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Abstract

The link with exponential families has allowed k-
means clustering to be generalized to a wide vari-
ety of data-generating distributions in exponential
families and clustering distortions among Breg-
man divergences. Getting the framework to go be-
yond exponential families is important to lift road-
blocks like the lack of robustness of some popula-
tion minimizers, which is carved into their axiom-
atization. Current generalizations of exponential
families like the q-exponential families or even
the deformed exponential families fail at achiev-
ing the goal. In this paper, we provide a new at-
tempt at getting a complete framework, grounded
in a new generalization of exponential families
that we introduce, called tempered exponential
measures (TEM). TEMs keep the maximum en-
tropy axiomatization framework of q-exponential
families, but instead of normalizing the measure,
normalize a dual called a co-distribution. Numer-
ous interesting properties arise for clustering, such
as improved and controllable robustness for pop-
ulation minimizers, that keep a simple analytic
form.

1 INTRODUCTION

Compared to supervised learning, clustering is a loosely
formulated problem. It is not clear which objects to clus-
ter (Bonnier, 1887) and which function to optimize (von
Luxburg et al., 2012). Among techniques, k-means is con-
ceivably the most popular clustering algorithm. Decades
after its introduction (Lloyd, 1982; Steinhaus, 1956), k-
means remains hugely popular (Flach, 2012; Hastie et al.,
2002) and still has a very active research agenda (Paul et al.,
2021; Vellal et al., 2022). k-means has a comparative ad-
vantage over other techniques from two standpoints: the
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objects clustered are equivalently the expectation param-
eters of Gaussians with identity covariance (Nielsen and
Garcia, 2009, pp 17). Thus, there is a sound statistical inter-
pretation of the objects being clustered (or the parameters
learned), and the eventual generative process of the training
data (Vellal et al., 2022). Also, the loss optimized has solid
information theoretic grounds: it is a Bregman divergence
known as squared Mahalanobis distance, which stems from
the KL divergence between two such Gaussians. This very
elegant property can be extended “above” the Gaussian dis-
tribution to any exponential family (Banerjee et al., 2005b),
generalizing the clustering losses used to general Bregman
divergences, which leads to improved designs in specific
application areas with practical implications (Févotte et al.,
2009).

In fact, this property can be extended further above exponen-
tial families, towards q- and deformed- exponential families
using escort distributions (Nock et al., 2017, Theorem 3),
(Amari et al., 2012; Vigelis and Cavalcante, 2011), but there
is no more “novelty” on the parameters’ side as Bregman
divergences are kept as distortions between parameters.

Getting such novelty would be crucial for clustering: the
cluster centers, also called population minimizers that elicit
the most general clustering algorithms belong to a small set
from the analytic standpoint, with one, the arithmetic aver-
age, being ubiquitous for all Bregman divergences (Banerjee
et al., 2005b, Proposition 1). This is an issue for clustering
in terms of robustness to outliers (Amari, 2016, Section
11.1.6). For example, the arithmetic average lacks robust-
ness: adding a single point that progressively drifts away
will drag a cluster center arbitrarily far away from its ini-
tial value, bringing considerable instability to clustering. A
solution to this problem cannot easily arise within exponen-
tial families, nor q-exponential nor deformed exponential
families because the arithmetic average as maximum likeli-
hood estimator is carved in their axiomatization (Barndorff-
Nielsen, 1979, pp 137). Adding robustness is not necessarily
an issue by going “above” Bregman divergences (Nock et al.,
2016; Vemuri et al., 2010), but either the connection with
distributions is lost or substantially departs from exponen-
tial families. Establishing a new generalization is not trivial
since it has to go through extending all key objects at play,
including (i) the distributions (i.e., generalizing exponential
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families), (ii) information-theoretic distortions between dis-
tributions (KL divergence), (iii) parameter-based clustering
distortions (Bregman divergences), (iv) an actionable iden-
tity between the distortions in (ii) and (iii), and of course (v)
population minimizers (f -means).

We know of no approach that gets above exponential fami-
lies and covers (i) through (v) while conveniently expanding
the realm of distortions beyond Bregman divergences.

Our paper is a proposal that achieves this goal. While
our contributions thus span all steps from (i) to (v) (Table 1
indicates where to find our contribution on each), the benefit
for downstream clustering is simple: it provides improved
robustness for population minimizers. Technically speaking,
our key thread is close to Tsallis’ nonextensive statistics
framework (Tsallis, 2009), inclusive of the specific arith-
metic developed in its context (Nivanen et al., 2003), but
with an early tweak: we do not normalize the solution of
maximum entropy to a distribution. Instead, we normal-
ize a dual, which we call the co-(tempered exponential)
distribution (COD). The unnormalized solution of the max-
imum entropy formulation is called tempered exponential
measure (TEM). This is a major difference with work that
followed the Amari-Naudts-Tsallis q-exponential families,
the deformed exponential families, and their escort distri-
butions, which are all normalized (Amari, 2016; Naudts,
2011; Tsallis, 2009). TEM/COD depend on a parameter t
and as tÑ 1, both the tempered exponential measure and
its co-distribution converge to the same exponential family.
Maintaining unnormalized measures is the trick that brings
improved robustness for clustering; it creates an unbalanced
clustering problem whose parameter distortions, generaliz-
ing Bregman divergences, belong to a broad subset known
as conformal Bregman divergences (Nock et al., 2016).

Our results in (i) to (v) have wider interest than clustering;
we establish additional results, such as simple and elegant
closed forms for key functions including the cumulant (The-
orem 3.2, unlike, e.g., q-exponential families) and the total
mass of the TEM (Lemma 3.3), etc. To ease reading, all
proofs and additional experiments are given in an Appendix,
denoted for short as “App”.

2 PROBLEM AND RELATED WORK

For space constraints, we shall reduce technicalities and
jargon related to exponential families to their minimum.
We refer to textbooks in mathematical statistics (Barndorff-
Nielsen, 1979, Chapter 8) or information geometry (Amari
and Nagaoka, 2000, Section 4.2) for extensive coverage. An
exponential family can be obtained by maximizing Shan-
non’s entropy subject to normalization and conditions on the
arithmetic average being the maximum likelihood estimator
(Barndorff-Nielsen, 1979); its density has the general form

pθpxq 9 exppθJϕpxq ´Gpθqq, (1)

Item Brief description Where?
(i) (tempered exponential) measures Thm. 3.2
(ii) IT distortion Eq. (19)
(iii) parameter distortion Eq. (20)
(iv) relationship (ii) vs (iii) Thm. 4.1
(v) population minimizers Lem. 5.1, 5.2

Table 1: Correspondence between the key items in the Intro-
duction and where to find them in this paper.

where ϕ is the sufficient statistic, θ is the natural param-
eter, and G, the cumulant or partition function, ensures
normalization (the “9” symbol simplifies the carrier or base
measure). The natural parameter holds the information
about the “individual” distribution inside its family, which
is encoded in the cumulant function G. The connection
between exponential families and clustering à-la-k-means
is simple to state and enlightening on what such clustering
achieves. Given any two distributions Pi, Pj with densities
pi, pj , a popular information-theoretic distortion measure
for their comparison is an f -divergence (Ali and Silvey,
1966; Csiszár, 1963). In our context, the case of the reverse
KL divergence is especially important:

F pPi}Pjq
.
“

ż

fpdpi{dpjqdpj , f
.
“ ´ log . (2)

Suppose then we have a set of distributions tPiumi“1 and
wish to find a set of distributions tQjukj“1, k being user-
fixed, minimizing the following loss function:

F ptPiu
m
i“1, tQju

k
j“1q

.
“ Eirmin

j
F pPi}Qjqs. (3)

Without any further assumption, this well-founded formu-
lation of the clustering problem fails at two hurdles: (i) the
potential intractability of the integrals to compute (2) and (ii)
the formulation and/or computation of the so-called popula-
tion minimizers Q. in (3). A simple assumption solves both
problems simultaneously: if all distributions are assumed to
belong to the same exponential family (characterized by a
strictly convex differentiable cumulant function G), then

F pPi}Qjq “ DGpθi}ϑjq, (4)

the Bregman divergence between the natural parameters and
with generator G:

DGpθi}ϑjq
.
“ Gpθiq´Gpϑjq´pθi´ϑjq

J∇Gpϑjq. (5)

The original k-means clustering is obtained for DG being
squared Mahalanobis distance, which corresponds to dis-
tributions being Gaussians with identity covariance. For
any Bregman divergence, the right population minimizer
in (3) is always the average (Banerjee et al., 2005b). This
allows generalizing the k-means algorithm to all Bregman
divergences by repeatedly allocating points to their closest
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center Bregman-wise and updating cluster centers with their
cluster’s average. A Bregman divergence being asymmet-
ric in general, one can choose to flip arguments in (4): the
left population minimizer is then an f -mean of the form
∇G´1E∇Gp.q.

To summarize, k-means clustering operates in disguise on
parameters of distributions using distortions that can be
understood from both the information geometric (4) and
information-theoretic (2) standpoints. Such distributions
can naturally be related to a generative process for the ob-
served data and the whole algorithm can also be understood
from a Bayesian standpoint (Neal, 2004) where priors and
posteriors are modeled with the initial “guess” of an expo-
nential family. All key steps to get the complete characteriza-
tion consolidate steps (i) to (v), sketched in the introduction.

