Winnowing with Gradient Descent

Ehsan Amid
Manfred K. Warmuth
Google Brain \& UCSC

COLT 2020

Two main families of updates

Additive updates:
GD: stochastic gradient descent, backprop, Newton's update, kernel methods
Multiplicative updates:
EG: expert algorithms, Boosting, Bayes
EGU: Winnow
Performance of GD linear in n for sparse targets
Performance of EG \& EGU grows as $\log n$ for sparse targets
Here we will reparameterize EG \& EGU as GD:
Reparameterized forms act like original EG \& EGU

Two main families of updates

Additive updates:
GD: stochastic gradient descent, backprop, Newton's update, kernel methods
Multiplicative updates:
EG: expert algorithms, Boosting, Bayes
EGU: Winnow
Performance of GD linear in n for sparse targets
Performance of EG \& EGU grows as $\log n$ for sparse targets
Here we will reparameterize EG \& EGU as GD:
Reparameterized forms act like original EG \& EGU
Winnowing with GD!

Paradigmatic sparse linear problem

$$
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) \quad\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right)
$$

Hadamard matrix or random \pm
After receiving example $\left(\boldsymbol{x}_{t}, y_{t}\right)$ and incurring loss $\left(\boldsymbol{x}_{t}^{\top} \boldsymbol{w}_{t}-y_{t}\right)^{2}$ update:
multiplicative, EGU: $w_{t+1, i}=w_{t, i} \exp \left(-2 \eta\left(\boldsymbol{x}_{t}^{\top} \boldsymbol{w}_{t}-y_{t}\right) x_{t, i}\right)$
additive, GD:

$$
w_{t+1, i}=w_{t, i}-2 \eta \underbrace{\left(\boldsymbol{x}_{t}^{\top} \boldsymbol{w}_{t}-y_{t}\right) x_{t, i}}_{\text {gradient }}
$$

Special cases of mirror descent (MD):

$$
w_{s+1}=f^{-1}\left(f\left(w_{s}\right)-\eta \nabla L\left(w_{s}\right)\right)
$$

Paradigmatic sparse linear problem

$$
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) \quad\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right)
$$

Hadamard matrix or random \pm
After receiving example $\left(\boldsymbol{x}_{t}, y_{t}\right)$ and incurring loss $\left(\boldsymbol{x}_{t}^{\top} \boldsymbol{w}_{t}-y_{t}\right)^{2}$ update:
multiplicative, EGU: $w_{t+1, i}=w_{t, i} \exp \left(-2 \eta\left(\boldsymbol{x}_{t}^{\top} \boldsymbol{w}_{t}-y_{t}\right) x_{t, i}\right)$
additive, GD:

$$
w_{t+1, i}=w_{t, i}-2 \eta \underbrace{\left(\boldsymbol{x}_{t}^{\top} \boldsymbol{w}_{t}-y_{t}\right) x_{t, i}}_{\text {gradient }}
$$

Special cases of mirror descent (MD):

$$
\boldsymbol{w}_{s+1}=f^{-1}\left(f\left(\boldsymbol{w}_{s}\right)-\eta \nabla L\left(\boldsymbol{w}_{s}\right)\right)
$$

with $f(\boldsymbol{w})=\log \boldsymbol{w}$ or $f(\boldsymbol{w})=\boldsymbol{w}$

Major differences between the two families

Paradigmatic setup:
128x128 Hadamard matrix
Permuted rows are instances, labels are any fixed column

x-axis: $s=1 . .128$
y-axis: all 128 weights Loss when trained on examples $1 . . s$
Upshot: After half examples, GD has average loss $1 / 2$
EG family converges in $\log n$ many examples

Hardness for GD Hadamard

- Linear decay of loss remains for GD even if
- linear neuron with kernel inputs

- neuron with any transfer function h and kernel inputs [DW14]

Conjecture: Hadamard problem remains hard
for anv neural net trained with GD

Hardness for GD Hadamard

- Linear decay of loss remains for GD even if
- linear neuron with kernel inputs

- neuron with any transfer function h and kernel inputs [DW14]

