Ehsan Amid
Manfred K. Warmuth
Google Brain & UCSC

COLT 2020

1/23

Two main families of updates

Additive updates:

GD: stochastic gradient descent, backprop, Newton's update,
kernel methods

Multiplicative updates:

EG: expert algorithms, Boosting, Bayes

EGU: Winnow

Performance of GD linear in n for sparse targets

Performance of EG & EGU grows as log n for sparse targets

23

Two main families of updates

Additive updates:

GD: stochastic gradient descent, backprop, Newton's update,

kernel methods

Multiplicative updates:

EG: expert algorithms, Boosting, Bayes
EGU: Winnow

Performance of GD linear in n for sparse targets
Performance of EG & EGU grows as log n for sparse targets

Here we will reparameterize EG & EGU as GD:
Reparameterized forms act like original EG & EGU

Winnowing with GD!

23

Paradigmatic sparse linear problem

1 1 1 1 0
1 -1 1 -1 0 1
1 1 -1 -1 1
1 -1 -1 1 0
Hadamard matrix or random =+

After receiving example (xz, yt)
and incurring loss (x,; w; — y;)? update:

multiplicative, EGU: weq1,; = wy)j exp(—27/(xtth — Yi)Xt.i)
additive, GD: Wep1,i = Wej — 21) (xtth — Ye)Xt,i
| ——

gradient

23

Paradigmatic sparse linear problem

1 1 11 0 1
1 -1 1 -1 ol | 1
1 1 -1 -1 i I
1 -1 -1 1 0 -1

Hadamard matrix or random =+

After receiving example (xz, yt)
and incurring loss (x,; w; — y;)? update:

multiplicative, EGU: weq1,; = wy)j exp(—27/(xtth — Yi)Xt.i)
additive, GD: Wep1,i = Wej — 21) (xtth — Ye)Xt,i
| ——
gradient

Special cases of mirror descent (MD):

wsi1 = H(F(ws) — nVL(ws))
with f(w) = logw or f(w) = w

23

Major differences between the two families

Paradigmatic setup:
128x128 Hadamard matrix
Permuted rows are instances, labels are any fixed column

@p EGU

x-axis: s = 1..128
y-axis: all 128 weights Loss when trained on examples 1..s

Upshot: After half examples, GD has average loss 1/2
EG family converges in log n many examples

» Linear decay of loss remains for GD even if

» linear neuron with kernel inputs [WV05]
/]\ - %\\
X o(x)

» neuron with any transfer function h and kernel inputs [DW14]

5/23

» Linear decay of loss remains for GD even if

» linear neuron with kernel inputs [WV05]
ﬂ\ - %\\
X o(x)

» neuron with any transfer function h and kernel inputs [DW14]

Conjecture: Hadamard problem remains hard
for any neural net trained with GD [DW14]

5/23

Crux: consider continuous time MD

» Parameter vector w(t) continuous function of time

» Continuous update

F(w(t)) = —n VL(w(t))

» Examples are still discrete
(Xs,ys) for time t € [s,s5+ 1)
Again two main updates:
GD w(t)= —nVL(w(t))
EGU log(w(t))= —n VL(w(t))

We motivate updates in the continuous domain
and then “discretize” these updates

6

[NY83]

23

I) Continuous EGU can be simulated with continuous GD

Here: discretized versions of continuous GD simulation solves
the Hadamard problem efficiently

Conjecture about GD training of neural nets is false
Neural nets trained w. GD more powerful than kernel methods

7/23

Two stunning surprises

I) Continuous EGU can be simulated with continuous GD

Here: discretized versions of continuous GD simulation solves
the Hadamard problem efficiently

Conjecture about GD training of neural nets is false
Neural nets trained w. GD more powerful than kernel methods

