
Winnowing with Gradient Descent

Ehsan Amid
Manfred K. Warmuth
Google Brain & UCSC

COLT 2020

1 / 23

Two main families of updates

Additive updates:
GD: stochastic gradient descent, backprop, Newton’s update,
kernel methods
Multiplicative updates:
EG: expert algorithms, Boosting, Bayes
EGU: Winnow

Performance of GD linear in n for sparse targets

Performance of EG & EGU grows as log n for sparse targets

Here we will reparameterize EG & EGU as GD:
Reparameterized forms act like original EG & EGU

Winnowing with GD!

2 / 23

Two main families of updates

Additive updates:
GD: stochastic gradient descent, backprop, Newton’s update,
kernel methods
Multiplicative updates:
EG: expert algorithms, Boosting, Bayes
EGU: Winnow

Performance of GD linear in n for sparse targets

Performance of EG & EGU grows as log n for sparse targets

Here we will reparameterize EG & EGU as GD:
Reparameterized forms act like original EG & EGU

Winnowing with GD!

2 / 23

Paradigmatic sparse linear problem
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




0
0
1
0

 =


1
1
−1
−1


Hadamard matrix or random ±

After receiving example (xt , yt)
and incurring loss (x>t wt − yt)2 update:

multiplicative, EGU: wt+1,i = wt,i exp(−2η(x>t wt − yt)xt,i)
additive, GD: wt+1,i = wt,i − 2η (x>t wt − yt)xt,i︸ ︷︷ ︸

gradient

Special cases of mirror descent (MD):

ws+1 = f −1(f (ws)− η∇L(ws))

with f (w) = log w or f (w) = w
3 / 23

Paradigmatic sparse linear problem
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




0
0
1
0

 =


1
1
−1
−1


Hadamard matrix or random ±

After receiving example (xt , yt)
and incurring loss (x>t wt − yt)2 update:

multiplicative, EGU: wt+1,i = wt,i exp(−2η(x>t wt − yt)xt,i)
additive, GD: wt+1,i = wt,i − 2η (x>t wt − yt)xt,i︸ ︷︷ ︸

gradient

Special cases of mirror descent (MD):

ws+1 = f −1(f (ws)− η∇L(ws))

with f (w) = log w or f (w) = w
3 / 23

Major differences between the two families

Paradigmatic setup:
128x128 Hadamard matrix
Permuted rows are instances, labels are any fixed column

x-axis: s = 1..128
y-axis: all 128 weights Loss when trained on examples 1..s

Upshot: After half examples, GD has average loss 1/2
EG family converges in log n many examples

4 / 23

Hardness for GD Hadamard

I Linear decay of loss remains for GD even if
I linear neuron with kernel inputs [WV05]

x
→

φ(x)
I neuron with any transfer function h and kernel inputs [DW14]

h(·)

φ(x)

Conjecture: Hadamard problem remains hard
for any neural net trained with GD [DW14]

5 / 23

Hardness for GD Hadamard

I Linear decay of loss remains for GD even if
I linear neuron with kernel inputs [WV05]

x
→

φ(x)
I neuron with any transfer function h and kernel inputs [DW14]

h(·)

φ(x)

Conjecture: Hadamard problem remains hard
for any neural net trained with GD [DW14]

5 / 23

Crux: consider continuous time MD [NY83]

I Parameter vector w(t) continuous function of time
I Continuous update

•

f (w(t)) = −η∇L(w(t))

I Examples are still discrete

(xs , ys) for time t ∈ [s, s + 1)

Again two main updates:

GD
•w(t) = −η∇L(w(t))

EGU
•

log(w(t)) = −η∇L(w(t))

We motivate updates in the continuous domain
and then “discretize” these updates

6 / 23

Two stunning surprises

I) Continuous EGU can be simulated with continuous GD

Here: discretized versions of continuous GD simulation solves
the Hadamard problem efficiently

Conjecture about GD training of neural nets is false
Neural nets trained w. GD more powerful than kernel methods

II) The structure of the network determines regularization
when training with GD

7 / 23

Two stunning surprises

I) Continuous EGU can be simulated with continuous GD

Here: discretized versions of continuous GD simulation solves
the Hadamard problem efficiently

Conjecture about GD training of neural nets is false
Neural nets trained w. GD more powerful than kernel methods

II) The structure of the network determines regularization
when training with GD

7 / 23

I) Pictorially

wi

xi

When linear neuron is trained with GD,
then linear decrease of loss

ui

ui

xi

Reparameterize weights wi by u2
i

Continuous GD on ui exactly
simulates EGU on wi

•u = −2η
(
u�u · x − y

)
u�x simulates

•

log(w) = −2η
(
w · x − y

)
x

8 / 23

I) Pictorially

wi

xi

When linear neuron is trained with GD,
then linear decrease of loss

ui

ui

xi

Reparameterize weights wi by u2
i

Continuous GD on ui exactly
simulates EGU on wi

•u = −2η
(
u�u · x − y

)
u�x simulates

•

log(w) = −2η
(
w · x − y

)
x

8 / 23

I) Simulations

Discretization ut+1 = ut − 2η
(
ut�ut · xt − yt

)
ut�xt tracks

wt+1 = wt � exp(−2η (wt · xt − yt) xt)

