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Winnow: to remove chaff from grain

wheat soy beans

Learning disjunctions when irrelevant attributes abound [L89]

k out of n literal disjunctions with O(k log n) mistakes
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Notation of the Winnow algorithm

Learns disjunctions as linear threshold functions

I 2 out of 5 literal monotone disjunction v1 ∨ v3

I Represented as d = (1, 0, 1, 0, 0)>

I Label for instance x = (0, 1, 1, 0, 0)>{
+1 if d · x ≥ 1/2
−1 otherwise

I Alg. receives sequence of examples online

(x1 ,
ŷ1

y1) (x2 ,
ŷ2

y2), . . . , (xT ,
ŷT

yT )

instances [0, 1]n, labels and predictions are ±1
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Winnow algorithm

Initialize w1 = w0 (1, 1, . . . 1)>
for t = 1 to T do

Receive instance xt ∈ [0, 1]n
Predict with linear threshold

ŷt =
{

+1 if wt · xt ≥ θ
−1 otherwise

Receive label yt ∈ {+1,−1}
Multiplicative update: wt+1,i = wt,i exp(−η(ŷt − yi )xt,i )

end for

≤ k log n mistakes

Perceptron alg., additive: wt+1,i = wt,i − η (ŷt − yi )xt,i︸ ︷︷ ︸
gradient of hingle loss

≥ k n mistakes
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Mirror descent [NY83]

f (ws+1)− f (ws) = −∇L(ws) (where f is strictly increasing)
ws+1 = f −1(f (ws)−∇L(ws))

Gradient Descent (GD): f=id

ws+1 −ws = −∇L(ws)
ws+1 = ws −∇L(ws)

Unnormalized Exponentiateed Gradient Descent (EGU): f = log

log(ws+1)− log(ws) = −∇L(ws)
ws+1,i = ws,i exp(−η(∇L(ws))i (now wi ≥ 0) [KW97]

Normalized version called Exponentiated Gradient (EG)

ws+1,i = ws,i exp(−η(∇L(ws))i∑
j ws,j exp(−η(∇L(ws))j

(now w prob.vect.)
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Major differences between the two families

GD: stochastic gradient descent, backprop, kernel methods
EG: Winnow, expert algorithms, Boosting, Bayes

Performance of GD linear in n for sparse targets

Performance of EG linear in log n for sparse targets

Here we will reparameterize EG as GD:
Reparameterized forms act like original EG

Winnowing with GD!

7 / 56



Major differences between the two families

GD: stochastic gradient descent, backprop, kernel methods
EG: Winnow, expert algorithms, Boosting, Bayes

Performance of GD linear in n for sparse targets

Performance of EG linear in log n for sparse targets

Here we will reparameterize EG as GD:
Reparameterized forms act like original EG

Winnowing with GD!

7 / 56



Paradigmic sparse linear problem


−1 −1 1 −1 −1

1 −1 −1 −1 −1
1 −1 1 −1 −1
1 1 −1 1 1
1 −1 1 1 1




0
0
0
1
0

 =


−1
−1
−1

1
1


± matrix random or Hadamard

After receiving example (xt , yt)
and incurring loss (x>t wt − yt)2 update:

multiplicative, EGU: wt+1,i = wt,i exp(−ηxt,i (x>t wt − yt))
additive, GD: wt+1,i = wt,i − η xt,i (x>t wt − yt)︸ ︷︷ ︸

gradient
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Linear regression with random ± instances

Major differences in following paradigmic setup:
128x128 random ± 1 matrix
Rows are instances, labels are the first column

x-axis: t = 1..128
y-axis: all 128 weights Loss when trained on examples 1..t

Upshot: After half examples, GD has average loss ≈ 1/2
EG family converges in essentially log(n) many examples
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Linear regression with Hadamard instances
Major differences in following paradigmic setup:
128x128 Hadamard matrix
Permuted rows are instances, labels are any fixed column

