

sup
x
{ux− f(x)} = sup

x≥0
{|u|x− f(x)}

= sup
x≥0

{
|u|x− α

(
ex/γ − x/γ − 1

)
︸ ︷︷ ︸

g(x)

}
. (7)

Setting the derivative of g(x) to zero gives its unconstrained maximizer x∗ = γ ln(1 + |u|γ/α), and since x∗ ≥ 0, it is also
the maximizer of g(x) under constraint x ≥ 0. Thus:

f∗(u) = g(x∗) = (|u|γ + α)γ ln(1 + |u|γ/α)− |u|γ.

The inequality in the lemma follows from an elementary inequality ln(1 + x) ≤ x applied to α ln(1 + |u|γ/α).

Lemma C.2. For any v ∈ R and any q ∈ [−1, 1]:

q sgn(v)

2

(
e
|v|
2 − 1

)
+ e

|v−q|
2
√

1+q2 − |v − q|
2
√

1 + q2
≤ e

|v|
2 − |v|

2
+ q2.

Proof. It suffices to prove the lemma for v ≥ 0. Indeed, the inequality holds for some v ≥ 0 and q ∈ [−1, 1] if and only if it
holds for −v and −q. Denote:

ṽ =
|v − q|√

1 + q2
.

In this notation and with the assumption v ≥ 0, the inequality translates to:

e
ṽ
2 − ṽ

2
≤ e v

2

(
1− q

2

)
− v − q

2
+ q2 (8)

We will split the proof into three sub-cases: (i) q ≥ v, (ii) q ≤ v ≤ 3, and (iii) v ≥ 3. Since q ≤ 1, these cases cover all
allowed values of v and q.

Case (i): q ≥ v. We have ṽ = q−v√
1+q2

≤ q − v. Since the function ex − x is increasing in x for x ∈ (1,∞), it holds:

e
ṽ
2 − ṽ

2
≤ e

q−v
2 − q − v

2
= e

v
2 e

q−2v
2 − q − v

2
.

From q ≤ 1 and v ≥ 0 it follows q−2v
2 ≤ 1−2v

2 ≤ 1
2 . Since function f(x) = ex−x−1

x2 is nondecreasing in x (see, e.g.,
(Cesa-Bianchi & Lugosi, 2006), Section A.1.2), we have:

ex − x− 1 ≤ x2 e
1/2 − 1/2− 1

1/4
≤ 0.6x2 for x ≤ 1

2
. (9)

Thus, we bound e
q−2v

2 by 1 + q−2v
2 + 0.15(q − 2v)2 and get:

e
ṽ
2 − ṽ

2
≤ e v

2

(
1 +

q − 2v

2

)
− q − v

2
+ 0.15e

v
2 (q − 2v)2

= e
v
2

(
1− q

2

)
− v − q

2
+ (e

v
2 − 1)(q − v) + 0.15e

v
2 (q − 2v)2

≤ e v
2

(
1− q

2

)
− v − q

2
+ v(q − v) +

1

4
(q − 2v)2,

where the last inequality follows from the fact that v ≤ 1 (as q ≥ v and q ≤ 1), which by (9) implies e
v
2 ≤ 1 + v

2 + 0.6 v
2

4 =

1 + 0.5v+ 0.15v2 ≤ 1 + v, and furthermore 0.15e
v
2 ≤ 0.15e

1
2 ≤ 1

4 . But v(q− v) + 1
4 (q− 2v)2 = 1

4q
2 ≤ q2, which proves

(8) for q ≥ v.

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

Case (ii): q ≤ v ≤ 3. We have ṽ = v−q√
1+q2

≤ v − q, and by the monotonicity of function ex − x for x ∈ (1,∞):

e
ṽ
2 − ṽ

2
≤ e

v−q
2 − v − q

2
= e

v
2 e−

q
2 − v − q

2
.

Using (9) and q ≥ −1, we bound e−q/2 ≤ 1− q
2 + 0.15q2 to get:

e
ṽ
2 − ṽ

2
≤ e v

2

(
1− q

2

)
− v − q

2
+ 0.15e

v
2 q2.