Conjecture: Hadamard problem remains hard for any neural net trained with GD

Crux: consider continuous time MD

- Parameter vector $\boldsymbol{w}(t)$ continuous function of time
- Continuous update

$$
\dot{f}(\boldsymbol{w}(t))=-\eta \nabla L(\boldsymbol{w}(t))
$$

- Examples are still discrete

$$
\left(x_{s}, y_{s}\right) \text { for time } t \in[s, s+1)
$$

Again two main updates:

$$
\begin{aligned}
\mathrm{GD} & \dot{\boldsymbol{w}}(t) & =-\eta \nabla L(\boldsymbol{w}(t)) \\
\mathrm{EGU} & \dot{\log }(\boldsymbol{w}(t)) & =-\eta \nabla L(\boldsymbol{w}(t))
\end{aligned}
$$

We motivate updates in the continuous domain and then "discretize" these updates

Two stunning surprises

I) Continuous EGU can be simulated with continuous GD

Here: discretized versions of continuous GD simulation solves the Hadamard problem efficiently

Conjecture about GD training of neural nets is false Neural nets trained w. GD more powerful than kernel methods
II) The structure of the network determines regularization when training with GD

Two stunning surprises

I) Continuous EGU can be simulated with continuous GD

Here: discretized versions of continuous GD simulation solves the Hadamard problem efficiently

Conjecture about GD training of neural nets is false Neural nets trained w. GD more powerful than kernel methods
II) The structure of the network determines regularization when training with GD

I) Pictorially

When linear neuron is trained with GD, then linear decrease of loss

> Reparameterize weights w_{i} by u_{i}^{2} Continuous GD on u_{i} exactly simulates EGU on w_{i}

\square

I) Pictorially

When linear neuron is trained with GD,
 then linear decrease of loss

Reparameterize weights w_{i} by u_{i}^{2}
Continuous GD on u_{i} exactly simulates EGU on w_{i}

$$
\dot{\boldsymbol{u}}=-2 \eta(\boldsymbol{u} \odot \boldsymbol{u} \cdot \boldsymbol{x}-y) \boldsymbol{u} \odot \boldsymbol{x} \text { simulates }
$$

$$
\dot{\log }(\boldsymbol{w})=-2 \eta(\boldsymbol{w} \cdot \boldsymbol{x}-y) \boldsymbol{x}
$$

I) Simulations

Discretization

$$
\begin{aligned}
\boldsymbol{u}_{t+1} & =\boldsymbol{u}_{t}-2 \eta\left(\boldsymbol{u}_{t} \odot \boldsymbol{u}_{t} \cdot \boldsymbol{x}_{t}-y_{t}\right) \boldsymbol{u}_{t} \odot \boldsymbol{x}_{t} \text { tracks } \\
\boldsymbol{w}_{t+1} & =\boldsymbol{w}_{t} \odot \exp \left(-2 \eta\left(\boldsymbol{w}_{t} \cdot \boldsymbol{x}_{t}-y_{t}\right) \boldsymbol{x}_{t}\right)
\end{aligned}
$$

Simulation visually identical but slightly different numerically
Same regret bounds
Upshot: 2-layer neural net trained w. GD cracks Hadamard

Not just a matter of initialization

When trained with GD: approximates EGU and cracks Hadamard

Case B

Red weights initialized to zero
Linear loss on Hadamard when trained with GD

Not just a matter of initialization

Case A

When trained with GD: approximates EGU and cracks Hadamard

Case B

Red weights initialized to zero Linear loss on Hadamard when trained with GD Also true if all bottom weights initialized to zero

II) Structure determines regularization

In continuous case, converges to smallest L_{1} norm solution In discrete case, same regret bounds as for EGU

Case B

\rightarrow smallest L_{2} norm solution when bottom weights initialized to 0 More complicated for other initializations, but experimentally satisfies linear lower bound

2-layer linear neural net GD can beat any kernel

For Hadamard problem

Any kernel has linear decaying loss on average

EGUasGD has exponentially decaying loss

Two ways for obtaining discrete updates

1. As discretizations of continuous updates
2. Regularizing with Bregman divergences

For a strictly-convex function $F(\boldsymbol{w})$, the Bregman divergence is
$\Delta_{F}{ }^{\prime}\left(w, w_{s}\right)=F^{\prime}(w)-F^{\prime}\left(w_{s}\right)-f^{\prime}\left(w_{s}\right)^{\top}\left(w-w_{s}\right)$

