
Divergence-Based Motivation for Online EM
and Combining Hidden Variable Models

Ehsan Amid and Manfred K. Warmuth
UC Santa Cruz and Google Brain, Mountain View

{eamid, manfred}@google.com

Abstract

Expectation-Maximization (EM) is a prominent
approach for parameter estimation of hidden
(aka latent) variable models. Given the full
batch of data, EM forms an upper-bound of the
negative log-likelihood of the model at each
iteration and updates to the minimizer of this
upper-bound. We first provide a “model level”
interpretation of the EM upper-bound as a sum
of relative entropy divergences to a set of sin-
gleton models induced by the batch of obser-
vations. Our alternative motivation unifies the
“observation level” and the “model level” view
of the EM. As a result, we formulate an online
version of the EM algorithm by adding an anal-
ogous inertia term which is a relative entropy
divergence to the old model. Our motivation
is more widely applicable than the previous ap-
proaches and leads to simple online updates
for mixture of exponential distributions, hidden
Markov models, and the first known online up-
date for Kalman filters. Additionally, the finite
sample form of the inertia term lets us derive
online updates when there is no closed-form
solution. Finally, we extend the analysis to the
distributed setting where we motivate a system-
atic way of combining multiple hidden variable
models. Experimentally, we validate the results
on synthetic as well as real-world datasets.

1 INTRODUCTION

The goal of EM is to minimize1 the negative log-
likelihood (loss) of a hidden variable model given a set of
iid observations from the data. Instead of directly mini-

1We adopt the minimization view of the EM algorithm by
considering the negative of the log-likelihood function. This
will simplify our online EM motivation in the following.
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mizing the negative log-likelihood, EM forms an upper-
bound of the loss at each iteration and then updates to the
minimizer2 of the upper-bound. Due to the tightness of
the upper-bound at the current estimate of the parameters,
every EM update decreases the negative log-likelihood
(or keeps it unchanged when the current estimate is at a
local minimum).

We first provide an alternative view of the EM upper-
bound as sum of joint relative entropy divergences be-
tween a set of “singleton models” and the new model.
Each singleton model is induced by minimizing the EM
upper-bound using only a single observation. This moti-
vates the use of this divergence as an inertia term for an
online variant of the EM algorithm. We add the relative
entropy divergence between the joint distributions of the
old and the new models to the EM upper-bound, and up-
date to the minimizer of the sum. Curiously enough, our
divergence based online EM updates coincide with the
one given in (Sato, 2000) and its generalization in (Cappé
& Moulines, 2009)3. However, we will show that the new
formulation is more versatile and can be used to derive
online updates for more complex models. In particular,
our approach avoids having to identify the sufficient statis-
tics of the joint distribution. Additionally, it can handle
cases where there exists no closed-form solution for the
EM update by using the Monte Carlo approximation of
the inertia term. Finally, we extend the same methodol-
ogy to minimizing a sum of relative entropy divergences
between different models in a distributed setting. This
results in an efficient way of combining hidden variable
models. To summarize:

– We motivate the observation level view of the EM
algorithm as combining models via minimizing a
sum of relative entropy divergences.

– We formulate an online EM algorithm based on mini-
mizing a sum of divergences to the singleton models

2Or the approximate solution of the minimization problem.
3Which is based on a stochastic approximation of the EM

upper-bound.



(observations) plus a divergence to the old model
(inertia term). The new formulation allows an ap-
proximate form of the online EM algorithm for cases
where the updates do not have a closed-form.

– Using the new formulation, we obtain closed-form
updates for mixtures of exponential distributions,
hidden Markov models (HMMs), and Kalman fil-
ters, and approximate updates for the Compound
Dirichlet distribution.

– Most importantly, we develop divergences between
hidden variable models and provide a method for
combining such models by minimizing convex com-
binations of divergences.

Here, we only consider models for which the EM upper-
bound induces a closed-form. We omit extensions where
other approximations are used for the upper bound (e.g.
variational inference (Blei et al., 2017)).

Previous work EM is one of the most well-studied al-
gorithms due to its simplicity and monotonic descent
property (McLachlan & Krishnan, 2008; Do & Batzoglou,
2008; Gupta et al., 2011). It was also shown that EM con-
verges to a stationary point of the negative log-likelihood
under some mild conditions (Wu, 1983). EM is naturally
a batch algorithm. Attempts for developing online ver-
sions of EM start with the work of Titterington (1984),
who employs a second order method by approximating
the complete data Fisher information matrix. This algo-
rithm has been shown to almost surely converge to a local
minimum of the negative log-likelihood (Wang & Zhao,
2006). However, deriving the updates for this method
requires calculating sophisticated derivatives and matrix
inversions, making it intractable for more complex mod-
els such as HMMs and Kalman filters. We show that our
alternative divergence based motivation of the EM algo-
rithm reduces to the work of Cappé & Moulines (2009),
which substitutes the E-step by a stochastic approxima-
tion of the EM upper-bound while keeping the M-step
unchanged. Cappé & Moulines (2009) showed that for
models where the complete data likelihood belongs to an
exponential family, the updates correspond to stochastic
approximations of sufficient statistics. While this is in-
tuitive, identifying the complete data sufficient statistic
for more complex models becomes infeasible in prac-
tice. In contrast, our new formulation provides several
advantages. First, we avoid characterizing the sufficient
statistics by directly forming the inertia term between the
current model and the updates. As a result, we can easily
derive online EM updates for more complex models such
as HMMs and Kalman filters. Additionally, we can apply
the approximate form of the inertia term for problems
where the minimization of the EM upper-bound does not
have a closed-form solution. Finally, the methodology
of minimizing sum of divergences between hidden vari-

able models leads to a natural way of combining multiple
hidden variable models in a distributed settings.

