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Background: Major differences between two families

GD: stochastic gradient descent, backprop, kernel methods,
Newton
EG: Winnow, expert algorithms, Boosting, Bayes

Performance of GD linear in d for sparse targets

Performance of EGU linear in log d for sparse targets

Recent: Square reparameterization trick reintroduced in
[GWBNS17]

EGU can be reparameterized as GD:
Reparameterized forms act like EGU (same regret bounds)
[AW20a,b]

Thus we can learn sparse targets with GD
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My view of Machine Learning was broken

My previous view:

GD - squared Euclidean regularization
==== BIG CHASM ====
EGU - entropic regularization

New view:

GD on neural net with complete input layers
====(((((

((BIG CHASM ====
GD on spindly networks

But is it beautiful?
How Beauty Leads Physics Astray by Sabine Hossenfelder
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https://www.youtube.com/watch?v=Q1KFTPqc0nQ
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Paradigmic sparse linear problem
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1


± matrix random or Hadamard

After receiving example (xt , yt)
and incurring loss (x>t wt − yt)2, update:

additive, GD: wt+1,i = wt,i − η 2xt,i (x>t wt − yt)︸ ︷︷ ︸
gradient

multiplicative, EGU: wt+1,i = wt,i exp(−η2xt,i (x>t wt − yt))
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Linear regression
Major differences in following paradigmatic setup:
128x128 Hadamard matrix
Permuted rows are instances, labels are any fixed column

x-axis: k = 1..128
y-axis: all 128 weights Average loss when trained on examples 1..k

≥ 1− k/d

Upshot: After half examples, GD has average loss = 1/2
EG family converges in log d many examples 5 / 32



Linear regression
Major differences in following paradigmatic setup:
128x128 random ± 1 matrix
Rows are instances, labels are the first column

x-axis: k = 1..128
y-axis: all 128 weights Average loss when trained on examples 1..k

Lower bound (experimental) becomes (1−k/d)2 =1−2 k/d + (k/d)2

Upshot: After half examples, GD has average loss ≈ 1/4
EG family converges in log d many examples 6 / 32



Hardness of Hadamard for GD w. SVD based techniques
I Linear decay of loss remains for GD even if

I linear neuron with kernel inputs [WV05]

x
→

φ(x)
For k # of examples, 1− k/d lower bound remains
(SVD based techniques)

I neuron with any transfer function σ and kernel inputs [DW14]
σ(·)

φ(x)
Slightly weaker linear lower bound

I NEW: 2 layer complete linear neural net, any φ(·) map, any
initialization

≥ 1− (2k + 1)/d

SVD techniques become weak for more than 2 linear layers
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Recent surprise and goal of this talk
Hadamard Problem: Instances are rows of the Hadamard matrix,
labels are one of the features (e.g. w = e1)+ + + +

+ − + −
+ + − −
+ − − +


Conjecture [DW14]: For the Hadamard problem all neural nets
trained w. GD incur loss at least 1− k/d after seeing k examples

Surprise: Spindly GD trained linear net cracks shifted Hadamard
with loss ≤ log d

k
ui

ui
Simulates EGU [AW20]

Square reparameterization trick reintroduced in [GWBNS17]
Here: Lower bound of ≥ 1− k/d for any GD trained net with a
fully connected input layer
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Old versus new lower bounds

Previous SVD based lower bound technique of [WV05]
+ Holds for any expansion
− Only for single linear neuron
− Can’t go beyond 2 layer linear
− Restricted to square loss

NEW: Hold for any GD trained any neural net of any depth
with a fully connected input layer
− Does not hold for any expansion

(essentially Hadamard or Gaussian)
+ Holds for single target such as constant feature e1

+ Very general losses

Crux: GD trained w. fully connected input layer
implies rotational invariance of the predictions
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x1

x2

x3

...

xn

...

...
...

...

input
layer 0

hidden
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4layer 1

- fully connected input layer with rotation invariant initialization at
1st hidden layer
- weights of first hidden layer trained with GD, any learning rates
- one output node, any initialization
- otherwise any architecture and initialization
- any differentiable transfer functions at the internal nodes
- very general loss function
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Minimal loss function assumptions

L(y , ŷ) differentiable in ŷ and
minŷ

L(−1,ŷ)+L(+1,ŷ)
2 is some positive constant c

Simplifying assumption for the talk: loss is convex

Then for proving lower bounds, any randomized algorithm ŷ can
be turned into a deterministic algorithm ŷdet:

ŷdet(x|(Xtr, ytr)) = E [ŷ(x|(Xtr, ytr))]

which by Jensen’s inequality has loss no greater than the expected
loss of ŷ on any instance

