
Proceedings of Machine Learning Research vol 125:1–20, 2020 33rd Annual Conference on Learning Theory

Winnowing with Gradient Descent

Ehsan Amid eamid@google.com
Google Brain, Mountain View, CA 94043

Manfred K. Warmuth manfred@google.com

Google Brain, Mountain View, CA 94043

Editors: Jacob Abernethy and Shivani Agarwal

Abstract

The performance of multiplicative updates is typically logarithmic in the number of features
when the targets are sparse. Strikingly, we show that the same property can also be
achieved with gradient descent updates. We obtain this result by rewriting the non-negative
weights wi of multiplicative updates by u2i and then performing a gradient descent step
w.r.t. the new ui parameters. We apply this method to the Winnow update, the Hedge
update, and the unnormalized and normalized exponentiated gradient (EG) updates for
linear regression. When the original weights wi are scaled to sum to one (as done for
Hedge and normalized EG), then in the corresponding reparameterized update, the ui
parameters are now divided by ‖u‖2 after the gradient descent step. We show that these
reparameterizations closely track the original multiplicative updates by proving in each
case the same online regret bounds (albeit in some cases, with slightly different constants).

As a side, our work exhibits a simple two-layer linear neural network that, when trained
with gradient descent, can experimentally solve a certain sparse linear problem (known as
the Hadamard problem) with exponentially fewer examples than any kernel method.

1. Introduction

Multiplicative updates started with the Winnow algorithm for learning disjunctions and
linear threshold functions (Littlestone, 1988). These algorithms update their weights by
multiplicative factors and often learn sparse targets with a logarithmic dependence on
the number of features. For example, Winnow makes at most k log n mistakes on the
sequence of n-dimensional boolean vectors labeled consistently with a k-literal disjunction.

output ŷ

ui

ui

input x

Figure 1: Reparameterizing
the weights wi of a linear
neuron by u2

i .

Another paradigmatic case is the so called “expert
setting” where the learner is to perform as well as a single
feature/expert. For sequences of n-dimensional feature
vectors with one consistent feature, the total loss of the
update is typically O(log n). The situation is repeated
for linear regression; when the weight vector realizing the
labels is sparse, then the normalized and unnormalized
EG algorithms (Kivinen and Warmuth, 1997) incur loss
at most O(log n). So far we focused on the noise-free
case. In the noisy case (when the solution has non-zero
loss), additional square root terms appear in the regret
bounds of these algorithms.

© 2020 E. Amid & M.K. Warmuth.

Winnowing with Gradient Descent

We first observe that in continuous-time, multiplicative updates can be exactly repa-
rameterized as continuous-time gradient descent (GD). This is done by replacing the linear
weights wi by u2

i and applying continuous-time GD w.r.t. the new parameter ui (See
Figure 1). We show how the discretization of the continuous multiplicative updates re-
sults in the usual Winnow and EG updates. More importantly, the discretization of the
reparameterized continuous multiplicative updates results in discrete-time GD variants of
these updates. However, the equivalence between the multiplicative updates and the GD
reparameterizations does not hold after discretization. Nevertheless, we show that the GD
reparameterizations closely track the multiplicative originals by proving the same regret
bounds for the new updates, as were known for the originals. In each case, the constants
we obtain for the second order terms are the same or slightly different in either direction.

For the discrete GD updates, lower bounds that grow linearly in the number of features
n are known in some settings (Kivinen et al., 1997; Vishwanathan and Warmuth, 2005). In
these lower bounds, the instances are essentially the rows of an n × n Hadamard matrix
and the target, in the simplest case, is a single column of this matrix. When averaged
over targets, the lower bound for linear regression holds even if the input vectors x are
replaced by a feature map φ(x) of any kernel (Vishwanathan and Warmuth, 2005). It was
conjectured in (Derezinski and Warmuth, 2014) that the linear lower bound holds for any
neural network, as long as it is trained with GD. This conjecture is now contradicted by the
linear network in Figure 1. If this network is trained with online GD (i.e. backpropagation)
w.r.t. the squared Euclidean loss, then the update coincides with our discrete-time GD
reparameterization of the EGU update. Experimentally, GD on this network solves the
Hadamard problem as efficiently as EG and EGU (on a single neuron). Interestingly, this
simple two-layer linear network, when trained with GD, can realize the log n dependence on
the number of examples. Also surprisingly, when all the missing n2 − n connections in the
bottom layer of Figure 1 are reinstated and initialized to zero, then experimentally the loss
of the now fully-connected two-layer linear network again decays only linearly when trained
with GD.

Previous work. Online regret bounds for multiplicative updates have a long history
(see e.g. (Littlestone, 1988; Vovk, 1990; Kivinen and Warmuth, 1997)). A key insight of
Gunasekar et al. (2017) (followed by Woodworth et al. (2019) and Vaskevicius et al. (2019))
was that if the weights wi of a linear predictor are replaced by u2

i , then the continuous-time
gradient descent update on the ui’s imposes an implicit regularization on the wi’s that
makes the reparameterized weight vector w converge to the minimum L1-norm solution.1

The EG updates are known to connect with the L1-norm regularization. Indeed, the relative
entropy (the divergence motivating the EG updates) is strongly convex w.r.t. the L1-
norm (Shalev-Shwartz et al., 2012). We show that the continuous-time unnormalized EG
algorithm is in fact equivalent to the continuous-time GD on the ui’s. Curiously enough, this
reparameterization method has been used by game theorists to convert problems defined
on the unit simplex to the unit sphere (Akin, 1979; Sandholm, 2010). In particular, the
replicator dynamics of evolutionary game theory corresponds to EG, and GD equivalents
have been investigated for this dynamic. In the continuous case, it is easy to see the

1. Note that Gunasekar et al. (2017) analyzed the much richer matrix context. For the sake of simplicity,
we focus on the diagonal (i.e. vector) case.

2

Winnowing with Gradient Descent

equivalence between the EG updates and the corresponding reparameterizations as GD.
However, the main contribution of this paper is showing that essentially the same regret
bounds hold for the discretized GD reparameterizations of the multiplicative updates.

Note that obtaining an online regret bound is one of the most stringent learning criterion
since it must hold for worst-case sequences of examples. Standard conversions to randomized
settings also exist (see e.g. (Kivinen and Warmuth, 1997)). Furthermore, EGU is a special
case of mirror descent where the link function is the component-wise logarithm. A more
general framework for reparameterizing mirror descent updates was developed in a recent
paper (Amid and Warmuth, 2020).

Outline. In the next section, we show the equivalence between the continuous-time ex-
ponentiated gradient updates and their reparameterized gradient descent versions. We also
motivate the discretizations of the continuous updates. In the following three chapters, we
reprove the regret bounds for the discrete gradient descent variants of Winnow, the Hedge
algorithm, and the EG and EGU algorithms for linear regression. Lower bounds and some
implications of neural network training are briefly discussed in Section 6. We conclude the
paper with a number of open problems in Section 7.