Previous online EM algorithms for learning exponential
family models have been mainly based on gradient as-
cent methods, or heuristic approaches for maximizing the
likelihood or updating the sufficient statistics. Therefore,
the resulting updates are commonly unstable and require
careful tuning of the parameters. Generally, these updates
also lack performance guarantees. Specifically, online
methods have been developed for mixtures of exponential
distributions (Neal & Hinton, 1998; Singer & Warmuth,
1999) and for online (aka block-wise) learning of HMMs
(Baldi & Chauvin, 1994; Singer & Warmuth, 1997; Cappé
et al., 1998; Mizuno et al., 2000). Also, inline (aka
symbol-based) methods have been proposed for learn-
ing HMMs (Krishnamurthy & Moore, 1993; Collings
et al., 1994; LeGland & Mevel, 1997; Garg & Warmuth,
2003; Florez-Larrahondo et al., 2005; Mongillo & Den-
eve, 2008; Cappé, 2011; Kontorovich et al., 2013). Our
method falls into the category of block-wise updates for
HMMs. To the best of our knowledge, no online updates
were known for Kalman filters; all earlier training meth-
ods were based on either the batch EM algorithm via
Kalman smoothing or inline updates via Kalman filter-
ing (Ghahramani & Hinton, 1996).

2 BATCH EM MOTIVATION

Given a set of iid samples V = {vn}Nn=1 from an under-
lying data distribution pd(v), the EM algorithm seeks to
minimize the negative log-likelihood (as the loss)

L(Θ̃| V) = −1/N
∑
n

log p(vn| Θ̃)︸ ︷︷ ︸∫
h
p(h,vn| Θ̃)

,

wrt the parameters Θ̃. Here, vn is the n-th observation of
some visible variable and h denotes the hidden variable.
The above minimization problem, which involves logs
of integrals (or sums in the discrete case) is typically
non-convex and difficult to solve in practice. Adding a
divergence to a loss can simplify the minimization. Batch
EM employs the following upper-bound of the loss:

UΘ(Θ̃|V) :=− 1/N
∑
n

log

∫
h

p(h, vn|Θ̃)

+ 1/N
∑
n

∫
h

p(h|vn,Θ) log
p(h|vn,Θ)

p(h|vn, Θ̃)

=− 1/N
∑
n

Ep(h| vn,Θ)

[
log p(h, vn| Θ̃)

]
− 1/N

∑
n

HΘn(H| vn)︸ ︷︷ ︸
const.

, (1)



where Θ denotes the current set of parameters and
HΘn(H| vn) := −

∫
h
p(h| vn,Θ) log p(h| vn,Θ) is the

conditional differential entropy of H| vn. Batch EM al-
gorithm proceeds by forming the upper-bound by cal-
culating the posteriors p(h|vn,Θ) based on the current
estimate Θ (the E-step) and then minimizing (1) wrt Θ̃
and updating Θ to the solution (the M-step). Minimiz-
ing the upper-bound is easier than minimizing the nega-
tive log-likelihood directly because logs of integrals are
now replaced by logs of joints. Since the upper-bound
is tight, i.e. UΘ(Θ|V) = L(Θ| V), a decrement in the
value of upper-bound amounts to a reduction in the nega-
tive log-likelihood, that is, UΘ(Θnew|V) < UΘ(Θ|V) ⇒
L(Θnew| V) < L(Θ| V).

We now rewrite the upper-bound as a sum of relative
entropy divergences to a set of singleton models. Given
the current model estimate Θ, let

p(h, v|Θn) := δvn(v) p(h| v,Θ) , (2)

where δvn(v) is the Dirac measure centered at vn. Note
that Θn is an estimate of the model that minimizes the
upper-bound (1) at Θ using a single observation vn. Now
the relative entropy divergence between the models Θn

and Θ̃ becomes

DRE(Θn, Θ̃) :=

∫
h,v

p(v, h|Θn) log
p(v, h|Θn)

p(v, h| Θ̃)

= −HΘn(H,V )−
∫
h,v

p(h, v|Θn) log p(h, v| Θ̃)

= −HΘn(H,V )︸ ︷︷ ︸
const.

−Ep(h| vn,Θ)

[
log p(h, vn| Θ̃)

]
. (3)

where HΘn(H,V ) := −
∫
h,v

p(h, v|Θn) log p(h, v|Θn)
is the joint differential entropy of H and V . Note that
HΘn(H,V ) = HΘn(V ) + HΘn(H|V ). Thus, the n-th
term in the EM upper-bound (1) has the exact same form
as (3) minus the HΘn(V ) term. Although this term is
unbounded for the singleton distribution in (2), it acts
a constant wrt Θ̃ and can be omitted from the upper-
bound. Thus, one step of the EM algorithm can be seen
as minimizing sum of the relative entropy divergences (3)
to the singleton distributions (2), that is,

UΘ(Θ̃|V) = 1/N
∑
n

DRE(Θn, Θ̃) + 1/N
∑
n

HΘn(V )︸ ︷︷ ︸
const.

.

3 ONLINE EM MOTIVATION

EM is naturally a batch algorithm and requires the full set
of observations to carry out each iteration. On the other
hand, online algorithms only receive one example (or a

small batch Vt) at every iteration t. The updates minimize
the loss of the given batch (in our case an upper-bound
of the loss) plus an inertia term (a second divergence)
that ensures that the updates remain close to the current
estimates Θt. From the model view of the EM upper-
bound in (3), it is natural to choose the inertia term in
the same form, i.e. a relative entropy divergence to the
current model Θt. Thus, the online update minimizes

Θt+1 =arg min
Θ̃

{
UΘt(Θ̃|Vt)︸ ︷︷ ︸

loss

+1/ηtDRE(Θt,Θ̃)︸ ︷︷ ︸
inertia

}
, (4)

where Θt and Vt are the parameters and the given batch
of observations at round t, respectively. Based on our
discussion in the previous section, update (4) corresponds
to combining |Vt| + 1 models, therefore is guaranteed
to have the same form as a batch EM update. The pa-
rameter ηt can be seen as a learning rate which controls
the extent that the parameters are affected by the new
observations. Note that ηt →∞ recovers the vanilla EM
algorithm on the batch Vt while ηt → 0 keeps the param-
eters unchanged. Moreover, following the tightness of the
upper-bound, the objective of (4) is equal to L(Θt| Vt) at
Θ̃ = Θt. Thus, every step of the online EM algorithm
decreases the negative log-likelihood of the model over
the batch Vt.

A few remarks are in order. The objective (4) is equal
to the objective function of the online EM algorithm
of Cappé & Moulines (2009) up to additive constant terms
wrt Θ̃.

Theorem 1. The objective function in (4) is equal to the
objective function of the online EM algorithm of Cappé
& Moulines (2009) up to additive constant terms wrt Θ̃.

The proof is given in Appendix A.