Using 0.15e
v
2 ≤ 0.15e

3
2 ≤ 0.68 ≤ 1 proves (8) for q ≤ v ≤ 3.

Case (iii): v > 3. We lower-bound the right-hand side of (8):

e
v
2

(
1− q

2

)
− v − q

2
+ q2 ≥ e v

2

(
1− q

2

)
−
v − q − q2

2

2
≥ e 1

2 (v−q− q2

2) −
v − q − q2

2

2
,

where the first inequality is simply from q2 ≥ q2

4 , while the second follows from 1 − x ≥ e−x−x
2

for x ≤ 1
2 (see, .e.g.,

(Cesa-Bianchi & Lugosi, 2006), Lemma 2.4). Now, using the monotonicity of function ex − x,

e
1
2 (v−q− q2

2) −
v − q − q2

2

2
≥ e ṽ

2 − ṽ

2
⇐⇒ v − q − q2

2
≥ ṽ,

thus it suffices to show the latter to finish the proof. We have:

v − q − q2

2
− ṽ = (v − q)

(
1− 1√

1 + q2

)
− q2

2
≥ (3− q)

(
1− 1√

1 + q2

)
− q2

2
.

Using elementary inequality
√

1 + x ≤ 1 + x
2 , we have: 1√

1+q2
=

√
1+q2

1+q2 ≤
1+q2/2
1+q2 , and thus:

v − q − q2

2
− ṽ ≥ (3− q)

(
1− 1 + q2/2

1 + q2

)
− q2

2
= (3− q) q

2/2

1 + q2
− q2

2

=
q2

2

(
3− q
1 + q2

− 1

)
≥ q2

2

(
3− 1

1 + 1
− 1

)
= 0.

This shows that v − q − q2

2 ≥ ṽ and thus proves (9) for v > 3.

Before we state the next result, we summarize the notation which will be used in what follows. For any i = 1, . . . , d and any
t = 1, . . . , T , let:

Mt,i = max
j≤t
|xj,i|, Gt,i = −

∑
j≤t

gjxj,i, S2
t,i =

∑
j≤t

(gjxj,i)
2,

be, respectively, the maximum input value, the negative cumulative gradient, and the sum of squared gradients at i-th
coordinate up to (and including) trial t, and we also denote M0,i = G0,i = S2

0,i = 0. Moreover, define:

βt,i =

{
min

{
βt−1,i, ε

S2
t−1,i+M

2
t,i

x2
t,it

}
when xt,i 6= 0,

βt−1,i when xt,i = 0,

with β1,i = ε. The weight vector at trial t is given by:

wt,i =
βt,isgn(Gt−1,i)

2
√
S2
t−1,i +M2

t,i

(
e

|Gt−1,i|

2
√

S2
t−1,i

+M2
t,i − 1

)
, (10)

as long as Mt,i > 0; if Mt,i = 0 (which means that xj,i = 0 for all j ≤ t), we set wt,i = 0, but any other value of wt,i
would lead to the same loss. Finally, define Ŝ2

t,i = S2
t,i +M2

t,i.

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

Lemma C.3. Define:

ψt,i(x) =

{
βt,i

(
e|x|/(2Ŝt,i) − |x|

2Ŝt,i
− 1
)

for Ŝt,i 6= 0,

0 for Ŝt,i = 0.

For any i = 1, . . . , d and any t = 1, . . . , T we have:

wt,igtxt,i ≤ ψt−1,i(Gt−1,i)− ψt,i(Gt,i) +
ε

t
.

Proof. Fix i ∈ {1, . . . , d}, and let τi be the first trial t such that xt,i 6= 0. This means that Ŝt,i = xt,i = 0 for all t < τi,
and the inequality is trivially satisfied for any t < τi, as the left-hand side is zero, while the right-hand side is ε/t. Thus,
assume t ≥ τi.