Notation. We use � and � to denote element-wise vector multiplication and division,
respectively. The dot symbol denotes the time derivative, i.e.

•
v(t) := ∂

∂tv(t).

2. Reparameterizing the Continuous-time Exponentiated Gradient

In the following, we discuss the continuous-time EGU and EG updates2 and derive their
reparameterized forms. Although the reparameterization method presented here is more
versatile and applies to a wider class of continuous-time mirror descent updates (Amid and
Warmuth, 2020), we only focus on these two main cases in this paper.

The continuous-time EGU update can be seen as the solution of the following ordinary
differential equation (ODE) defined on Rn≥0 :

•

logw(t) = −η∇wL(w(t)), with initial condition w(t=0)=w0 ∈ Rn≥0 . (1)

Here, ∇wL(w(t)) denotes the gradient of the loss L(w) w.r.t. w evaluated at w(t) and η is
a positive learning rate. Typically, the loss L(·) also depends on a given example x(t) and
possibly a label y(t). Although the dynamic of the continuous-time EGU (1) is fundamen-
tally different than a dynamic based on gradient descent, the following theorem shows that
the same update can be realized using gradient descent via a simple reparameterization.
Namely, we substitute w(t) = q

(
u(t)

)
:= u(t) � u(t) where the new parameter u(t) ∈ Rn

is updated via gradient descent on the composite loss L◦q(·).3

Theorem 1 (Reparameterized continuous-time EGU) The solution of the ODE (1)
is equal to w(t) = q

(
u(t)

)
, for all t ≥ 0, where q(u) := u� u and the new parameter u(t)

is the solution of the following ODE defined on Rn :
•
u(t) = −η/4∇u L◦q

(
u(t)

)
, s.t. u(t=0) = u0 ∈ Rn and u0 � u0 = w0. (2)

2. Recall that for any loss L(w), where w ∈ Rn
≥0, the unnormalized exponentiated gradient update (EGU)

resets w to w � exp(−η∇L(w)) ∈ Rn
≥0. The normalized version (EG) divides by the sum of the updated

weights, thus projecting the weight vector onto the unit simplex ∆n−1.
3. Even if L(w) is convex in w, the composite loss L◦q (u) might not be convex in the new parameter u.

3

Winnowing with Gradient Descent

Proof By the chain rule,
•

logw(t) =
•
w(t)�w(t). Thus the ODE (1) can be written as

•
w(t) = −ηw(t)�∇wL(w(t)) . (3)

Similarly,
•
w(t) =

∂

∂t

(
u(t)� u(t)

)
= 2u(t)�

•
u(t) . (4)

Plugging (2) into (4) and using ∇u L◦q
(
u(t)

)
= 2u(t) � ∇w L(w(t)) and w(t) = q

(
u(t)

)
yields (3) and concludes the proof.

The discrete-time EGU can be derived as the finite difference approximation of (1) with a
step-size of one, that is, logwt+1 − logwt = −η∇wL(wt). Alternatively, this is also the
solution to the following minimization problem:

wt+1 = argmin
w̃∈Rn

≥0

{
1/ηDRE(w̃,wt) + L̂(w̃|wt)

}
, (5)

where DRE(w̃,w) =
∑n

i=1 w̃i log w̃i
wi
− w̃i + wi denotes the relative entropy divergence and

L̂(w̃|wt) = L(w̃) + (w̃ −wt) ·∇wL(wt) is the Taylor approximation4 of the loss L(w̃) at
wt. Similarly, discretizing (2) yields the discrete-time reparameterized EGU update

ut+1 − ut = −η/4∇u L◦q
(
ut
)

= −η/2 ut �∇w L
(
wt
)
, (6)

with wt = ut � ut. This can be seen as the solution to the minimization problem

ut+1 = argmin
ũ∈Rn

{
2/η ‖ũ− ut‖22 + L̂◦q

(
ũ |ut

)}
, (7)

where L̂◦q
(
ũ |ut

)
is the first-order Taylor series approximation of L◦q(ũ) at ut:

L̂◦q
(
ũ |ut

)
= L◦q

(
ut
)

+ (ũ− ut) · ∇u L◦q
(
ut
)
. (8)

A similar continuous-time dynamic can be constructed for the normalized EG update and
its equivalent reparameterized form.5 This involves applying projected gradient updates to
maintain the constraint ‖w(t)‖1 = 1 (respectively, ‖u(t)‖22 = 1). Here, we state the result
for the discretized reparameterized form and refer the reader to (Amid and Warmuth,
2020) for further details. Adding the Lagrange multiplier λ to (7) to enforce the constraint(
ut+1 � ut+1

)
· 1 = 1, we have

ut+1 = argmin
ũ∈Rn

{
1/η ‖ũ− ut‖22 + L̂◦q

(
ũ |ut

)
+ λ

((
ũ� ũ

)
· 1− 1

)}
, (9)

which results in the reparameterized EG update

ut+1 =
ut − η/2∇u L◦q

(
ut
)∥∥ut − η/2∇u L◦q

(
ut
)
‖2
, thus ut+1 � ut+1 ∈ ∆n−1 . (10)

4. Note that a backward Euler approximation of (1) yields the prox or implicit form of the update (Rock-
afellar, 1976; Kivinen et al., 2006), which corresponds to using L(w̃) instead of L̂(w̃|wt) in (5).

5. In the remainder of the paper, we use w = q(u) = u� u as the reparameterization. The constants can
be absorbed into the learning rates.

4

Winnowing with Gradient Descent

Clearly, after the discretization, the EGU and EG updates and their reparameterized
forms are no longer equivalent. The key question that naturally arises is the following:
How well does the discretized reparameterized EGU update (and its normalized form) ap-
proximate the original EGU (respectively, the original EG) update? In the following, we
address this question by comparing the worst-case regrets of the original (un)normalized
EG and its reparameterizations on three problems, namely, the Winnow algorithm for bi-
nary classification, the Hedge algorithm for the expert setting, and EGU and EG for linear
regression. The following regret bounds for the reparameterizations are proven by bound-
ing the progress towards a comparator. Curiously enough, the progress is measured i.t.o.
the relative entropy divergence even though the reparameterized updates are motivated by
regularizing with the squared Euclidean distance.

3. The Reparameterization of the Winnow algorithm

The Winnow algorithm learns a linear threshold function for the task of binary classification.
It is a special case of EGU when the loss is the hinge loss. This loss on example (xt, yt) (for
yt ∈ {±1}) is defined as LH(w|xt, yt) =

[
− yt (w · xt−θ)

]
+
, where θ ∈ R is a threshold.

GD w.r.t. the same loss results in the Perceptron update. (See (Kivinen et al., 1997) for
a comparative study.) Below we give the Winnow algorithm and its reparameterization as
GD. Both algorithms update their weights only when a mistake occurs because when the
prediction is correct, the gradient of the hinge loss is zero (Gentile and Warmuth, 1998).