The formulation in (Cappé & Moulines, 2009) is specif-
ically applied to models where the complete data likeli-
hood belongs to an exponential family and the updates
are shown to reduce to stochastic approximation of the
sufficient statistics. While their approach is applicable to
simpler models such as mixture of Poisson, identifying
the sufficient statistics immediately becomes tedious for
more complex models such as HMMs and Kalman filters.
As a result, the corresponding updates for these models
had not been discovered. Moreover, the decrement of the
negative log-likelihood over the current observation Vt is
not evident in their formulation.

Corollary 2. Under mild assumptions on the parameter
space of the exponential family model and using a de-
caying learning rate 0 < ηt < 1,

∑∞
t=1 η

t = ∞ and∑∞
t=1 η

t < ∞, the update (4) almost surely converges
to a stationary point that maximizes the expected log-
likelihood wrt the data distribution.



3.1 NATURAL GRADIENT APPROXIMATION

For small dΘ̃ := Θ̃−Θt, the inertia term can be approxi-
mated as

DRE(Θt, Θ̃) ≈ 1/2 dΘ̃> IF(Θt) dΘ̃ , (5)

where IF(Θt) = −Ep(h,v|Θt)
[
∇2 log p(h, v|Θt)

]
is the

Fisher information matrix. Using (5), the update (4) can
be approximated as

Θt+1 ≈ Θt − I−1
F (Θt)∇UΘt(Θ

t| Vt) ,

which is called the natural gradient update (Amari
& Nagaoka, 2007) and resembles the gradient-based
updates for EM proposed in (McLachlan & Krish-
nan, 2008) where the observed Fisher IO(Θt) =
−Ep(v|Θt)

[
∇2 log p(v|Θt)

]
is used in place of IF(Θt).

Using the equality,

∇UΘt(Θ
t| Vt)

= −1/N
∑
n

Ep(h| vn,Θt)
[
∇p(h, vn|Θt)

p(h, vn|Θt)

]
= −1/N

∑
n

∫
h

∇p(h, vn|Θt)

p(vn|Θt)
= ∇L(Vt|Θt) ,

we have,

Θt+1 ≈ Θt − I−1
F (Θt)∇L(Vt|Θt) .

This connection was also observed in (Sato, 2000) and
the extension of this work in (Cappé & Moulines, 2009).

3.2 FINITE-SAMPLE APPROXIMATION

In cases where DRE(Θt, Θ̃) does not yield a closed-form,
an approximate inertia term can be obtained via a finite
number of samples as

DRE(Θt, Θ̃)

= Ep(v|Θt)
[
Ep(h| v,Θt)

[
log

p(h, v|Θt)

p(h, v|Θ̃)

]]
(6)

≈ − 1/N ′
∑
n′

Ep(h| vn′ ,Θ̃)

[
log p(vn′ , h|Θ̃)

]
︸ ︷︷ ︸

UΘt (Θ̃| V′)+const.

+ const.

where the samples V ′ = {vn′}N
′

n′=1 are drawn from the
distribution p(v|Θt), not the data distribution pd(v). Thus
the samples V ′ may be seen as pseudo-observations that
encourage the solution to remain close to the current
model parameters Θt. We will use this sampled form
of the inertia term to derive updates for the compound
Dirichlet model. The sampled form is also similar to the
update given in (Neal & Hinton, 1998). However, in their
formulation, V ′ is replaced with V − {vi} where vi is a
random sample from V and the upper-bound is formed at
Θ(t−1) instead of Θt.

4 UPDATES WITH CLOSED-FORM

The objective is easier to minimize when it reduces
to a linear combination of negative log-likelihoods of
exponential family distributions which includes mix-
tures of exponential families, HMMs and Kalman Fil-
ters. Note that the latter two cases are already hard
to handle with the methodology of Cappé & Moulines
(2009). We start with a brief background material. The
exponential family (Wainwright et al., 2008) with vec-
tor of sufficient statistics φ(x) and natural parameter θ
is defined as pG(x|θ) = exp(θ · φ(x) − G(θ)), where
G(θ) = log

∫
x

exp(θ · φ(x)) is called the log partition
function, which ensures that pG(x| θ) integrates to one.
The expectation parameter µ = g(θ) =

∫
x
φ(x) pG(x| θ)

is the dual (Hiriart-Urruty & Lemarchal, 2001) of the
natural parameter θ where g(θ) := ∇G(θ). The duality
implies θ = g∗(µ) = g−1(µ) where g∗(µ) := ∇G∗(µ)
and G∗(µ) = supθ′{µ · θ′ − G(θ′)} is the convex con-
jugate of G. It is easy to show that G(θ) is a convex
function. In fact, the relative entropy divergence between
two exponential distributions (of the same form) with
parameters θ and θ̃ yields∫

x

pG(x| θ) log
pG(x| θ)
pG(x| θ̃)

= DG(θ̃, θ) = DG∗(µ, µ̃) ,

where DG(θ̃, θ) = G(θ̃) − G(θ) − g(θ) · (θ̃ − θ) , is
the Bregman divergence (Bregman, 1967) induced by
the convex function G(·) and ∂

∂θ̃
DG(θ̃, θ) = g(θ̃) −

g(θ). The following lemma will be useful for deriving the
updates. For more details, see Appendix B.
Lemma 3. For {αm}Mm=1 s.t. αm∈R+ and

∑
mαm>0,

θopt = arg min
θ̃

∑
m

αm
(
G(θ̃)− θ̃ · µm

)
= g−1

(∑
m αm µm∑
m αm

)
,

i.e. µopt =
∑
m αm µm∑
m αm

.

4.1 MIXTURE OF EXPONENTIAL FAMILY

In a k-mixture of exponential family, model h ∈ [k] is
chosen according to the probability ωh := p(h|Θ) and
the observation is drawn from the corresponding distribu-
tion P (v|h,Θ) = pG(v| θh) = exp(θh · φ(v)−G(θh)),
which belongs to an exponential family. Thus, the model
parameters are Θ = {ωh, µh(θh)}h. The joint distribu-
tion becomes

p(v, h|Θ) = ωh exp(θh · φ(v)−G(θh)) ,

while the marginal is simply a sum over all models,

p(v|Θ) =
∑
h

ωh exp(θh · φ(v)−G(θh)) .