Simulation visually identical but slightly different numerically

Same regret bounds

Upshot: 2-layer neural net trained w. GD cracks Hadamard
9 / 23

Not just a matter of initialization

Case A

When trained with GD: approximates EGU and cracks Hadamard

Case B

Red weights initialized to zero
Linear loss on Hadamard when trained with GD
Also true if all bottom weights initialized to zero

10 / 23

Not just a matter of initialization

Case A

When trained with GD: approximates EGU and cracks Hadamard

Case B

Red weights initialized to zero
Linear loss on Hadamard when trained with GD
Also true if all bottom weights initialized to zero

10 / 23

II) Structure determines regularization

Case A

In continuous case, converges to smallest L1 norm solution
In discrete case, same regret bounds as for EGU

Case B

→ smallest L2 norm solution when bottom weights initialized to 0
More complicated for other initializations, but experimentally
satisfies linear lower bound 11 / 23

2-layer linear neural net GD can beat any kernel

For Hadamard problem

φ(x)

Any kernel has linear decaying
loss on average

xi

EGUasGD has exponentially
decaying loss

12 / 23

Two ways for obtaining discrete updates

1. As discretizations of continuous updates
2. Regularizing with Bregman divergences

For a strictly-convex function F (w), the Bregman divergence is

∆F (w ,ws) = F (w)− F (ws)− f (ws)>(w −ws)
= ∆F ∗(f (ws)︸ ︷︷ ︸

w∗
s

, f (w)︸ ︷︷ ︸
w∗

) (duality)

F (w) convex, ∇F (w) =: f (w) = w∗ is the gradient

f (w) called the link function

13 / 23

Two ways for obtaining discrete updates

1. As discretizations of continuous updates
2. Regularizing with Bregman divergences

For a strictly-convex function F (w), the Bregman divergence is

∆F (w ,ws) = F (w)− F (ws)− f (ws)>(w −ws)
= ∆F ∗(f (ws)︸ ︷︷ ︸

w∗
s

, f (w)︸ ︷︷ ︸
w∗

) (duality)

F (w) convex, ∇F (w) =: f (w) = w∗ is the gradient

f (w) called the link function

13 / 23

1. Via Bregman divergences [NY83,KW97]

ws+1 = argmin
w̃

∆F (w̃ ,ws) + ηL(w̃)

Setting derivative at ws+1 to zero

f (ws+1)− f (ws) + η∇L(ws+1) = 0

Implicit/Prox MD update [R76,NY83]

ws+1 = f −1(f (ws)− η∇L(ws+1))

Explicit MD update

ws+1 ≈ f −1(f (ws)− η∇L(ws))

14 / 23

Continuous MD [NY83]

•

f (w) = −η∇L(w)

Main examples:
GD (f (w) = w) and EGU (f (w) = log(w))

logτ (w) := 1
1−τ (w1−τ − 1)

τ is temperature
(we use τ ∈ [0, 1])

[N02]
15 / 23

Motivation with Bregman momentum

w(t) = argmin
w̃(t)

•

∆F (w̃(t),ws)︸ ︷︷ ︸
Bregman momentum

+η L(w̃(t))

Derivation of the optimum curve w(t):
∂

∂w̃(t)
(∂
∂t
(
F (w̃(t))− f (ws)>w̃(t)

)
+ ηL(w̃(t))

)
(differentiate)

= ∂

∂w̃(t)
(
(f (w̃(t))− f (ws))>

•

w̃(t)
)

+ η∇L(w̃(t))

=(Jf (w̃)
•

w̃(t) +
(∂ •

w̃(t)
∂w̃(t)

)>
︸ ︷︷ ︸

0

(f (w̃(t)− f (ws)) + η∇L(w̃(t))

(By calculus of variations, w̃(t) and
•

w̃(t) are independent variables)

=
•

f (w̃(t)) + η∇L(w̃(t)) w̃(t)=w(t)= 0

16 / 23

Reparameterizing cont. MD w. link f i.t.o. link g

Theorem For the reparameterization function w = q(u)
with the property that range(q) = dom(f),
•g(u) =− η∇L◦q (u) simulates

•

f (w) = −η∇L(w) if

(Jf (w))−1 = Jq(u) (Jg(u))−1 (Jq(u))>

and q(u(0)) = w(0)

For reparameterization as GD use g = id

[details in a companion paper under review]

17 / 23

Our main example: EGU as GD

Link

f (w) = log(w)

Reparameterization

w = q(u) := 1/4 u � u
u = 2

√
w

(Jf (w))−1= (diag(w)−1)−1 = diag(w)
Jq(u)(Jq(u))>= 1/2 diag(u) (1/2 diag(u))> = diag(w)

