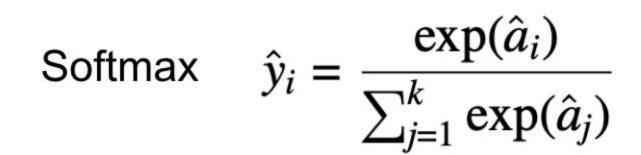
Robust Bi-Tempered Logistic Loss Based on Bregman Divergences

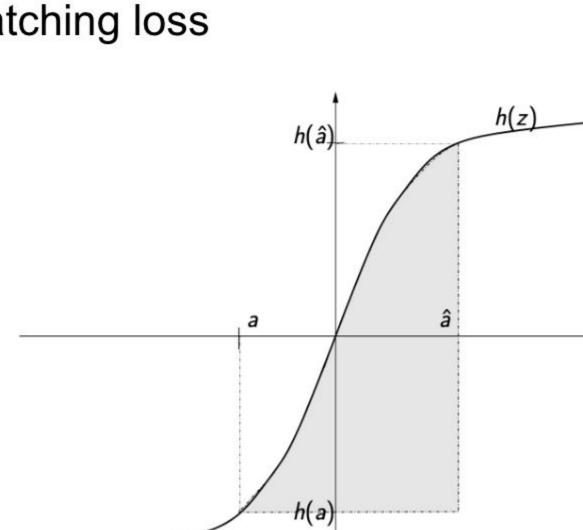
Ehsan Amid, Manfred Warmuth, Rohan Anil & Tomer Koren Google Brain

Logistic Loss as Matching Loss

- The most commonly used loss for classification in NN
 - Always convex in the activations/weights of the last layer
 - However, anyway non-convex in weights of lower layers
 - We replace last layer by non-convex loss that makes NN robust to outliers



Matching loss



Logistic loss = area under sigmoid

$$\Delta_{\log}(m{y}, \hat{m{y}}) = \sum_i y_i \log rac{y_i}{\hat{y}_i}$$
 In general [HKW95]

 $\int_{\mathbf{c}} (h(\mathbf{z}) - h(\mathbf{a})) d\mathbf{z}$ $=\Delta_{h^{-1}}(\underbrace{h(\boldsymbol{a})},\underbrace{h(\hat{\boldsymbol{a}})})$

Simplicity of the Matching Loss

- $\Delta_h(\hat{\boldsymbol{a}}, \boldsymbol{a}) = \int^{\boldsymbol{a}} (h(\mathbf{z}) h(\boldsymbol{a})) d\mathbf{z}$
- Convex for any increasing transfer function

$$\frac{\partial}{\partial \hat{\boldsymbol{a}}} \Delta_h(\hat{\boldsymbol{a}}, \boldsymbol{a}) = h(\hat{\boldsymbol{a}}) - h(\boldsymbol{a}) = \hat{\boldsymbol{y}} - \hat{\boldsymbol{y}}$$

Examples h = id

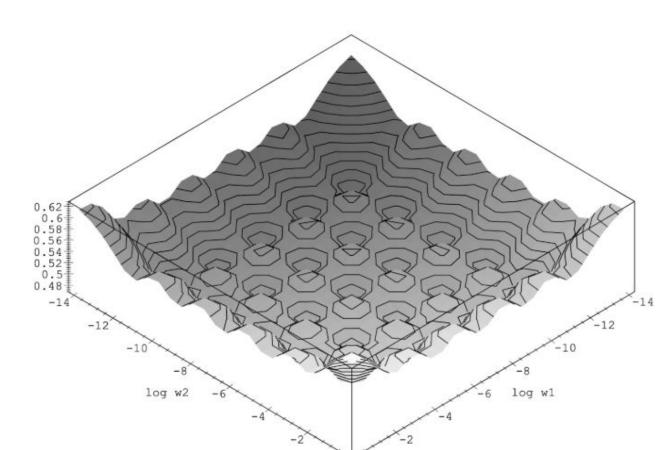
$$\Delta_{id}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = 1/2 \sum_{i} (y_i - \hat{y_i})^2$$

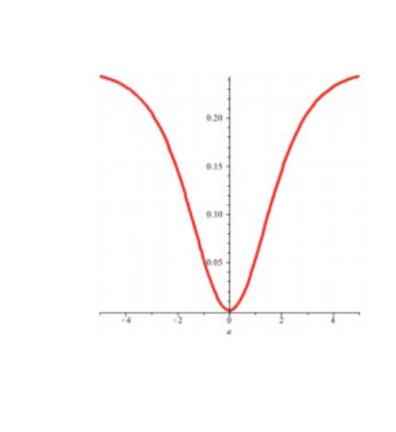
 $h = \operatorname{softmax} \quad \Delta_{\log}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \sum y_i \log \frac{y_i}{\hat{y}_i} \quad \text{(logistic loss)}$