Algorithm 1 Winnow Algorithm

Parameters initial weight w1 > 0,
learning rate η > 0, threshold θ > 0
Initialize w1 = w1 1n
for t = 1 to T do

Receive instance xt ∈ [0, 1]n

Predict ŷt =

{
+1 if wt · xt ≥ θ
−1 otherwise

Receive label yt and update:

wt+1 =

{
wt if ŷt = yt

wt � exp(η yt xt) otherwise

Algorithm 2 Reparameterized Winnow

Parameters initial weight u1 ∈ R, learning
rate η > 0, threshold θ > 0
Initialize u1 = u1 1n
for t = 1 to T do

Receive instance xt ∈ [0, 1]n

Predict ŷt =

{
+1 if (ut � ut) · xt ≥ θ
−1 otherwise

Receive label yt and update:

ut+1 =

{
ut if ŷt = yt

ut + η yt (ut � xt) otherwise

Theorem 2 (Winnow bound (Littlestone, 1988; Warmuth, 2007)) Given any se-
quence of examples (xt, yt) such that xt ∈ [0, 1]n, the labels yt are ±1, and there is a weight
r with k ones and n− k zeros such that

r · xt =

{
≥ 1

2 if yt = +1

0 otherwise ,

then the Winnow algorithm makes at most 7.18 k log n
k mistakes on this sequence, when

η ≈ 1.28, θ = 0.19, and w1 = n/k.

5

Winnowing with Gradient Descent

Note for the sake of simplicity we only address the case when there exists a consistent
disjunction. In the more general case, there are the additional terms in the mistake bound
that involve the number of attribute errors w.r.t. the best disjunction.

Theorem 3 (Reparameterized Winnow bound) Given that the assumptions of The-
orem 2 hold, for any sequence of examples (xt, yt) the reparameterized Winnow algorithm
makes at most 5.66 k log n

k mistakes on this sequence, when η ≈ 0.85, θ = 0.18, and

u1 =
√
n/k.

Proof We lower bound the per trial progress DRE(r,ut�ut)−DRE(r,ut+1�ut+1) towards
any comparator r which satisfies the constraints in Theorem 2. Note that if no mistake
occurs, ut+1 = ut. Otherwise, ut+1 is updated to ut + η yt (ut � xt) = ut � (1 + η yt xt).
Assuming η ≤ 1, and using the facts that log(1 + ηytxti) ≥ xti log(1 + ηyt) and (xti)

2 ≤ xti
for xti ∈ [0, 1], we have

DRE(r,ut�ut)−DRE(r,ut+1�ut+1) = 2r ·log(1 + ηytxt)−(ut�ut)·(2ηytxt+η2xt�xt)
≥ 2 r · xt log(1 + η yt)− (ut � ut) · xt (2 η yt + η2) .

A mistake occurs if ŷt 6= yt. If yt = −1, then r ·xt = 0 by the assumption and (ut�ut)·xt ≥
θ. Thus, the lower bound on the progress becomes

(ut � ut) · xt(2 η − η2) ≥ θ(2 η − η2) .

If yt = +1, then we have r · xt ≥ 1
2 by the assumption and also (ut � ut) · xt ≤ θ. Thus in

this case the progress is lower bounded by

log(1 + η)− (ut � ut) · xt (2 η + η2) ≥ log(1 + η)− θ(2 η + η2) .

Setting the two values to be equal, we obtain θ = log(1+η)
4 η . With this choice of θ, the

progress per mistake is always lower bounded by 1/4 (2− η) log(1 + η) which is maximized
for η ≈ 0.85. This choice of η yields θ ≈ 0.18 and the progress is ≈ 0.18. Summing over all
trials and denoting the number of mistakes by M , we have

DRE(r,u1 � u1)︸ ︷︷ ︸
k log n

k

−DRE(r,uT+1 � uT+1)︸ ︷︷ ︸
≥0

≥ 0.18M , and thus M ≤ 5.56 k log
n

k
.

4. The Reparameterization of the Hedge Algorithm

An important algorithm in the online expert setting is the Randomized Weighted Majority
algorithm (Littlestone and Warmuth, 1994). Here, we only discuss the simplified version
known as the Hedge algorithm (Freund and Schapire, 1997). This algorithm maintains a
non-negative probability vector wt ∈∆n−1 such that

∑
iw

t
i = 1. At trial t, the algorithm

draws an expert/feature i with probability wti and upon receiving the loss vector `t∈ [0,1]n,
it incurs the expected loss wt ·`t. The weights are then updated by a multiplicative exponen-
tiated gradient term and re-normalized (see Algorithm 3) to assure that the non-negative
weights sum to one.

6

Winnowing with Gradient Descent

The Hedge update and its reparameterization are a special case of EG and reparame-
terized EG when the losses are the dot loss w̃ · `t and ũ � ũ · `t, respectively. The Hedge
update at round t is motivated by minimizing the relative entropy to the current weight wt

plus the dot loss:

wt+1 = argmin
w̃∈∆n−1

{
1/ηDRE(w̃,wt) + w̃ · `t

}
. (11)

Algorithm 3 Hedge Algorithm

Parameters initial probability vector
w1 ∈ ∆n−1, learning rate η > 0
for t = 1 to T do

Draw expert i with probability wti
Incur loss `ti & expected loss wt · `t
Update:

wt+1 =
wt � exp(−η `t)∑
iw

t
i exp(−η `ti)

Algorithm 4 Reparameterized Hedge Alg.

Parameters initial weight vector u1 ∈ Rn
s.t. ‖u1‖2 = 1, learning rate η > 0
for t = 1 to T do

Draw expert iwith probability (uti)
2

Incur loss `ti & expected loss (ut�ut) ·`t
Update:

ut+1 =
ut − ηut � `t

‖ut − ηut � `t‖2

Theorem 4 (Hedge bound (Freund and Schapire, 1997)) For any sequence of loss
vectors {`t}Tt=1 ∈ [0, 1]n such that mini∈[n]

∑T
t=1 `

t
i ≤ L, any comparator r ∈ ∆n−1, and any

start vector w1 ∈ ∆n−1 such that DRE(r,w1) ≤ D ≤ log n, the total expected loss of the
Hedge algorithm with start vector w1 and learning rate η = log(1 +

√
2D/L) is bounded as∑

t

wt · `t ≤
∑
t

r · `t +
√

2LD +DRE(r,w1) .

In the reparameterized Hedge update, w is replaced with u�u where u ∈ Rn and ‖u‖2 = 1.
That is, the reparameterized weight u lies on the unit sphere and the squared weight u�u
corresponds to an n-dimensional probability vector. The update is motivated by minimizing
the squared Euclidean distance as the inertia term plus the expected loss,6

ut+1 = argmin
ũ s.t. ‖ũ‖2=1

{
1/η ‖ũ− ut‖22 + (ũ� ũ) · `t

}
. (12)

Using a Lagrange multiplier to enforce the constraint that
∑

i(u
t+1
i)2 = 1 and solving for

ut+1 yields the reparameterized Hedge update of Algorithm 4.