Loss when trained on examples 1..t is
1− t/n

Upshot: After half examples, GD has average loss is = 1/2
EG family converges in essentially log(n) many examples
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Hardness for GD Hadamard

I Linear decay of loss remains for GD even if
I linear neuron with kernel inputs [WV05]

x
→

φ(x)
I neuron with any transfer function h and kernel inputs [DW14]

h(·)

φ(x)

Conjecture: Hadamard problem remains hard
for any neural net trained with GD [DW14]
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Crux: consider continuous time MD [NY83]

I Parameter vector w(t) continuous function of time
I Continuous update

•

f (w(t)) = −∇L(w(t))

I Examples are still discrete

(xs , ys) for time t ∈ [s, s + 1)

Again two main updates:

GD
•w(t) = −∇L(w(t))

EGU
•

log(w(t)) = −∇L(w(t))

Motivate updates in the continuous domain
and then “discretize” these updates
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I) Three stunning surprises

I) - Continous EGU can be simulated with continuous GD on a
spindly 2-layer linear network
- Discretized versions of continuous GD simulation solves the
Hadamard problem efficiently

Conjecture about GD training of neural nets is false
Neural nets trained w. GD more powerful than kernel methods

II) The structure of the network determines regularization
when training with GD

III) Next talk: The linear lower bound for the Hadamard problem
remains for any GD trained neural net
with a fully connected input layer
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I) Pictorially

wi

xi

When linear neuron is trained with GD,
then linear decrease of loss

ui

ui

xi

Reparameterize weights wi by u2
i

(if ui initialized equal ⇒ stay equal)

Continuous GD on ui exactly
simulates EGU on wi

•u = −2
(
u�u · x − y

)
u�x exactly simulates

•

log(w) = −2η
(
w · x − y

)
x
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I) Simulations
Discretization

ut+1 = ut − 2η
(
ut�ut · xt − yt

)
ut�xt (EGasGD tracks)

wt+1 = wt � exp(−2η (wt · xt − yt) xt) (EGU)

Simulation visually identical but slightly different numerically

Same regret bounds

Upshot: 2-layer neural net trained w. GD cracks Hadamard
15 / 56



Not just a matter of initialization

Case A

When trained with GD: approximates EGU and cracks Hadamard

Case B

Red weights initialized to zero
Linear loss on Hadamard when trained with GD
Also true if all bottom weights initialized to zero
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Clamping

Case B
GD on all weights
Linear loss for Hadamard

Case A
GD on all weights and then
Red weights clamped to zero

i.e. W = diag(diag(W ))
Cracks Hadamard
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II) Structure determines regularization

Case A

In continuous case, converges to smallest L1 norm solution
In discrete case, same regret bounds as for EGU

Case B

→ smallest L2 norm solution when bottom weights initialized to 0
More complicated for other initializations, but experimentally
satisfies linear lower bound 18 / 56



Implications for neural net training?

I Take your favorite neural net trained w. GD
Replace each weight wi by (u+

i )2− (u−i )2

Train {u+
i , u

−
i } with GD

−

u+
i

u+
i

u−i

u−i

xi xi

I Acts like EGU± on the {wi}
which is close to 1-norm regularization
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MD with different link functions can simulate each other

Equal in continuous case
Same regret bounds for last 2 cases

20 / 56
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2-layer linear neural net GD can beat any kernel

For Hadamard problem

φ(x)

Any kernel has linear decaying
loss on average

xi

EGUasGD has exponentially
decaying loss
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From XOR to Hadamard

n

log n︷ ︸︸ ︷



+ + +
− + +
+ − +
− − +
+ + −
− + −
+ − −
− − −


ψ−→

n︷ ︸︸ ︷

+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −



b 1 b 2 b 3 1 b 1 b 2
b 1

b 2 b 3
b 1

b 3
b 2

b 3
b 1

b 2
b 3

ψ maps a log n bit pattern b into all 2log n target products
I Products hard to learn from log n bits by any alg.
I Easy to learn by EGU after expansion with ψ
I ψ(b)·ψ(b̃) =