[I) The structure of the network determines regularization
when training with GD

23

When linear neuron is trained with GD,
then linear decrease of loss

Xi

02
0 102030405060

8/23

When linear neuron is trained with GD,
then linear decrease of loss

02
0 102030405060

Reparameterize weights w; by u,-2

Continuous GD on u; exactly
simulates EGU on w;

u=-2n(uGu-x—y) u®x simulates

Ic;g(w) =-2n(w-x—y)x

8/23

Discretization Upy1 = Uy — 20 (U O U - X¢ — i) UOX¢ tracks

Wei1 = W © exp(—2n (W - X; — yt) Xt)

EGUasaD

Simulation visually identical but slightly different numerically
Same regret bounds

Upshot: 2-layer neural net trained w. GD cracks Hadamard
9/23

Case A [

When trained with GD: approximates EGU and cracks Hadamard

02 =
0102030405080

Case B

Red weights initialized to zero
Linear loss on Hadamard when trained with GD

10/23

EGUasGD
1

08
06
04
02

Case A O oo

When trained with GD: approximates EGU and cracks Hadamard

02 =
0102030405080

Case B

Red weights initialized to zero
Linear loss on Hadamard when trained with GD
Also true if all bottom weights initialized to zero

10/23

II) Structure determines regularization

Case A

In continuous case, converges to smallest L1 norm solution
In discrete case, same regret bounds as for EGU

Case B

— smallest Ly norm solution when bottom weights initialized to 0
More complicated for other initializations, but experimentally
satisfies linear lower bound 11/23

For Hadamard problem

¢(x)

Any kernel has linear decaying EGUasGD has exponentially
loss on average decaying loss

Xi

12/23

1. As discretizations of continuous updates

2. Regularizing with Bregman divergences

13/23

Two ways for obtaining discrete updates

1. As discretizations of continuous updates

2. Regularizing with Bregman divergences

For a strictly-convex function F(w), the Bregman divergence is

Ar(w, wy) = F(w) — F(ws) — f(ws) T (w — wy)
= Dp-(f(ws), f(w)) (duality)
—— —~—~

* *
w; w

F(w) convex, VF(w) =: f(w) = w* is the gradient

f(w) called the link function

13/23

1. Via Bregman divergences [NY83,KW97]

Wsy1 = argmin Ap(w, ws) + nL(w)
w

Setting derivative at ws,1 to zero
f(Wsi1) — f(ws) +nVL(wsi1) =0
Implicit/Prox MD update [R76,NY83]
Wsi1 = (F(ws) = nVL(Ws1))
Explicit MD update

ws i1 ~ FH(F(ws) — nVL(ws))

14 /23

f(w) = —VL(w)

Main examples:
GD (f(w) = w) and EGU (f(w) = log(w))

Tempered Logarithm

log, (w) = - (w' " — 1)
T is temperature
(we use 7 € [0,1])

15/23

Motivation with Bregman momentum

w(t) =argmin Af(#(t), we) +n L(#(t))
—_— —

w(t)

Bregman momentum
Derivation of the optimum curve w(t):

0
ow(t)

(% (F(ﬁ/(t)) - f(Ws)'r ﬁ/(t)) + nL(ﬁ/(t))) (differentiate)
0

gy (D) = F(we) (1)) + 7 VL((1)

) io(e) + () (FORE) — F(we) 1 VL)
0
(By calculus of variations, w(t) and |7v(t) are independent variables)

—F((t)) + VL () =

t)o

16 /23

Reparameterizing cont. MD w. link f i.t.o. link g

Theorem For the reparameterization function w = q(u)
with the property that range(q) = dom(f),
g(u)= — nVLogq (u) simulates f(w) = —nVL(w) if

(JF(w)) ™ = Jq(u) (Jg(u)) " (Jg(u))"

and g(u(0)) = w(0)
For reparameterization as GD use g = id

[details in a companion paper under review|

17/23

Link
f(w) = log(w)
Reparameterization

w=gq(u)=Yasudu

u=2J/w

(Jf(w)) = (diag(w) 1)~ = diag(w)
Jq(u)(Jq(u)) "= 1/2diag(u) (/2diag(u))" = diag(w)
Conclusion
Io.g(w) = —n VL(w) equals u= —n VLlog(u) = —nthuc VLi(w)
———
Vul (Y/auGu)