Fix t and define v =
Gt−1,i√

S2
t−1,i+M

2
t,i

and q =
gtxt,i√

S2
t−1,i+M

2
t,i

. As |q| ≤ |gtxt,i|
Mt,i

≤ |xt,i|
maxj≤t |xj,i| ≤ 1, we can apply Lemma C.2

to such v and q, which, after subtracting 1 and multiplying by βt,i on both sides, gives:

βt,i
q sgn(v)

2

(
e
|v|
2 − 1

)
+ βt,i

(
e
|v−q|

2
√

1+q2 − |v − q|
2
√

1 + q2
− 1

)

≤ βt,i
(
e
|v|
2 − |v|

2
− 1

)
+ βt,iq

2. (11)

Using the definition of the weight vector (10) we identify the first term on the left-hand side of (11):

βt,i
q sgn(v)

2

(
e|v|/2 − 1

)
= wt,igtxt,i.

Next, since:
Gt,i

Ŝt,i
=

Gt,i√
S2
t,i +M2

t,i

=
Gt−1,i − gtxt,i√

S2
t−1,i +M2

t,i + (gtxt,i)2
=

v − q√
1 + q2

,

the second term on the left-hand side of (11) is equal to ψt,i(Gt,i). Thus, (11) can be rewritten as:

wt,igtxt,i + ψt,i(Gt,i) ≤ βt,i
(
e
|v|
2 − |v|

2
− 1

)
+ βt,iq

2,

and to finish the proof, it suffices to show that the two terms on the right-hand side are upper bounded, respectively, by
ψt−1,i(Gt−1,i) and ε

t .

To bound βt,iq2 note that if xt,i = 0 then βt,iq2 = 0, whereas if xt,i 6= 0 then by the definition of βt,i:

βt,iq
2 = βt,i

(gtxt,i)
2

S2
t−1,i +M2

t,i

≤ ε
S2
t−1,i +M2

t,i

x2
t,it

(gtxt,i)
2

S2
t−1,i +M2

t,i

≤ εg2
t

t
≤ ε

t
.

To bound βt,i(e|v|/2 − |v|/2− 1) by ψτi−1,i(Gt−1,i) note that both are zero if t = τi (because Gτi−1,i = 0 and v = 0). On
the other hand, for t > τi we have:

|v| = |Gt−1,i|√
S2
t−1,i +M2

t,i

≤ |Gt−1,i|√
S2
t−1,i +M2

t−1,i

=
|Gt−1,i|
Ŝt−1,i

,

and by the monotonicity of f(x) = ex − x− 1:

βt,i(e
|v|/2 − |v|/2− 1) ≤ βt,i

(
e
|Gt−1,i|
2Ŝt−1,i − |Gt−1,i|

2Ŝt−1,i

− 1

)
≤ ψt−1,i(Gt−1,i),

where in the last inequality we used βt,i ≤ βt−1,i (which follows from the definition) and the fact that ex − x− 1 ≥ 0 for
all x.

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

We are now ready to prove Theorem 3.1, which we restate here for convenience:

Theorem. For any u ∈ R the regret of ScInOL1 is upper-bounded by:

RT (u) ≤
d∑
i=1

(
2|ui|ŜT,i ln(1 + 2|ui|ŜT,iε−1T) + ε(1 + lnT)

)
=

d∑
i=1

Õ(|ui|ŜT,i),

where ŜT,i =
√
S2
T,i +M2

T,i and Õ(·) hides the constants and logarithmic factors.

Proof. Applying Lemma (C.3) for a fixed i ∈ {1, . . . , d} and all t = 1, . . . , T , and summing over trials gives:

T∑
t=1

wt,igtxt,i ≤ −ψT,i(GT,i) +

T∑
t=1

ε

t
≤ −ψT,i(GT,i) + ε (1 + lnT) ,

where we used ψ0,i(G0,i) = 0. By (3),

RT (u) ≤
T∑
t=1

gtx
>
t (wt − u) =

d∑
i=1

(
T∑
t=1

gtxt,iwt,i +GT,iui

)

≤
d∑
i=1

(GT,iui − ψT,i(GT,i)) + dε (1 + ln(T))

≤
d∑
i=1

sup
x
{xui − ψT,i(x)}+ dε (1 + ln(T))

≤
d∑
i=1

2|ui|ŜT,i ln
(

1 + 2|ui|ŜT,i/βT,i
)