For simplicity we use square loss, i.e. c = 1
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I) Hardness of learning the constant feature e1

For GD trained neural net with a fully connected input layer
Start with the problem (H, 1):
- instances are orthogonal rows of H

d ,d
- constant target H e1 = 1
Too easy
Feed the net randomly sign flipped rows (s h, s), for s = ±1
Net trained with GD. So gradients & weights at input nodes are
linear combination of seen instances
Input nodes don’t help for predicting label of new orthogonal
instances
Also past labels have no info
After seeing k examples, best prediction on d − k new is 0
Therefore, average loss ≥ d−k

d = 1− k
d
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It’s all about rotation invariance of the predictions

A prediction algorithm ŷ(x|(Xtr, ytr)) is called rotation invariant if

ŷ(Ux|(XtrU>, ytr)) = ŷ(x|(Xtr, ytr)), for any orthogonal matrix U

GD trained neural nets with fully connected input layers are
rotation invariant because gradients/weights at input nodes are
linear combinations of the training instances

∂f (x ·w)
∂w = f ′(a)|a=x·w x

Crux: Any input node that receives an input feature,
must receive all input features

Newton, versions of AdaGrad & Adam, ..., also rotation invariant
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Interlude
EGU on single neuron

wi
wt+1,i = wt,i exp

(
− η xt,i (x>t wt − yt)

)
and GD on spindly network

ui

ui u2
t+1,i = u2

t,i

(
1−η/2 xt,i (x>t ut�ut−yt)

)2

both decidedly not rotation invariant:
I access individual features
I rank grows exponentially fast

•u = − 1/2
(
u�u · x − y

)
u�x exactly simulates

•

log(w)︸ ︷︷ ︸
•

w�1/w=2
•
u�1/u

= −η
(

w︸︷︷︸
u�u
·x − y

)
x
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Hardness for any rotation invariant algorithm

Initial problem ( H
d ,d
, 1

d ,1
).

Too easy
For each sign pattern s∈{+1,−1}d consider problem (diag(s)H,s)
Define a rotation matrix Us as 1/

√
d diag(s)H

The predictions of any rotation invariant algorithm on
(diag(s)H, s) and (diag(s)HU>s , s) = (

√
dI, s) are the same

Now fix s1:k . The algorithm receives the same first k training
examples for each problem (

√
dI, s). Also since s(k+1):d is chosen

uniformly, each of the d − k unseen examples is labeled ±1 with
equal probability. So the best prediction on these d−k examples is
0, incurring square loss at least 1 for each unseen example

Conclusion: Expected average loss on all d examples is at least
(d − k)/d = 1− k/d
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Extensions

I Lower bound holds even for rotation invariant initialization of
hidden nodes of first layer
(which must all be connected to all inputs)

I There are versions of the problem where the features are 0/1
instead of ±1

I Only minimal requirements on the loss needed:
L(y , ŷ) differentiable in ŷ and
minŷ

L(−1,ŷ)+L(+1,ŷ)
2 is some positive constant c

16 / 32



Not some obscure oscillating function
that requires deep networks


−1 −1 1 −1 −1

1 −1 −1 −1 −1
1 −1 1 −1 −1
1 1 −1 1 1
1 −1 1 1 1




0
0
0
1
0

 =


−1
−1
−1

1
1


± matrix random or Hadamard

I Simple linear functions
I Can’t be learned by GD with complete input layer
I But can be learned by spindly
I Essentially for GD, sparse functions seem to require sparse

networks
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Extensions cont.

I Only slightly weaker linear lower bound for the case
when entries of X

d ,d
are i.i.d. Gaussian

and the target is first column Xe1:

After seeing k examples, the expected average square loss on
all d examples is at least (1− k/d)2 = 1− 2 k/d + (k/d)2

(so far only for square loss)

I Experimentally the same lower bound for square loss holds for
random ±1 matrices and single feature targets,
but no proof yet
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In plots

average loss (1− k
d )2 good weight remaining 999 weights

X Gaussian, target Xe1
LLS provably optimal among ro-
tation invariant algs
expected average loss (1− k

d )2

X random ±1, target Xe1
LLS same behavior
no proofs yet
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Is there a method here?