Theorem 5 (Reparameterized Hedge bound) For any sequence of loss vectors {`t}Tt=1

∈ [0, 1]n such that mini∈[n]

∑T
t=1 `

t
i ≤ L, any comparator r ∈ ∆n−1 and any start vector

u1 ∈ Rn such that ‖u1‖2 = 1 and DRE(r,u1 � u1) ≤ D ≤ log n, the total expected loss of
reparameterized Hedge with learning rate η = (1 +

√
L/D)−1 is bounded as∑

t

(ut � ut) · `t ≤
∑
t

r · `t + 2
√
LD +DRE(r,u1 � u1) .

6. A similar first-order Taylor approximation to (8) is required to obtain the explicit update.

7

Winnowing with Gradient Descent

Proof We lower bound the progress of the algorithm towards an arbitrary comparator
r ∈ ∆n−1. Assuming η < 1, the progress can be written as

DRE(r,ut � ut)−DRE(r,ut+1 � ut+1)

= 2 r · log
(
1− η `t

)
− log

(
(ut � ut) · (1− 2η `t + η2 `t � `t)

)
≥ 2 r · `t log(1− η)− log

(
1− (2η − η2) (ut � ut) · `t

)
.

Using log(1− x) ≥ −x/(1− x) and − log(1− x) ≥ x for 0 ≤ x < 1 yields

DRE(r,ut � ut)−DRE(r,ut+1 � ut+1) ≥ − 2 η

1− η
r · `t + (2η − η2) (ut � ut) · `t .

Summing over all trials and re-arranging the terms results in the following bound on the
loss of the algorithm

∑
t

(ut � ut) · `t ≤
2 η

1−η
∑

t r · `t +DRE(r,u1 � u1)−DRE(r,uT+1 � uT+1)

2 η − η2
.

Setting η to (1 +
√
L/D)−1 and substituting the values of L and D yields the bound.

Note that the regret bound of Theorem 5 for the reparameterized Hedge has an additional√
2 factor before the square root term in its regret bound. By plotting the progress, we

can show that this additional factor disappears if you use the alternate learning rate η =√
D/(D + 2L). Based on this evidence, we conjecture that with the alternate tuning, the

reparameterized Hedge has the same regret bound as the original.
Another approximation of the Hedge update has been analysed in (Cesa-Bianchi et al.,

2007), called the Prod update. It replaces the exponential factors exp(−η `i) used in Hedge
by their Taylor expansions (1− η `i) and normalizes multiplicatively.7 Our reparameterized
GD update is subtly different: it is a GD update w.r.t. the square roots of the weights as
the parameters.

5. Reparameterizations of EGU and EG for Linear Regression

The regret bounds for linear regression using GD, EG, and EGU have been analyzed exten-
sively in (Kivinen and Warmuth, 1997). Here, we derive similar bounds for the reparame-
terized EG and EGU updates.

We first recall the original EGU algorithm for linear regression which maintains a weight
vector wt ∈ Rn≥0. Upon receiving input xt ∈ Rn at round t, the algorithm predicts with

ŷt = wt · xt. It then receives the response yt, incurs loss (yt − ŷt)2, and updates as:

wt+1 = wt � exp
(
− 2 η (ŷt − yt)xt

)
.

Kivinen and Warmuth (1997) analyze a slight variant of EGU: given a sequence of trials
(xt, yt) for which, yt ∈ [0, Y] for all t and some Y > 0, the variant uses the following clipped
prediction in its update: ŷt = wt · xt if ŷt ≤ Y, and ŷt = Y otherwise.

7. The same Taylor expansion is used in the Approximated EG update of (Kivinen and Warmuth, 1997),
but that update keeps the weight sum as one by subtracting a term. It is motivated by the χ2-divergence.

8

Winnowing with Gradient Descent

Theorem 6 (Linear regression with EGU (Kivinen and Warmuth, 1997)) Let
{(xt, yt)}Tt=1 be any sequence such that xt ∈ [0, X]n and yt ∈ [0, Y] for some constants
X,Y > 0. Then for any comparator r ∈ Rn≥0, EGU with learning rate η = 1/(3XY) and

arbitrary start point w1 ∈ Rn≥0 satisfies the total loss bound

T∑
t=1

(yt −wt · xt)2 ≤ 3
(∑

t

(yt − r · xt)2 +X YDRE(r,w1)
)
. (13)

Furthermore, let L and D be constants such that
∑

t(y
t− r ·xt)2 ≤ L and DRE(r,w1) ≤ D

and let

η =

√
D√

2LXY + 2XY
√
D
. (14)

Then we have

T∑
t=1

(yt −wt · xt)2 ≤
T∑
t=1

(yt − r · xt)2 + 2
√

2LXYD + 2XYDRE(r,w1) . (15)

Reparameterized EGU uses ut � ut as its weights,8 where u1 ∈ Rn, and updates as

ut+1 = ut − η (ŷt − yt)ut � xt , (16)

where ŷt is again the clipped prediction: min
(
wt · xt, Y

)
.

Theorem 7 (Reparameterized EGU linear regression) Let {(xt, yt)}Tt=1 be any se-
quence such that xt ∈ [0, X]n and yt ∈ [0, Y] for some constants X,Y > 0. Then for any
comparator r ∈ Rn≥0, reparameterized EGU with learning rate η = 1/(3XY) and arbitrary

start point w1 ∈ Rn≥0 satisfies the same total loss bound (13) as the original EGU when
replacing wt with ut�ut. Moreover, for the same constants L and D as in Theorem 6 and
by setting η to (14), the reparameterized EGU achieves the same bound as in (15).

Proof sketch We lower bound the progress DRE(r,ut � ut)−DRE(r,ut+1 � ut+1) of the
algorithm towards any comparator r ∈ Rn≥0 by a (yt− ŷ)2−b (yt−r ·xt)2, for some constants
a, b ≥ 0. We can lower bound the progress as

DRE(r,ut � ut)−DRE(r,ut+1 � ut+1)

≥ 2 r · xt log(1− η (ŷt − yt)X)

X
+
(
2 η (ŷt − yt)− η2 (ŷt − yt)2X

)
(ut � ut) · xt .

Denoting by s := r ·xt and p := (ut�ut) ·xt, it suffices to show that G(p, ŷ, y, s) ≤ 0 where
(omitting the superscript t)

G(p, ŷ, y, s) = −2s log(1− η (ŷ − y)X)

X
−
(
2 η (ŷ−y)−η2 (ŷ−y)2X

)
p−a(y− ŷ)2 +b(y−s)2 .