+ dε (1 + ln(T)) ,

where in the last inequality we used Lemma C.1 for each i with α = βT,i and γ = 2ŜT,i. To finish the proof, it suffices
to show that βT,i ≥ ε

T , which we do by induction on t. For t = 1, we have by the definition βt,i = ε. Now, assume
βt−1,i ≥ ε

t−1 , and we will show βt,i ≥ ε
t . If xt,i = 0, βt,i = βt−1,i ≥ ε

t−1 >
ε
t ; on the other hand, if xt,i 6= 0, from the

definition of βt,i:

βt,i = min

{
βt−1,i, ε

S2
t−1,i +M2

t,i

x2
t,it

}
≥ min

{
ε

t− 1
, ε
x2
t,i

x2
t,it

}
=
ε

t
,

where we used S2
t−1,i +M2

t,i ≥M2
t,i = maxj≤t x

2
j,i ≥ x2

t,i.

D. Proof of Theorem 3.2
Similarly as in the previous section, we proceed the proof of the theorem with several auxiliary results. Define:

h(x) =

{
1
2x

2 for |x| ≤ 1,
|x| − 1

2 for |x| > 1
(12)

(see Figure 3). Note that h(x) = h(|x|), and h(|x|) is monotonic in |x|. Moreover, for all x ∈ R:

|x| − 1

2
≤ h(x) ≤ 1

2
x2. (13)

The lower bound in (13) is clearly satisfied for |x| < 1, while for |x| ≤ 1 we have h(x)−(|x|− 1
2) = 1

2 (|x|−1)2 ≥ 0. On the
other hand, the upper bound in (13) is clearly satisfied for |x| ≤ 1, while for |x| > 1 we have h(x)− 1

2x
2 = − 1

2 (|x|−1)2 ≤ 0.

Lemma D.1. Let f(x) = αe|x|/γ with α, γ > 0. Its Fenchel conjugate f∗(u) = supx{ux − f(x)} satisfies f∗(u) ≤
|u|γ(ln(|u|γ/α)− 1) for all u.

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

−2 −1 0 1 2

0

1

2

x

y

y = 1
2x

2

y = |x| − 1
2

y = h(x)

Figure 3. Function h(x)

Proof. Since f(x) is symmetric in x, supx{ux − f(x)} = supx≥0{|u|x − f(x)} = supx≥0 g(x), where g(x) = |u|x −
αex/γ . Setting the derivative of g(x) to zero gives its unconstrained maximizer x∗ = γ ln(|u|γ/α), for which g(x∗) =
|u|γ(ln(|u|γ/α)− 1). The proof is finished by noticing that supx≥0 g(x) ≤ supx∈R g(x) = g(x∗).

Lemma D.2. For any v ∈ R and any q ∈ [−1, 1]:

exp

{
1

2
h

(
v − q
1 + q2

)
− 1

2
h(v)− 1

2
q2

}
≤ 1− 1

2
q sgn(v) min{|v|, 1}

Proof. It suffices to prove the lemma for v ≥ 0. Indeed, the inequality holds for some v ≥ 0 and q ∈ [−1, 1] if and only if it
holds for −v and −q. Denote:

ṽ =
|v − q|√

1 + q2
.

In this notation and with the assumption v ≥ 0, the inequality translates to:

e
1
2 (h(ṽ)−h(v)−q2) ≤ 1− 1

2
qmin{v, 1}. (14)

To prove (14), it suffices to show that:

h(ṽ)− h(v)− q2 ≤ −qmin{v, 1} − 1

2
(qmin{v, 1})2, (15)

because (15) together with q ≤ 1 and inequality e−x−x
2 ≤ 1 − x for x ≤ 1

2 (see, e.g., (Cesa-Bianchi & Lugosi, 2006),
Section A.1.2) implies (14).

We will split the proof of (15) into three sub-cases: (i) v ≤ 1, (ii) v ≥ 1 and ṽ ≥ 1, (iii) v ≥ 1 and ṽ < 1.