(duality)
$F(\boldsymbol{w})$ convex, $\nabla F(\boldsymbol{w})=: f(\boldsymbol{w})=\boldsymbol{w}^{*}$ is the gradient
$f(\boldsymbol{w})$ called the link function

Two ways for obtaining discrete updates

1. As discretizations of continuous updates
2. Regularizing with Bregman divergences

For a strictly-convex function $F(\boldsymbol{w})$, the Bregman divergence is

$$
\begin{aligned}
\Delta_{F}\left(\boldsymbol{w}, \boldsymbol{w}_{s}\right) & =F(\boldsymbol{w})-F\left(\boldsymbol{w}_{s}\right)-f\left(\boldsymbol{w}_{s}\right)^{\top}\left(\boldsymbol{w}-\boldsymbol{w}_{s}\right) \\
& =\Delta_{F^{*}}(\underbrace{f\left(\boldsymbol{w}_{s}\right)}_{\boldsymbol{w}_{s}^{*}}, \underbrace{f(\boldsymbol{w})}_{\boldsymbol{w}^{*}})
\end{aligned}
$$

(duality)
$F(\boldsymbol{w})$ convex, $\nabla F(\boldsymbol{w})=: f(\boldsymbol{w})=\boldsymbol{w}^{*}$ is the gradient
$f(\boldsymbol{w})$ called the link function

1. Via Bregman divergences

[NY83,KW97]

$$
\boldsymbol{w}_{s+1}=\underset{\tilde{\boldsymbol{w}}}{\operatorname{argmin}} \Delta_{F}\left(\tilde{\boldsymbol{w}}, \boldsymbol{w}_{s}\right)+\eta L(\tilde{\boldsymbol{w}})
$$

Setting derivative at \boldsymbol{w}_{s+1} to zero

$$
f\left(\boldsymbol{w}_{s+1}\right)-f\left(\boldsymbol{w}_{s}\right)+\eta \nabla L\left(\boldsymbol{w}_{s+1}\right)=\mathbf{0}
$$

Implicit/Prox MD update

$$
\boldsymbol{w}_{s+1}=f^{-1}\left(f\left(\boldsymbol{w}_{s}\right)-\eta \nabla L\left(\boldsymbol{w}_{s+1}\right)\right)
$$

Explicit MD update

$$
\boldsymbol{w}_{s+1} \approx f^{-1}\left(f\left(\boldsymbol{w}_{s}\right)-\eta \nabla L\left(\boldsymbol{w}_{s}\right)\right)
$$

Continuous MD

[NY83]

$$
\dot{f}(\boldsymbol{w})=-\eta \nabla L(\boldsymbol{w})
$$

Main examples:
$\mathrm{GD}(f(\boldsymbol{w})=\boldsymbol{w})$ and $\operatorname{EGU}(f(\boldsymbol{w})=\log (\boldsymbol{w}))$

$$
\log _{\tau}(\boldsymbol{w}):=\frac{1}{1-\tau}\left(\boldsymbol{w}^{1-\tau}-1\right)
$$

τ is temperature
(we use $\tau \in[0,1]$)

[N02]

Motivation with Bregman momentum

$$
\boldsymbol{w}(t)=\underset{\tilde{\boldsymbol{w}}(t)}{\operatorname{argmin}} \underbrace{\dot{\Delta} F\left(\tilde{\boldsymbol{w}}(t), \boldsymbol{w}_{s}\right)}_{\text {Bregman momentum }}+\eta L(\tilde{\boldsymbol{w}}(t))
$$

Derivation of the optimum curve $\boldsymbol{w}(t)$:

