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Logistic Loss

Logistic Loss = relative entropy (KL) divergence + softmax probabilities

● The most commonly used loss for classification in NN
○ Always convex in the activations/weights of the last layer
○ However, anyway non-convex in weights of lower layers
○ We replace last layer by non-convex loss that makes NN robust to outliers
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Matching Loss                                              [HKW95]
Softmax

Matching loss
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Logistic loss = area under sigmoid

In general



The simplicity of the matching loss

●

● Convex for any increasing transfer function

● Examples 
        h  = id 

              
              h  = softmax                                                           (logistic loss)
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Canonical mismatched case: sigmoid with square loss
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Can lead to 
exponent. many 
minimas [AHW95]



Key example justifying non-convexity              [LS08]
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10% label noise
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Solution determined by the outliers
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Logistic Loss as a Matching Loss
Start: Logistic Loss = relative entropy divergence + softmax probabilities

● Introduce temperatures into links, i.e. 

● When the 2 temperatures are equal, we again obtain a convex loss

● By increasing the temperature in the exponential, 

loss becomes non-convex

● Tuning the two temperatures will be crucial
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Tempered Logarithm and Exponential               [N02]
Generalization of log and exp functions endowed with a temperature 

Bounded by                    at  0  for          

Heavier tail for x < 0 for 

Standard log and exp are recovered at the limit 
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Tempered Logarithm and Exponential
Generalization of log and exp functions endowed with a temperature 
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1. Convex losses are not robust to noise                                                    [LS08] 
○ Convex losses increase unboundedly
○ A single bad example can dominate the cumulative loss
○ Extreme examples can cause large gradients
○ Non-convex (bending down) losses have been shown to perform significantly better

2. Softmax probabilities have exponentially decaying tail
○ The margin becomes small for mislabeled examples near the boundary
○ Heavy-tailed alternatives yield better margins and improved results [DV,10]

Two Drawbacks of Logistic Loss
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1. Replacing the Relative Entropy Divergence
Tempered relative entropy divergence (                ):
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    : vector of inputs to softmax layer
    : trainable weight vector for class i
    : target vector

Softmax:

Tempered Softmax (          ):

 

2. Replacing the Softmax Probabilities
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Tail-heavy for t2 > 1!



Examples of the Bi-Tempered Logistic Loss (y = 1.0)
A binary classification task with true label = 1.0
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Bounded by
1



Examples of the Bi-Tempered Logistic Loss (y = 0.8)
A binary classification task with true label = 0.8 
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Bounded by
1

Heavier-tail requires
 higher activations to

 produce the same probability



An Illustration
● A small two layer feed-forward neural net on a synthetic binary classification 

problem in two dimension
○ 10 and 5 units in the first and second layer, respectively
○ Trained using logistic and our bi-tempered logistic loss
○ We add synthetic label noise by flipping the labels
○ Four cases:

i. Noise-free
ii. Small-margin noise (targeting point near the boundary)
iii. Large-margin noise (targeting points far away from the boundary)
iv. Random noise (points are selected uniformly at random)
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Noise-free Case
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Logistic Bi-Tempered (0.2, 4.0)

tuned for bounded & tail-heavy



Small-margin Noise
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Logistic Bi-Tempered (1.0, 4.0)

tuned for tail-heavy



Large-margin Noise
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Logistic Bi-Tempered (0.2, 1.0)

tuned for bounded
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Experiments
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Synthetic Label Noise
For MNIST: 2 convolution layers: 32, 64. Followed by 2 FFN of size 1024 and 10, 
trained for 500 epochs

For CIFAR-100: a Resnet56 architecture with SGD + momentum optimizer trained 
for 50k steps with batch size of 128

We search over range [0.5, 1) and (1, 4] for      and     , respectively
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Synthetic Label Noise
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Large-scale Experiments
On the Imagenet-2012 dataset with state-of-the-art Resnet-18 and Resnet-50 
models

Trained on a 4x4 CloudTPU-v2 device with a batch size of 4096

180 epochs, SGD + momentum optimizer with staircase learning rate decay 
schedule
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Imagenet Results
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Top-1 accuracy 



Theoretical Preliminaries
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Convex Duality and Bregman Divergences
For a continuously-differentiable strictly convex function  

Bregman divergence between 

where                           denotes the gradient
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Convex Duality and Bregman Divergences

29, where



Properties of Bregman Divergence
● Convexity: always in the first argument (not necessarily the second)

● Non-negativity:

● Gradient: 

● Invariance to adding affine functions:

●  

● Many well-known cases:
○ Squared Euclidean:

○ Relative entropy:            
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Tempered Entropy Function
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Gradient: 



Tempered Relative Entropy Divergence
The Bregman divergence induced by

Also known as    -divergence with 
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Some Special Cases of the Tempered RE
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Tempered Transfer Function
Using the duality argument

The tempered (softmax) transfer function becomes
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Robust Bi-Tempered Logistic Loss
Bi-tempered logistic =  tempered relative entropy divergence + tempered softmax

                                                     

: controls boundedness of relative entropy

       : controls tail-heaviness of softmax
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Two Important Properties
1. Properness

○ Ensures that we have an unbiased estimator of the expected loss

2. Bayes-risk Consistency

○ Implies inference can be done via the argmax operation over the activations
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Properness
Model fitting:

Unknown data distribution: 

Model distribution: 

Minimize:

We would like to get an unbiased estimator
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Properness of Bi-Tempered Loss
Ignoring the constant terms w.r.t. 

Thus, it is a proper loss
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Tsallis Divergence is not Proper
The approximation using the Tsallis divergence is not proper                   [AWS19]

But in practice,                    is unknown and the loss is approximated by
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Bayes-risk Consistency
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Implementation and Future Work
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Implementation
Current version of the paper accepted to NeurIPS 2019: 
https://arxiv.org/pdf/1906.03361.pdf

Open source TF implementation available at Google research Github:

https://github.com/google-research/google-research/tree/master/bitempered_loss

Replace one line:

Softmax_cross_entropy_with_logits(activations,labels)

bi_tempered_logistic_loss(activation,labels,t1,t2)
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Future Work
● Better tuning of the temps (possibly dynamic tuning during training)

● Reoptimize all other variables:                                                       

regularization, batch normalization, structure, dropout, ...

● Use Bi-Tempered loss for language models, ad placement, ...

● Can we avoid model blow-ups w. new loss

● Design asymmetric losses

● Long-term: generalization of the matching loss for deep NNs
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