The EM upper-bound can be formed using the posterior
distributions of each observation vn, that is,

UΘ(Θ̃| V)

∼= −1/N
∑
n

∑
h

γn,h

(
log ω̃h +

(
G(θ̃h)− θ̃h · φ(vn)

))
,

where∼= means equal up to constants. The posteriors γn,h
are calculated as

γn,h =
ωh exp(θh · φ(vn)−G(θh))∑
h′ ωh′ exp(θh′ · φ(vn)−G(θh′))

.

The inertia term for the online EM algorithm becomes

DRE(Θ, Θ̃) =
∑
h

∫
v

ωh pG(v| θh) log
ωh pG(v| θh)

ω̃h pG(v| θ̃h)

=
∑
h

ωh log
ωh
ω̃h

+
∑
h

ωh

∫
v

pG(v|θh) log
pG(v|θh)

pG(v|θ̃h)︸ ︷︷ ︸
DG(θ̃h,θh)

.

Combining the inertia term with the upper-bound and
applying Lemma 3, we have

ωnew
h =

1/η ωh + 1/N
∑
n γn,h

1/η + 1
, (7)

µnew
h =

1/η ωh µh + 1/N
∑
n γn,h φ(vn)

1/η ωh + 1/N
∑
n γn,h

. (8)

4.2 HIDDEN MARKOV MODELS

A Hidden Markov Model (HMM) (Rabiner, 1989) con-
sists of an underlying finite-state (hidden) Markov chain
with probability of transitioning from state h to h′ equal to
ah,h′ := P (h|h′,Θ) and an initial state probability equal
to πh1

:= P (h1|Θ). At every round, the model makes
a transition to a new state according to the state transi-
tion probabilities, and given the new state h, generates
an observation according to the state emission probability
P (v|h,Θ). We make the assumption that the state emis-
sion probabilities are members of an exponential family,
that is, P (v|h,Θ) = PG(v| θh). Thus, the model pa-
rameters are Θ = {πh, {ah,h′}h′ , µh(θh)}h. The joint
distribution of the model can be written as

P (v, h|Θ) =

T∏
t=1

aht−1,ht PG(vt| θht) ,

in which, we define ah0,h1
:= πh1

. The marginal can be
obtained by summing over all the possible hidden states:

P (v|Θ) =
∑

h1,...,hT

T∏
t=1

aht−1,ht PG(vt| θht) .

Ignoring constant terms, the EM upper-bound can be
written as

UΘ(Θ̃| V) ∼= 1/N
∑
n

(∑
h

γn,1h log
γnh1

π̃h1

+

T−1∑
t=1

∑
h,h′

γn,th,h′ log
γn,th,h′

ãhh′

+

T∑
t=1

∑
h

γn,th
(
G(θ̃ht)− φ(vnt) · θ̃ht

))
.

The state posteriors are found using the Baum-Welch algo-
rithm by performing a forward-backward pass (Rabiner,
1989). We define

γn,th := P (hn,t = h| vn,Θ) ,

γn,th,h′ := P (hn,t+1 = h′, hn,t = h| vn,Θ) ,

where hn,t is the state at round t for the sample n. The
inertia term can be written as

DRE(Θ, Θ̃) =
∑
h

πh log
πh
π̃h

+
∑
h

uh
∑
h′

ah,h′ log
ah,h′

ãh,h′

+
∑
h

uhDG(θ̃h, θh) ,

where uh =
∑∞
t=1 δ

t
h , with δ1

h = πh , and δt+1
h′ =∑

h δ
t
h ah,h′ . That is, uh is the expected usage of state h.

Note that the usage uh is not finite in general and should
be instead approximated by a finite length sequence. How-
ever, for the class of absorbing HMMs, we can calculate
the usages in the exact form. More specifically, the tran-
sition matrix A = [ah,h′ ] of an absorbing HMM with r
absorbing states has the following form

A =

[
Q R
0 Ir

]
,

where the Q entails the transition probabilities from a
transient state to another while R describes the transition
probabilities of from transient states to absorbing states.
Ir is an identity matrix which describes the transitions
from each absorbing state back to itself. The expected
usages of the transient states can be calculated as

u> = π> + π>Q+ π>Q2 + . . . = π>(I −Q)−1 .

Additionally, note that for an absorbing state h, we always
have

∑
h′ ah,h′ log

ah,h′

ãh,h′
= 0. Therefore, the correspond-

ing terms can be omitted from the inertia term.

Combining the EM upper-bound and the inertia term and



applying Lemma 3 gives the following updates

πnew
h =

1/η πh + 1/N
∑
n γ

n,1
h

1/η + 1
,

anew
h,h′ =

1/η uh ah,h′ + 1/N
∑
n

∑
t γ

n,t
h,h′

1/η uh + 1/N
∑
n

∑
t γ

n,t
h

,

µnew
h =

1/η uh µh + 1/N
∑
n

∑
t γ

n,t
h φ(vn,t)

1/η uh + 1/N
∑
n

∑
t γ

n,t
h

.

4.3 KALMAN FILTERS

Kalman filters (Welch & Bishop, 1995) can be described
using the following two update equations

ht+1 = Aht + ρt ,

vt = C ht + εt ,

where ht is the underlying (hidden) state at t and vt is the
corresponding output. Both state and observation noise,
ρt and εt, are zero-mean Gaussian random variables with
covariance matrices equal to Q and R, respectively. The
initial state h1 is generally assumed to be drawn from
a Gaussian distribution with mean π1 and covariance V .
Thus the model parameters are Θ = {π1, V, A,C,Q,R}.
In Kalman filters, only the output is observed, and thus
the state as well as the noise variables are hidden.

The joint distribution of a Kalman filter can be written as

p(h, v|Θ) =

T∏
t=1

p(ht|ht−1,Θ) p(vt|ht,Θ) ,

where p(h1|h0,Θ) := p(h1|Θ)

p(vt|ht,Θ) ∼ N
(
C ht, R

)
,

p(ht+1|ht,Θ) ∼ N
(
Aht, Q

)
,

p(h1|Θ) ∼ N
(
π1, V

)
.

Here, N
(
ξ,Σ

)
denotes a Gaussian probability density

with mean and covariance equal to ξ and Σ, respectively.
The marginal can be obtained by integrating over all the
state variables, that is,

P (v|Θ) =

∫
h1,...,hT

P (h, v|Θ) .

