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Mirror descent

Wei1 = 1(F(ws) — hVL(ws))
(where f is (coordinate-wise) strictly monotonic link function)
Gradient Descent (GD):
Wsi1 = ws — hVL(ws) (f(w) = w)
Unnormalized Exponentiated Gradient Descent (EGU): [KW97]

Wsi1 = ws © exp(—h (VL(ws)) (f(w) = log w)
(with w; > 0)
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Major differences between the two families

GD: backprop, kernel methods
EGU: Winnow, expert algorithms, Boosting, Bayes

Setup: 128x128 Hadamard matrix

Permuted rows are instances, labels are any fixed column
EGU on Hadamard
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x-axis: k =1..128
y-axis: all 128 weights Loss when trained on examples 1..k

Upshot: After half examples, GD has average loss = 1/2
EG family converges in log(n) many examples
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Major differences between the two families

GD: backprop, kernel methods

EG: Winnow, expert algorithms, Boosting, Bayes

Setup: 128x128 random + 1 matrix

Rows are instances, labels are the first column, square loss

GD on Random +1 EGU on Random +1

- 1
—weights
—average loss
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x-axis: k =1..128
y-axis: all 128 weights Loss when trained on examples 1..k

Upshot: After half examples, GD has average loss ~ 1/2

EG family converges in log(n) many examples
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Surprises

When linear neuron is trained with GD, then
lower bound for linear decrease of avg. loss
[WV05]

Reparameterize weights w; by u?
[Akin79, GWBNS17]

Continuous GD on u;
simulates continuous EGU on w;

Discretizations learn Hadamard with Back-
prop with essentially O(log n) examples

Experimentally indistinguishable from dis-
crete EGU
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f(w) = —VL(w)

Main examples:
GD (f(w) = w) and EGU (f(w) = log(w))

Tempered Logarithm

Between f(w) = logw and f(w) = w:
log,(w) == 2 (w!™ ™ —1)
(for 7 € [0,1]
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Reparameterizing cont. MD w. link f as cont. GD

Main Theorem: For the reparameterization function w = g(u)
with the property that range(q) = dom(f),
the two updates

f(w)=—VL(w) and 0 =—VLioq(u),

coincide if that w(0) = g(u(0)), range(q) C dom(F), and we have
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Link
f(w) = log(w)
Reparameterization

w=gq(u)=1auou

u=2J/w

(Jr(w)) "= (diag(w) ™')™ = diag(w)
Jg(u)(Jg(u)) "= 1/2diag(u) (/2diag(u)) " = diag(w)
Conclusion
Ic;g(w) = —VL(w) equals u=—VLloq(u)
—_————
Vul (Y/auGu)
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Link
flw)=-1ow
Reparameterization

w = g(u) = exp(u)
u = log(w)

(Jr(w)) "= diag(1 @ (w © w)) " = diag(w)
Jg(u)(Jg(u)) " = diag(exp(u)) diag(exp(u)) " = diag(w)?
Conclusion
(-1 % w) = —VL(w) equals u=-VLloqg(u)
Vul (exp(u))
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Link
f(w) =log, w

Reparameterization

y— 2 vvzzr
2—1T1
(Jiog, (W)= (diag(w) ")~ = diag(w)"
I al)) = (B57)7 diag(w)=)” = diag(w)”
Conclusion
Io.gT(w) = -VL(w) equals u=— VLloq(u)

2

Vil ((352) 77 )
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Open problems

» World of continuous updates more succinct

Euler discr.: Flw(t + h)/)7 — flw(t)) = —-VL(w(t))

— w(t+h) = L(f(w(t)) — hVL(w(t)))

» Under what conditions does the discrete MD
track continuous MD

Discretization of reparameterized EGU as GD tracks discrete EGU
well enough so that the same regret bounds hold [AW20]

Discretization of reparameterized EGU as GD sample efficiently
learns Hadamard problem
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