$$
\begin{aligned}
\frac{\partial}{\partial \tilde{\boldsymbol{w}}(t)}(& \left.\frac{\partial}{\partial t}\left(F(\tilde{\boldsymbol{w}}(t))-f\left(\boldsymbol{w}_{s}\right)^{\top} \tilde{\boldsymbol{w}}(t)\right)+\eta L(\tilde{\boldsymbol{w}}(t))\right) \text { (differentiate) } \\
& =\frac{\partial}{\partial \tilde{\boldsymbol{w}}(t)}\left(\left(f(\tilde{\boldsymbol{w}}(t))-f\left(\boldsymbol{w}_{s}\right)\right)^{\top} \dot{\tilde{\boldsymbol{w}}}(t)\right)+\eta \nabla L(\tilde{\boldsymbol{w}}(t)) \\
& =(\boldsymbol{J} f(\tilde{\boldsymbol{w}}) \dot{\tilde{\boldsymbol{w}}}(t)+\underbrace{\left(\frac{\partial \dot{\tilde{\boldsymbol{w}}}(t)}{\partial \tilde{\boldsymbol{w}}(t)}\right)^{\top}}_{0}\left(f\left(\tilde{\boldsymbol{w}}(t)-f\left(\boldsymbol{w}_{s}\right)\right)+\eta \nabla L(\tilde{\boldsymbol{w}}(t))\right.
\end{aligned}
$$

(By calculus of variations, $\tilde{\boldsymbol{w}}(t)$ and $\dot{\tilde{w}}(t)$ are independent variables)

$$
=\dot{f}(\tilde{\boldsymbol{w}}(t))+\eta \nabla L(\tilde{\boldsymbol{w}}(t)) \stackrel{\tilde{\boldsymbol{w}}(t)=\boldsymbol{w}(t)}{=} \mathbf{0}
$$

Reparameterizing cont. MD w. link f i.t.o. link g

Theorem For the reparameterization function $\boldsymbol{w}=q(\boldsymbol{u})$ with the property that range $(q)=\operatorname{dom}(f)$, $\dot{g}(\boldsymbol{u})=-\eta \nabla L \circ q(\boldsymbol{u})$ simulates $\dot{f}(\boldsymbol{w})=-\eta \nabla L(\boldsymbol{w})$ if

$$
(\boldsymbol{J} f(\boldsymbol{w}))^{-1}=\boldsymbol{J} q(\boldsymbol{u})(\boldsymbol{J} g(\boldsymbol{u}))^{-1}(\boldsymbol{J} q(\boldsymbol{u}))^{\top}
$$

and $q(\boldsymbol{u}(0))=\boldsymbol{w}(0)$

For reparameterization as GD use $g=i d$
[details in a companion paper under review]

Our main example: EGU as GD

Link

$$
f(\boldsymbol{w})=\log (\boldsymbol{w})
$$

Reparameterization

$$
\begin{aligned}
\boldsymbol{w} & =q(\boldsymbol{u}):=1 / 4 \boldsymbol{u} \odot \boldsymbol{u} \\
\boldsymbol{u} & =2 \sqrt{\boldsymbol{w}} \\
(\boldsymbol{J} f(\boldsymbol{w}))^{-1} & =\left(\operatorname{diag}(\boldsymbol{w})^{-1}\right)^{-1}=\operatorname{diag}(\boldsymbol{w}) \\
\boldsymbol{J}_{q}(\boldsymbol{u})(\boldsymbol{J} q(\boldsymbol{u}))^{\top} & =1 / 2 \operatorname{diag}(\boldsymbol{u})(1 / 2 \operatorname{diag}(\boldsymbol{u}))^{\top}=\operatorname{diag}(\boldsymbol{w})
\end{aligned}
$$

Conclusion

$$
\dot{\log }(\boldsymbol{w})=-\eta \nabla L(\boldsymbol{w}) \text { equals } \dot{\boldsymbol{u}}=-\eta \underbrace{\nabla L \circ q(\boldsymbol{u})}_{\nabla_{u} L(1 / 4 \boldsymbol{u} \odot \boldsymbol{u})}=-\eta^{1 / 2} \boldsymbol{u} \odot \nabla L(\boldsymbol{w})
$$

Burg as GD

Link

$$
f(w)=-\frac{1}{w}
$$

Reparameterization

$$
\begin{aligned}
\boldsymbol{w} & =q(\boldsymbol{u}):=\exp (\boldsymbol{u}) \\
\boldsymbol{u} & =\log (\boldsymbol{w})
\end{aligned}
$$

$$
(\boldsymbol{J} f(\boldsymbol{w}))^{-1}=\operatorname{diag}\left(\frac{1}{\boldsymbol{w} \odot \boldsymbol{w}}\right)^{-1}=\operatorname{diag}(\boldsymbol{w})^{2}
$$

$$
\boldsymbol{J} q(\boldsymbol{u})(\boldsymbol{J} q(\boldsymbol{u}))^{\top}=\operatorname{diag}(\exp (\boldsymbol{u})) \operatorname{diag}(\exp (\boldsymbol{u}))^{\top}=\operatorname{diag}(\boldsymbol{w})^{2}
$$