Canonical Mismatch Case

Sigmoid with square loss

$$\frac{\partial}{\partial \hat{a}} (\sigma(\hat{a}) - y)^2 = (\sigma(\hat{a}) - y) \underbrace{\sigma'(\hat{a})}_{\sigma(\hat{a})(1 - \sigma(\hat{a}))}$$

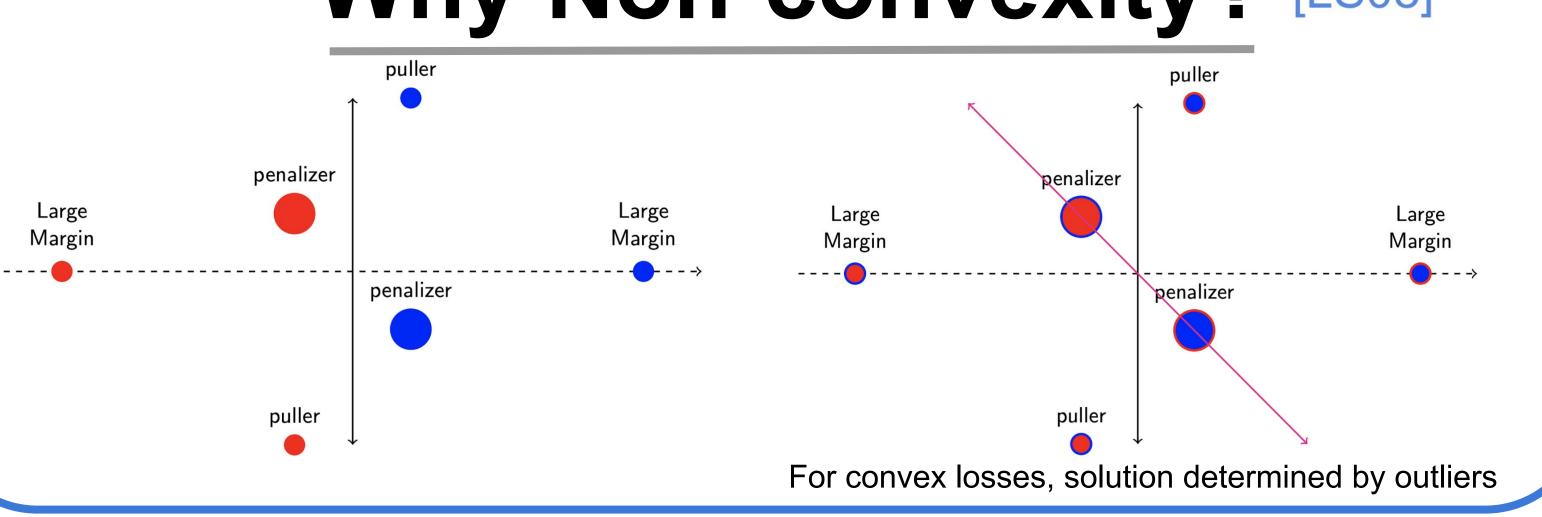




Can lead to exponent. many

[AHW95]

Why Non-convexity? [LS08]