In the context of clustering, a relevant question is to get this
scheme to work beyond its restriction of the “same exponen-
tial family” assumption. Alleviating the assumption of the
same exponential family is not straightforward: doing so
decomposes the KL divergence into a sum of two Bregman
divergences, one between the cumulants (Nock et al., 2017,
Theorem 24). More important is, in fact, getting above
the “exponential family” assumption because the population
minimizers – in particular, the average – can suffer from a
lack of robustness. Unfortunately, this lack of robustness is
to some extent carved into the axiomatic definition of expo-
nential families (Barndorff-Nielsen, 1979, pp 137), (Amari,
2016, Section 2.8.1) and Bregman divergences (Banerjee
et al., 2005a).

Natural candidates to rise above exponential families are
q-exponential families and deformed exponential fami-
lies (Amari, 2016; Amari et al., 2012; Naudts, 2011). q-
exponential families essentially replace the exp in (1) by a
generalization, the q-exponential:

expqpzq
.
“ r1` p1´ qqzs

1{p1´qq
` , (6)

with rzs`
.
“ maxt0, zu and q ě 0 (q ą 0) guarantees the

(strict) convexity of the function. Deformed exponential
families go further in the generalization by replacing the
q-exponential by a χ-exponential for some χ positive non-
decreasing, where its reciprocal defines the χ-logarithm:

logχpzq
.
“

ż z

1

1

χptq
dt, (7)

the q-exponential being derived for χpzq .
“ zq. An escort

distribution can be defined, whose density has the general
form p̃θpxq9χppθpxqq.

It turns out neither q-exponential nor deformed exponential
families allow to generalize the Bregman divergence part in
the RHS of (4), see for example Nock et al. (2017, Theorem
3). To get robustness, one previous work departs from both
Bregman divergences and exponential families, Liu et al.

(2012): in this case, the Bregman divergence, which com-
putes the difference between a convex function and a tangent
plane, is replaced by the distance to the projection on a tan-
gent plane, called a total Bregman divergence. A link is
established with distributions, but these are substantially
different from exponential families as their natural param-
eters belong to a submanifold defining a curved family of
distributions. Our objective is rather to go above exponen-
tial families with a sufficient broadening of the Bregman
divergence part. Ideally, the divergence part would pave
the way for new properties such as improved robustness for
clustering, and the distribution part, beyond generalizing ex-
ponential families, would include guarantees of “proximity”
to exponential families as new properties on the parameters’
side appear. This is important given the ubiquitous nature
of exponential families as a tool in ML.

Finally, we also note a recent breakthrough tied to exponen-
tial families: instead of an information theoretic / informa-
tion geometric link as in (4), Janati et al. (2020) establish a
regularized optimal transport / information geometric link.
However, this was only done for Gaussian measures (not
necessarily normalized).

3 TEMPERED EXPONENTIAL
MEASURES AND CO-DENSITIES

We make extensive use of the q-exponential function defined
in (6); in our context, parameter q is renamed t to make a
clear distinction of the notations we use. We define the
inverse of the t-exponential (Naudts, 2011):

logtpzq
.
“

1

1´ t

`

z1´t ´ 1
˘

´

lim
tÑ1

logt “ log
¯

. (8)

We introduce notions of duality using t.

Definition 3.1. The dual t˚ of t is t˚ .
“ 1{p2´ tq; the dual

pexptq
˚ of expt is the perspective transform:

pexptq
˚
pzq

.
“ t˚ expt˚

´ z

t˚

¯

. (9)

Last, we define in the same way the dual plogtq
˚ of logt.

