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Logistic Loss

Logistic Loss = relative entropy (KL) divergence + softmax probabilities

Soft
max

e The most commonly used loss for classification in NN
o Always convex in the activations/weights of the last layer
o However, anyway non-convex in weights of lower layers
o We replace last layer by non-convex loss that makes NN robust to outliers



Matching Loss
Softmax yi = ke P (ai)A
Zj:l exp(aj)
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Logistic loss = area under sigmoid
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The simplicity of the matching loss

. Apla,a) = /a(h(z) — h(a)) dz
a
e Convex for any increasing transfer function
9 Apla,a) = hia)-ha) = §—y
delta rule
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Canonical mismatched case: sigmoid with square loss

*(o(d) ~ )’ = (0(@)~v) ¢

Can lead to
exponent. many

minimas [AHWO5]




Key example justifying non-convexity

penalizer
Large ‘
Margin
.
puller

puller

penalizer

(LS08]



10% label

noise

penalizer

puller

puller
. @
Large
Margin
______________________ — _>
penalizer ‘




Solution determined by the outliers
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Logistic Loss as a Matching Loss

Start: Logistic Loss = relative entropy divergence + softmax probabilities

e Introduce temperatures into links, i.e. log; and expy,
e \When the 2 temperatures are equal, we again obtain a convex loss
e By increasing the temperature in the exponential,

loss becomes non-convex

e Tuning the two temperatures will be crucial



Tempered Logarithm and Exponential INOZ2]

Generalization of log and exp functions endowed with a temperature s > 0

[log,(x) = L(xl—f - 1)]

1-t

Bounded by —1/(1-¢) at 0 forQ <t <1

[expt(x) =[1+0-#x]Y (1")]

Heavier tail for x <0 for t > 1

Standard log and exp are recovered at the limit t — 1

10



Tempered Logarithm and Exponential

Generalization of log and exp functions endowed with a temperature s > 0
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Two Drawbacks of Logistic Loss

1. Convex losses are not robust to noise [LS08]
Convex losses increase unboundedly

A single bad example can dominate the cumulative loss

Extreme examples can cause large gradients

Non-convex (bending down) losses have been shown to perform significantly better

O O O O

2. Softmax probabilities have exponentially decaying tail

o The margin becomes small for mislabeled examples near the boundary
o Heavy-tailed alternatives yield better margins and improved results [DV,10]
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1. Replacing the Relative Entropy Divergence

Tempered relative entropy divergence (0 <# <1 ):

M»

¥ I if y one-hot 82—
)’z (log, yi—log, ¥:) - 2_,1 ()’,2 5 _yi2 g )) = —log, yc - T( Z ; tl)

bounded by '/<‘| t;)

i=1

where ¢ = argmax; y; is the index of the one-hot class
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2. Replacing the Softmax Probabilities

z . vector of inputs to softmax layer
w; : trainable weight vector for class i
Y :target vector

Softmax:
exp(a;) «
yi= — i — = exp (&,- - logz exp(&j)) , for linear activation a; = w; - z for class i
Zj:l exp(a;) j=1

Tempered Softmax (z, > 1):

k
yi = exp, (&i — )\tz(d)), where A\, (@) e R iss.t. Z exp;, (&j - )\,2(&)) =1

Tail-heavy for t2 > 1! J=1
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Examples of the Bi-Tempered Logistic Loss (y = 1.0)

A binary classification task with true label = 1.0
Tempered Softmax Loss (o = 1.2) Tempered Softmax Loss (¢; = 0.8)

10 [\ - -logistic - -logistic

L —t;=10.0 —5=1.0

S t) =02 ty =15

S t1 =04 ty =2.0

¥ t1 =0.6 1y=125

Bounded by © . _2 _ (1):3 —Z - gg

1/(1—f1)

-10 -9 0 5 -10 0 10
activation activation



Examples of the Bi-Tempered Logistic Loss (y = 0.8)