It suffices to show the result for p = ŷ. The function G(ŷ, ŷ, y, s) is maximized for s =
y − log(1 − η(ŷ − y)X)/(Xb). Setting η = b/(1 + 2XY b), the inequality holds for any

8. Note that the squared loss (w · x− y)2 is convex in w, but (u� u · x− y)2 is not convex in u.

9

Winnowing with Gradient Descent

a ≤ b/(1 + 2XY b). Setting b = 1/(XY), the bound is achieved for η = a = 1/(3XY).

Algorithm 5 EGU Linear Regression

Parameters initial weight w1 ∈ Rn≥0,
learning rate η > 0
for t = 1 to T do

Receive instance xt ∈ [0, X]n

Predict ŷt =

{
wt · xt if wt · xt≤Y
Y otherwise

Receive label yt and update:

wt+1 = wt � exp
(
− 2 η (ŷt − yt)xt

)

Algorithm 6 Reparam. EGU Lin. Reg.

Parameters initial weight u1 ∈ Rn, learn-
ing rate η > 0
for t = 1 to T do

Receive instance xt ∈ [0, X]n

Predict ŷt=

{
ut�ut · xt if ut�ut · xt≤Y
Y otherwise

Receive label yt and update:

ut+1 = ut − η (ŷt − yt)ut � xt

Alternatively, the (normalized) EG algorithm maintains a probability vector wt ∈ ∆n−1

as its weight vector. The update for EG is the same as EGU, except for a multiplicative
normalization:

wt+1 =
wt � exp

(
− 2 η (ŷt − yt)xt

)∑
iw

t+1
i exp

(
− 2 η (ŷt − yt)xti

) .
The following theorem from (Kivinen and Warmuth, 1997) expresses the worst-case bound
of running EG for linear regression.

Theorem 8 (EG linear regression (Kivinen and Warmuth, 1997)) Let {(xt, yt)}Tt=1

be any sequences such that maxi x
t
i −mini x

t
i ≤ R for some R ≥ 0. Then for any compara-

tor r ∈ ∆n−1, the EG algorithm with learning rate η = 2/(3R2) and arbitrary start point
w1 ∈ ∆n−1 satisfies the total loss bound

T∑
t=1

(yt −wt · xt)2 ≤ 3

2

(T∑
t=1

(yt − r · xt)2 +R2DRE(r,w1)
)
. (17)

Furthermore, let L and D be constants such that
∑

t(y
t− r ·xt)2 ≤ L and DRE(r,w1) ≤ D

and let

η =
2
√
D

R
√

2L+R2
√
D
. (18)

Then we have

T∑
t=1

(yt −wt · xt)2 ≤
T∑
t=1

(yt − r · xt)2 +R
√

2LD +
R2

2
DRE(r,w1) . (19)

Using (10), the reparameterized EG update for linear update can be written as

ut+1 =
ut − η (ŷt − yt)ut � xt

‖ut − η (ŷt − yt)ut � xt‖2
. (20)

The algorithm for EG on linear regression is similar to Algorithm 6, except the initial
weight u1 satisfies ‖u1‖2 = 1 and the update is replaced with (20). In the following, we

10

Winnowing with Gradient Descent

show the regret for the reparameterized EG update for linear regression. For simplicity, we
first consider the case where the input x∈ [0, X]n for some X>0.

Theorem 9 (Reparameterized EG linear regression) Let {(xt, yt)}Tt=1 be any se-
quences such that xt ∈ [0, X]n for some X ≥ 0. Then for any comparator r ∈ ∆n−1,
the Reparameterized EG algorithm with learning rate η = 1/(3X2) and arbitrary start point
u1 ∈ Rn such that ‖u1‖2 = 1 satisfies the total loss bound

T∑
t=1

(yt − (ut � ut) · xt)2 ≤ 3
(∑

t

(yt − r · xt)2 +X2DRE(r,u1 � u1)
)
. (21)

Furthermore, let L and D be constants such that
∑

t(y
t−r ·xt)2 ≤ L and DRE(r,u1�u1) ≤

D and let

η =
2
√
D

X
√

2L+X2
√
D
. (22)

Then we have

T∑
t=1

(yt − (ut � ut) · xt)2 ≤
T∑
t=1

(yt − r · xt)2 + 2X
√

2LD + 2X2DRE(r,w1) . (23)

The proof is given in the appendix. In the following, we claim a bound for the reparameter-
ized EG for the more general case where xt∈ [−X,X]n for all t. We provide a proof sketch
for the claim in the appendix. Our partial proof shows strong evidence for the existence of
such regret bound. However, finding an analytical proof by simplifying the final form is left
for future work.

Claim 1 (More general bound for reparameterized EG linear regression) For the
same setting as in Theorem 9 but a more general case where xt ∈ [−X,X]n for all t, the
reparameterized EG algorithm achieves the same bound (23) in which X is replaced by 2X.

6. Lower Bounds and Simulations output ŷ

input x

Figure 2: Complete two-layer
linear network. The dotted
weights are initialized to zero.

Linear lower bounds for GD have been studied in the
previous work (Kivinen et al., 1997; Vishwanathan
and Warmuth, 2005) for the hinge and squared loss.
These lower bounds are all based on the “Hadamard
problem”: the instances are the n rows of the n-
dimensional Hadamard matrix in random order and the
target is one of the columns.9 Thus target is a unit
weight vector selecting the right column. For example,
for linear regression, as online GD passes over the n
examples, it brings up the weight of the right column
slowly and the average squared loss on all n instances decreases linearly (Figure 3(a)).
Multiplicative updates such as EGU bring up the target weight dramatically faster and

9. Similar behavior is observed if a random ±1 matrix is used.

11

Winnowing with Gradient Descent

(a) (b) (c)

Figure 3: GD, EGU, and Reparameterized EGU on the online Hadamard problem (n=128):
at round t, we train until consistency on the past t examples. For 1≤ t≤128, all 128 weights
are shown in blue and the average loss over all 128 examples is shown in red.

the average squared loss decays essentially after log n examples (Figure 3(b)). Surprisingly,
GD on the ui’s of the sparse linear network of Figure 1 has visually identical weights10

(Figure 3(c)) and average loss trajectories as EGU (Figure 3(b)). Furthermore, if we run
GD on the fully-connected two-layer network of Figure 2 with the dotted weights initialized
to zero, then the combined linear weights of both layers again behave as when a simple
linear neuron is trained with GD (Appendix D). This behavior seems to be related to the
observation that GD focuses on keeping the highest weight as small as possible and uses
the additional weights to overfit.