Forming the EM upper-bound requires calculating the
posteriors. Note that because all the random variables
are Gaussian, it suffices to keep track of the means and
covariances. The posteriors depend on the following three
expectations

ĥt := E[ht|v], Pt := E[hth
>
t |v], Pt,t−1 := E[hth

>
t−1|v],

which can be calculated recursively using the Kalman
filtering and Kalman smoothing equations (Ghahramani

& Hinton, 1996). Thus, the EM upper-bound can be
written as

2× UΘ(Θ̃| V) ∼= 1/N
∑
n

(
tr(Ṽ −1V̂n) + log |Ṽ |

+

T∑
t=2

tr(Q̃−1Q̂n,t) + (T − 1) log |Q̃|

+

T∑
t=1

tr(R̃−1R̂n,t) + T log |R̃|
)
,

where4

V̂n = Pn1 − π̃1ĥ
>
n,1 − ĥn,1π̃>1 + π̃1π̃

>
1 ,

Q̂n,t = Pnt − ÃPnt−1,t − Pnt,t−1Ã
> + ÃPnt−1Ã

> ,

R̂n,t = vn,tv
>
n,t − C̃ĥn,tv>t − vn,tĥ>n,tC̃> + C̃PtC̃

> .

Again, our inertia term for the online EM algorithm is
relative entropy between the joints, assuming a fixed ob-
servation length equal to T , that is,

2×DRE(Θ, Θ̃)

∼= tr
(
Ṽ −1(π1 − π̃1)(π1 − π̃1)>

)
+ Dld(V, Ṽ )

+ tr
(
Q̃−1(A−Ã)

T−1∑
t=1

Ut(A−Ã)>
)

+ (T−1)Dld(Q,Q̃)

+ tr
(
R̃−1(C−C̃)

T∑
t=1

Ut(C−C̃)>
)

+ T Dld(R,R̃) ,

where U1 = V + π1π
>
1 and Ut+1 = Q + AUtA

>.
Moreover Dld(X,Y ) = tr(XY −1)− log |XY −1| − d, is
the log-determinant divergence (Cichocki et al., 2009).

Combining the inertia term with the EM upper-bound and
setting the derivatives wrt the parameters to zero yields

πnew
1 =

1/η π1 + 1/N
∑
n ĥn,1

1/η + 1
,

V new =
1/η
(
V + (π1 − π̃1)(π1 − π̃1)T )

)
+ V̂

1/η + 1
,

Anew =
(

1/η

T−1∑
t=2

AUt +

T∑
t=2

Pt,t−1

)
S−1
T−1 ,

Cnew =
(

1/η

T∑
t=1

C Ut + 1/N
∑
n

T∑
t=1

vn,t ĥ
>
n,t

)
S−1
T ,

Qnew =
1/η
(
Q+ ∆AU

)
+ 1/

(
N (T − 1)

)∑
n

∑T
t=2 Q̂n,t

1/η + 1
,

Rnew =
1/η
(
R+ ∆CU

)
+ 1/(N T )

∑
n

∑T
t=1 R̂n,t

1/η + 1
,

4Note that n ∈ [N ] denotes the observation index.



where

ST =

T∑
t=1

(
1/ηUt + Pt

)
,

∆AU = 1/(T − 1) (A−Anew)

T∑
t=2

Ut (A−Anew)> ,

∆CU = 1/T (C − Cnew)

T∑
t=1

Ut (C − Cnew)>.

Remark 4. For mixtures of exponential families, HMMs,
and Kalman filters, the following holds: for a sufficiently
small learning rate η, the negative log-likelihood wrt the
underlying data distribution pd(v),

Epd

[
log p(v|Θ)

]
=

∫
v

pd(v) log

∫
h

p(h, v|Θ) ,

improves after each update.

This is a direct result of applying Proposition 3 in (Cappé
& Moulines, 2009). See (Cappé & Moulines, 2009) for
further details.

5 UPDATES WITHOUT
CLOSED-FORM

The minimization problem in the M-step of the batch
EM does not always have a closed-form solution. In
those cases, it is likely that the divergence term between
the models also does not have a closed-form either. An
example of such a model is the compound Dirichlet dis-
tribution (Gupta et al., 2011). In this case, applying the
online EM updates in form of (4) is infeasible. However,
we can instead use the finite sample form of the inertia
term. That is, in each iteration, we draw N ′ samples
V ′ = {vn′}N

′

n′=1 from P (v|Θt) and form the correspond-
ing EM upper-bound by treating the additional samples
as pseudo-observations. The update can be achieved by
(numerically) minimizing the combined upper-bounds,

Θt+1 ≈ arg min
Θ̃

UΘt(Θ̃| Vt) + 1/ηt UΘt(Θ̃| V ′) ,

where again ηt > 0 is a learning rate parameter. Note
that this is fundamentally different than combining the
samples Vt ∪ V ′ and forming a single upper-bound. In
fact, combining the samples may require a larger number
of model samples as we proceed with the online updates
(which corresponds to a decaying learning rate) while
our approach can be carried out by a fixed number of
samples at every iteration. Note that the quality of the
approximation of the inertia term depends on the size of
the model samples N ′. In fact, approximating the inertia

term leads to a higher variance: The variance decreases
by increasing the number of model samples N ′; however,
the computational cost also increases with larger N ′. We
will provide experimental results on the online parameter
estimation with the compound Dirichlet distribution.

6 COMBINING MODELS

In many cases, multiple local models need to be combined
to form a global model. For instance, due to the large
amount of data, the model training is distributed over
multiple machines where each machine only receives a
subset of the dataset and performs updates on its local
model. The local models are then combined into a single
global model at the end of each iteration (synchronous)
or the end of the training process (asynchronous). Our
divergences between the hidden variable models provide
a natural way of combining the local models in a dis-
tributed setting. More formally, let Θ(m) denote the set
of local parameters of model m ∈ [M ]. We can define
the combined model parameters Θ(comb) as

Θ(comb) = arg min
Θ̃

∑
m∈[M ]

αmDRE

(
Θ(m), Θ̃

)
, (9)

where αm ≥ 0 is the associated weight for combining
model m (s.t.