A binary classification task with true label = 0.8

1.5¢

Bounded by

Loss

J‘/(l—fl) 0.5}

Bi-Tempered Loss (t; = 1.2)

activation

Heavier-tail requires
higher activations to
produce the same probability

Bi-Tempered Loss (t; = 0.8)

activation
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An lllustration

e A small two layer feed-forward neural net on a synthetic binary classification

problem in two dimension
10 and 5 units in the first and second layer, respectively
Trained using logistic and our bi-tempered logistic loss
We add synthetic label noise by flipping the labels
Four cases:

i. Noise-free

ii. Small-margin noise (targeting point near the boundary)

iii. Large-margin noise (targeting points far away from the boundary)
iv. Random noise (points are selected uniformly at random)

@)

O O O
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Noise-free Case

Logistic

Bi-Tempered (0.2, 4.0)

tuned for bounded & tail-heavy
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Small-margin Noise

Logistic

Bi-Tempered (1.0, 4.0)

tuned for tail-heavy
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Large-margin Noise

Logistic

Bi-Tempered (0.2, 1.0)

tuned for bounded
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Experiments
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Synthetic Label Noise

For MNIST: 2 convolution layers: 32, 64. Followed by 2 FFN of size 1024 and 10,
trained for 500 epochs

For CIFAR-100: a Resnet56 architecture with SGD + momentum optimizer trained
for 50k steps with batch size of 128

We search over range [0.5, 1) and (1, 4] for f1 and {5y, respectively
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Synthetic Label Noise

Label Noise Level
Dataset Loss
0.0 0.1 0.2 0.3 0.4 0.5
MNIST Logistic 9940 9896 9870 98.50 97.64 96.13
Bi-Tempered (0.5,4.0) 99.24 99.13 99.02 98.62 98.56 97.69
CIFAR-100 Logistic 74.03 6994 6639 63.00 53.17 52.96

Bi-Tempered (0.8, 1.2) 7530 73.30 70.69 6745 6255 57.80

Table 1: Top-1 accuracy on a clean test set for MNIST and CIFAR-100 datasets where a fraction of
the training labels are corrupted.



Large-scale Experiments

On the Imagenet-2012 dataset with state-of-the-art Resnet-18 and Resnet-50
models

Trained on a 4x4 CloudTPU-v2 device with a batch size of 4096

180 epochs, SGD + momentum optimizer with staircase learning rate decay
schedule
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Imagenet Results

Model Logistic

Bi-tempered (0.9,1.05)

Resnetl8 71.333 4+ 0.069

71.618 + 0.163

Resnet50 76.332 £+ 0.105

76.748 + 0.164

Top-1 accuracy

26



Theoretical Preliminaries
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Convex Duality and Bregman Divergences

For a continuously-differentiable strictly convex function F: D — R

Bregman divergence between y,y € D

Ar(@,y) =Fy)-F@) -0 -y) - fO)

where f(y) := VF(y) denotes the gradient
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Convex Duality and Bregman Divergences

F:D-—->R \

> Ap(w, w)

B

Ar(y,y) =F@y)-F@)- @y -y) f()A’) where f(Q) = VFG’)ZQ



Properties of Bregman Divergence

e Convexity: always in the first argument (not necessarily the second)
e Non-negativity: Ar(y,y) > 0and Ar(y,y) =0iffy =y
e Gradient: V, Ar(y,y) =f@) —f)
e Invariance to adding affine functions:
Ap:a(y,y) = Ap(y,y), where Ay) =b +c - y

e Many well-known cases:

o Squared Euclidean: Ar(y,3) = 3 |y - 3|3 (with F(y) = ;3 [ly[3)

© Relative entropy:  Ap(y,§) = > .(y; log 5—yitd) (with F(y) = 2,(vi log yi—yi)
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Tempered Entropy Function

convex function F; : R¥ — R with a temperature parameter ¢ > 0

k
F) =) (vilog,yi+ 551 -y)
i=1

Gradient: fi(y) = VF(y) = log,y

Lemma 1. The function F,, with 0 < t < 1, is B'—strongly convex over the set {y € Rk :
w.r.t. the L,_;-norm.

||y||2—t < B}
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Tempered Relative Entropy Divergence

The Bregman divergence induced byF,

1 2t 82—t

AF,(,V,S’) = (}’ilogt}’i—)’i logz‘j\)l’ 2—tyl 2 tyl

M» g

1 al-t 1 82—t
((1 t)(2—t)yl B RO I )

