

## An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint Ehsan Amid and Manfred K. Warmuth

University of California, Santa Cruz Google Brain, Mountain View [eamid, manfred}@google.com



# Implicit vs. Explicit Update

Gradient descent is motivated by

$$\theta_{t+1} = \underset{\theta}{\operatorname{argmin}} \left( \frac{1}{2\eta} \underbrace{\|\theta - \theta_t\|^2}_{\cdot \cdot \cdot \cdot} + \operatorname{loss}(\theta) \right)$$

# Implicit Krasulina Update

Without the orthonormality constraint

$$\begin{split} \mathrm{C}^{\mathrm{new}} &= \operatorname*{argmin}_{\widetilde{\mathrm{C}}} \, ^{1/2} \left( ^{1/\eta} \left\| \widetilde{\mathrm{C}} - \mathrm{C} \right\|_{\mathrm{F}}^{2} + \mathbb{E} \big[ \| \widetilde{\mathrm{C}} \, \widetilde{\widetilde{\mathrm{C}}}^{\dagger} \mathrm{y} - \mathrm{y} \|^{2} \big] \right) \end{split}$$

inertia

The actual minimizer of inertia + loss

 $\theta_{t+1} = \theta_t - \eta \nabla \log(\theta_{t+1})$  (implicit update)

Commonly approximated by the old gradient

 $\theta_{t+1} \approx \theta_t - \eta \nabla \log(\theta_t)$  (explicit update)

Most of Machine Learning is explicit!

k-PCA Loss

**k-PCA:** Given zero mean random variable  $y \in \mathbb{R}^d$ Find the (d x d) projection matrix P of rank-k s.t. Approximating  $\widetilde{C}^{\dagger}y$  with  $C^{\dagger}y$  yields the (partially) **Implicit Krasulina (a.k.a. Sanger)** update:

$$\begin{aligned} \mathbf{x}_t &= \mathbf{C}^{\dagger} \mathbf{y}_t & (\text{E-Step}) \\ \mathbf{C}^{\text{new}} &= \mathbf{C} - \frac{\eta}{1 + \eta \|\mathbf{x}_t\|^2} \left( \mathbf{C} \mathbf{x}_t - \mathbf{y}_t \right) \mathbf{x}_t^{\top} & (\text{M-Step}) \end{aligned}$$

- No QR-step, needs to keep track of  $C^{\dagger}$  instead - Has an **online EM** interpretation! (see [1])



$$\ell_{\text{comp}}(\mathbf{P}) = \mathbb{E}\left[\|\mathbf{P}\,\mathbf{y} - \mathbf{y}\|^2\right] = \operatorname{tr}\left((\mathbf{I}_d - \mathbf{P})\,\mathbb{E}[\mathbf{y}\,\mathbf{y}^\top]\right)$$

or

 $\ell_{var}(\mathbf{P}) = -\mathbf{P}\operatorname{tr}(\mathbb{E}[\mathbf{y}\mathbf{y}^{\top}])$ 

is minimized.

Online k-PCA: Observe one example  $y_t$  at a time Decomposition:  $P = C (C^{\top}C)^{-1}C^{\top} := CC^{\dagger}$ 

Solve for C instead of P!

### GD on the Stiefel Manifold

Manifold of (d x k) orthonormal matrices

$$\mathbf{St}_{(d,k)} = \{ \mathbf{C} \in \mathbb{R}^{d \times k} | \mathbf{C}^{\top} \mathbf{C} = \mathbf{I}_k \}$$