Conclusion

$$
\left(-\frac{1}{\boldsymbol{w}}\right)=-\eta \nabla L(\boldsymbol{w}) \text { equals } \dot{\boldsymbol{u}}=-\eta \underbrace{\nabla L \circ q(\boldsymbol{u})}_{\nabla_{\boldsymbol{u}} L(\exp (\boldsymbol{u}))}=-\eta \exp (\boldsymbol{u}) \odot \nabla L(\boldsymbol{w})
$$

$\log _{\tau} \boldsymbol{w}=\frac{1}{1-\tau}\left(\boldsymbol{w}^{1-\tau}-1\right)$ as GD

$$
\text { Link } \quad f(\boldsymbol{w})=\log _{\tau} \boldsymbol{w}
$$

Reparameterization

$$
\begin{aligned}
\boldsymbol{w} & =q(\boldsymbol{u}):=\left(\frac{2-\tau}{2}\right)^{\frac{2}{2-\tau}} \boldsymbol{u}^{\frac{2}{2-\tau}} \\
\boldsymbol{u} & =\frac{2}{2-\tau} \boldsymbol{w}^{\frac{2-\tau}{2}}
\end{aligned}
$$

$$
\left(\boldsymbol{J} \log _{\tau}(\boldsymbol{w})\right)^{-1}=\left(\operatorname{diag}(\boldsymbol{w})^{-\tau}\right)^{-1}=\operatorname{diag}(\boldsymbol{w})^{\tau}
$$

$$
\boldsymbol{J} q(\boldsymbol{u})(\boldsymbol{J} q(\boldsymbol{u}))^{\top}=\left(\left(\frac{2-\tau}{2}\right)^{\frac{\tau}{2-\tau}} \operatorname{diag}(\boldsymbol{u})^{\frac{\tau}{2-\tau}}\right)^{2}=\operatorname{diag}(\boldsymbol{w})^{\tau}
$$

Conclusion
$\dot{\log }_{\tau}(\boldsymbol{w})=-\eta \nabla L(\boldsymbol{w})$ equals $\dot{\boldsymbol{u}}=-\eta \underbrace{\nabla \operatorname{q} \circ \boldsymbol{q}(\boldsymbol{u})}=-\eta \frac{2-\tau}{2} \boldsymbol{u}^{\frac{\tau}{2-\tau}} \odot \nabla L(\boldsymbol{w})$

$$
\nabla_{u} L\left(\left(\frac{2-\tau}{2}\right)^{\frac{2}{2-\tau}} \boldsymbol{u}^{\frac{2}{2-\tau}}\right)
$$

$\log _{\tau} \boldsymbol{w}=\frac{1}{1-\tau}\left(\boldsymbol{w}^{1-\tau}-1\right)$ as GD

$$
\text { Link } \quad f(\boldsymbol{w})=\log _{\tau} \boldsymbol{w}
$$

Reparameterization

$$
\begin{aligned}
\boldsymbol{w} & =q(\boldsymbol{u}):=\left(\frac{2-\tau}{2}\right)^{\frac{2}{2-\tau}} \boldsymbol{u}^{\frac{2}{2-\tau}} \\
\boldsymbol{u} & =\frac{2}{2-\tau} \boldsymbol{w}^{\frac{2-\tau}{2}}
\end{aligned}
$$

$$
\left(\boldsymbol{J} \log _{\tau}(\boldsymbol{w})\right)^{-1}=\left(\operatorname{diag}(\boldsymbol{w})^{-\tau}\right)^{-1}=\operatorname{diag}(\boldsymbol{w})^{\tau}
$$

$$
\boldsymbol{J} q(\boldsymbol{u})(\boldsymbol{J} q(\boldsymbol{u}))^{\top}=\left(\left(\frac{2-\tau}{2}\right)^{\frac{\tau}{2-\tau}} \operatorname{diag}(\boldsymbol{u})^{\frac{\tau}{2-\tau}}\right)^{2}=\operatorname{diag}(\boldsymbol{w})^{\tau}
$$