Conclusion
•

log(w) = −η ∇L(w) equals
•u = −η ∇L◦q (u)︸ ︷︷ ︸

∇uL (1/4 u�u)

= −η 1/2 u �∇L(w)

18 / 23

Burg as GD

Link

f (w) = − 1
w

Reparameterization
w = q(u) := exp(u)
u = log(w)

(Jf (w))−1= diag(1
w �w)−1 = diag(w)2

Jq(u)(Jq(u))>= diag(exp(u)) diag(exp(u))> = diag(w)2

Conclusion
•(
− 1

w

)
= −η ∇L(w) equals

•u = −η ∇L◦q (u)︸ ︷︷ ︸
∇uL (exp(u))

= −η exp(u)�∇L(w)

19 / 23

logτ w = 1
1−τ (w1−τ − 1) as GD

Link f (w) = logτ w
Reparameterization

w = q(u) :=
(2− τ

2

) 2
2−τ

u
2

2−τ

u = 2
2− τw

2−τ
2

(J logτ (w))−1= (diag(w)−τ)−1 = diag(w)τ

Jq(u)(Jq(u))>=
((2− τ

2
) τ

2−τ diag(u)
τ

2−τ

)2
= diag(w)τ

Conclusion
•

logτ (w) = −η∇L(w) equals
•u = −η∇L◦q (u)︸ ︷︷ ︸
∇uL

((
2−τ

2

) 2
2−τ u

2
2−τ
)= −η2− τ

2 u
τ

2−τ �∇L(w)

u
1

2−τ

i

u
1

2−τ

i
τ = 1: EGU τ = 0: GD 20 / 23

logτ w = 1
1−τ (w1−τ − 1) as GD

Link f (w) = logτ w
Reparameterization

w = q(u) :=
(2− τ

2

) 2
2−τ

u
2

2−τ

u = 2
2− τw

2−τ
2

(J logτ (w))−1= (diag(w)−τ)−1 = diag(w)τ

Jq(u)(Jq(u))>=
((2− τ

2
) τ

2−τ diag(u)
τ

2−τ

)2
= diag(w)τ

Conclusion
•

logτ (w) = −η∇L(w) equals
•u = −η∇L◦q (u)︸ ︷︷ ︸
∇uL

((
2−τ

2

) 2
2−τ u

2
2−τ
)= −η2− τ

2 u
τ

2−τ �∇L(w)

u
1

2−τ

i

u
1

2−τ

i
τ = 1: EGU τ = 0: GD 20 / 23

Discrete multiplicative updates for dot loss ∑i wi`i

EGU w̃i = wi exp(−η`i)
Approx. EGU/PRODU w̃i = wi (1− η`i)

EGUasGD ũi = ui (1− η`i)(
ũ2

i = u2
i (1− η`i)2)

EG/HEDGE w̃i = wi exp(−η`i)∑
j wj exp(−η`j)

Approx. EG w̃i = wi (1− η`i + η
∑

j
wj`j)

PROD w̃i = wi (1− η`i)∑
j wj(1− η`j)

EGasGD ũi = ui (1− η`i)
‖
∑

j u2
j (1− η`j)2‖22(

ũ2
i = u2

i (1− η`i)2∑
j u2

j (1− η`j)2

)
21 / 23

Regret bounds

total online loss of update
≤ total online loss of best comparator + norms

√
loss of best

update regret bound

EGUasGD, hinge loss as Winnow
EGUasGD, linear regression as EGU but only one-sided case
EGasGD, linear regression as EG
EGasGD, dot loss as Hedge

All proofs done with relative entropy as a measure of progress

22 / 23

Open problems

I Need 2-sided regret bound for
linear regression EGU and EGUasGD
Or prove linear lower bound when
Hadamard is replaced by 0/1 matrix

I Is there any natural problem in which GD beats EGU±?
I Revisit vanishing gradient issue, batch normalization, dropout,

learning rate heuristics for neural nets where all linear
activations are replace by the sparse network

I Large scale simulations
- Do multiplicative updates lead to sparse solutions?

I Revised open question about limited power of GD:
Does any GD trained neural net with complete input neurons
satisfy the linear lower bound for the Hadamard problem?

Thank you!
23 / 23

Open problems

I Need 2-sided regret bound for
linear regression EGU and EGUasGD
Or prove linear lower bound when
Hadamard is replaced by 0/1 matrix

I Is there any natural problem in which GD beats EGU±?
I Revisit vanishing gradient issue, batch normalization, dropout,

learning rate heuristics for neural nets where all linear
activations are replace by the sparse network

I Large scale simulations
- Do multiplicative updates lead to sparse solutions?

I Revised open question about limited power of GD:
Does any GD trained neural net with complete input neurons
satisfy the linear lower bound for the Hadamard problem?

Thank you!
23 / 23