We remark that if t P r0, 1s then t˚ P r1{2, 1s. As already
outlined in the introduction, we shall make use of unnormal-
ized measures – and by extension, unnormalized densities –
when dealing with such objects, a tilda shall indicate it is
not necessarily normalized. The following gives the first ex-
ample, whereϕ : XÑ Rd denotes a sufficient statistics and
~~~ an expectation parameter (boldfaces are used for vector
notations).

P̃t|~~~
.
“

$

&

%

p̃

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

EP̃ rϕs
.
“

ş

ϕpxq p̃pxqdξ “ ~~~,
ş

p̃pxq1{t
˚

dξ “ 1,
p̃pxq ě 0,@x P X.

,

.

-

(10)
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denotes a set of unnormalized densities.1 Following the
classical approach, we elicit the element(s) of P̃t|~~~ whose
maximizing a generalized notion of the Tsallis entropy (Cap-
ital P̃ denotes the measure of density p̃ wrt ξ):

HtpP̃ q
.
“ ´

ż

ψtpp̃pxqq dξ, (11)

ψtpzq
.
“ z logt z ´ logt´1 z. (12)

With Tsallis entropy2 and replacing in (10) 1{t˚ by constant
1, P̃t|~~~ would cover probability density functions related
to t=q-exponential families (Naudts, 2004) (in fact, their
escorts). The change 1Ñ 1{t˚ may look cosmetic in the def-
inition but has dramatic consequences in the whole chain of
results that leads from P̃t|~~~ to clustering. The first major dif-
ference is that q-exponential families do not admit a closed
form expression for the cumulant G in (1) (Naudts, 2004, p
12). Our solution does and leads to an elegant generaliza-
tion of the cumulant function for exponential families. The
theorem makes use of a generalization of the subtraction,
at, in the t-arithmetic introduced in Nivanen et al. (2003):

z at x
.
“

z ´ x

1` p1´ tqx
. (13)

Theorem 3.2. For any t P r0, 1s and ~~~ P Rd, the solution
arg maxP̃t|~~~

Ht has the non-normalized density

p̃t|θpxq “
exptpθ

Jϕpxqq

exptpGtpθqq
“ exptpθ

Jϕpxq at Gtpθqq,

(14)
where

Gtpθq “ plogtq
˚

ż

pexptq
˚pθJϕpxqqdξ (15)

is the (convex) cumulant ensuring the normalization of the
dual p̃1{t˚ ; assuming Gt differentiable, the correspondence
θ “ ∇G´1

t p~~~q also holds and θ is called a natural param-
eter.

(Proof in App, Section II) Hereafter, we assume t P r0, 1s,
which is technically convenient in our context, but note that
Theorem 3.2 operates on a wider range of t ă 2 values. We
introduce the nomenclature of tempered exponential mea-
sures (TEM) whose (non-normalized) densities are given

1We omitted the domination condition of p̃ wrt ξ for simplicity;
importantly, the expectation E also uses the unnormalized mea-
sure P̃ . Checking the argument of an expectation allows to infer
whether the inner density is normalized.

2Amid et al. (2019) introduce this slightly different notion
of entropy which recovers the Itakura-Saito convex generator
ψ2pzq “ z´ log z´1 at tÑ 2. Following the standard definition
of the Tsallis entropy and discarding the last term in ψt does not
affect our construction. Also note that we handle the constant term
in (11) by subtracting from the integrand and adding back outside
of the integral. Thus, we assume that the constant t˚ inside the
second term is unaffected by the integral.

by (14) and their co-densities (COD) which are the (nor-
malized) “duals” defined by pp̃t|θq1{t

˚

. Note that since
limtÑ1plogtq

˚ “ log and limtÑ1pexptq
˚ “ exp, the cu-

mulant function Gt in (14) is indeed a generalization of the
well-known log partition function G for the standard expo-
nential families, which normalizes the density (1). Such
a closed form expression for the cumulant is not known
for q-exponential families. To properly define TEMs like
exponential families (Nielsen and Garcia, 2009), we have
to include an eventual carrier measure: we thus let κpxq
denote the carrier measure and let a general TEM be defined
from the unnormalized density:

p̃t|θpxq “ exptpθ
Jϕpxq at Gtpθq ‘t κpxqq (16)

where ‘t was also introduced in Nivanen et al. (2003):

z ‘t x
.
“ z ` t` p1´ tqzx. (17)

In addition to having a cumulant in nice form, TEMs
have another key property: the total mass due to p̃t|θ,
Mtpθq

.
“
ş

p̃t|θpxqdξ, is also available in an elegant closed
form. Hereafter, G‹t denotes the convex conjugate of Gt.

Lemma 3.3. Mtpθq “ 1`p1´ tqpGtpθq´ θ
J~~~q. If Gt is

strictly convex differentiable,

Mtpθq “ 1` p1´ tqp´G‹t p~~~qq p“ exp1´t
t p´G‹t p~~~qqq.

(18)

Proof sketch Surprisingly perhaps, it takes two equations to
sketch its proof (more in App, Section III), both expressing
Q

.
“ Ep̃t|θ

“

logt p̃t|θ
‰

in two different ways. First, using
the definition of Mtpθq and the fact that p̃2´t

t|θ sums to 1,
we get Q “

ş

p̃t|θ p1{p1 ´ tqq ¨
`

p̃1´t
t|θ ´ 1

˘

dξ “ p1{p1 ´

tqq ¨ p1´Mtpθqq. Second, using (10) and (14), we also get
Q “

ş

p̃t|θ
`

θJϕ´ p̃1´t

t|θ̂
Gtpθq

˘

dξ “ θJ~~~´Gtpθq. There

remains to identify Mtpθq from the two expressions for Q.

Naturally, we recover limtÑ1 Mtpθq “ 1 for exponential
families. Since the total mass is positive by definition, we
get two nontrivial bounds on the cumulant and its convex
conjugate: Gtpθq ě ´1{p1 ´ tq ` θJ~~~ and G‹t p~~~q ď
1{p1 ´ tq, both of which become vacuous when t Ñ 1´.
Table 2 presents a few examples of TEMs and the related
parameters useful in our clustering context (see Sections 4
and 5). Hereafter, we assume that Gt is strictly convex and
differentiable.

4 AN INFORMATION
THEORETIC/GEOMETRIC RESULT

TEMs being a generalization of exponential families, one
would expect that the key information theoretic / information
geometric identity (4) does admit a generalization to our
context. We will now show that this indeed is the case. We
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TEM Support λ θ ~~~ G‹t p~~~q
1D t-exponential

”

0, 3´2t
p1´tqλ

ı

λ ´λ
3´2t t˚

`

3´2t
λ

˘2´t˚

´t˚ ¨
´

log 1
2´t˚

` ~
t˚

˘

´ 1
¯

1D t-Gaussian (µ “ 0)
”

´ 1?
1´t

, 1?
1´t

ı

σ2 ´ t˚

2σ2 pct˚
?

2q1´t
˚

σ3´t˚ ´ t˚

2 ¨
`

logt˚˚p2c
2
t˚~q ´ 1

˘

TEM Gtpθq BGtpθ̂}θq

1D t-exponential ´ log2´t

´

p´θq
1

2´t

¯

t˚ ¨

ˆ

´

θ̂
θ

¯2´t˚

´ p2´ t˚q ¨ logt˚
´

θ̂
θ

¯

´ 1

˙

1D t-Gaussian (µ “ 0) plogtq
˚
´

ct˚?
´θ

¯

t˚

2 ¨

˜

ˆ

b

θ̂
θ

˙3´t˚

´ p3´ t˚q ¨ logt˚

b

θ̂
θ ´ 1

¸

TEM θl θr

1D t-exponential ´Ei
”

1
p´θiq1´t

˚

ı

{Ei
”

1
p´θiq2´t

˚

ı

´Ei
”

p´θiq
2´t˚

ı

1D t-Gaussian (µ “ 0) ´Ei
„

1

p´θiq
1´t˚

2



{Ei
„

1

p´θiq
3´t˚

2



´ 1

pct˚
?
t˚q1´t˚

¨ Ei
”

p´θiq
3´t˚

2

ı

Table 2: Functions of key interest related to some TEM families, mentioning the source (λ), natural (θ) and expectation (~~~)
parameters, the cumulant Gtpθq and its convex dual G‹t p~~~q, the corresponding divergence on natural parameters BGtpθ̂}θq
(20) and its two population minimizers. Remark that for each of them α˚ in Lemma 5.2 has a closed form and we obtain

two different generalizations of Itakura-Saito divergence with BGtpθ̂}θq. We let t˚˚ .
“ 2{p3´ t˚q, ct

.
“

b

π
1´t

Γp1` 1
1´t q

Γp 3
2`

1
1´t q

.

first need a generalization of the KL divergence used in (2)
and thus define

FtpP̃t|θ̂}P̃t|θq
.
“

ż

f

˜

dp̃t|θ̂

dξ
mt

dp̃t|θ

dξ

¸

¨ dp̃t|θ,

f
.
“ ´ logt,

(19)

and finally x mt y
.
“ px1´t ´ y1´t ` 1q

1
1´t

` if x, y ě 0
(else it is undefined). We recover (2) as tÑ 1. In the case
of TEMs, (19) is equivalent to the tempered KL divergence
induced by the convex function (11) that was introduced
in Amid et al. (2019). We now state our generalization of (4)
with F as in (2). The Theorem is important in the context of
the well-known formulation of Bregman divergences using
the KL divergence between exponential families (Amari,
2016, Section 2.7).

Theorem 4.1. For any two members of the same TEM fam-
ily,

FtpP̃t|θ̂}P̃t|θq “ BGtpθ̂}θq,

where

BGtpθ̂}θq
.
“
Gtpθ̂q ´Gtpθq ´ pθ̂ ´ θq

J∇Gtpθq
1` p1´ tqGtpθ̂q

. (20)

(proof in App, Section IV) One can see that the numerator
in (20) is in fact the Bregman divergence with generator
Gt. The whole construct BGt belongs to a generalization
of Bregman divergences known as conformal Bregman di-
vergences (Nock et al., 2016) and we recover Bregman
divergences as tÑ 1. Clustering with exponential families
relies on the Bregman divergence as a distortion measure

between parameters. In our case, the presence of the denom-
inatorDtpθ̂q

.
“ 1`p1´tqGtpθ̂q “ exp1´t

t Gtpθ̂q is crucial
for clustering if θ̂ is an outlier, and some algebra allows to
see that Dtpθ̂q is a function (increasing) proportional to the