∑
I⊆1.. log n

∏
i∈I bi b̃i =

∏log n
i=1 (1+bi b̃i ) is O(log n)

I Hard to learn with any kernel (i.e. any feature map φ)
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Learning a single feature / conjunction

update time regret
additive O(log n) linear in n
multiplicative O(n) O(

√
L∗ log n)

Loss is square loss or # of mistakes

The miracle of Winnow
- learns k-term DNF sample efficiently but not time efficiently

update time regret
additive O(log n) linear in n
Winnow O(n) O(

√
A∗ k log n)

Loss is attribute loss which can be k times # of mistakes
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What’s next?

One feature per target expansion:
I Good for EGU
I Bad for GD
I And yet provably best expansion of LLS
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Previous work

I Our work was triggered by [GWBNS17]
They show that quadratic reparameterization converges to
minimum L1-norm solution in underconstrained case
Generalized to the matrix setting ...

I Reparameterization of EG as GD was known to game theorists
[Akin79]

(cont. EG = Replicator Dynamics of Evolutionary Game Th.)

All previous work in the continuous case

I Here: Same regret bounds hold for reparameterized discrete
updates

I Regret bounds first proven using XMAPLE
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Two ways for obtaining discrete updates

1. Regularizing with Bregman divergences
2. As discretizations of continuous updates

For any convex function F (w), the Bregman divergence is

∆F (w ,ws) = F (w)− F (ws)− f (ws)>(w −ws)
= ∆F∗(f (ws)︸ ︷︷ ︸

w∗s

, f (w)︸ ︷︷ ︸
w∗

) (duality)

Since F (w) convex, ∇F (w) =: f (w) = w∗ is increasing

f (w) called the link function
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1. Via Bregman divergences [NY83,KW97]

ws+1 = argmin
w̃

∆F (w̃ ,ws) + ηL(w̃)

Setting derivative at ws+1 to zero

f (ws+1)− f (ws) + η∇L(ws+1) = 0

Implicit/Prox MD update [R76,NY83]

ws+1 = f −1(f (ws)− η∇L(ws+1))

Explicit MD update

ws+1 ≈ f −1(f (ws)− η∇L(ws))

29 / 56



Continuous MD [NY83]

•

f (w) = −∇L(w)

(Later: explicit and implicit MD as discretizations)

Main examples:
GD (f (w) = w) and EGU (f (w) = log(w))

logτ (w) := 1
1−τ (w1−τ − 1)

τ is temperature
(we use τ ∈ [0, 1])

[N02]
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Second focus: updates derived from logτ -divergence
Start with convex function for all τ (Tsallis entropy):

Fτ (w) =
∑

i
(wi logτ wi −

1
2− τ w2−τ

i )

=
∑

i
( 1

(1− τ)(2− τ) w2−τ
i − 1

1− τ wi )

with fτ (w) = ∇Fτ (w) = logτ (w) = 1
1− τ (w1−τ − 1)

Generalized KL-divergence (β divergence):

∆Fτ (w̃ ,w) =
∑

i
(w̃i logτ w̃i − w̃i logτ wi −

1
2− τ w̃2−τ

i + 1
2− τ w2−τ

i )

= 1
1− τ

∑
i

( 1
2− τ (w̃2−τ

i − w2−τ
i )− (w̃i − wi )w τ−1

i

)
2-sided gives the arcsinh divergence for τ = 1
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Large family of divergences

∆F−1(w̃ ,w) = 1
6(w̃i + 2wi )(w̃i − wi )2

∆F0(w̃ ,w)= 1
2
∑

i
(w̃i − wi )2 (squared Euclidean, Domain = R)