7. Open Problems

There are a number of technical open problems associated with the current paper. A
complete analytical proof is still needed for the regret of the reparameterized EG when the
instance domain is two-sided, i.e. xt ∈ [−X,X]n. Note also that regret bounds for the
two-sided domain do not exist for the original and reparameterized EGU. Experimentally
however, the two updates show the typical log n behavior of multiplicative updates. For the
lower bound discussion, a next step would be to show that for the Hadamard problem, GD
on a two-layer linear network with any initialization has the typical linear decaying loss.
Also in this paper, we were able to repeat the regret bounds for the Reparameterized Hedge
algorithm (i.e. when the loss is the dot loss and the loss components lie in [0, 1]). However,
so far we were not able to repeat O(log n) regret bounds (Vovk, 1990; Haussler et al., 1998)
for a reparameterized version of the multiplicative expert algorithm when the loss is the dot
loss and the loss components are the squared loss (a.k.a. the Brier scores). We conjecture
that O(log n) regret bounds are not possible for the reparameterized version of the expert
algorithm when the loss components are log losses. The reason is the unboundedness of the
log loss. Lastly, there are many open problems regarding neural networks. For example,
are reparameterized multiplicative updates useful for training large networks and how the
optimization routines such as AdaGrad and Adam interact with the new reparameterized
updates?

Acknowledgement We thank Zakaria Mhammedi for valuable feedback. Also E. Amid
was partially supported by the NSF grant IIS 1546459 and a gift grant from the Intel Corp.

10. The trajectories are very close, but not numerically equal.

12

Winnowing with Gradient Descent

References

Ethan Akin. The geometry of population genetics, volume 31 of Lecture Notes in Biomath-
ematics. Springer-Verlag, Berlin-New York, 1979.

Ehsan Amid and Manfred K. Warmuth. Reparameterizing mirror descent as gradient de-
scent. arXiv preprint arXiv:2002.10487, 2020.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks:
Implicit acceleration by overparameterization. In International Conference on Machine
Learning (ICML), 2018.

Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for
prediction with expert advice. Machine Learning, 66(2-3):321–352, 2007.

Michal Derezinski and Manfred K. Warmuth. The limits of squared Euclidean distance
regularization. In Advances in Neural Information Processing Systems (NeurIPS), pages
2807–2815, 2014.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

C. Gentile and M. K. Warmuth. Hinge loss and average margin. In Advances in Neural
Information Processing Systems (NeurIPS), 1998.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and
Nati Srebro. Implicit regularization in matrix factorization. In Advances in Neural In-
formation Processing Systems (NeurIPS), pages 6151–6159, 2017.

David Haussler, Jyrki Kivinen, and Manfred K Warmuth. Sequential prediction of individual
sequences under general loss functions. IEEE Transactions on Information Theory, 44
(5):1906–1925, 1998.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors. Information and Computation, 132(1):1–63, 1997.

Jyrki Kivinen, Manfred K Warmuth, and Peter Auer. The Perceptron algorithm versus
Winnow: linear versus logarithmic mistake bounds when few input variables are relevant.
Artificial Intelligence, 97(1-2):325–343, 1997.

Jyrki Kivinen, Manfred K Warmuth, and Babak Hassibi. The p-norm generalization of the
LMS algorithm for adaptive filtering. IEEE Transactions on Signal Processing, 54(5):
1782–1793, 2006.

N Littlestone and MK Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine learning, 2(4):285–318, 1988.

13

Winnowing with Gradient Descent

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal
on control and optimization, 14(5):877–898, 1976.

William H Sandholm. Population games and evolutionary dynamics. MIT Press, 2010.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations
and Trends® in Machine Learning, 4(2):107–194, 2012.

Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for op-
timal sparse recovery. In Advances in Neural Information Processing Systems (NeurIPS),
pages 2968–2979, 2019.

S.V.N. Vishwanathan and M.K. Warmuth. Leaving the span. In Proceedings of the 18th
Annual Conference on Learning Theory (COLT), 2005.

Volodimir G Vovk. Aggregating strategies. In Proceedings of the third annual workshop on
Computational learning theory, pages 371–386, 1990.

Manfred K. Warmuth. Winnowing subspaces. In Proceedings of the 24th International
Conference on Machine Learning (ICML), pages 999–1006, 2007.

Blake Woodworth, Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Kernel
and deep regimes in overparametrized models. arXiv preprint arXiv:1906.05827, 2019.

14

Winnowing with Gradient Descent

Appendix A. Proof of Theorem 7

Proof We first establish a lower bound of the form,

a (yt − ŷ2)2 − b (yt − r · xt)2 ≤ DRE(r,ut � ut)−DRE(r,ut+1 � ut+1) , (24)

on the progress of the algorithm towards the comparator r, for some constants 0 ≤ a, b.
Assuming that η ≤ 1/(2XY), we have (1 − η (ŷt − yt)xti) ≥ 0 for all i. Thus, we can lower
bound the progress as

DRE(r,ut � ut)−DRE(r,ut+1 � ut+1)

= 2 r · log(1− η (ŷt − yt)xt)− log
(
wt · (1− 2 η (ŷt − yt)xt + η (ŷt − yt)2 xt � xt − 1

)
.

Applying the inequalities log(1− η (ŷt − yt)xti) ≥
xti log(1−η (ŷt−yt)X)

X and log(1 + x) ≤ x for
x > −1 and using the fact that (xti)

2 ≤ xtiX, we have

DRE(r,ut � ut)−DRE(r,ut+1 � ut+1)

≥ 2 r · xt log(1− η (ŷt − yt)X)

X
+
(
2 η (ŷt − yt)− η2 (ŷt − yt)2X

)
(ut � ut) · xt .

Denoting by s := r ·xt and p := (ut�ut) ·xt, it suffices to show that G(p, ŷ, y, s) ≤ 0 where
(omitting the superscript t)

G(p, ŷ, y, s) = −2s log(1− η (ŷ − y)X)

X
−
(
2 η (ŷ−y)−η2 (ŷ−y)2X

)
p+a(y− ŷ)2−b(y−s)2 .

Recall that the prediction ŷt of the reparameterized EGU is given by ŷt = p = (ut�ut) ·xt
if p ≤ Y holds; otherwise ŷt = Y . Thus, we need to show G(p, ŷ, y, s) ≤ 0 for two cases:
when ŷ = p, and for 0 ≤ ŷ = Y < p. Recall that by the assumption 0 ≤ y ≤ Y and
η ≤ 1/(2XY). Therefore, G(p, ŷ, y, s) is non-increasing in p for ŷ ≥ y. Hence, the condition
G(p, ŷ, y, s) ≤ 0 for ŷ = Y < p is satisfied if G(Y, Y, y, s) ≤ 0 holds. Thus, it suffices to show
the result for 0 ≤ ŷ = p ≤ Y .

For fixed ŷ and y, the function G(ŷ, ŷ, y, s) is maximized for

s = y −A/(Xb) , where A := log(1− η(ŷ − y)X) .

Plugging in this value, we have H(ŷ, y) := G(ŷ, ŷ, y, y −A/(Xb)) where

H(ŷ, y) = −2 η (ŷ − y)ŷ + η2 (ŷ − y)2 ŷ X + a (ŷ − y)2 +A2/(bX2)− 2Ay/X .