-~
1l
[uiry

Also known as g-divergence withg =2-¢

)
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Some Special Cases of the Tempered RE

t Ft(.Y) AFt(y,j’) Name
0 1yi3 Hy—313 Euclidean
4 3 - A3

33 2@y —6%i+2) Gy -2+ 357)
1 >0ilogyi—yi+1)  X,ilog3 —yi+3) KL-divergence

3
> Y(HAyi+2y+2) 23, i \&) Squared Xi on roots
2 Y.(-logyi+y) Z (y’ log i_1) Itakura-Saito
3 % Zi(_)%,- +y;—2) 5 Z ( ) Inverse
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Tempered Transfer Function

Using the duality argument
k

Ff@=sup (y-a—F,(y") =sup inf (y-a-F,( )+ (1 —Zy:))
y'esk y'€Rk A€R i=1

The tempered (softmax) transfer function becomes

k
y=exp, (a-\(@)1), with)\(a) st Z exp, (a;— \(a)) =1

=1
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Robust Bi-Tempered Logistic Loss

Bi-tempered logistic = tempered relative entropy divergence + tempered softmax

k
VO<t<l1l<ty: LZ(& ly) = AF’I (y,exptz(&—)\tz(&))), with \;(@) s.t. Zexp, (a,-—)\,(a)) =1
i=1

0<t <1 : controls boundedness of relative entropy

1<t, : controls tail-heaviness of softmax
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Two Important Properties

1. Properness

o Ensures that we have an unbiased estimator of the expected loss

2. Bayes-risk Consistency

o Implies inference can be done via the argmax operation over the activations
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Properness

Model fitting:

Unknown data distribution: Py (y | x)

Model distribution: P(y | x; ©) parameterized by ©

Minimize:
Er, o [A (Pox(y 1 %), P(y | x; (-)))]

We would like to get an unbiased estimator
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Properness of Bi-Tempered Loss

Ignoring the constant terms w.r.t. ©

1
Epy.) [Z (— Pux(i 1 x)log, P(i 1 x:©) + >— P(i | x; 0))|
1 1
~ % ;Z (—PUK(i | x,) log, P(i | x,; ©) + 7 PG x,; @)2‘t)

1 | _
~ NZ(—logtP(yn Ixn;@)+zi:2—_tP(zlxn;@)2 N,

n

Thus, it is a proper loss
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Tsallis Divergence is not Proper

The approximation using the Tsallis divergence is not proper [AWS19]

PGl x; @) Py, | x,;0)
] N Z & PO 1 %)

ATsallis (Pyg (), POx:6))

But in practice, Pux(y, | x,) is unknown and the loss is approximated by

—]l\, D108, Py, | x,;0)
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Bayes-risk Consistency
The conditional risk of the multiclass loss I(a) with [; := £(al y = i), i € [k] is defined as
R, 1@) = > mil;,

where 7, := Pyx(y = il x).

Definition 4 (Bayes-risk Consistency). A Bayes-risk consistent loss for multiclass classification is
the class of loss functions £ for which a*, the minimizer of R(n, l(@)), satisfies

argmin 4(a@*|y = i) € argmax, 7); .

Proposition 2. The multiclass bi-tempered logistic loss Li(a|y) is Bayes-risk consistent.

40



Implementation and Future Work



Implementation

Current version of the paper accepted to NeurlPS 2019:
https://arxiv.org/pdf/1906.03361.pdf

Open source TF implementation available at Google research Github:

https://qithub.com/google-research/google-research/tree/master/bitempered loss

Replace one line:

Softmexr—cross—entropy—wrth—togrts{tactrvatronsTabets)

bi tempered logistic_ loss(activation, labels, tl, t2)
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https://arxiv.org/pdf/1906.03361.pdf
https://github.com/google-research/google-research/tree/master/bitempered_loss

Future Work

e Better tuning of the temps (possibly dynamic tuning during training)
e Reoptimize all other variables:
regularization, batch normalization, structure, dropout, ...
e Use Bi-Tempered loss for language models, ad placement, ...
e Can we avoid model blow-ups w. new loss
e Design asymmetric losses

e Long-term: generalization of the matching loss for deep NNs
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