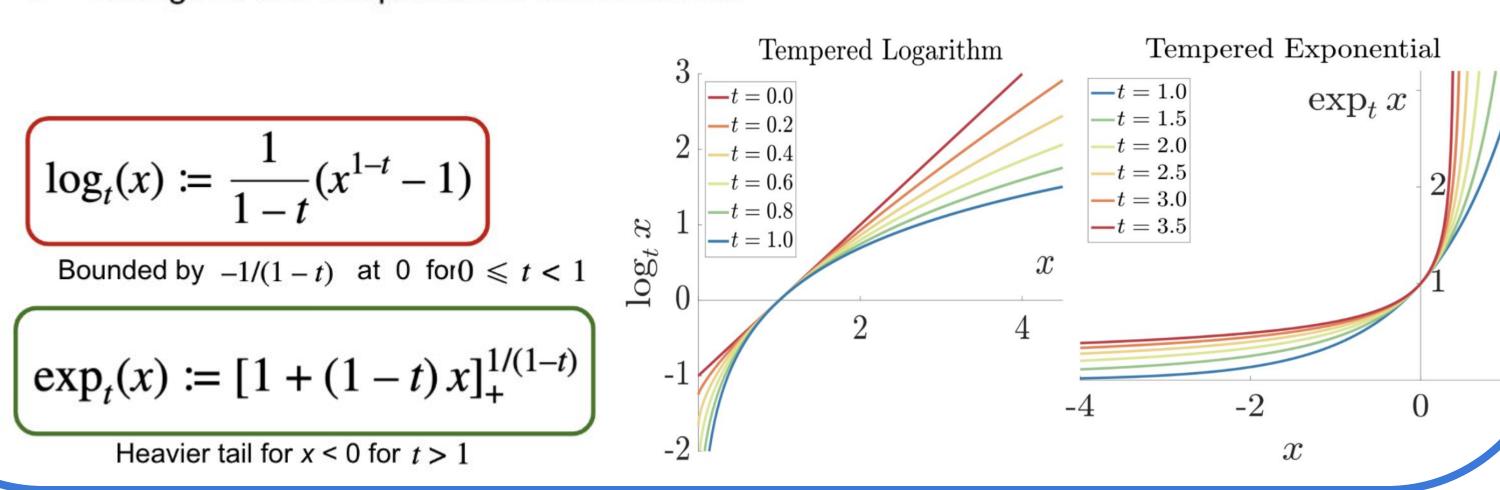


Two Drawback of Logistic Loss

- Convex losses are not robust to noise
 - Convex losses increase unboundedly
 - A single bad example can dominate the cumulative loss
 - Extreme examples can cause large gradients
 - Non-convex (bending down) losses have been shown to perform significantly better
- 2. Softmax probabilities have exponentially decaying tail
 - The margin becomes small for mislabeled examples near the boundary
 - Heavy-tailed alternatives yield better margins and improved results [DV,10]

Logistic loss = rel. entr. + softmax

- Introduce temperatures into links, i.e. \log_{t_1} and \exp_{t_2}
- When the 2 temperatures are equal, we again obtain a convex loss
- By increasing the temperature in the exponential, loss becomes non-convex
- Tuning the two temperatures will be crucial



1. Replacing the Relative Entropy Divergence

Tempered relative entropy divergence ($0 \le t_1 < 1$):

$$\sum_{i=1}^{k} \left(y_i \left(\log_{t_1} y_i - \log_{t_1} \hat{y}_i \right) - \frac{1}{2-t_1} \left(y_i^{2-t_1} - \hat{y}_i^{2-t_1} \right) \right) \stackrel{\text{if } y \text{ one-hot}}{=} -\log_{t_1} \hat{y}_c - \frac{1}{2-t_1} \left(1 - \sum_{i=1}^{k} \hat{y}_i^{2-t_1} \right)$$
bounded by $\frac{1}{(1-t_1)}$

2. Replacing the Softmax Probabilities

- z: vector of inputs to softmax layer
- w_i : trainable weight vector for class i
- y: target vector

Softmax:

$$\hat{y}_i = \frac{\exp(\hat{a}_i)}{\sum_{j=1}^k \exp(\hat{a}_j)} = \exp\left(\hat{a}_i - \log\sum_{j=1}^k \exp(\hat{a}_j)\right), \text{ for linear activation } \hat{a}_i = \mathbf{w}_i \cdot \mathbf{z} \text{ for class } i$$

Tempered Softmax ($t_2 > 1$):

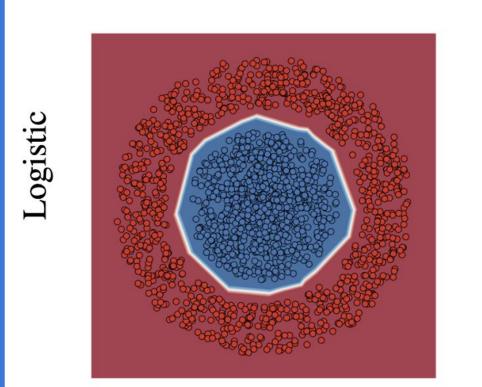
 $\hat{y}_i = \exp_{t_2} \left(\hat{a}_i - \lambda_{t_2}(\hat{\boldsymbol{a}}) \right), \text{ where } \lambda_{t_2}(\hat{\boldsymbol{a}}) \in \mathbb{R} \text{ is s.t. } \sum \exp_{t_2} \left(\hat{a}_j - \lambda_{t_2}(\hat{\boldsymbol{a}}) \right) = 1$ Tail-heavy for t2 > 1!