total mass of a TEM since this denominator also meets:

Dtpθ̂q
1

1´t˚ “

ż

expt˚

˜

θ̂
J
ϕpxq

t˚

¸

dξ, (21)

and the RHS is indeed proportional to Mt˚pp1{t
˚q ¨ θq. In

short, when θ̂ in (20) is a data point, choosing a “heavy”
enough TEM in Dtpθ̂q can have it grow sufficiently fast as
θ̂ moves far away and eventually reduce its influence on the
cluster centroids. We now study clustering more formally.

5 CLUSTERING AND POPULATION
MINIMIZERS

Let tθiumi“1 be a training set of parameters endowed with an
implicit (e.g., uniform) distribution. We define two losses
for the so-called left and right population minimizers:

Llpθq
.
“ EirBGtpθ}θiqs ; Lrpθq

.
“ EirBGtpθi}θqs, (22)

where Eir.s denotes an average over the training sample.
The left and right population minimizers, respectively θl

and θr, are then defined as

θl
.
“ arg min

θ
Llpθq ; θr

.
“ arg min

θ
Lrpθq. (23)

The left and right population minimizers are the parameters
whose corresponding losses are called Bregman informa-
tion (Banerjee et al., 2005b, Section 3.1). We elaborate on
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clustering in two directions. The first is the elicitation of
population minimizers and the second is their robustness
to outliers (Amari, 2016; Fujisawa and Eguchi, 2008; Ve-
muri et al., 2010). To evaluate robustness, we add a new
element θ˚ with weight ε in the new loss. The initial loss is
scaled by p1´ εq. The population minimizer is said to be
robust to outliers if the new population minimizer satisfies
θnew

l{r ´θ
old
l{r “ ε ¨zpθ˚q, where zp.q, the influence function,

has bounded norm.

Population minimizers elicited We first provide both
population minimizers in (23), reminding we assume Gt
strictly convex and differentiable. The simplest one is the
right population minimizer.

Lemma 5.1. The right population minimizer (23) is given
by

θr “ Ei
„

1

exp1´t
t pGtpθiqq

¨ θi



. (24)

The proof of this Lemma trivially comes from (Banerjee
et al., 2005b, Proposition 1), and it also recovers their result
for Bregman divergences as limtÑ1 θr “ Eirθis. We turn
to the left population minimizer and let Tipθq

.
“ Gtpθiq `

pθ´ θiq
J∇Gtpθiq the value at θ of the tangent hyperplane

to Gt at θi. We also let Npθq .
“ 1` p1´ tqEirTipθqs.

Lemma 5.2. The critical point of Llpθq satisfies
∇Gtpθlq “ α˚ ¨ Ei∇Gtpθiq for some α˚ ą 0. It is the
left population minimizer if Npθlq ą 0.

The proof, in App, Section V, also shows that since t ď 1,

α˚ P

„

1,min
i

1` p1´ tqGtpθiq

Npθiq



, (25)

which provides a convenient initialization interval for a line
search of α˚. Table 2 shows that it is also possible to get the
left population minimizer in closed form for specific choices
of TEM. One also sees that α ě 1 and limtÑ1 α “ 1,
which gives us back the f -mean left population minimizer
of Bregman divergences, also noting that limtÑ1Npθq “ 1
so the condition Npθq ą 0 vanishes, and can in fact always
be satisfied by choosing t close enough to 1.3 Notice also
that the left population minimizer is unique.

Robustness of population minimizers We first tackle
the right population minimizer: the average is notoriously
not robust and so in the case of Bregman divergences, this
population minimizer can never be robust, regardless of the
divergence. In the case of TEMs, however, the partition func-
tion gives a direct handle for robustness as the following
simple Lemma shows, }.} being any norm.

Lemma 5.3. If Gtpθq “ Ωp}θ}q and t ‰ 1, the right
population minimizer (23) is robust.

3In fact, Lemma B provided in App shows it is a weak assump-
tion to directly assume Npθq ą 0.

(proof in App, Section VI) Obviously, this robustness prop-
erty vanishes as t Ñ 1. Since the denominators in (24)
are an increasing function of (21), one roughly gets that
robustness is achieved by picking a “heavy” enough TEM.
The case of the left population minimizer is treated in the
following Lemma. For any strictly convex G, the “f -mean
generated by G ” refers to ∇G´1pEi∇Gpθiqq, which is the
left population minimizer for exponential families (Banerjee
et al., 2005b).
Lemma 5.4. Suppose Gt strongly convex differentiable.
Then the left population minimizer (23) is robust iff the
f -mean generated by Gt is robust.

(proof in App, Section VII) A technical advantage of this
Lemma is that to show the robustness of our left population
minimizer, it is necessary and sufficient to investigate that
of the f -mean, which can be simple to establish. As an
example, the harmonic mean is robust, and it is the left
population minimizer associated to the (1D) exponential
distribution. In Table 2 for the 1D t-exponential TEM, one
can check that θl is also robust: suppose θj is the outlier.
When θj Ñ ´8, its influence vanishes in θl and when
θj Ñ 0, θl „ θj Ñ 0. Formal robustness is a binary notion
but the experiments shall unveil that improved robustness
can also be achieved for t ă 1 when the case t “ 1 is
already robust.

Finally, there is an interesting parallel on robustness to
be made between the left and right population minimiz-
ers. We have seen that the right population minimizer is
robust if Gt is chosen “large enough”. One can remark that
1`p1´ tqGtpθiq´Npθiq “ p1´ tqDGtpθi}θq ě 0, DGt

being a Bregman divergence. If θi is an outlier, it may well
be the case that p1` p1´ tqGtpθiqq{Npθiq becomes huge,
but the right bound in (25) depends on the min of the train-
ing sample’s ratios and thus is that of a non-outlier. Thus,
picking Gt to get a robust right population minimizer does
not a priori prevent the left population minimizer from being
robust as well, a property that cannot hold for exponential,
q-exponential nor deformed exponential families.

6 EXPERIMENTS

We report experiments on simulated data on four topics
related to clustering: (a) the shape of the balls whose as-
sociated distortion is BGt in (20), (b) Voronoi diagrams
associated to the cluster centers, (c) robustness, and (d) clus-
tering with or without noise. For (a) through (d), the key
parameter used from our theory is the divergence considered
(Eq. (20)); we focus on the divergence associated to the 1D
t-exponential measure in Table 2, which is a generalization
of the Itakura-Saito divergence. In a domain of dimension
ą 1, the divergence we compute is just a sum of coordinate-
wise 1D, scalar divergences, thereby mimicking a separable
divergence, which is a common approach in ML. For (d), the
clustering algorithm built on top of our distortions follows
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Left center Right center
t “ 0.0 t “ 1.0 t “ 0.0 t “ 1.0

Figure 1: Information geometric balls for the 1D t-
exponential (domain = R2

ă0); each plot displays four balls
whose centers are the same among plots. Balls are computed
so that the on-screen pixel radius is fixed, so as not to get
disproportionate balls between plots (see text for details).

the k-means blueprint, which consists, after initializing the
cluster centers, in repeating the two steps until convergence:
[A] allocate points to clusters using distortions to centers
(20);
[B] update cluster centers by computing the related popula-
tion minimizers (Lemmata 5.1, 5.2).
Thus, as t Ñ 1, our clustering converges to the classical
k-means with Bregman divergences (Banerjee et al., 2005b).

Information-geometric Balls An important question for
clustering, especially when it comes to generalizing ap-
proaches based on Bregman divergences, is the shape of the
corresponding information-geometric balls. Such balls are
defined by a radius, a distortion and a center, generalizing
the classical Euclidean balls whose distortion, the squared
Euclidean distance, is a particular case of the Mahalanobis
divergence. Generalized to Bregman divergences, the balls
can adopt a variety of shapes, even becoming eventually
non-convex when the center is on the left position of the
Bregman divergence (Nock et al., 2008). In our case, Fig-
ure 1 shows examples of balls for the 1D t-exponential TEM,
thus generalizing the Itakura-Saito balls (they appear for
t “ 1). One can remark that extending t ă 1 allows for
more “extreme” shapes, where balls are more “flattened”,
in particular when they are close to the quadrant’s border
(left center) or more “round” for the right center. Having
increased diversity in ball shapes is good for clustering.