Case (i): v ≤ 1. From the definition, h(v) = 1
2v

2 and by (13) we upper bound h(ṽ) ≤ 1
2 ṽ

2. Using ṽ ≤ |v − q| we have:

h(ṽ)− h(v)− q2 ≤ 1

2
ṽ2 − 1

2
v2 − q2 ≤ 1

2
(v − q)2 − 1

2
v2 − q2 = −vq − 1

2
q2 ≤ −vq − 1

2
v2q2,

and since min{v, 1} = v, this implies (15).

Case (ii): v ≥ 1 and ṽ ≥ 1. As q ≤ 1 ≤ v, we have |v − q| = v − q, and by the definition, h(v) = v − 1
2 , h(ṽ) = ṽ − 1

2 .
Therefore:

h(ṽ)− h(v)− q2 = ṽ − v − q2 ≤ v − q − v − q2 ≤ −q − q2/2,

where in the first inequality we used ṽ ≤ |v − q| = v − q. As min{v, 1} = 1, this implies (15).

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

Case (iii): v ≥ 1 and ṽ < 1. We have:

ṽ < 1 ⇐⇒ (v − q)2

1 + q2
≤ 1 ⇐⇒ v2 − 2vq − 1 ≤ 0 ⇐⇒ v ≤ q +

√
1 + q2,

where the last equivalence follows from solving a quadratic inequality with respect to v ≥ 1 for fixed q. We now note that
function:

g(v) = h(ṽ)− h(v)− q2 =
1

2
ṽ2 −

(
v − 1

2

)
− q2 =

(v − q)2

2(1 + q2)
− v − q2 +

1

2

is convex in v and hence it is maximized at the boundaries {1, q +
√

1 + q2} of the allowed range of v. When v = 1, we
have:

g(v) =
(1− q)2

2(1 + q2)
− 1− q2 +

1

2
≤ 1

2
(1− q)2 − q2 − 1

2
= −q − 1

2
q2,

whereas if v = q +
√

1 + q2, we have

g(v) =
1

2
−
(
q +

√
1 + q2

)
− q2 +

1

2
≤ −q − q2 ≤ −q − 1

2
q2,

so that g(v) ≤ −q − 1
2q

2 in the entire range of allowed values of v. As min{v, 1} = 1, this implies (15).

Before stating further results, we summarize the notation: for i = 1, . . . , d and t = 1, . . . , T ,

Mt,i = max
j≤t
|xj,i|, Gt,i = −

∑
j≤t

gjxj,i, S2
t,i =

∑
j≤t

(gjxj,i)
2, ηt,i = ε−

∑
j≤t

gtxt,iwt,i,

with the convention M0,i = G0,i = S2
0,i = 0 and η0,i = ε. As before, we also use Ŝ2

t,i = S2
t,i +M2

t,i. The weight vector at
trial t is given by:

wt,i =

sgn(Gt−1,i) min

{
|Gt−1,i|√
S2
t−1,i+M

2
t,i

, 1

}
2
√
S2
t−1,i +M2

t,i

ηt−1,i (16)

as long as Mt,i > 0; if Mt,i = 0, we set wt,i = 0.

Lemma D.3. Define:

ψt,i(x) =

{
e

1
2h
(

x
Ŝt,i

)
for Ŝt,i 6= 0,

1 for Ŝt,i = 0,

with h(·) defined in (12). For any i = 1, . . . , d, let τi be the first trial in which xt,i 6= 0. We have for any = 1, . . . , d and
any t = τi, . . . , T :

ηt,i
ηt−1,i

≥ ψt,i(Gt,i)

ψt−1,i(Gt−1,i)
e−δt,i ,

where δt,i =
(gtxt,i)

2

2(S2
t−1,i+M

2
t,i)

Proof. Fix i and t ≥ τi, and define v =
Gt−1,i√

S2
t−1,i+M

2
t,i

and q =
gtxt,i√

S2
t−1,i+M

2
t,i

. As |q| ≤ |gtxt,i|
Mt,i

≤ 1, we can apply Lemma

D.2 to such v and q, which gives:

e
1
2h
(

v−q

1+q2

)
− 1

2h(v)− 1
2 q

2

≤ 1− 1

2
q sgn(v) min{|v|, 1} (17)

Using the definition of weight vector (16), we identify the right-hand side of (17) with 1− gtxt,iwt,i

ηt−1,i
=

ηt,i
ηt−1,i

. Since 1
2q

2 =

δt,i and Gt,i

Ŝt,i
= v−q√

1+q2
(see the proof of Lemma C.3), we also identify the left-hand side of (17) with ψt,i(Gt,i)e−

1
2h(v)e−δt,i .