In order to obtain the bound (24), we show that H(ŷ, y) ≤ 0 holds for the choice of
η = b/(1 + 2XY b) and a = b/(1 + 2XY b). Substituting these values for η and a, we have

H(y, y) = ∂H(ŷ,y)
∂y

∣∣
ŷ=y

= 0 and Furthermore,

∂2H(ŷ, y)

∂y2

∣∣
ŷ=y

= −4b2X(Y − y)

(1 + 2XY b)2
≤ 0 for all 0 ≤ y ≤ Y .

15

Winnowing with Gradient Descent

Thus, it suffices to show that y = ŷ is the only maximum of the function. For this, we first
write

∂2H(ŷ, y)

∂y2
= − 1(

1
2 +X

(
Y + y

2 −
ŷ
2

)
b
)2 (

1
2 +XY b

)2×
((1

2
+XY b

)2
log
(

1+
X(y − ŷ)b

1 + 2XY b

)
b

+
(
Y 3 −

(ŷ + y

2

)
Y 2 +

(ŷ2 − y2

4

)
Y +

ŷ(ŷ − y)

8

)
b4X3

+
(
Y 2 −

(ŷ + y

2

)
Y +

ŷ2 − y2

8

)
b3X2 +

(Y
4

+
ŷ − y

8

)
b2X

)
.

Using the inequality log(1 + x) ≤ x for x > −1, we can upper bound the log-term as

log
(

1 +
X(y − ŷ)b

1 + 2XY b

)
b ≤ X(y − ŷ)b2

1 + 2XY b
,

and write the new function as Q(ŷ, y) such that ∂2H(ŷ,y)
∂y2

≤ Q(ŷ, y). It is trivial to check
that the derivative

∂Q(ŷ, y)

∂y
=

3

((
Y + y

6 −
ŷ
2

)(
Y + y

2 −
ŷ
2

)
bX + Y

2 + y
3 −

ŷ
2

)
X2b3

2

(
1
2 +X

(
Y + y

2 −
ŷ
2

)
b

)4 ≥ 0 ,

for any 0 ≤ y ≤ Y and 0 ≤ ŷ ≤ Y . Hence, it remains to check that Q(ŷ, Y) ≤ 0 holds:

Q(ŷ, Y) = − 1

9
(

1
3 +X

(
Y − ŷ

3

)
b
)3(

1
2 +XY b

)2 ×
(Y−ŷ)Xb2

(1

3
+
(
Y− ŷ

3

)
(Y−ŷ)

(
Y− ŷ

2

)
b3X3+

5
(
Y 2 − 3

5Y ŷ + 2
15 ŷ

2
)
b2X2

2
+

5
(
Y − ŷ

5

)
bX

3

)
≤ 0 ,

which holds for any 0 ≤ ŷ ≤ Y . This implies ∂2H(ŷ,y)
∂y2

≤ Q(ŷ, y) ≤ 0 for any 0 ≤ ŷ ≤ Y and
0 ≤ y ≤ Y .

The remainder of the proof follows similarly to (Kivinen and Warmuth, 1997). Specifi-
cally, by setting setting b = c/(XY), we obtain

T∑
t=1

(yt − (ut � ut) · xt)2 ≤
(
1 + 2 c

) T∑
t=1

(yt − r · xt)2 +
(
2 +

1

c

)
XYDRE(r,u1 � u1) .

Setting c = 1, the bound in (13) is achieved for η = a = 1/(3XY). Using the values L and
D and tuning for c achieves (15) for the choice of η as in (14).

16

Winnowing with Gradient Descent

Appendix B. Proof of Theorem 9

Similar to the proof of Theorem 7, we establish a lower bound of the form

a (yt − ŷt)2 − b (yt − r · xt)2 ≤ DRE(r,ut � ut)−DRE(r,ut+1 � ut+1) , (25)

on the progress of the algorithm towards the comparator r ∈ ∆n−1, and for some constants
a, b ≥ 0. Assuming that η ≤ 1/(2X2), we have (1− η (ŷt − yt)xti) ≥ 0 for all i. Thus, we can
lower bound the progress as

DRE(r,ut � ut)−DRE(r,ut+1 � ut+1)

= 2 r · log(1− η (ŷt − yt)xt)− log
(
wt · (1− 2 η (ŷt − yt)xt + η (ŷt − yt)2 xt � xt

)
.

Applying the inequalities log(1 − η (ŷt − yt)xti) ≥
xti log(1−η (ŷt−yt)X)

X and − log(1 − x) ≥ x
for 0 ≤ x ≤ 1 and using the fact that (xti)

2 ≤ xtiX, we have

DRE(r, ut � ut)−DRE(r,ut+1 � ut+1)

≥ 2 r · xt log(1− η (ŷt − yt)X)

X
+
(
2 η (ŷt − yt)− η2 (ŷt − yt)2X

)
ŷt .

Denoting by s := r ·xt, it suffices to show that G(ŷ, y, s) ≤ 0 where (omitting the superscript
t)

G(ŷ, y, s) = −2r log(1− η (ŷ − y)X)

X
−
(
2 η (ŷ−y)−η2 (ŷ−y)2X

)
ŷ+a(y− ŷ)2− b(y− s)2 .

For fixed ŷ and y, the function G(ŷ, y, s) is maximized for

s = y −A/(Xb) , where A := log(1− η(ŷ − y)X) .

Plugging in this value, we have H(ŷ, y) := G(ŷ, y, y −A/(Xb)) where

H(ŷ, y) = −2 η (ŷ − y)ŷ + η2 (ŷ − y)2 ŷ X + a (ŷ − y)2 +A2/(bX2)− 2Ay/X .

It is easy to verify that H(y, y) = ∂H(ŷ,y)
∂y

∣∣
ŷ=y

= 0. Moreover, notice that

∂2H(ŷ, y)

∂y2

∣∣
ŷ=y

=
(4Xy + 2) η2 − 4 b η + 2 ab

b
,

which is minimized at y = X for η = b/(1 + 2X2b). Plugging in this value, we have
∂2H(ŷ,y)
∂y2

≤ 0 for a ≤ b/(1 + 2X2b). Now there remains to show that ŷ = y is the only

maximum of the function H(ŷ, y). This is easily verified by plugging in a = b/(1 + 2X2b)
and observing

∂2H(ŷ, y)

∂y2
= − b(

1
2 +X2b

)2(
1
2 +

(
X + y

2 −
ŷ
2

)
Xb
)2 ×

(
1

2

(1

2
+X2b

)2
log
(

1 +
(y − yh)Xb

1 + 2X2b

)
+Xb

((
X3 −

(y + yh

2

)
X2 +

(ŷ2 − y2

4

)
X − ŷ(y − ŷ)2

8

)
X2b2

+X2b
(
X2 −

(y + yh

2

)
X +

(ŷ2 − y2

8

))
+
X2

4
− y + ŷ

8
X

)
≤ 0 ,

17

Winnowing with Gradient Descent

for 0 ≤ y, ŷ ≤ X and
∂2H(ŷ, y)

∂y2

∣∣
ŷ=y

= −4 b2X(X − y)

(1 + 2X2b)2
.