Voronoi diagrams An important structure for clustering
is the Voronoi diagrams that partition the space in cells as-
sociated to a training data point being the closest center.
Since the information geometric divergences (Bregman di-
vergences or our BGt in (20)) are not symmetric in general,
we have two types of Voronoi diagrams, a left and a right
one depending on whether the cell’s center is put in the left
or right position in the corresponding divergence. There is
a big difference between Voronoi diagrams associated to
Bregman divergences (Boissonnat et al., 2010) and those
associated with BGt in (20): the right Voronoi diagram is
always affine with convex polyhedral cells for all Bregman
divergences. In our case, this does not hold anymore and
thus, we end up with two curved Voronoi diagrams (Figure

Left center

t
“

0
t
“

0
.5

t
“

1
.0

Right center

t
“

0
t
“

0
.5

t
“

1
.0

Figure 2: Voronoi diagrams associated to the left (top) and
right (bottom) center of the BGt divergence of the 1D t-
exponential (in R2

ă0), where cell centers are the vertices of
a rotating regular pentagon, for t P t0, 0.5, 1u. For t “ 1,
the right Voronoi diagram is affine, but not for t ă 1.

2 for t ă 1.0).

Robustness To analyze whether we can indeed observe
improved robustness for t ‰ 1 vs. t “ 1, we have used the
1D t-exponential’s left population minimizer. It is an inter-
esting case because for t “ 1, the divergence is Itakura-Saito
divergence and its left population minimizer, the harmonic
mean, is robust to outliers (See Section 5). Whether we
can get improved robustness for t ‰ 1 is displayed in Fig-
ure 3. Here, we choose a point close to the average, that we
associated with a very heavy weight and then move away
progressively the point by a constant vector in R2. The re-
sulting trajectory of the outlier, in green, is picked at random.
We then compute the trajectory of the population minimizer,
in blue. One can observe that for t “ 1, the center moves
away with a segment length slowly decreasing, whereas, for
t “ 0, this length quickly decreases as the outlier moves
far away, displaying improved robustness. Note that the ro-
bustness for t “ 1 appears more clearly for a displacement
of the outlier further away, which is not shown to keep the
pictures readable. Another interesting phenomenon appears,
not just from the standpoint of the distance of the new center
to its original position, but also from the standpoint of the
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t
“

0
.0

t
“

1
.0

Figure 3: Outlier effect on the left population minimizer of
the 1D t-exponential (domain = R2

ă0) for two values ot t,
on 5 random trials (columns). Clusters are generated by uni-
formly sampling 200 points in a BF -ball whose on-screen
pixel radius is fixed. A point close to the left population
minimizer is chosen and treated as an outlier (green), with
weight 5000ˆ that of non-outliers. We then move away the
outlier with a fixed step size (in green) and compute the
resulting cluster center (in blue, see text for details).

angle to its original position, as measured by a cone whose
half lines cross the origin and go through the two centers
(before and after max displacement): one can check that this
angle is smaller for the t “ 0 case. Equivalently, for t “ 1,
the center is not just dragged away according to a distance
that is larger than for t “ 0: it also follows more closely the
trajectory of the outlier compared to t “ 0.

Clustering with and without noise In this experiment,
we test whether improved robustness can be translated to
a better handling of noise. We treat noise as follows. We
generate a fixed number of k clusters (and keep this value
for clustering). The clusters are generated by uniform sam-
pling in information-geometric balls with the left center, for
t P t0, 1u. To make the clusters unbalanced, one cluster
has 20ˆ more points than the others. We then cluster using
the left population minimizer using k-means type iterations
(computing centers, reallocating points to clusters), and
measure several metrics to assess the quality of clustering
(see below). When there is noise, we generate it uniformly
on the picture as an additional cluster. Noise thus biases
clustering results but it is not taken into account for the mea-
surement of the metrics. To explain it better, we compute
three metrics: (I) at the end of clustering, we compute a
distortion between the true clusters centers and those found,
excluding the center of the noise cluster, using the following
algorithm: we repeatedly compute the couple (theoretical
center, learned center) that minimizes the average BGt di-
vergence (where we permute the roles of the centers), and
remove the theoretical center from the list – and eventually
remove the learned center if there still exist learned centers
(sometimes, clustering comes up with less than k clusters).
We finally compute the average of those distances and report
it as “BF ”; (II) we compute the proportion of true clusters
being split among learned clusters in such a way that less
than 2{3rd of the cluster belongs to a single learned cluster
(we call these “true clusters that are split”). We do not use a

larger proportion than .67 to authorize some of the learned
clusters to scrap a minor proportion of the true clusters; we
report this proportion as “psplit”. Of course, we do not count
the noise cluster in this computation; finally (III) for each
true cluster, we compute the learned cluster with the largest
fraction of the true cluster and count the remaining propor-
tion of the true cluster as an error term; we compute the
average of those errors over true clusters and denominate it
as the “perr”. Table 3 summarizes the results obtained, where
each statistic is computed over 50 runs, along with example
clusterings. Modulo the fact that we treat our theoretical
clusters as the ground truth for clustering (there could be
some slight changes in optimal clusterings, especially in the
“close” configuration), Table 3 confirms that choices t ‰ 1
can improve clustering from the standpoint of all metrics,
in particular when there is noise.

7 DISCUSSION

We split this discussion into three parts, from a focus on
clustering to more general considerations on TEMs.

On clustering, one may remark that (scalar) f -means have
intuitive properties, such as monotonicity (increasing an ar-
gument cannot decrease the mean), idempotence (the mean
of the same repeated value is the value itself) and bounding
(the mean is in between the min and max argument val-
ues). Our population minimizers can break these properties
(unless t “ 1): for example, the left population average
of the 1D t-exponential TEM in Table 2 is monotonic and
idempotent but does not meet the bounding constraint. Re-
laxing the constraints of the population minimizers outside
those met by traditional means is not a bad thing, as ul-
timately the properties of a population minimizer depend
on the distortion it is supposed to minimize in expectation.
Also, as exemplified by our experiments, relaxing those
properties can be beneficial. Ultimately, it can be a design
choice to consider or tune ex ante: for example, assuming
t P r0, 1s, one needs Gtpmini θiq ď 0, Gtpmaxi θiq ě 0 to
get bounding. One also has to keep in mind that clustering
faces substantial impediments in terms of design choices
(Kleinberg, 2002). Third, our experiments have made use of
simple random (Forgy) initialization for the cluster centers.
A better initialization with guarantees has been designed for
clustering with Gaussians (Arthur and Vassilvitskii, 2007),
extended to exponential families (Nock et al., 2008), and
even to distortion classes without closed form for the popu-
lation minimizers (Nielsen and Nock, 2015). Applying it to
our setting is a promising direction.

Second, as we noted in Section 2, some previous work re-
lated to robust clustering has also put a focus on links with
distributions, departing from both Bregman divergences and
exponential families (Liu et al., 2012; Vemuri et al., 2010).
In our case, our generalizations of exponential families to
TEMs, which allows for improved robustness as t ‰ 1, still
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p
no

is
e
“

0
close- Clustering far- Clustering

pt “ 0q

3ˆ3 t “ 0 t “ 0.5 t “ 1.0 3ˆ3 t “ 0 t “ 0.5 t “ 1.0