Hence, (17) can be rewritten as:
ηt,i
ηt−1,i

≥ ψt,i(Gt,i)

e
1
2h(v)

e−δt,i ,

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

and thus to prove the lemma, it suffices to show:

e
1
2h(v) ≤ ψt−1,i(Gt−1,i). (18)

When t = τi, we have v = 0 as well as Gt−1,i = 0, and (18) holds as its both sides are equal to 1. For t > τi, (18) reduces
to h(v) ≤ h(Gt−1,i/Ŝt−1,i), which holds because:

|v| = |Gt−1,i|√
S2
t−1,i +M2

t,i

≤ |Gt−1,i|√
S2
t−1,i +M2

t−1,i

=
|Gt−1,i|
Ŝt−1,i

,

and h(x) = h(|x|) is monotonic in |x|.

We are now ready to prove Theorem 3.2, which we restate here for convenience:

Theorem. For any u ∈ R the regret of ScInOL2 is upper-bounded by:

RT (u) ≤ dε+

d∑
i=1

2|ui|ŜT,i
(

ln(3|ui|Ŝ3
T,iε
−1/x2

τi,i)− 1
)
,

where ŜT,i =
√
S2
T,i +M2

T,i and τi = min{t : |xt,i| 6= 0}.

Proof. Fixing i ∈ {1, . . . , d}, applying Lemma (C.3) for t = τi, . . . , T , and multiplying over trials gives:

ηT,i
ητi−1,i

≥ ψT,i(GT,i)

ψτi−1,i(Gτi−1,i)
e−∆T,i ,

where we denoted ∆T,i =
∑T
t=τi

δt,i. From the definition of τi, we have ητi−1,i = ε and ψτi−1,i ≡ 1. Using ηT,i =
ε−

∑
t≤T gtxt,iwt,i we get:

T∑
t=1

gtxt,iwt,i ≤ ε− εψT,i(GT,i)e−∆T,i ≤ ε− εe−∆T,i+|GT,i|/(2ŜT,i)− 1
4 ,

where we used (12) to bound h(x) ≥ |x| − 1
2 . By (3),

RT (u) ≤
T∑
t=1

gtx
>
t (wt − u) =

d∑
i=1

(
T∑
t=1

gtxt,iwt,i +GT,iui

)

≤ dε+

d∑
i=1

(
GT,iui − εe−∆T,i− 1

4 e|GT,i|/(2ŜT,i)
)

≤ dε+

d∑
i=1

sup
x

{
xui − εe−∆T,i− 1

4 e|x|/(2ŜT,i)
}

≤ dε+

d∑
i=1

2|ui|ŜT,i
(

ln
(

2ε−1|ui|ŜT,ie
1
4 +∆T,i

)
− 1
)
,

where in the last inequality we used Lemma D.1 for each i with α = εe−∆T,i− 1
4 and γ = 2ŜT,i. We will now show that

∆T,i ≤ ln

(
Ŝ2
T,i

x2
τi,i

)
, (19)

which, together with 2e1/4 ≤ 3 will finish the proof. To prove (19), we use M2
t,i ≥ x2

t,i ≥ (gtxt,i)
2 = S2

t,i − S2
t−1,i to get:

δt,i =
(gtxt,i)

2

2(S2
t−1,i +M2

t,i)
≤ (gtxt,i)

2

S2
t−1,i + 2M2

t,i

≤ (gtxt,i)
2

S2
t,i +M2

t,i

=
(M2

t,i + S2
t,i)− (M2

t,i + S2
t−1,i)

S2
t,i +M2

t,i

.