Structure of neural net / update
−→ invariance
−→ lower bound

additive multiplicative

rot. invariance ŷ(Ux|(XtrU>, ytr)) ŷ(Uxz>V>|(UXtrZ>trV>, ytr))

= ŷ(x|(Xtr, ytr)) = ŷ(xz>|(XtrZ>tr , ytr))

linear comb. w = X>tr a W = XtrCZ>tr
hard problem Hadamard ???

lower bound 1− k/d ???
[WKZ14]
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The future is open

For Hadamard instances:
I We showed above that GD trained neural nets with a complete

input layer cannot learn a single target sample efficiently.
I However any single target feature y can be learned when

inputs are transformed by the map φ(H) = y
I Conjecture: The d target features cannot be learned

with any φ(·) map when we average over targets
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From XOR to Hadamard - φ helps EGU, GD beyond help

d

log d︷ ︸︸ ︷
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+ + +
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
φ−→

d︷ ︸︸ ︷

+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
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
b 1 b 2 b 3 1 b 1 b 2

b 1
b 2 b 3

b 1
b 3

b 2
b 3

b 1
b 2

b 3

φ maps a log d bit pattern b into all 2log d target products
I Products hard to learn from log d bits by any alg.
I Easy to learn by EGU after expansion with φ
I φ(b)·φ(b̃)=

∑
I⊆1.. log d

∏
i∈I bi b̃i =

∏log d
i=1 (1+bi b̃i ) is O(log d) [TW02]

I Hard to learn with any kernel (i.e. any feature map φ)
See related discussion on learning DNFs w. Winnow [MW98] 22 / 32



Big picture

The Hadamard problem is the exponential expansion of a
cryptographically secure problem,
which allows multiplicative updates and their GD
reparameterizations to learn this problem sample efficiently

Paradox: GD and LLS optimal of φ(Y ) = Y
But that expansion is good for EGU and L1
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Sufficient/insufficient conditions for rotation invariance

1. Fully connected input layer, rotation invariant initialization @
nodes of 1st hidden layer, all learning rate schedules at these
nodes must be invariant under rotating the instances
Note that dependence of learning rates on dot products w · x
and lengths ‖x‖ is rotation invariant

2. GD, complete input layer, rotation invariant initialization,
orthogonal instances, any learning rates @ nodes of 1st hidden
Since the instances are orthogonal, the coefficients of the past
instances (which depend on the learning rates) don’t matter
when you compute dot product with new instances

24 / 32



3. GD, complete input layer, rotation invariant initialization,
non-orthogonal instances, any learning rates @ nodes of 1st
hidden layer

I For Gaussian data any linear combination of instances still
gets average expected error essentially the same as we already
have in the lower bound, so tweaking learning rates for linear
predictors does not help
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4. Complete input layer, W 0 = I, Hadamard instances, η = 0 for
bottom layer, spindly on top
- Input layer no effect, cracks Hadamard

W = I
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5. Single linear neuron, Hadamard instances, feature dependent
learning rates

Use feature private learning rates to simulate EGU as GD for
cracking Hadamard:

wt+1 = wt + Nt(yt − ŷt)xt Nt = diag(ηt,1, . . . , ηt,d ),

where ηt,i = ηwt,i
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Rotation invariance of on-line Newton

Inductive hypothesis: Under transformation xt 7→ Uxt for all t
we have wt 7→ Uwt .

Suppose it holds for wj , j ≤ t and we show it holds for wt+1.

wt+1 = wt − ηA−1
t ∇t , At = εI +

∑
j≤t
∇j∇>j , ∇t = (ŷt − yt)xt

Since ŷj = w>j xj 7→ w>j U>Uxj = ŷj , we have ∇j 7→ U∇j for
j ≤ t, so At 7→ UAtU>. Therefore:

wt+1 7→ Uwt − ηUA−1
t U>U∇t = Uwt+1
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Versions of Adagrad

I Diagonal version:

wt+1,i = wt,i −
η√

ε+
∑

j≤t ∇2
j,i
∇t,i

Clearly not rotation-invariant, but when xt,i = ±1 for all t, i ,
then ∇2

j,i = (yt − ŷt)2, i.e. the effective learning rate is shared
among all coordinates and rotation invariance holds.

I Full version:

wt = wt − η
√

At∇t , At = εI +
∑
j≤t
∇j∇>j

Rotation invariant, proof analogous to On-line Newton
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Adam

I Adagrad with momentum and exponentially decaying memory
on the past

I Essentially the same arguments as for diagonal Adagrad:
generally not rotation invariant, but for ±1 valued data it is
rotation invariant.
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[VAW] and [FW]

wt = A−1
t

∑
j≤t−1

yjxj , At = εI +
∑
j≤t

xjx>j .

VAW is also rotation invariant: under transformation xt 7→ Uxt for
all t, we clearly have At 7→ UAtU>, so A−1

t 7→ UA−1
t U>, and

thus

wt 7→ UA−1
t U>

∑
j≤t−1

yjUxj = UA−1
t

∑
j≤t−1

ytxj = Uwt
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But is it beautiful?

How Beauty Leads Physics Astray by Sabine Hossenfelder

We all have become Physicists.
We don’t understand how neural networks work

We can only study this natural phenomenon
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