Bt“0

perr 0.43˘0.29 0.43˘0.29 0.35˘0.24
Bt“0

0.57˘0.29 0.52˘0.32 0.61˘0.30
psplit 0.22˘0.09 0.21˘0.09 0.17˘0.08 0.17˘0.07 0.13˘0.06 0.17˘0.06
BF 2.00˘0.82 1.95˘1.03 2.29˘1.11 3.22˘1.80 2.93˘1.53 3.77˘1.76

Bt“1

perr 0.40˘0.25 0.44˘0.29 0.46˘0.28
Bt“1

0.62˘0.30 0.52˘0.30 0.49˘0.33
psplit 0.19˘0.09 0.22˘0.10 0.21˘0.09 0.16˘0.07 0.16˘0.06 0.16˘0.08
BF 2.03˘1.21 2.11˘1.10 1.86˘1.19 2.42˘1.15 2.21˘1.08 2.25˘0.95

p
no

is
e
“

0
.1

close- Clustering far- Clustering

pt “ 1q

3ˆ3 t “ 0 t “ 0.5 t “ 1.0 3ˆ3 t “ 0 t “ 0.5 t “ 1.0

Bt“0

perr 0.28˘0.11 0.30˘0.12 0.32˘0.13
Bt“0

0.24˘0.16 0.29˘0.22 0.37˘0.25
psplit 0.10˘0.08 0.14˘0.05 0.15˘0.07 0.06˘0.06 0.05˘0.06 0.08˘0.07
BF 14.86˘11.30 8.76˘5.35 4.77˘4.12 6.57˘5.61 10.89˘5.36 12.18˘9.52

Bt“1

perr 0.35˘0.19 0.29˘0.11 0.28˘0.12
Bt“1

0.17˘0.11 0.38˘0.19 0.37˘0.20
psplit 0.15˘0.09 0.09˘0.07 0.13˘0.07 0.03˘0.06 0.06˘0.06 0.13˘0.06
BF 2.05˘1.20 5.04˘2.37 2.26˘1.84 4.26˘2.15 5.27˘1.96 4.26˘1.76

Table 3: Clustering with the left population minimizer of 1D t-exponential distributions and the results of the corresponding
clusterings for t P t0, 0.5, 1u in the form average˘std-dev (average over 50 runs), without (top table) and with noise (10%,
bottom table). Underlined values are the best among the three t choices and bold faces denote a significant winner in
t P t0, 0.5u (best result) vs. t “ 1.0 using a Gaussian test, p-val=.05. Pictures on the right give an example result on far-3ˆ3
for Bt“0, (clustering’s t value indicated, true clusters shown using random colors with bigger black dots as their centers,
Voronoi diagram displayed; learned centers in big coloured dots, see text).

come with a guarantee of “closeness” to exponential fami-
lies. We provide a proof on a key parameter, the cumulant
(15), and show that one can always come “as close as de-
sired” to the exponential family case with t ‰ 1. Such a
result is relevant not just to numerical analysis at large: the
cumulant is indeed the ID of a family of distributions in
exponential families and it is not available in closed form
for classical generalizations of exponential families that are
q-exponential families or deformed exponential families.
We let Θ denote the (open) set of natural parameters.

Theorem 7.1. @θ P Θ,@ε ą 0, Dt ă 1 : |Gtpθq ´
G1pθq| ď ε.

(Proof in App, Section VIII) As a consequence, we also get
continuity in the neighborhood of the exponential family’s
case of the total mass of the TEM (Lemma 3.3) and of the
convex conjugate of the cumulant.

Last, from a more general standpoint on TEMs, our general
approach may seem close to the design of q-exponential fam-
ilies and even deformed exponential families – the knowl-
edgeable reader will notice that our CODs technically look
similar to escort distributions in the way we design them
through (10), despite a normalization which belongs to the
divisive normalization of distribution rather than the subtrac-
tive normalization of q-exponential families and deformed
exponential families (Zhang and Wong, 2022). Classical
escort distributions, however, appear independently of the
q-exponential families or deformed exponential families:
they do not belong to their axiomatization. In our case, they
do, and the fact that we chose to somehow “mix” TEM and
COD in the axiomatization of the TEM, by constraining the
normalization of the COD, seems to yield technical con-
veniences not known for q-exponential families or even

deformed exponential families, the first of which is the el-
egant closed form of the cumulant in (15). Beyond such
technical conveniences appear some concrete advantages
for clustering. Given the ubiquity of exponential families
and Bregman divergences in ML, those advantages could
bear fruitful applications in other ML areas.

8 CONCLUSION

In this paper, we introduce a new generalization of exponen-
tial families named tempered exponential measures, whose
constrained maximum entropy design involves normalizing
a dual instead of the measure itself as in the state-of-the-art
generalization of exponential families (q-exponential fam-
ilies and deformed exponential families). Tempered expo-
nential measures provide a generalization of Bregman diver-
gences in the parameter space, which allows designing clus-
tering with improved robustness properties compared to the
classical k-means extended to exponential, q-exponential,
or deformed exponential families.

Given the wide footprint of exponential families and Breg-
man divergences in ML and the fact that tempered expo-
nential measures also provide new and general technical
conveniences beyond the realm of clustering, more ML ap-
plications of this new tool are expected, as well as additional
technical insights relevant to ML such as the information
geometry of the parameter space.
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I Cheatsheet for t-functions, t-algebra and related functions

t-algebra Following Nivanen et al. (2003), we define

x‘t y
.
“ logtpexptpxq exptpyqq “ x` y ` p1´ tqxy, (26)

xat y
.
“ logt

exptpxq

exptpyq
“

x´ y

1` p1´ tqy
, (27)

xbt y
.
“ exptplogtpxq ` logtpyqq “

`

x1´t ` y1´t ´ 1
˘

1
1´t

`
if x, y ě 0 else undefined, (28)

xmt y
.
“ exptplogtpxq ´ logtpyqq “

`

x1´t ´ y1´t ` 1
˘

1
1´t

`
if x, y ě 0 else undefined. (29)

t-functions logt and expt satisfy

log1tpzq “ z´t, (30)
exp1tpzq “ expttpzq, (31)

plogtq
˚1pzq “

´ z

t˚

¯´t˚

, (32)

pexptq
˚1pzq “ exptpzq. (33)

For non-negative scalars x, y ě 0, we also have

logt x y “ logt x` x
1´t logt y ,

logt
x

y
“ logt x´ p

x

y
q1´t logt y .

(34)

General properties The t-functions and t-algebra have the interesting property that properties of the t “ 1 functions
transfer modulo the general rule that “classical arithmetic outside the function becomes t-arithmetic inside and vice-versa”.
For example:

exptpxq

exptpyq
“ exptpxat yq, (35)

exptpxq mt exptpyq “ exptpx´ yq. (36)

The t-functions also satisfy

exp 1
t˚
pzq “

1

exptp´zq
, (37)

log 1
t˚
z “ ´ logt

1

z
(38)

pexptq
˚pzq and plogtq

˚pzq are inverses of each other.

II Proof of Theorem 3.2

We first show the expression of p̃t|θ (in the scalar case for natural parameters for readability); the proof is a generalization of
the proof for the exponential family (See, e.g., Duchi (2021)). We first consider the case where p̃t|θ “ rp̃t|θpxqsxPX is a
finite-dimensional vector. The solution to this problem can be obtained by introducing Lagrange multipliers θ P R, λ P R,
and ν ě 0 to enforce the constraints

p̃t|θpxq “ argmin
p̃

!

´Htpp̃q ´ θ
`

ż

x p̃pxqdξpxq ´ µ
˘

`λ
`

ż

p̃pxq2´t dξpxq ´ 1
˘

´ ν p̃pxq
)

,

(39)

where Ht is Tsallis’ entropy, defined in (11) (main file). Setting the functional derivative with respect to ppxq to zero yields

logt p̃pxq ´ θx` λ
1 p̃pxq1´t ´ ν “ 0 ,
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with λ1 “ p2´ tqλ. Expanding the definition of logt, we can rewrite the equation as

p1` p1´ tqλ1q p̃pxq1´t “ 1` p1´ tq θx` ν1 .

By the KKT conditions, ν1 “ p1´tq ν is zero iff 1`p1´tq θx ě 0. We remark that for this to hold, we need 1`p1´tqλ1 ě 0.
We suppose it holds and then we will check that it does indeed hold. Using the definition of expt, the equation becomes

exptpλ
1q p̃pxq “ exptpθxq, (40)

which is thus the general form of a TEM. Denoting λ1 by Gtpθq yields the form of Eq. (14). Next, we show that the solution
holds for any event space X. For ψt

.
“ z logt z ´ logt´1 z (originally defined in Amid et al. (2019)), we let

Dψtpu, vq “ u logt u´ u logt v ´ logt´1 u` logt´1 v (41)

denote the (scalar) Bregman divergence induced by ψt and by extension

DψtpP̃ , Q̃q
.
“

ż

Dψtpp̃pxq, q̃pxqq dξ.

Consider any P̃ P P̃t|~~~ with unnormalized density p̃pxq. We have

HtpP̃ q “ ´

ż

X

ψtpp̃pxqqdξ

“ ´

ż

X

p̃pxq logt p̃pxqdξ `

ż

X

p̃pxq logt p̃t|θpxqdξ ´

ż

X

p̃pxq logt p̃t|θpxqdξ

“ ´DψtpP̃ , P̃t|θq ´ θ~`
ˆ
ż

X

p̃pxqp̃t|θpxq
1´tdξ

˙

Gpθq .

By adding and subtracting Gpθq and refactoring the terms, we have

HtpP̃ q “ ´DψtpP̃ , P̃t|θqp1` p1´ tqGpθqq ´ pθ~´Gpθqq

“ ´DψtpP̃ , P̃t|θq exptpGtpθqq
1´t `HtpP̃t|θq ,

where we use the fact that EP̃ rϕpxqs “ EP̃t|θ rϕpxqs “ ~ and Gtpθq ě ´1{p1´ tq by the fact that (40), the denomination
λ1

.
“ Gtpθq and the normalization constraint of the dual COD, we obtain

Gtpθq “ logt

ˆ
ż

exptpθϕpxqq
2´tdξ

˙
1

2´t

“ plogtq
˚

ż

pexptq
˚pθϕpxqqdξ, (42)

