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A Toy Example

Logistic Loss as Matching Loss Two Drawback of Logistic Loss
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e The most commonly used loss for classification in NN /?\ Cf"V;’;ij,jjsij;igj;fj:;‘;j,ﬁ;;’d,';°'Se

o Always convex in the activations/weights of the last layer o Asingle bad example can dominate the cumulative loss
o However, anyway non-convex in weights of lower layers 2 SHSSCRaTos Tl Gl i oacients - .
_ o Non-convex (bending down) losses have been shown to perform significantly better
o We replace last layer by non-convex loss that makes NN robust to outliers '
) exp(a;) 2. Softmax probabilities have exponentially decaying tail
Softmax Vi k ~ o The margin becomes small for mislabeled examples near the boundary
Z j=1 exp(aj) o Heavy-tailed alternatives yield better margins and improved results [DV,10]
Logistic loss = area under sigmoid

Logistic

Matching loss y ] bounded & heavy-tail only heavy-tail only bounded bounded & heavy-tail
Al()g<yv Q) — E y; log = . - (0.2,4.0) (1.0,4.0) (0.2,1.0) (0.2,4.0)
o ~" g, Logistic loss = rel. entr. + softmax
In general [AKWOJ] - g
: i e Introduce temperatures into links, i.e. log;, and expy, =
A A H H é)
,!a a ; Ah<a’ a) — (h(Z) o h(a)) d 7 e When the 2 temperatures are equal, we again obtain a convex loss =
| % a e By increasing the temperature in the exponential,
— Ah_l (h(a), h(d)) loss becomes non-convex
...... % SR Y yX e Tuning the two temperatures will be crucial Two-layer feed-forward network (10 and 5 neurons) with ReLU activations
5 Tempered Logarithm Tempered Exponential
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k : Experiments
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Bounded by —-1/(1-¢) at 0 forl0 < t< 1 %B
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a i ki | 4
® Ay(a,a) = / (h(z) - h(a)) dz \expt(x) =[1+1-0)x]¥0D -1/ § _2/0 Synthetic label Noise:
J
a Heavier tail for x <0 for t > 1 -2 T
Dataset L.oss Label Noise Level
e Convex for any increasing transfer function 00 01 02 03 04 05
0 . . ) 1. Replacing the Relative Entropy Divergence N Logistic 99.40 9896 9870 9850 97.64 96.13
3&Ah(a’ Cl) = h(a) —h(a) - Y-y Bi-Tempered (0.5,4.0) 99.24 99.13 99.02 98.62 98.56 97.69
delta rule Tempered relative entropy divergence (0 < <1 ): CIFAR.100  Logistic 74.03 6994 6639 63.00 53.17 52.96
e Examples A ( A) | / Z ( 5 )2 k o ) £y one-ot | k : Bi-Tempered (0.8, 1.2) 7530 73.30 70.69 6745 62.55 57.80
- — ¢ — A ~t ~2—t g A ~2—t
h =id id\Y:Y . Yi = Yi z (y i (log,, yi —log, i) — > O -y 1)) = —log,, ¥y - 7+ (1 = Z Yi 1) Table 1: Top-1 accuracy on a clean test set for MNIST and CIFAR-100 datasets where a fraction of
1 i=1 bounded by ! /(1 e i=1 the training labels are corrupted.
= A Z/é: 1ot . agugn
h =softmax Ay, (y,§) = ) yilog= (logisticloss) 2. Replacing the Softmax Probabilities
i Yi z  vector of inputs to softmax layer Large-scale Experiments on ImageNet2012:
w; : trainable weight vector for class i
Yy :target vector
C a n O n i ca I M is m atc h C a s e . Model Logistic Bi-tempered (0.9,1.05)
Softmax: Resnetl8  71.333 + 0.069 71.618 + 0.163
Sigmoid with square loss 5 k
g q ;= exp(az)A _ exp (&,- “1og Y exp( &,-)), S Fiea et B =ru, o u-Roradi ¥ Resnet50  76.332 + 0.105 76.748 + 0.164

31 exp(@) , ,
Table 2: Top-1 accuracy on ImageNet-2012 with Resnet-18 and 50 architectures.

Tempered Softmax (7, > 1 ):

k
9i = exp, (a;— A, (@), where \,@) € R isst. Y exp, (a—A,(@) =1
j=1

Tail-heavy for t2 > 1!

Code and References

Open source TF implementation available at Google research Github:

Can lead to
exponent. many

minimas [AHWO5]

Examples of the Bi-Tempered Logistic Loss (y = 1.0)

https://qgithub.com/google-research/qgoogle-research/tree/master/bitempered_loss

A binary classification task with true label = 1.0

Tempered Softmax Loss (¢ = 1.2)  Tempered Softmax Loss (t; = 0.8) Replace one line:
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to = 2.0

_§§i§18 bi tempered logistic loss (activation, labels, tl,6t2)

Bounded by O ; | —ty = 3.5/

1/(1 . tl) | [HKW95] David P. Helmbold, Jyrki Kivinen and Manfred K. Warmuth. Worst-case loss bounds for single neurons. NIPS
' ’ | ‘ ‘95, pp. 309-315.
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For convex losses, solution determined by outliers