∆F 1
2

(w̃ ,w)=
∑

i
(4

3 w̃
3
2

i − 2w̃i
√

wi + 3
2w

3
2

i )

∆F1(w̃ ,w) =
∑

i
(w̃i log w̃i

wi
− w̃i + wi ) (KL-divergence)

∆F 3
2

(w̃ ,w) = 2
∑

i

(
√

w̃i −
√wi )2

√wi
(squared Xi on roots)

∆F2(w̃ ,w) =
∑

i
(log wi

w̃i
− w̃i

wi
− 1) (Itakura-Saito)

∆F3(w̃ ,w) = 1
2
∑

i
( 1
w̃i
− 2

wi
+ w̃i

w2
i

) (inverse)
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1. Motivation with Bregman momentum

w(t) = argmin
w̃(t)

•

∆F (w̃(t),ws)︸ ︷︷ ︸
Bregman momentum

+L(w̃(t))

Derivation of the optimum curve w(t):
∂

∂w̃(t)
( ∂
∂t
(
F (w̃(t))− f (ws)>w̃(t)

)
+ L(w̃(t))

)
(differentiate)

= ∂

∂w̃(t)
(
(f (w̃(t))− f (ws))>

•

w̃(t)
)

+∇L(w̃(t))

=(Jf (w̃)
•

w̃(t) +
(∂ •

w̃(t)
∂w̃(t)

)>
︸ ︷︷ ︸

0

(f (w̃(t)− f (ws)) +∇L(w̃(t))

(By calculus of variations, w̃(t) and
•

w̃(t) are independent variables)

=
•

f (w̃(t)) +∇L(w̃(t)) w̃(t)=w(t)= 0
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Adding constraint c(w(t)) = 0

Projected MD update:

w(t) = argmin
w̃(t)

•

∆F (w̃(t),ws) + L(w̃(t)) + λ c(w̃(t))

•

f (w(t)) = −
(
I − c(t)c(t)> (Jf (w(t)))−1

c>(t)(Jf (w(t)))−1 c(t)
)

︸ ︷︷ ︸
:=P(t)

∇L(w(t))

(where c(t) := ∇c(w(t)))

Initial weight vector has to satisfy constraint

34 / 56



2. Explicit and implicit updates from cont. MD

•

f (w) = −∇L(w)

Explicit discretization (Euler)

f (ws+h)− f (ws)
h = −∇L(ws)

⇐⇒ ws+h = f −1(f (ws)− h∇L(ws))

Implicit discretization (forward Euler)

f (ws+h)− f (ws)
h = −∇L(ws+h)

ws+h = f −1(f (ws)− h∇L(ws+h))

35 / 56



Right way to discretize

Continuous Mirror Descent update
•

f (w(t)) =−∇L(w(t))

Integral continuous MD update

f (ws+h)− f (ws) = −h
∫ s+h

s
∇L(w(t)) d t

ws+h = f −1
(
f (ws)− h

∫ s+h

s
∇L(w(t)) d t

)

36 / 56



Right discretization of continuous MD

w.o. constraints

f (ws+h)− f (ws) = −h
∫ t+h

s
∇L(w(t)) d t

w. constraints

f (ws+h)− f (ws) = −h
∫ t+h

s
P(t)∇L(w(t)) d t

37 / 56



Updates motivation from integrated continuous MD

Integrated update

f (ws+h)− f (ws) = −h
∫ s+h

s
∇L(w(t)) d t

Explicit approximation

= −h∇L(ws)

Implicit approximation

= −h∇L(ws+h)

38 / 56



Natural gradient view of continuous MD

Legendre transform

w∗ = f (w)
w = f ∗(w∗)

Dual updates [WJ98]
•

f (w) = −∇L(w)
•

f ∗(w∗) = −∇L◦f ∗ (w∗)

As natural gradient updates
•w = −(∇2F (w))−1 ∇L(w)
•

w∗ = −(∇2F ∗(w∗))−1 ∇L◦f ∗(w∗)