18/23

Link
1
f =——
(w) =~
Reparameterization

w = q(u) := exp(u)
u = log(w)

(Jf(w))"'= diag(o W)_1 = diag(w)”

Jq(u)(Jq(u)) " = diag(exp(u)) diag(exp(u)) " = diag(w)?

Conclusion
" .
<——) = —n VL(w) equals u = —n VLoq(u) = —n exp(u)©VL(w)
w ———

Vul (exp(u))

19/23

Link f(w) =log, w

Reparameterization ,
2—T7\2-7 _2_
w:q(u)::(5) uz-r
2

2
u= 5 _ - w
(Jlog. (w)) = (diag(w) ") = diag(w)"
Jalu)(Ja(u)) = ((257)7 disg(u)=)" = diag(w)”

Conclusion
2—1T1

Io:gT(w) = —nVL(w)equals u = —nVLloq(u) = —1 urs OVL(w)
—_———

w((55)7)

20/23

Link f(w) =log, w

Reparameterization ,
2—T7\2-7 _2_
w:q(u)::(5) uz-r
2

2
u= 5 _ - w
(Jlog. (w)) = (diag(w) ") = diag(w)"
Jalu)(Ja(u)) = ((257)7 disg(u)=)" = diag(w)”

Conclusion

Io:gT(w) = —nVL(w) equals u = —nVLloq(u) = —n2 — Ty OVL(w)
—_———

T=1:EGU 7=0:GD 2023

Discrete multiplicative updates for dot loss >°; w;/;

EGU
Approx. EGU/PRODU
EGUasGD

EG/HEDGE

Approx. EG

PROD

EGasGD

w; = w; exp(—nt;)
Wi = (/)
b = ui(1 —nt;)
b7 = uf(1 - nf)%)

£
I

e Wi exp(—n¥;)
LY wiexp(—nl))

W = wi(L = nli + 1) wils)
j

i — wi(1 — nt;)
' Zj w;(1 —nt;)
" ui(1 — nt;)

NSy e =)23
~2 uf (1 —nti)?)
EEPYTACE %

21/23

Regret bounds

total online loss of update
< total online loss of best comparator + norms +/loss of best

update regret bound

EGUasGD, hinge loss as Winnow

EGUasGD, linear regression as EGU but only one-sided case
EGasGD, linear regression as EG

EGasGD, dot loss as Hedge

All proofs done with relative entropy as a measure of progress

Open problems

» Need 2-sided regret bound for
linear regression EGU and EGUasGD
Or prove linear lower bound when
Hadamard is replaced by 0/1 matrix

» Is there any natural problem in which GD beats EGU*?

» Revisit vanishing gradient issue, batch normalization, dropout,
learning rate heuristics for neural nets where all linear
activations are replace by the sparse network

» Large scale simulations
- Do multiplicative updates lead to sparse solutions?

» Revised open question about limited power of GD:
Does any GD trained neural net with complete input neurons
satisfy the linear lower bound for the Hadamard problem?

23/23

Open problems

» Need 2-sided regret bound for
linear regression EGU and EGUasGD
Or prove linear lower bound when
Hadamard is replaced by 0/1 matrix

» Is there any natural problem in which GD beats EGU*?

» Revisit vanishing gradient issue, batch normalization, dropout,
learning rate heuristics for neural nets where all linear
activations are replace by the sparse network

» Large scale simulations
- Do multiplicative updates lead to sparse solutions?

» Revised open question about limited power of GD:
Does any GD trained neural net with complete input neurons
satisfy the linear lower bound for the Hadamard problem?

Thank you!

23/23