∑
m αm > 0. The value of αm can be

tuned based on the amount of data seen by model m,
likelihood of the model, etc. For the exponential family
models, updates in (9) reduces to a convex combination
of the complete data sufficient statistics of the models5.
As an example, for hidden Markov models, Equation (9)
yields

π
(comb)
h =

∑
m αmπ

(m)
h∑

m αm
,

a
(comb)
h,h′ =

∑
m αmu

(m)
h a

(m)
h,h′∑

m αmu
(m)
h

,

µ
(comb)
h =

∑
m αmu

(m)
h µ

(m)
h∑

m αmu
(m)
h

.

We experimentally show that combining the models
via (9) provides improved results compared to the com-
monly used methods of combining the models via simple
averaging (Sanderson & Curtin, 2017).

Again, for cases where the divergence between the models
does not admit a closed-form, we can use the sampling
form of the divergence to combine the models. That is,
we draw N ′m samples V ′m from P (v|Θ(m)) and form
UΘ(m)(Θ̃| V ′m). The combined model can be obtained as

Θ(comb) = arg min
Θ̃

∑
m

αm UΘ(m)(Θ̃| V ′m) .

5And not the sufficient statistics of the components.
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Figure 1: Online EM results: a) absorbing HMM, b) Kalman filter, and c) compound Dirichlet distribution.

7 EXPERIMENTS

In this section, we first conduct experiments on online
learning of absorbing HMMs and Kalman filters. Next,
we apply the approximate form of the inertia term for
estimating a compound Dirichlet distribution in which
the updates (as well as the inertia term) do not have a
closed form solution. Finally, we consider learning of
Gaussian mixture models in a distributed setting. In all
experiments, we use a decaying learning rate of the form
ηt = η0/t

β where t is the iteration number and η0 > 0
and 0.5 < β < 1 are specified for each case. We repeat
each experiment over 20 random initializations.

7.1 ABSORBING HMM

We validate the derived updates for HMMs by conducting
an experiment on estimating the parameters of an absorb-
ing HMM with 3 transient and a single absorbing state
(4 hidden states in total) and Gaussian emission proba-
bilities of dimension 4. We consider 2000 samples from
the model and apply batch EM updates as well as online
updates with (η0, β) = (0.5, 0.9). The results are shown
in Figure 1(a). The online algorithm processes one ob-
servation per iteration. Regarding processing time, one
pass of the online update over the entire data set (called
one epoch) is comparable to a single batch update. The
online update rapidly outperforms the single batch EM
update after around 30 iterations, and at the end of the
first epoch converges to a value close to the loss of 10
batch EM iterations. Also, the online updates are stable to
using lower or higher learning rates: The final loss values
obtained for η0 = 0.1 and η0 = 1.0 are 77.17 and 72.27,
respectively (not shown in the figure). For comparison,
we also apply a gradient based update based on (Cappé,
2011). The gradient based updates are extremely unstable
and best final result obtained is 83.84 (also not shown in
the figure).

7.2 KALMAN FILTER

To validate the correctness of the updates for Kalman fil-
ters, we consider online estimation of the parameters of
a Kalman filter with hidden state vector of dimension 5
and observation vector of dimension 10. We assume that
the noise covariances Q and R are known and consider
estimating the remaining parameters, i.e. {π1, V, A,C}.
We apply the batch EM updates as well as the online up-
dates with parameters (η0, β) = (1.0, 0.9). The results
are shown in Figure 1(b). Again, the online updates out-
perform the solution of one batch EM after around 40
iterations and converge to a solution with a loss close to
10 batch EM updates. Moreover, the updates are stable
wrt the initial learning rate η0. The final value of the neg-
ative log-likelihood of the model obtained using η0 = 0.1
and η0 = 10.0 are 89.36 and 75.90, respectively.

7.3 COMPOUND DIRICHLET DISTRIBUTION

We consider online estimation of a compound Dirichlet
distribution (Gupta et al., 2011). In this case, the EM
updates for the model do not have a closed-form solution
and therefore, numerical techniques such as Newton’s
method (Nocedal & Wright, 2006) are used for perform-
ing the updates. The details are given in Appendix C.
As a result, the relative entropy inertia term also does
not admit a closed-form and thus, we use the sampling
approximation of the inertia term. (See end of Section 6.)
We consider 2000 samples from a 10 dimensional model
and perform batch EM updates as well as online updates
with mini-batch size equal to 100. In order to form the
inertia term, we use 2000 samples from the model and
use parameters (η0, β) = (1.0, 0.9) for the learning rate.
We use Newton’s method for optimization. The result
is shown in Figure 1(c). As can be seen, the online EM
algorithm effectively learns the model parameters. The
updates are stable for a lower or higher initial learning
rate. The final negative log-likelihood values for η0 = 0.5
and η0 = 2.0 are 10.09 and 10.08, respectively (results
not shown in the figure).



(a) (b) (c)
Figure 2: Combining models: results using simple averaging of the means and covariance matrices (avg.) compared to
our proposed model averaging (ent.) on (a) Fashion MNIST, (b) CIFAR-10, and (c) Covtype datasets. The number of
mixtures k as well as the number of machines M is shown on top of each plot. The sync step happens after every 5000
iterations of online EM on each machine.

7.4 DISTRIBUTED TRAINING OF GAUSSIAN
MIXTURES

We conduct experiments on combining the parameters
of Gaussian mixture models in a distributed setting. For
this set of experiments, we consider the Fashion MNIST6

(dim=784), CIFAR-107 (dim = 3072), and Covtype8 (dim
= 54) datasets. The number of machines for each dataset
is set to M = 3, 3, and 20, respectively. To achieve an
equal number of splits across machines, we consider a
subset of 60K, 60K, and 500K points from each dataset,
respectively. We set the number of mixtures k equal to the
number of classes, which amounts to k = 10 for Fashion
MNIST, k = 10 for CIFAR-10, and k = 7 for Covtype
dataset. We use (η0, β) = (0.05, 0.5) for all datasets.

At each trial, all the machines are initialized with the
same set of initial parameters. We consider synchronous
updates where the parameters of all machines are com-
bined into a single set of parameters at the end of each
step and propagated back to each individual machine for
the next step. Each machine receives a different set of
5000 observations at each step and the process is repeated
until one pass over the whole dataset is achieved.