which since logtpzq ě ´1{p1´ tq, shows Gtpθq ě ´1{p1´ tq and confirms 1` p1´ tqλ1 ě 0.

To finish up, we check that

BGtpθq

Bθ
“

ˆ

ş

pexptq
˚pθϕpxqqdξ

t˚

˙´t˚

¨

ż

ϕpxq exptpθϕpxqqdξ (43)

“

ˆ

ş

pexptq
˚pθϕpxqqdξ

t˚

˙´t˚

¨ exptGtpθq ¨ ~ (44)

“

ˆ

ş

pexptq
˚pθϕpxqqdξ

t˚

˙´t˚

¨

ˆ

ş

pexptq
˚pθϕpxqqdξ

t˚

˙t˚

¨ ~ (45)

“ ~, (46)

as claimed. To show convexity of Gt, let us consider the more general case of θ P Rd and define the score function as

st|θpxq
.
“ ∇ logt p̃t|θpxq “

1

exptpGtpθqq
1´t

´

ϕpxq ´ p̃t|θpxq
1´t∇Gtpθq

¯

. (47)

We then have

∇2Gtpθq “
1

exptpGtpθqq
1´t

´

ż

ϕpxqϕpxqJp̃t|θpxq
t dξ ´∇Gtpθq∇GtpθqJ

¯

(48)

“ exptpGtpθqq
1´t

ż

st|θpxqst|θpxq
Jp̃t|θpxq

t dξ ě 0, (49)

which concludes the proof.
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III Proof of Lemma 3.3

We get the result using the logt entropy with two different derivations,

Ep̃t|θ
“

logt p̃t|θ
‰

“

ż

p̃t|θ
1

1´ t

`

p̃1´t
t|θ ´ 1

˘

dξ “
1

1´ t
p1´Mtpθqq

“

ż

p̃t|θ
`

θJϕ´ p̃1´t

t|θ̂
Gtpθq

˘

dξ “ θJ~~~´Gtpθq,

and we identify the right-hand sides to get the statement of the Lemma. In the upmost derivation, we use the definition of
Mtpθq and the fact that p̃2´t

t|θ sums to 1. In the bottommost derivation, we use the expression in (14) (main file) to identify

the terms between the integrals and then simplify. We get Mtpθq “ 1 ` p1 ´ tqpGtpθq ´ θ
J~~~q. If Gt is strictly convex

differentiable, since by the relationship θ “ ∇G´1
t p~~~q and convex duality, G‹t p~~~q “ θ

J~~~´Gtpθq,

Mtpθq “ 1` p1´ tqp´G‹t p~~~qq p“ exp1´t
t p´G‹t p~~~qqq. (50)

Remark A. The non-negativity of the total mass Mt gives us a non-trivial lowerbound for Gt and upperbound for G‹t :

Gtpθq ě ´
1

1´ t
` θJ~~~, (51)

G‹t p~~~q ď
1

1´ t
, (52)

both of which become vacuous when tÑ 1.

IV Proof of Theorem 4.1

Using the t-algebra and the definition of Ft in (19) (main file), we first get an integral-free expression:

FtpP̃t|θ̂}P̃t|θq “

ż

f

˜

dp̃t|θ̂

dξ
mt

dp̃t|θ

dξ

¸

dp̃t|θ

“

ż

´ logt

´

exptpθ̂
J
ϕat Gtpθ̂qq mt exptpθ

Jϕat Gtpθqq
¯

dp̃t|θ

“

ż

´

θJϕat Gtpθq ´ θ̂
J
ϕat Gtpθ̂q

¯

dp̃t|θ

“
θJµ´MtpθqGtpθq

1` p1´ tqGtpθq
´
θ̂
J
µ´MtpθqGtpθ̂q

1` p1´ tqGtpθ̂q
,

and we then simplify the last expression using Lemma 3.3:

θJµ´MtpθqGtpθq

1` p1´ tqGtpθq
´
θ̂
J
µ´MtpθqGtpθ̂q

1` p1´ tqGtpθ̂q

“
θJµ´ p1` p1´ tqpGtpθq ´ θ

JµqqGtpθq

1` p1´ tqGtpθq
´
θ̂
J
µ´MtpθqGtpθ̂q

1` p1´ tqGtpθ̂q

“ θJµ´Gtpθq ´
θ̂
J
µ´MtpθqGtpθ̂q

1` p1´ tqGtpθ̂q

“

θJµ´Gtpθq ´ θ̂
J
µ`

´

p1´ tqpθJµ´Gtpθqq `Mtpθq
¯

Gtpθ̂q

1` p1´ tqGtpθ̂q

“
θJµ´Gtpθq ´ θ̂

J
µ`Gtpθ̂q

1` p1´ tqGtpθ̂q
“
Gtpθ̂q ´Gtpθq ´ pθ̂ ´ θq

Jµ

1` p1´ tqGtpθ̂q
.
“ BGtpθ̂}θq,

which yields the statement of the Theorem.
Remark A. We remark that FtpP̃t|θ̂}P̃t|θq is also equal to the Bregman divergence DψtpP̃t|θ}P̃t|θ̂q, a connection also
known to hold for exponential families’ analysis where the KL divergence is both an f -divergence and a Bregman divergence.
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V Proof of Lemma 5.2

Recall that Tipθq
.
“ Gtpθiq ` pθ ´ θiq

J∇Gtpθiq the value at θ of the tangent hyperplane to Gt at θi. Denote for shot

Npθq
.
“ 1` p1´ tqEirTipθqs, (53)

Dpθq
.
“ 1` p1´ tqGtpθq. (54)

We then obtain the loss for the left population minimizer:

Llpθq “
1

1´ t
¨

ˆ

1´
N

D
pθq

˙

, (55)

which immediately yields:
Lemma A. θ is a critical point of Llpθq iff:

Npθq ¨∇Dpθq “ Dpθq ¨∇Npθq. (56)

Lemma B. Suppose Di : Mtpθiq ą 0 and Gt is strictly convex or strictly concave. Then any critical point of Llpθq has
Npθq ‰ 0.

Proof. Suppose otherwise. Note that unless we are in the degenerate case where all θi are equal, Dpθq ą Npθq from the
strict convexity of Gt4 (we recall that Npθq is the expected value of all tangent hyperplanes at all θis, at θ, which thus sits
strictly below the function). So Lemma A implies ∇Npθq “ 0, which, after developing, is in fact

Ei∇Gtpθiq “ 0, (57)

In addition to being a critical point, the condition Npθq ‰ 0 yields EirTipθqs “ ´1{p1´ tq. Using the definition of Ti and
simplifying with Ei∇Gtpθiq “ 0 then reveals

EirGtpθiq ` pθ ´ θiqJ∇Gtpθiqs “ EirGtpθiq ´ θJi ∇Gtpθiqs “ ´
1

1´ t
,

which, using Lemma 3.3 (main file) reveals that the population for which θ is a minimizer necessarily has

EirMtpθiqs “ 1` p1´ tqEirGtpθiq ´ θJi ∇Gtpθiqs
“ 1´ 1 “ 0.

Since Mt is non-negative, this leads to a contradiction with the assumption of the Lemma.

The question is then whether such a critical point can be a population minimizer, and even more, if it is unique. Answering
the first question comes from the Hessian of the loss.
Lemma C. Removing the argument θ for readability, we have:

HLl “
1´ t

D2
¨
`

∇EirTis∇GJt `∇Gt∇EirTisJ
˘

´
2p1´ tqN

D3
¨∇Gt∇GJt `

N

D2
¨HGt. (58)

Proof. Denote for short δij
.
“ r∇Gtpθiqsj and ∇j

.
“ r∇Gtpθqsj . We check that we have pB{Bθ1kqEirTis “ δik, so we have

B

Bθ1j
r∇θLlsk

“
B

Bθ1j

ˆ

p1` p1´ tqEirTisq∇k

p1` p1´ tqGtpθqq2
´

Eiδik
1` p1´ tqGtpθq

˙

“

"

pp1´ tqδij∇k ` p1` p1´ tqEirTisq∇kjq p1` p1´ tqGtpθqq
2

´2p1´ tq pp1` p1´ tqEirTisq∇kq p1` p1´ tqGtpθqq∇j

*

p1` p1´ tqGtpθqq4
`

p1´ tqEiδik∇j

p1` p1´ tqGtpθqq2

“
p1´ tqδij∇k `N∇kj

D2
´

2p1´ tqN∇k∇j

D3
`
p1´ tqEiδik∇j

D2

“
p1´ tq

D2
¨ pδij∇k `∇jδikq ´

2p1´ tqN

D3
¨∇k∇j `

N

D2
¨∇kj ;

noting our convention yields ∇kj “ rHGtsjk, we get the statement of the Lemma.
4If strictly concave, Dpθq ă Npθq, which yields to the same result.
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The next one introduces the convexity of Gt to elicit the nature of the critical points.:
Lemma D. At any critical point of Ll, the convexity of Ll is the same as the convexity of Gt iff N ě 0 (and it is opposed,
meaning convexØconcave, otherwise).

Proof. Using Lemma A, (58) simplifies to

HLl “
p1´ tqN

D3
¨
`

∇Gt∇GJt `∇Gt∇GJt
˘

´
2p1´ tqN

D3
¨∇Gt∇GJt `

N

D2
¨HGt

“
N

D2
¨HGt,

yielding the statement of the Lemma.

Hence, if N ě 0, all critical points are population minimizers. In the next Lemma, we show a condition for unicity.
Lemma E. Suppose Gt is strictly convex. Any optimum of Ll is unique.

Proof. Let us consider any two such minimizers θ1,θ2. We thus have simultaneously from Lemma A:

Npθ1q ¨∇Dpθ1q “ Dpθ1q ¨∇Npθ1q “ p1´ tqDpθ1q ¨ Ei∇Gtpθiq, (59)
Npθ2q ¨∇Dpθ2q “ Dpθ2q ¨∇Npθ2q “ p1´ tqDpθ2q ¨ Ei∇Gtpθiq, (60)

Dpθ1q´1
1´t ´

Npθ1q´1
1´t

Dpθ1q
“ Llpθ

1
q “ Llpθ

2
q “

Dpθ2q´1
1´t ´

Npθ2q´1
1´t

Dpθ2q
. (61)

We note (61) is equivalent, after simplification, to

Npθ1q

Dpθ1q
“

Npθ2q

Dpθ2q
. (62)

Also, (59) and (60) bring:

Npθ1q

Dpθ1q
¨
BDpθq

Bθi

ˇ

ˇ

ˇ

ˇ

θ“θ1
“

Npθ2q

Dpθ2q
¨
BDpθq

Bθi

ˇ

ˇ

ˇ

ˇ

θ“θ2
,@i P rds,

and thus simplifies with (62) to BDpθq
Bθi

ˇ

ˇ

ˇ

θ“θ1
“

BDpθq
Bθi

ˇ

ˇ

ˇ

θ“θ2
,@i P rds, or in gradient form after using the definition of D and

simplifying,

∇Gtpθ1q “ ∇Gtpθ2q,

but since Gt is strictly convex, ∇Gt is bijective and this implies θ1 “ θ2, and completes the proof of the Lemma.

Folding together all Lemmata, we get that if Gt is strictly convex, θ is the unique left population minimizer if ∇Llpθq “ 0
and Npθq ą 0. (56) can be reformulated as:

∇Gtpθq “
Dpθq

Npθq
¨ Ei∇Gtpθiq, (63)

Now, define function α:

αpθq “
Dpθq

Npθq
. (64)

We note from (63) that α˚ “ αpθlq and we also note from (55) that we also have

Llpθq “
1

1´ t
¨

ˆ

1´
1

αpθq

˙

, (65)

so we conclude, if t ď 1,

α˚ ď min
i
αpθiq, (66)

which provides a convenient upperbound which, in addition to the fact that α˚ ě 1, provides a convenient initialization
interval for a line search of α˚.
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VI Proof of Lemma 5.3

We recall the right population minimizer:

θold
r “ Ei

„

1

1` p1´ tqGtpθiq
¨ θi



. (67)

If we add a new point θ˚ with a weight ε and downweight the other points’ weights proportionally, the new right population
minimizer is

θnew
r “ p1´ εq ¨ θold

r ` ε ¨
1

1` p1´ tqGtpθ˚q
¨ θ˚, (68)

and so

θnew
r ´ θold

r “ ε ¨

ˆ

1

1` p1´ tqGtpθ˚q
¨ θ˚ ´ θ

old
r

˙

looooooooooooooooooooomooooooooooooooooooooon

.
“zpθ˚q

, (69)

and so if Gtpθiq “ Ωp}θ˚}q, }zpθ˚q} ď p1{p1 ` p1 ´ tqGtpθ˚qqq ¨ }θ˚} ` }θ
old
r } “ Op1q and the right population

minimizer is robust.

VII Proof of Lemma 5.4

Denote for short

θold
l

.
“ arg min

θ
Lpθq

.
“

EirDGtpθ}θiqs

1` p1´ tqGtpθq
(70)

θnew
l

.
“ arg min

θ
Lεpθq

.
“
p1´ εqEirDGtpθ}θiqs ` εDGtpθ}θ˚q

1` p1´ tqGtpθq