#### **Sensitivity to Learning Rate**

| Method            | $\eta_0$ -Scale                                                                                                      | MNIST                                                                             |                                                                              |                                                                                                       | CIFAR10                                                              |                                                                              |                                                                                   |
|-------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                   |                                                                                                                      | k = 5                                                                             | k = 10                                                                       | k = 20                                                                                                | k = 5                                                                | k = 10                                                                       | k = 20                                                                            |
| Batch PCA         | _                                                                                                                    | 35.16                                                                             | 26.95                                                                        | 18.74                                                                                                 | 86.98                                                                | 65.70                                                                        | 48.65                                                                             |
| Oja               | $0.1 \times$<br>$1 \times$                                                                                           | $35.79 \pm 0.38$<br>$35.19 \pm 0.05$<br>$25.20 \pm 0.01$                          | $29.78 \pm 0.38$<br>$26.98 \pm 0.02$<br>$27.08 \pm 0.01$                     | $21.55 \pm 0.25$<br>$18.80 \pm 0.03$<br>$10.01 \pm 0.01$                                              | $116.26 \pm 2.58$<br>$87.28 \pm 0.43$<br>$87.22 \pm 0.04$            | $66.81 \pm 0.58$<br>$65.90 \pm 0.01$<br>$67.68 \pm 0.12$                     | $58.28 \pm 0.65$<br>$48.86 \pm 0.05$<br>$50.26 \pm 0.12$                          |
| Krasulina         | $     \begin{array}{r}       10 \times \\       0.1 \times \\       1 \times \\       10 \times \\     \end{array} $ | $35.29 \pm 0.01$<br>$35.78 \pm 0.37$<br>$35.17 \pm 0.00$<br>$35.30 \pm 0.01$      | $27.08 \pm 0.01$<br>$29.92 \pm 0.37$<br>$26.96 \pm 0.01$<br>$27.09 \pm 0.01$ | $ \begin{array}{r} 19.01 \pm 0.01 \\ 21.44 \pm 0.24 \\ 18.79 \pm 0.02 \\ 19.02 \pm 0.02 \end{array} $ | $87.22 \pm 0.04$ $116.86 \pm 2.58$ $87.04 \pm 0.52$ $87.17 \pm 0.04$ | $67.08 \pm 0.13$<br>$66.76 \pm 0.65$<br>$65.90 \pm 0.01$<br>$67.87 \pm 0.16$ | $50.36 \pm 0.13$<br>$57.62 \pm 0.65$<br>$48.87 \pm 0.05$<br>$50.56 \pm 0.15$      |
| Incremental       | _                                                                                                                    | $35.26 \pm 0.10$                                                                  | $27.01 \pm 0.04$                                                             | $18.83 \pm 0.05$                                                                                      | $87.50 \pm 0.46$                                                     | $65.75 \pm 0.05$                                                             | $48.82 \pm 0.10$                                                                  |
| Sanger            | $\begin{array}{c} 0.1 \times \\ 1 \times \\ 10 \times \end{array}$                                                   | $39.09 \pm 0.78$<br>$36.27 \pm 0.93$<br>$42.36 \pm 1.62$                          | $30.61 \pm 0.48$<br>$28.00 \pm 0.38$<br>$34.48 \pm 0.95$                     | $22.03 \pm 0.23$<br>$19.82 \pm 0.18$<br>$25.50 \pm 0.46$                                              | $90.74 \pm 1.84$<br>$88.21 \pm 0.81$<br>$99.78 \pm 3.69$             | $70.70 \pm 2.18$<br>$66.84 \pm 0.88$<br>$77.88 \pm 2.62$                     | $54.04 \pm 0.95$<br>$50.73 \pm 0.62$<br>$60.21 \pm 1.08$                          |
| Imp. Krasulina    | $\begin{array}{c} 0.1 \times \\ 1 \times \\ 10 \times \end{array}$                                                   | $\begin{array}{c} 35.17 \pm 0.01 \\ 35.17 \pm 0.01 \\ 35.17 \pm 0.01 \end{array}$ | $26.96 \pm 0.01$<br>$26.97 \pm 0.03$<br>$26.98 \pm 0.05$                     | $\begin{array}{c} 18.78 \pm 0.02 \\ 18.77 \pm 0.02 \\ 18.77 \pm 0.01 \end{array}$                     | $87.00 \pm 0.00$<br>$87.01 \pm 0.00$<br>$87.02 \pm 0.04$             | $65.75 \pm 0.05$<br>$65.78 \pm 0.09$<br>$65.74 \pm 0.01$                     | $\begin{array}{c} 48.75 \pm 0.03 \\ 48.74 \pm 0.04 \\ 48.76 \pm 0.03 \end{array}$ |
| <figure></figure> |                                                                                                                      |                                                                                   |                                                                              |                                                                                                       |                                                                      |                                                                              |                                                                                   |
|                   |                                                                                                                      |                                                                                   |                                                                              |                                                                                                       |                                                                      |                                                                              |                                                                                   |

Krasulina's update: uses projected gradient

$$\widetilde{C} = C - \eta \, \overline{\nabla} \, \hat{\ell}_{comp}(C) = C - \eta \, (C \, \mathbf{x}_t - \mathbf{y}_t) \, \mathbf{x}_t$$
  
where  $\mathbf{x}_t = C^\top \mathbf{y}_t$  and  $C^{new} = QR(\widetilde{C})$ 

Oja's update: uses <u>unprojected</u> gradient

$$\widetilde{C} = C - \eta \nabla \hat{\ell}_{var}(C) = C + \eta y_t y_t^{\top} C$$
  
and  $C^{new} = QR(\widetilde{C})$   
Both updates are explicit!

**Reference:** [1] E. Amid and M. K. Warmuth, Divergence-based Motivation for Online EM and Combining Hidden Variable Models, *arXiv preprint arXiv:1902.04107*, 2019.