We compare two parameter combining strategies: 1) sim-
ple averaging where mixture weights as well as the ex-
pected values of the conditional sufficient statistics (i.e.
means and covariances of each mixture component) are
averaged over all machines (Sanderson & Curtin, 2017),
and 2) our entropic combining of parameters as in (9)
where we average the complete data sufficient statistics.
The results are shown in Figure 2. As can be seen, the

6https://github.com/zalandoresearch/
fashion-mnist

7https://www.cs.toronto.edu/˜kriz/cifar.
html

8https://archive.ics.uci.edu/ml/
datasets/covertype

divergence based combining of the model provides a con-
sistently better performance. Specifically, it shows faster
convergence to a better solution. Additionally, on the
Fashion MNIST and Covtype datasets, the final com-
bined model has a lower negative log-likelihood using our
divergence based combining.

8 CONCLUSION AND FUTURE WORK

We provided an alternative view of the online EM algo-
rithm of Cappé & Moulines (2009) based on divergences
between the models. Our new formulation casts new in-
sights on the algorithm and facilitates finding the updates
for more complex models without the need for identifying
the sufficient statistics. The divergences between models
that we use as inertia terms are interesting in their own
right and are the most important outcome of this research.
These divergences can be approximated in cases where
the EM updates do not have a closed-form. Also, the di-
vergences between the models lead to a new technique for
combining models which is useful in distributed settings.

There are a number of intriguing open problems coming
out of the current work. All our divergences are based on
joint relative entropies where the new model is always in
the second argument. In online learning, the new model
is typically in the first argument (see e.g. (Kivinen &
Warmuth, 1997)). Also in the context of reinforcement
learning (Neu et al., 2017), the alternate joint entropies
for HMMs (with the new parameters as the first argu-
ment) have been used effectively. The alternate relative
entropies appear to be more stable. Therefore, the ques-
tion is whether there is a use of the alternate for producing
useful updates for minimizing the negative log-likelihood
of hidden variable models.
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A PROOF OF THEOREM 1

Proof. The online E and M steps in (Cappé & Moulines,
2009) are defined respectively as

Q̂t+1(Θ̃) = Q̂t(Θ̃) (10)

+ η̃t
(
EP (h| vt+1,Θt)[log p(h, vt+1| Θ̃)]− Q̂t(Θ̃)

)
,

Θt+1 =arg max
Θ̃

Q̂t+1(Θ̃) = arg min
Θ̃
−Q̂t+1(Θ̃), (11)

where

Q̂t(Θ̃) = Ep(h,v|Θt)
[

log p(h, v| Θ̃)
]
.

The relative entropy divergence between the hidden vari-
able models can be written as

DRE(Θt, Θ̃) =

∫
h, v

p(h, v|Θt) log
p(h, v|Θt)

p(h, v| Θ̃)

=

∫
h, v

p(h, v|Θt) log p(h, v|Θt)− Q̂t(Θ̃) . (12)

Note that the first term in (12) does not depend on Θ̃.
Additionally, for the EM upper-bound, we have

UΘ(Θ̃| vt+1) = Ep(h| vt+1,Θt)

[
log p(h|vt+1,Θ)

]
− Ep(h| vt+1,Θt)

[
log p(h, vt+1| Θ̃)

]
, (13)

where again the first term does not depend on Θ̃ and the
second term corresponds to the negative of the expectation
in (10). Comparing to Equation (4) with ηt = η̃t/(1− η̃t)
and ignoring the constant yields the same updates given
in (10) and (11).

B BREGMAN DIVERGENCE AND
EXPONENTIAL FAMILY

In this section, we review Bregman divergence and expo-
nential family as well as the required lemmas for deriving
the updates.

For a real-valued continuously-differentiable and strictly
convex function F : Rd → R, the Bregman diver-
gence (Bregman, 1967; Cichocki et al., 2009) DF (ψ̃, ψ)

between ψ̃ and ψ in the domain of F is defined as

DF (ψ̃, ψ) = F (ψ̃)− F (ψ)− f(ψ) · (ψ̃ − ψ) ,

where f(ψ) := ∇ψF (ψ). The gradient wrt the first argu-
ments take the form

∇ψ̃DF (ψ̃, ψ) = f(ψ̃)− f(ψ) ,

while the gradient wrt the second argument becomes

∇ψDF (ψ̃, ψ) = −∇2F (ψ) (ψ̃ − ψ) .

The Fenchel dual (Hiriart-Urruty & Lemarchal, 2001) of
the function F is defined as

F ∗(ψ∗) = sup
ψ′

{
ψ′ · ψ∗ − F (ψ′)

}
.

Assuming that the supremum is achieved at ψ, we have
the following relation between variables ψ and ψ∗

ψ∗ = f(ψ) , ψ = f∗(ψ∗) , and f∗ = f−1 ,

where f∗(ψ∗) := ∇ψ∗F ∗(ψ∗). Note that as a result
of convexity of F ∗, we can form the dual Bregman di-
vergence using F ∗ as the generating convex function.
The following equality holds for pairs of dual variables
(ψ,ψ∗) and (ψ̃, ψ̃∗)

DF (ψ̃, ψ) = F (ψ̃)− F (ψ)− f(ψ) · (ψ̃ − ψ)

+ f(ψ̃) · ψ̃ − f(ψ̃) · ψ̃

= −F (ψ) + f(ψ) · ψ︸ ︷︷ ︸
F∗(ψ∗)

+F (ψ̃)− f(ψ̃) · ψ̃︸ ︷︷ ︸
−F∗(ψ̃∗)

− ψ̃ · (f(ψ)− f(ψ̃))︸ ︷︷ ︸
f∗(ψ̃∗)·(ψ∗−ψ̃∗)

= DF∗(ψ
∗, ψ̃∗) .

Note that the order of variables is reversed when switching
to the dual divergence. Additionally, using the definition
of the dual function, we have

DF (ψ̃, ψ) = DF∗(ψ
∗, ψ̃∗) = F (ψ̃) +F ∗(ψ∗)− ψ̃ ·ψ∗ .

The following lemmas for combining Bregman diver-
gences are useful for our discussion of the EM updates.

Lemma 5. Forward Combination Let {αi}Ni=1 where
αi ∈ R+ and

∑
i αi > 0. We have

ψopt = arg min
ψ̃

∑
i

αiDF (ψ̃, ψi) = f∗
(∑

i αi f(ψi)∑
i αi

)
.

