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Motivation

Conducting pairwise comparisons

is a widely used approach.

Training on pairwise comparisons
through mini-batch learning can be

challenging.

We propose a novel approach by
incorporating global ranking into the

pairwise training framework.
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Pairwise Perceptual Study

Q: Select the image with better quality?



Pairwise Learning

e Comparisons are performed on a subset of all possible pairs of items (i, j).
o Hence, we call them local comparisons
o Global comparisons would take O(N?) with N images

e The pairwise comparison is repeated multiple times across different
evaluators.

e The maximum-likelihood estimate of the Bernoulli random variable that

picks image i over |:
Y

Nij + Nji

Empirical preference
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Number of times image i picked over image j Number of times image j picked over image i



Pairwise Learning

e RankNet* is perhaps the most commonly used approach for learning to rank
from pairwise comparisons.
e RankNet trains a network to extract a better representation for compared

items.
local «__ local ' local
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Parameters of a CNN

[*] Burges et al. “Learning to rank using gradient descent”, ICML 2005.



Pairwise Learning

(Subjective Study)
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Proposed Method
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Proposed Method: Rank-smoothed Learning

L®|P)= Y (ac;;?al+(1—a)cg;m) --------- - Loss

Ci™ = —pf; " log(qi;) — (1 — p§; ™) log(1 — gs5)

{qm =api + (1 —a)pi;", (i,]) € PJ

=> The parameter 0 < a <1 controls the trade-off between the local and the global loss.



Proposed Method

L(©|P) = Z (aC,}‘}?al+(1—a) C’flj‘.’ba‘) --------- > Loss

3™ = —pi; " log(qi;) — (1 — p§; ™) log(1 — gs5)
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Approximated by Rank Aggregation method*

[*] Negahban, et al. “lterative ranking from pairwise comparisons”, NIPS, 2012.



Rank Aggregation

e The algorithm of Negahban et al (Rank Centrality) constructs a Markov chain
transition matrix II:

1 oc . .
M, = { T P L #
/| ocal S
1 - Tz (B) Dk (3,k)EP P =]
> d__ (i) denotes the maximum out-degree of node i.

=> The stationary distribution of IT approximates global ranking probabilities:

global 71-7:
D;; =
T + T
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Smoothing Probability Estimates

e In many applications such as word embedding, smoothing the estimated
probabilities of the items results in an improved performance.
e OQOur f-smoothed version with parameter = O:

pEetl m
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e /=0 — uniform distribution
e /=1 — identity mapping

e /S >1 — skewed distributions towards popular items
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Results (Synthetic Data)

= Random samples (N=500) from random power-law distribution
-> The number of comparisons per pair (z,) 1 = optimal a 1

€ Local comparisons becomes more accurate
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Results (Synthetic Data)

= Random samples (N=500) from random power-law distribution
=>  The number of pairs () 1 = optimal ¢ — 0

€ Local comparisons become less important than global ranking
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Results (Large scale perceptual comparisons)

e Dataset: ~17M pairwise comparisons from 250K images
o 5 human raters per pair
o A minimum of 13 pairs per image

e Trained multiple Inception-v2 CNNs
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Results

Predicted (Ground Truth)

(a) 2.04 (2.47) (e) 2.1 (2.76)
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Conclusions

e \We proposed a method for a more efficient learning from image pair

comparisons.

e Combining the pairwise empirical comparisons with global ranking of images

leads to better learning.

e Note that our approach is tested on generic synthesized data, implying that it

can be employed beyond the scope of image quality assessment.
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Thanks!