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

Using a−b
a ≤ ln a

b for any a ≥ b > 0 (which follows from the concavity of the logarithm):

δt,i ≤ ln
M2
t,i + S2

t,i

M2
t,i + S2

t−1,i

≤ ln
M2
t+1,i + S2

t,i

M2
t,i + S2

t−1,i

,

where for t = T , we define MT+1,i = MT,i. Summing the above over trials t = τi, . . . , T :

∆T,i =

T∑
t=τi

δt,i ≤ ln
M2
T+1,i + S2

T,i

M2
τi,i

+ S2
τi−1,i

= ln
M2
T,i + S2

T,i

x2
τi,i

= ln
Ŝ2
T,i

x2
τi,i

,

which was to be shown.

E. Datasets
MNIST dataset is available at Yann Lecun’s page. All other datasets are availableat the UCI repository. Scale is computed
as a ratio of highest to lowest positive L2 norms of features.

Name features records classes scale
Bank 53 41188 2 6.05E+05
Census 381 299285 2 1.81E+06
Covertype 54 581012 7 1.31E+06
Madelon 500 2600 2 1.09E+00
MNIST 728 70000 10 5.83E+03
Shuttle 9 58000 7 7.46E+00

Table 2. Short summary of datasets

F. Experiment: Classification Accuracy Plots

500000 1000000 1500000
iterations

0.825

0.850

0.875

0.900

0.925

ac
cu

ra
cy

MNIST

AdaGrad
Adam
CoCob
NAG
Alg1-K17
ScInOL 1
ScInOL 2
SGD

50000 100000 150000 200000 250000
iterations

0.87

0.88

0.89

0.90

0.91

ac
cu

ra
cy

Bank (UCI)

AdaGrad
Adam
CoCob
NAG
Alg1-K17
ScInOL 1
ScInOL 2
SGD

500000 1000000 1500000 2000000
iterations

0.935

0.940

0.945

0.950

ac
cu

ra
cy

Census (UCI)

AdaGrad
Adam
CoCob
NAG
Alg1-K17
ScInOL 1
ScInOL 2
SGD

1000000 2000000 3000000
iterations

0.50

0.55

0.60

0.65

0.70

ac
cu

ra
cy

Covertype (UCI)

AdaGrad
Adam
CoCob
NAG
Alg1-K17
ScInOL 1
ScInOL 2
SGD

200000 400000 600000
iterations

0.88

0.90

0.92

0.94

0.96

ac
cu

ra
cy

Shuttle (UCI)

AdaGrad
Adam
CoCob
NAG
Alg1-K17
ScInOL 1
ScInOL 2
SGD

20000 40000 60000 80000 100000 120000
iterations

0.50

0.55

0.60

ac
cu

ra
cy

Madelon (UCI)
AdaGrad
Adam
CoCob
NAG
Alg1-K17
ScInOL 1
ScInOL 2
SGD

Figure 4. Accuracy results for linear classification experiments.

http://yann.lecun.com/exdb/mnist
https://archive.ics.uci.edu/ml/datasets.html

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

G. Multivariate Predictions
For simplicity, in the paper we focus on loss functions defined for real-valued predictions ŷ ∈ R. Sometimes, however, it is
natural to consider a setup of multivariate predictions ŷ ∈ RK . For instance, the multinomial logistic loss (cross-entropy
loss) is defined for y ∈ {1, . . . ,K} as:

`(y, ŷ) = −
K∑
k=1

1[y = k] lnσk(ŷ) = −ŷy + ln

(
K∑
k=1

eŷk

)
,

where σk(ŷ) = eŷk∑K
j=1 e

ŷj
is the soft-max transform.

We assume the multivariate losses `t(ŷ) = `(yt, ŷ) are convex and L-Lipschitz in the sense that the max-norm of subgradient
∇`t(ŷ) for any ŷ is bounded, ‖∇`t(ŷ)‖∞ ≤ L (which is satisfied with L = 1 by the multinomial logistic loss). We
consider the class of comparators which are parameterized by U ∈ Rd×K , a d×K parameter matrix, and the regret of the
algorithms against U for a sequence of data {(xt, yt)}Tt=1 is defined as:

RT (U) =

T∑
t=1

`t(ŷt)−
T∑
t=1

`t(U
>xt).