Finally, setting b = c/(X2) for some c > 0, we have

T∑
t=1

(yt − (ut � ut) · xt)2 ≤
(
1 + 2 c

) T∑
t=1

(yt − r · xt)2 +
(
2 +

1

c

)
XYDRE(r,u1 � u1) .

Setting c = 1 establishes the first bound. Similarly, optimizing for c yields

c =
X
√
D√

2L
.

For this choice of c and η as in (22), we obtain the second bound.

Appendix C. Proof Sketch of Claim 1

We can lower bound the progress of the algorithm as (assuming η ≤ 1/(2X2)),

DRE(r,ut � ut)−DRE(r,ut+1 � ut+1)

= 2 r · log(1− η (ŷt − yt)xt)− log
(
wt · (1− 2 η (ŷt − yt)xt + η (ŷt − yt)2 xt � xt

)
≥ (s+X)

X
log
(1− η (ŷt − yt)X

1 + η (ŷt − yt)X

)
+ 2 log

(
1 + η (ŷt − yt)X

)
− log

(
1− 2 η (ŷt − yt) ŷt + η2 (ŷt − yt)2X2

)
,

where s = r · xt. For fixed y and ŷ, the lower bound can be maximized for (omitting t)

s = y − 1

Xb
log
(1− η (ŷ − y)X

1 + η (ŷ − y)X

)
.

Thus, plugging back for s and introducing the new variable δ = y − ŷ, it suffices to show
that the function G(a, b, η, δ, ŷ) ≤ 0 for the choices of a, b, and η in the claim, and for all
−X ≤ ŷ ≤ X, where

G(a, b, η, δ, ŷ) := log(1 + 2 η δ ŷ + η2 δ2X2) +
1

4X2b
log
(1 + ηδX

1− ηδX

)2

− 1

X
(X + δ + ŷ) log

(1 + ηδX

1− ηδX

)
− 2 log(1− η δX) + a δ2 .

For a fixed δ, this function is maximized at

ŷopt =
X

log
(1+ηδX

1−ηδX
) − 1

2
ηδX2 since

∂2

∂ŷ2
G(a, b, η, δ, ŷ)

∣∣
ŷ=ŷopt

= −
log
(1+ηδX

1−ηδX
)2

X
.

18

Winnowing with Gradient Descent

Substituting this value for ŷ, we need to show H(a, b, η) := G(a, b, η, δ, ŷopt) ≤ 0 where

H(a, b, η) = log
(1 + ηδX

1− ηδX
)(1

4X2b
log
(1 + ηδX

1− ηδX
)

+
ηδX

2
− δ

X
+

1

2ηδX

)
+ log

(ηδX

log
(1+ηδX

1−ηδX
))+ a δ2 − log(1− η2δ2X2) + log(2)− 1 .

This function can be simplified further by substituting a = η = b/(1 + 2X2b). Also, we
can introduce two new variables by defining b = c/X2 for some c > 0 and δ = pX for
−2 ≤ p ≤ 2. As final step of the proof, there remains to show that the function

K(c, p) := log
(1 + (2 + p)c

1 + (2− p)c

)(1

4c
log
(1 + (2 + p)c

1 + (2− p)c

)
+

pc

2(2c+ 1)
− p+

2c+ 1

2pc

)
+ log

(pc

(2c+ 1) log
(1+(2+p)c

1+(2−p)c
))+

p2c

2c+ 1
− log

(
(1 + 2c)2 − p2) + log(2)− 1 ≤ 0 ,

for all values of c > 0 and −2 ≤ p ≤ 2.

Appendix D. Behavior of GD and Reparameterized EGU with Different
Initializations

(a) (b) (c)

Figure 4: Results of two-layer linear networks on the online Hadamard problem (n=128).
We perform one pass over the examples. The product of the weights of the first and the
second layer (128 weights in total) are shown in blue and the average loss over all 128
examples is shown in red. Results of the two-layer network of Figure 2 using GD where the
first layer weights are (a) initialized to zero, (b) initialized uniformly on both diagonals, (c)
results of the sparse network of Figure 1 where the weights are initialized randomly.

Here, we discuss two interesting observations on the two-layer networks in Figure 1 and
Figure 2. We extend the experiments on learning a column of the Hadamard matrix to
two-layer networks. We consider the online Hadamard problem (n=128) where we perform
one pass over the examples. The results are shown in Figure 4. The figures stress two
points about training two-layer linear networks with GD. First, if all the weights in the
first layer are initialized to zero (Figure 4(a)), then the product of the weight matrix of the

19

Winnowing with Gradient Descent

first layer times the weight vector of the second layer behaves qualitatively the same as the
weights of a single linear neuron trained with GD (compare to Figure 3(a)). The same is
true if the dotted weights in Figure 2 are initialized to zero and the remaining weights (solid
diagonal weights of the first layer and the weights of the second layer) are all set to uniform
(Figure 4(b)). This is essentially the same initialization used for the reparameterized EGU
algorithm, except in this case, the dotted connections are not removed.

Second, the initialization of the sparse linear network (Figure 1) is rather robust ex-
perimentally. Equal initializations or random initializations of both diagonals all make the
combined weight behave qualitatively like EGU on a single neuron (Figure 4(c) compared
to Figure 3(b)). In (Arora et al., 2018) it was observed that multiplying the weight vector
w of a linear neuron by a scalar weight w′ and training both with GD behaves similarly to
a momentum update. We experimentally show that even when the weights of the sparse
network are initialized randomly, then training it with GD shows a drastically different
dynamic than training a single neuron with GD. Notice that in the sparse network, each
weight on the bottom layer is now multiplied by a separate scalar weight (on the top layer),
instead of one common weight as in (Arora et al., 2018).

Finally, note that if we initialize any consecutive weights (along the path from the input
to the output) of the sparse linear network in Figure 1 to equal values, then these weights
will remain equal throughout the training using GD (since the two edges will have equal
gradients at any time). Thus, keeping both weights equal during training does not require
any additional constraints on the network.

20

	Introduction
	Reparameterizing the Continuous-time Exponentiated Gradient
	The Reparameterization of the Winnow algorithm
	The Reparameterization of the Hedge Algorithm
	Reparameterizations of EGU and EG for Linear Regression
	Lower Bounds and Simulations
	Open Problems
	Proof of Theorem 7
	Proof of Theorem 9
	Proof Sketch of Claim 1
	Behavior of GD and Reparameterized EGU with Different Initializations