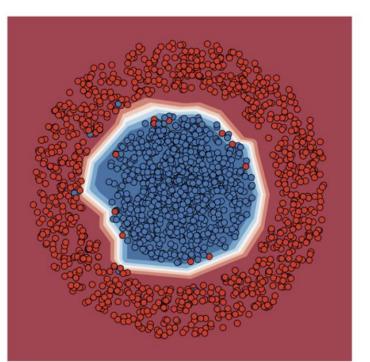
Examples of the Bi-Tempered Logistic Loss (y = 1.0)

A binary classification task with true label = 1.0

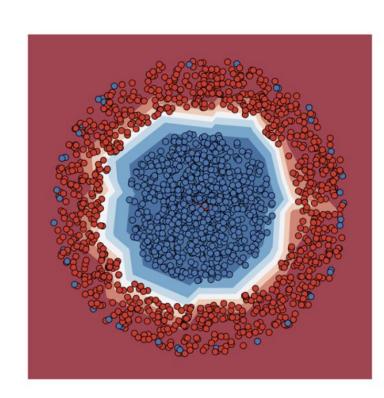


A Toy Example

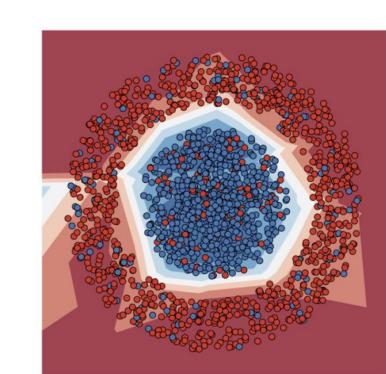




only heavy-tail



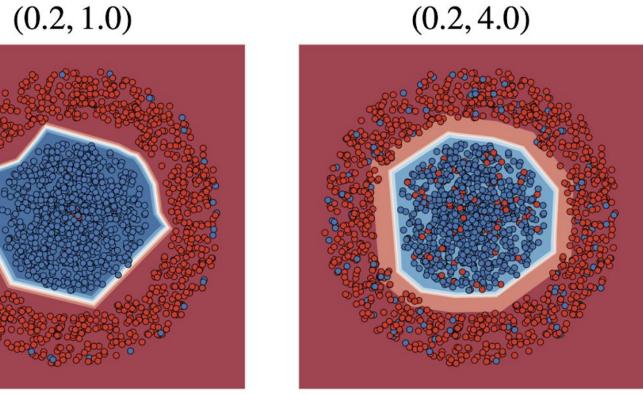
only bounded



bounded & heavy-tail (0.2, 4.0)

(1.0, 4.0)

bounded & heavy-tail (0.2, 4.0)



Two-layer feed-forward network (10 and 5 neurons) with ReLU activations

Experiments

Synthetic label Noise:

Dataset	Loss	Label Noise Level					
		0.0	0.1	0.2	0.3	0.4	0.5
MNIST	Logistic	99.40	98.96	98.70	98.50	97.64	96.13
	Bi-Tempered (0.5, 4.0)	99.24	99.13	99.02	98.62	98.56	97.69
CIFAR-100	Logistic	74.03	69.94	66.39	63.00	53.17	52.96
	Bi-Tempered (0.8, 1.2)	75.30	73.30	70.69	67.45	62.55	57.80

Table 1: Top-1 accuracy on a clean test set for MNIST and CIFAR-100 datasets where a fraction of the training labels are corrupted.

Large-scale Experiments on ImageNet2012:

Model	Logistic	Bi-tempered (0.9,1.05)
Resnet18	71.333 ± 0.069	71.618 ± 0.163
Resnet50	76.332 ± 0.105	76.748 ± 0.164

Table 2: Top-1 accuracy on ImageNet-2012 with Resnet-18 and 50 architectures.

Code and References

Open source TF implementation available at Google research Github:

https://github.com/google-research/google-research/tree/master/bitempered loss

Replace one line:

Softmax_cross_entropy_with_logits(activations, labels)

bi_tempered_logistic_loss(activation, labels, t1, t2)

David P. Helmbold, Jyrki Kivinen and Manfred K. Warmuth. Worst-case loss bounds for single neurons. NIPS '95, pp. 309–315.

[KW01] Jyrki Kivinen and Manfred K. Warmuth. Relative loss bounds for multidimensional regression problems. Journal of Machine Learning, Vol. 45(3), pp. 301-329.

Philip M Long and Rocco A Servedio. Random classification noise defeats all convex potential boosters. ICML'08 pp. 608-615.