Pairs of updates are same, but not when discretized
39 / 56



Ditto with constraint

Recall c = ∇c(w) and P = I − cc> (Jf (w))−1

c>(Jf (w))−1 c

Dual updates
•

f (w) = −P∇L(w)
•

f ∗(w∗) = −P>∇L◦f ∗ (w∗)

As natural gradient updates
•w = −P> (∇2F (w))−1 ∇L(w)
•

w∗ = −P (∇2F ∗(w∗))−1 ∇L◦f ∗(w∗)

Pairs of updates are same, but not when discretized
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Projected MD in the dual

Recall c = ∇c(w) and P = I − cc> (Jf (w))−1

c>(Jf (w))−1 c
(Here c is shorthand for c(t), P shorthand for P(t), ...)

•

w∗ =
•

f (w)
= Jf (w)

•w
= −P∇L(w)
= −PJf (w)∇L◦f ∗(w∗)
= −P(∇2F ∗(w∗))−1∇L◦f ∗(w∗)

⇐⇒
•w = −(Jf (w))−1 P∇L(w)

= −P>(Jf (w))−1∇L(w)
= −P>(∇2F (w))−1∇L(w)
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Underconstrained linear regression

Loss ‖Xw − y‖|22, where X does not have full rank
Continuous GD: τ = 0

•

w(t) = −X>(Xw(t)− y)
w(t) = exp(−X>X t)(w(0)− X†y) + X†y

Continuous EGU case: τ = 1
•

log(w(t)) = −X>(Xw(t)− y) or
•w(t) = −w(t)�X>(Xw(t)− y)

wi = exp
(
−
(∑

t
xt,i (xt ·w − yt)wi − 1/2

∑
t

x2
t,iw2

i )
))

w = exp
(
−
((

X>(Xw − y)
)
�w − 1/2

∑
t

x�2
t �w�2

))

No closed-form solution for 0 < τ < q ≤ 1
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II) (2− τ)-norm updates for linear regression

Theorem Let X ∈ RN×d
≥0 and y ∈ RN

≥0 with N < d . Let
E = {w ∈ Rd |Xw = y} be the set of solutions with zero error. Let

wα(t) = argmin
w̃(t)

•

∆τ (w̃(t), α1) + ‖Xw̃(t)− y‖22 , for α > 0.

Then wα(∞) ∈ E and as α→ 0, wα(t) converges to the minimum
L2−τ -norm solution in E .
(Can be extended to a two-sided version (i.e. ± trick with two sets
of weights w+ and w−) for general X ∈ RN×d and y ∈ RN)

Also ∆Fτ (w̃ ,w) strongly convex w.r.t. L2−τ -norm
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Reparameterizing cont. MD w. link f i.t.o. link g

Theorem For the reparameterization function w = q(u)
with the property that range(q) = dom(f ),
•g(u) =−∇L◦q (u) simulates

•

f (w) = −∇L(w) if

(Jf (w))−1 = Jq(u) (Jg(u))−1 (Jq(u))>

and q(u(0)) = w(0)

For reparameterization as GD use g = id
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Our main example: EGU as GD

Link

f (w) = log(w)

Reparameterization

w = q(u) := 1/4 u � u
u = 2

√
w

(Jf (w))−1= (diag(w)−1)−1 = diag(w)
Jq(u)(Jq(u))>= 1/2 diag(u) (1/2 diag(u))> = diag(w)

Conclusion
•

log(w) = −∇L(w) equals
•u = − ∇L◦q (u)︸ ︷︷ ︸

∇uL (1/4 u�u)

= −1/2 u �∇L(w)
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Burg as GD

Link

f (w) = − 1
w

Reparameterization
w = q(u) := exp(u)
u = log(w)