Proof. Taking the derivative of the objective function wrt
ψ̃ and replacing for the gradient of the Bregman diver-
gence with respect to the first argument, we have∑

i

αi

(
f(ψ̃)− f(ψi)

)
= 0 ,

which yields(∑
i

αi
)
f(ψopt) =

∑
i

αi f(ψi) ,

or ψopt = f−1
(∑

i αi f(ψi)∑
i αi

)
.

Using the fact that f−1 = f∗ completes the proof.



Corollary 6. Forward Triangular Equality∑
i

αiDF (ψ̃, ψi) −
∑
i

αiDF (ψopt, ψi)

=
(∑

i

αi
)
DF (ψ̃, ψopt) .

Lemma 7. Backward Combination Let {αi}Ni=1 where
αi ∈ R+ and

∑
i αi > 0. We have

ψ∗opt = arg min
ψ̃∗

[∑
i

αiDF∗(ψ
∗
i , ψ̃

∗)

=
∑
i

αi
(
F ∗(ψ∗i ) + F (ψ̃)− ψ̃ · ψ∗i

)]
=

∑
i αi ψ

∗
i∑

i αi
.

Proof. Taking the derivative of the objective function
wrt ψ̃∗ and replacing for the gradient of the Bregman
divergence with respect to the second argument, we have

−
∑
i

αi

(
∇2F ∗(ψ̃∗)

(
ψ∗i − ψ̃∗

))
= 0 .

Using the fact that ∇2F ∗(ψ̃∗) � 0 and rearranging the
terms concludes the proof.

Corollary 8. Backward Triangular Equality∑
i

αiDF∗(ψ
∗
i , ψ̃

∗) −
∑
i

αiDF (ψ∗i , ψ
∗
opt)

=
(∑

i

αi
)
DF (ψ∗opt, ψ̃

∗) .

In some cases, the value of F ∗(ψ∗i ) becomes unbounded
(e.g. negative entropy of the Dirac measure). However,
we can still apply Lemma 5 and 7 by dropping the F ∗(ψ∗i )
terms from the objective.

Lemma 9. Partial Combination Let {αi}Ni=1 where
αi ∈ R+ and

∑
i αi > 0. We have

ψopt = arg min
ψ̃

∑
i

αi
(
F (ψ̃)− ψ̃ · ψ∗i

)
= f∗

(∑
i αi f(ψi)∑

i αi

)
,

i.e.

ψ∗opt =

∑
i αi ψ

∗
i∑

i αi
.

Corollary 10.∑
i

αi
(
F (ψ̃)− ψ̃ · ψ∗i

)
+
(∑

i

αi
)
F ∗(ψ∗opt)

=
(∑

i

αi
)
DF (ψ̃, ψopt) .

C COMPOUND DIRICHLET
DISTRIBUTION

Compound Dirichlet distribution (also referred to as Pólya
distribution) Gupta et al. (2011) is commonly used to
model distribution over topics. A topic entails a distribu-
tion over words. More specifically, the compound Dirich-
let distribution includes a non-negative parameter vector
α > 0 corresponding to a Dirichlet distribution over top-
ics. The sampling process consists of sampling a topic
hn for the n-th document from the Dirichlet distribution.
The component hn,i corresponds to the probability of
sampling the i-th word. Next, a set of iid samples vn are
drawn from the topic. That is, vn,i denotes the frequency
of the i-th word and

∑
i vn,i is the total number of words

in the n-th document. Note that the sampled topics are
hidden and only the set of documents are given. The set
of model parameters equals to Θ = {α}.

The join distribution over the hidden topics and visible
documents can be written as

p(h, v|Θ) =
∏
n

Γ(α0)∏
j Γ(αj)

(
∑
j vn,j)!∏
j(vn,j !)

∏
i

h
αi+vn,i−1
n,i ,

where α0 =
∑
j αj and Γ(·) is the gamma function.

The marginal probability of the documents can be calcu-
lated by integrating out the hidden topics, that is,

p(v|Θ) =
∏
n

(∑
j vn,j

)
! Γ(α0)

∏
j Γ
(
αj + vn,j

)(∏
j vn,j !

) (∏
j Γ(αj)

)
Γ
(∑

j(αj + vn,j)
) .

The EM upper-bound can be written as

UΘ(Θ̃) = 1/N
∑
n

p(h| vn, α) log p(vn, h| α̃)

= 1/N
∑
n

p(h| vn, α) log p(h| α̃)

= log

(
Γ(α̃0)∏
j Γ(α̃j)

)
+ 1/N

∑
n

∑
j

p(h| vn, α) (α̃j − 1) log hj

= N log

(
Γ(α̃0)∏
j Γ(α̃j)

)

+
∑
n

∑
j

(α̃j − 1)

(
ψ(vnj + αj)− ψ(

∑
i

vni + α0)

)
,

where ψ(α) := ∂
∂α log Γ(α) is called the digamma func-



tion. The inertia term on the hand

DRE(Θ, Θ̃) =
Γ(α0)

Γ(α̃0)
−
∑
j

Γ(αj)

Γ(α̃j)

+

[∑
j

(αj − α̃j)
∑
v

Γ(α0)∏
i Γ(αi)

(
∑
i vi)!∏
i(vi!)

Γ(α0 +
∑
i vi)∏

i Γ(αi + vi)

×
(
ψ(vj + αj)− ψ(

∑
i

vi + α0)

)]
,

involves summing over all possible combinations of v
and therefore, is intractable. Alternatively, we can use
the approximate form of the upper-bound to perform the
updates.

A standard approach to minimize the upper-bound is the
Newton’s method (Nocedal & Wright, 2006), which re-
quires calculating the gradient and the Hessian matrix.
The gradient of the upper-bound can be written as

∂UΘ(Θ̃| V)

∂αi
= ψ(α̃0)− ψ(α̃i)

+ 1/N
∑
n

(
ψ(
∑
j

vnj + α0)− ψ(vni + αi)
)
.

The Hessian is

∇2UΘ(Θ̃| V) = ψ1(α̃0)11>−diag
[
ψ1(α̃1), . . . , ψ1(α̃d)

]
,

where ψ1(α) := ∂
∂αψ(α) is called the trigamma func-

tion.
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