Conclusion
$\dot{\log }_{\tau}(\boldsymbol{w})=-\eta \nabla L(\boldsymbol{w})$ equals $\dot{\boldsymbol{u}}=-\eta \underbrace{\nabla \operatorname{Loq}(\boldsymbol{u})}=-\eta \frac{2-\tau}{2} \boldsymbol{u}^{\frac{\tau}{2-\tau}} \odot \nabla L(\boldsymbol{w})$

$u_{i}^{\frac{1}{2-\tau}} |$| $\nabla_{u} L\left(\left(\frac{2-\tau}{2}\right)^{\frac{2}{2-\tau}} \boldsymbol{u}^{\frac{2}{2-\tau}}\right)$ |
| :--- |
| $\tau=1: \mathrm{EGU} \quad \tau=0: \mathrm{GD}$ |

Discrete multiplicative updates for dot loss $\sum_{i} w_{i} \ell_{i}$

$$
\begin{aligned}
\text { EGU } & \tilde{w}_{i}=w_{i} \exp \left(-\eta \ell_{i}\right) \\
\text { Approx. EGU/PRODU } & \tilde{w}_{i}=w_{i}\left(1-\eta \ell_{i}\right) \\
\text { EGUasGD } & \tilde{u}_{i}=u_{i}\left(1-\eta \ell_{i}\right) \\
& \left(\tilde{u}_{i}^{2}=u_{i}^{2}\left(1-\eta \ell_{i}\right)^{2}\right)
\end{aligned}
$$

EG/HEDGE

$$
\tilde{w}_{i}=\frac{w_{i} \exp \left(-\eta \ell_{i}\right)}{\sum_{j} w_{j} \exp \left(-\eta \ell_{j}\right)}
$$

Approx. EG

$$
\tilde{w}_{i}=w_{i}\left(1-\eta \ell_{i}+\eta \sum_{j} w_{j} \ell_{j}\right)
$$

PROD

$$
\begin{aligned}
\tilde{w}_{i} & =\frac{w_{i}\left(1-\eta \ell_{i}\right)}{\sum_{j} w_{j}\left(1-\eta \ell_{j}\right)} \\
\tilde{u}_{i} & =\frac{u_{i}\left(1-\eta \ell_{i}\right)}{\left\|\sum_{j} u_{j}^{2}\left(1-\eta \ell_{j}\right)^{2}\right\|_{2}^{2}} \\
\left(\tilde{u}_{i}^{2}\right. & \left.=\frac{u_{i}^{2}\left(1-\eta \ell_{i}\right)^{2}}{\sum_{j} u_{j}^{2}\left(1-\eta \ell_{j}\right)^{2}}\right)
\end{aligned}
$$

Regret bounds

total online loss of update
\leq total online loss of best comparator + norms $\sqrt{\text { loss of best }}$
update
EGUasGD, hinge loss EGUasGD, linear regression EGasGD, linear regression EGasGD, dot loss
regret bound
as Winnow
as EGU but only one-sided case as EG
as Hedge

All proofs done with relative entropy as a measure of progress

Open problems

- Need 2-sided regret bound for linear regression EGU and EGUasGD
Or prove linear lower bound when
Hadamard is replaced by $0 / 1$ matrix
- Is there any natural problem in which GD beats EGU ${ }^{ \pm}$?
- Revisit vanishing gradient issue, batch normalization, dropout, learning rate heuristics for neural nets where all linear activations are replace by the sparse network
- Large scale simulations
- Do multiplicative updates lead to sparse solutions?
- Revised open question about limited power of GD:

Does any GD trained neural net with complete input neurons satisfy the linear lower bound for the Hadamard problem?

Open problems

- Need 2-sided regret bound for linear regression EGU and EGUasGD
Or prove linear lower bound when
Hadamard is replaced by $0 / 1$ matrix
- Is there any natural problem in which GD beats EGU ${ }^{ \pm}$?
- Revisit vanishing gradient issue, batch normalization, dropout, learning rate heuristics for neural nets where all linear activations are replace by the sparse network
- Large scale simulations
- Do multiplicative updates lead to sparse solutions?
- Revised open question about limited power of GD: Does any GD trained neural net with complete input neurons satisfy the linear lower bound for the Hadamard problem?

Thank you!