(Jf (w))−1= diag( 1
w �w )−1 = diag(w)2

Jq(u)(Jq(u))>= diag(exp(u)) diag(exp(u))> = diag(w)2

Conclusion
•(
− 1

w

)
= −∇L(w) equals

•u = − ∇L◦q (u)︸ ︷︷ ︸
∇uL (exp(u))

= − exp(u)�∇L(w)
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logτ w = 1
1−τ (w1−τ − 1) as GD

Link f (w) = logτ w
Reparameterization

w = q(u) :=
(2− τ

2

) 2
2−τ

u
2

2−τ

u = 2
2− τw

2−τ
2

(J logτ (w))−1= (diag(w)−τ )−1 = diag(w)τ

Jq(u)(Jq(u))>=
((2− τ

2
) τ

2−τ diag(u)
τ

2−τ

)2
= diag(w)τ

Conclusion
•

logτ (w) = −∇L(w) equals
•u = −∇L◦q (u)︸ ︷︷ ︸
∇uL

((
2−τ

2

) 2
2−τ u

2
2−τ
)= −2− τ

2 u
τ

2−τ �∇L(w)

u
1

2−τ

i

u
1

2−τ

i
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Discrete multiplicative updates for dot loss ∑i wi`i

EGU w̃i = wi exp(−η`i )
Approx. EGU/PRODU w̃i = wi (1− η`i )

EGUasGD ũi = ui (1− η`i )(
ũ2

i = u2
i (1− η`i )2)

EG/HEDGE w̃i = wi exp(−η`i )∑
j wj exp(−η`j)

Approx. EG w̃i = wi (1− η`i + η
∑

j
wj`j)

PROD w̃i = wi (1− η`i )∑
j wj(1− η`j)

EGasGD ũi = ui (1− η`i )
‖
∑

j u2
j (1− η`j)2‖22(

ũ2
i = u2

i (1− η`i )2∑
j u2

j (1− η`j)2

)
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Exponential alternates w. η/2

EGUasGD becomes EGU ũi = ui exp(−η/2 `i )(
ũ2

i = u2
i exp(−η`i )

)
EGasGD becomes EG ũi = ui exp(−η/2 `i )√∑

j u2
j exp(−η `j)(

ũ2
i = u2

i exp(−η`i )∑
j u2

j exp(−η`j)

)
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Regret bounds

total online loss of update
- total online loss of best comparator
≤ norms

√
loss of best

update regret bound

EGUasGD, hinge loss as Winnow
EGUasGD, linear regression as EGU but only one-sided case
EGasGD, linear regression as EG
EGasGD, dot loss as Hedge

All proofs done with relative entropy as a measure of progress
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Technical open problems

I Need regret bound linear regression EGU and EGUasGD
when instances are in [−1..1]n

I Ditto for the Approx. EGU and Approx. EG (PROD)
I Is the ± trick necessary (using 2d variables)?

Can it be done with GD on d variables?
I Is there any natural problem in which GD beats EGU±?
I Is the GD as EG± simulation implementable in the brain?
I Relationship to p-norm perceptron
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Far reaching open problems

I Solve the differential equation for linear regression EGU
I Regret bound for any logτ update
I Revisit vanishing gradient issue, batch normalization, dropout,

learning rate heuristics for EG±

I Large scale simulations
- Do multiplicative updates lead to sparse solutions

I New question: Does any GD trained neural net with complete
input neurons satisfy the linear lower bound for the Hadamard
problem?
Next talk!

I What are the optimal kernels for GD and EGU?
In progress!

Thank you!
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2020 papers

COLT Winnowing with gradient descent
[with Ehsan Amid]

NeurIPS Reparameterizing Mirror Descent as Gradient
Descent

[with Ehsan Amid]
ArXiv A case where a spindly two-layer linear network

whips any neural network with a fully connected
input layer

[with Ehsan Amid & Wojciech Kot lowski]

All papers https://users.soe.ucsc.edu/∼manfred/last/
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