Consider an algorithm which at trial t predicts with a weight matrixWt ∈ Rd×K , ŷt = W>
t xt. Using the convexity of the

loss, for any ŷ, ŷ′ and any t we have `t(ŷ′) ≥ `t(ŷ) +∇`t(ŷ)>(ŷ′ − ŷ). Denoting∇`t(ŷt) by gt = (gt,1, . . . , gt,K) with
gt,k ∈ [−L,L] for all k = 1, . . . ,K, and using the bound above with ŷ = ŷt = W>

t xt and ŷ′ = U>xt we have:

RT (U) =

d∑
i=1

K∑
k=1

(
T∑
t=1

gt,kxt,i(Wt;i,k − Ui,k)

)
.

The regret decouples into a sum over individual coordinates and dimensions of the prediction vector, and the extension
of our algorithms is now straightforward (see Algorithm (3) and (4) below). Also, the analysis can be carried out in full
analogy to the univariate loss case resulting in the following bounds (for L = 1):

Theorem G.1. For any U ∈ Rd×K the regret of ScInOL1 is upper-bounded by:

RT (U) ≤
d∑
i=1

K∑
k=1

(
2|Ui,k|ŜT ;i,k ln(1 + 2|Ui,k|ŜT ;i,kε

−1T) + ε(1 + lnT)
)

where ŜT ;i,k =
√
S2
T ;i,k +M2

T ;i.

Theorem G.2. For any U ∈ Rd×K the regret of ScInOL2 is upper-bounded by:

RT (U) ≤ dKε+

d∑
i=1

K∑
k=1

2|Ui,k|ŜT ;i,k

(
ln(3|Ui,k|Ŝ3

T ;i,kε
−1/x2

τi,i)− 1
)
,

where ŜT ;i,k =
√
S2
T ;i,k +M2

T ;i and τi = min{t : |xt,i| 6= 0}.

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models

Algorithm 3: ScInOL1(ε) for multivariate losses

Initialization :S2
0;i,k, G0;i,k,M0;i ← 0, β0;i,k ← ε (i = 1, . . . , d; k = 1, . . . ,K)

for t = 1, . . . , T do
Receive xt ∈ Rd
for i = 1, . . . , d do

Mt;i ← max{Mt−1;i, |xt,i|}
for k = 1, . . . ,K do

βt;i,k ← min{βt−1;i,k, ε(S
2
t−1;i,k +M2

t;i)/(x
2
t,it)}

Wt;i,k =
βt;i,ksgn(θt;i,k)

2
√
S2
t−1;i,k+M2

t;i

(
e|θt;i,k|/2 − 1

)
, where θt;i,k =

Gt−1;i,k√
S2
t−1;i,k+M2

t;i

Predict with ŷt = W>
t xt, receive loss `t(ŷt) and compute gt = ∇ŷt

`t(ŷt)
for i = 1, . . . , d do

for k = 1, . . . ,K do
Gt;i,k ← Gt−1;i,k − gt,kxt,i
S2
t;i,k ← S2

t−1;i,k + (gt,kxt,i)
2

Algorithm 4: ScInOL2(ε) for multivariate losses

Initialization :S2
0;i,k, G0;i,k,M0;i ← 0, η0;i,k ← ε (i = 1, . . . , d; k = 1, . . . ,K)

for t = 1, . . . , T do
Receive xt ∈ Rd
for i = 1, . . . , d do

Mt;i ← max{Mt−1;i, |xt,i|}
for k = 1, . . . ,K do

Wt;i,k =
sgn(θt;i,k) min{|θt;i,k|,1}

2
√
S2
t−1;i,k+M2

t;i

ηt−1;i,k, where θt;i,k =
Gt−1;i,k√

S2
t−1;i,k+M2

t;i

Predict with ŷt = W>
t xt, receive loss `t(ŷt) and compute gt = ∇ŷt

`t(ŷt)
for i = 1, . . . , d do

for k = 1, . . . ,K do
Gt;i,k ← Gt−1;i,k − gt,kxt,i
S2
t;i,k ← S2

t−1;i,k + (gt,kxt,i)
2

ηt;i,k ← ηt−1;i,k − gt,kxt,iwt,i,k