. (71)

Also, we let ∇ε
.
“ p1´ εq ¨∇Gtpθold

l q ` ε ¨∇Gtpθ˚q and Epθq .
“ EirTipθqs, Eεpθq

.
“ p1´ εqEpθq ` εT˚pθq, where by

extension T˚pθq
.
“ Gtpθ˚q ` pθ ´ θ˚q

J∇Gtpθ˚q. We also use the following Taylor expansion:

(A) ∇Gtpθnew
l q ´∇Gtpθold

l q “ Htpθ
new
l ´ θold

l q
.
“ εHtztpθ˚q, where Ht is a value of the Hessian of Gt.

Finally, we note

∇Lεpθq “
1

p1` p1´ tqGtpθqq2
¨ pp1` p1´ tqEεpθqq ¨∇Gtpθq ´ p1` p1´ tqGtpθqq ¨∇εq . (72)

Using the definition of θnew
l and (A), we get to:

0 “ p1` p1´ tqGtpθ
new
l qq2 ¨∇Lεpθnew

l q

“ pp1` p1´ tqEεpθnew
l qq ¨∇Gtpθnew

l q ´ p1` p1´ tqGtpθ
new
l qq ¨∇εq

“

´

p1` p1´ tqEεpθnew
l qq ¨ p∇Gtpθold

l q ` εHtztpθ˚qq ´ p1` p1´ tqGtpθ
new
l qq ¨∇ε

¯

. (73)

We get the relationship satisfied by the influence function:

ztpθ˚q

“
1

ε
¨H´1

t

ˆ

1` p1´ tqGtpθ
new
l q

1` p1´ tqEεpθnew
l q

¨∇ε ´∇Gtpθold
l q

˙

“ H´1
t

ˆ

1` p1´ tqGtpθ
new
l q

1` p1´ tqEεpθnew
l q

¨∇Gtpθ˚q `
ˆ

1´ ε

ε
¨

1` p1´ tqGtpθ
new
l q

1` p1´ tqEεpθnew
l q

´ 1

˙

¨∇Gtpθold
l q

˙

“ H´1
t

ˆ

αpθnew
l q ¨∇Gtpθ˚q `

ˆ

1´ ε

ε
¨ αpθnew

l q ´ 1

˙

¨∇Gtpθold
l q

˙

. (74)
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We know from (66) that αpθnew
l q cannot diverge as a function of the outlier θ˚, so we end up with

ztpθ˚q “ Q ¨H´1
t ∇Gtpθ˚q `H´1

t v, (75)

where Q ! 8, }v} ! 8. If we compute the f -mean for Gt and its influence function, then we get this time:

z1pθ˚q “
1

ε
¨H´1

1 ∇ε (76)

“ H´1
1

ˆ

∇Gtpθ˚q `
1´ ε

ε
¨ Eir∇Gtpθiqs

˙

(77)

“ H´1
1 ∇Gtpθ˚q `H´1

1 v1, (78)

where }v1} ! 8. We see that zt has bounded norm iff z1 does so, which proves the statement of the Lemma.

Remark A. The strong convexity argument is here just to handle the influence of the Hessian via its minimal eigenvalue
in (75) and (78). We could add (realistic) assumptions on the training sample’s domain to replace the strong convexity
argument by strict convexity.

VIII Proof of Theorem 7.1

We proceed in three steps.

Step 1: @θ,@ε ą 0, Dt ă 1 : Gtpθq ě G1pθq ´ ε. We rely on the inequalities:5

@t P r0, 1s,@z ě 0, logpzq ď plogtq
˚pzq, (79)

Da, b P R s.t. @t P r0, 1s,@z P R, p1´ p1´ tqga,bpzqq`
loooooooooooomoooooooooooon

“exp1´t
t p´gpzqq

exppzq ď pexptq
˚pzq, (80)

where ga,bpzq
.
“ az2 ´ bz ` 1. From (79) and (80), we get the inequalities in:

Gtpθq “ plogtq
˚

ż

pexptq
˚
´

θJϕ
¯

dξ

ě log

ż

pexptq
˚
´

θJϕ
¯

dξ

ě log

ż

exp1´t
t

´

´apθJϕq2 ` bpθJϕq ´ 1
¯

exp
´

θJϕ
¯

dξ

“ log

ż

”

t` p1´ tq
´

´apθJϕq2 ` bpθJϕq
¯ı

`
exp

´

θJϕ
¯

dξ

“ G1pθq ` log

ż

”

t` p1´ tq
´

´apθJϕq2 ` bpθJϕq
¯ı

`
exp

´

θJϕ´G1pθq
¯

dξ

.
“ G1pθq ` logQtpθq, (81)

with Qtpθq
.
“ E1

”

ftpθ
Jϕq

ı

(E1 indicating the expectation for t “ 1, i.e., the exponential family) and

ftpzq
.
“ rt` p1´ tq ¨ z pb´ azqs` . (82)

Since ft does not take negative values, for any 0 ď δ ă 1, if we let Xδ
.
“ tx P X : ftpθ

Jϕpxqq ě δu, then we have, for µ1

the probability measure associated to t “ 1,

Qtpθq ě δ ¨ µ1pXδq. (83)

Also, for any a, b, z P R, f1pzq “ 1 and ftpzq is continuous in t and z so

@z˚ ą 0,@0 ď δ ă 1, Dt ă 1 s.t. ftpr´z˚, z˚sq Ď rδ,`8q,

5The proofs, at the end of the proof of Theorem 7.1, elicit a, b.
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and for any applicable tδ ă 1, any t P rtδ, 1q is also valid. This implies that @0 ď δ ă 1, we can always find tδ ă 1
close enough to 1 such that µ1pXδq ě δ by picking z˚ large enough. So, for any 0 ď δ ă 1, we can find tδ such that
Qtpθq ě δ ¨ δ “ δ2, and if we choose δ .

“ expp´ε{2q, then logQtpθq ě ´ε and considering (81), we obtain:

@θ,@ε ą 0, Dt ă 1 : Gtpθq ě G1pθq ´ ε, (84)

i.e., we have completed the proof of Step 1.

Step 2: @θ,@ε ą 0, Dt ă 1 : Gtpθq ď G1pθq ` ε. We rely on the inequalities:6

@t P r0, 1s,@z ě 0, plogtq
˚pzq ď logpzq ´ uptqz ` vptqp1` log2 z ` pz ´ 1q2q, (85)

pexptq
˚pzq ď exppzq,@t ď 1,@z P R, (86)

where uptq, vptq are two continuous functions of t satisfying up1q “ vp1q “ 0. logt being non-decreasing, we get with (86)
the first inequality of

Gtpθq
.
“ plogtq

˚

ż

pexptq
˚
´

θJϕ
¯

dξ

ď plogtq
˚

ż

exp
´

θJϕ
¯

dξ

ď log

ż

exp
´

θJϕ
¯

dξ ´ uptq ¨

ż

exp
´

θJϕ
¯

dξ

`vptq ¨

˜

1`

ˆ

log

ż

exp
´

θJϕ
¯

dξ

˙2

`

ˆ
ż

exp
´

θJϕ
¯

dξ ´ 1

˙2
¸

“ G1pθq´uptq ¨ exppG1pθqq ` vptq ¨
´

1`G2
1pθq ` pexppG1pθqq ´ 1q

2
¯

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

.
“htpG1pθqq

. (87)

We have h1 “ 0 and ht is continuous in t, so @z P R,@ε ą 0, Dt ă 1 close enough to 1 such that htpzq ď ε, implying, for
z
.
“ G1pθq, Gtpθq ď G1pθq ` ε. This completes the proof of Step 2.

We then check that we can simultaneously get Step 1 and Step 2 as both depend on choosing t ă 1 close enough to 1. What
remains is then:

Step 3: we show (79), (80), (85), (86).

ãÑWe first prove (79) and define

∆pzq
.
“ plogtq

˚pzq ´ logpzq.

We have

∆1pzq “ pp2´ tqzq
´ 1

2´t ´
1

z
. (88)

∆1 zeroes for z˚ “ p2´ tq1{p1´tq (which is the global minimum for ∆), for which plogtq
˚pz˚q “ 1. Since logp1` zq ď

z,@z ą 0, we get by picking z “ 1 ´ t and reorganizing log z˚ ď 1, and thus ∆pz˚q ě 0, and since z˚ is the global
minimum of ∆, yields (79).

ãÑ Since plogtq
˚ and pexptq

˚ are inverses of each other, (86) follows from (79).

ãÑWe now prove (80). Equivalently, we show that for some a, b P R we have

Pa,bpzq
.
“ t` p1´ tqzpb´ azq ď expp´zq exptpzq,@t P r0, 1s,@z P R (89)

(we note the result trivially holds for t “ 1 so we focus on t P r0, 1q). If

a, b ą 0 (90)

6The proofs, at the end of the proof of Theorem 7.1, elicit functions uptq, vptq.
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then Pa,bpzq is a downwards facing parabola with its maximum in z˚
.
“ b{p2aq ą 0 and it always has two roots:

z˘
.
“ z˚ ¨

˜

1˘

d

1`
4at

b2p1´ tq

¸

. (91)

We now want to choose a, b so as to constrain

z´, z` P I,@t P r0, 1q, I
.
“

c

1

1´ t
¨ r´1, 1s. (92)

1. Case of z´. Since z´ ă 0, we just need z´ ě ´
a

1{p1´ tq, which after reorganising becomes:
d

1`
4at

b2p1´ tq
ď 1`

?
a ¨

d

4a

b2p1´ tq
. (93)

To get this, it is sufficient we want the same inequality with a t factor in the rightmost square root of the RHS
(since t ď 1). Making the change of variable Z .

“ 4at{pb2p1 ´ tqq, which ranges through R`, we thus want?
1` Z ď 1`

?
aZ, which indeed holds over R` if

a ě 1. (94)

2. Case of z`. Since z` ą 0, we just need z` ď
a

1{p1´ tq, which after reorganising becomes:

a ě t` b
?

1´ t. (95)

The RHS takes its max for b “ 2
?

1´ t, for which it equals 2´ t. Hence, to get z` ď
a

1{p1´ tq, we just need

a ě 2. (96)

Hence, if a ě 2, then (92) holds. Given that is holds and since expt is an increasing function of t, to get (89), it is enough
that we prove that for some a ą 2, b ą 0,

Pa,bpzq ď exptp´zq exptpzq “
`

1´ p1´ tq2z2
˘

1
1´t

looooooooooomooooooooooon

.
“Qpzq

,@z P I,@t P r0, 1q. (97)

We then note

Q1pzq “ ´2p1´ tq ¨ zQtpzq ; Q2pzq “ ´2p1´ tq ¨ p1´ p1´ t2qz2qQ2t´1pzq. (98)

A Taylor expansion in z “ 0 then gives Qpzq „0 1´ p1´ tqz2 .
“ Rpzq. Noting R1pzq “ ´2p1´ tq ¨ z and since Qpzq ď 1,

we obtain 0 ě Q1pzq ě R1pzq for z P I` and so Rpzq ď Qpzq,@z P I`. Since both functions are even, we thus get

Rpzq ď Qpzq,@z P I. (99)

To get (97), we thus just need Pa,bpzq ď Rpzq,@z P I. Since t ď 1, this inequality has the convenient t-free simplification

pa´ 1qz2 ´ bz ` 1 ě 0,@z P I. (100)

This parabola facing upwards has no root (and is thus non negative) if

a ě 1`
b2

4
. (101)

To summarize, we get (89) (and so (80)) for any choice a, b satisfying:

b ą 0 ; a ě max

"

2, 1`
b2

4

*

. (102)
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ãÑWe finish by showing (85). We want to show

@t P r0, 1s,@z ě 0, plogtq
˚pzq ď logpzq ´ uptqz ` vptqp1` log2 z ` pz ´ 1q2q

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

.
“htpzq

. (103)

For some uptq ě 0, vptq ě 0 both defined on r0, 1s, continuous and with limit 0 in t “ 1´. We fix

uptq
.
“ 1´ t˚

t˚
, ; vptq

.
“ plogtq

˚p1q ` uptq, (104)

and we check they trivially satisfy those properties in addition to being strictly decreasing over r0, 1s and satisfying
upr0, 1sq “ r0, 1´ 1{

?
2s, vpr0, 1sq “ r0, 1{

?
2s. We also check that (103) trivially holds for t “ 1 so we prove the result

for t P r0, 1q. We have

plogtq
˚p1q “ htp1q; plogtq

˚1p1q “ h1tp1q, (105)

so functions plogtq
˚, ht are tangent at z “ 1, @t P r0, 1s. We note

h1tpzq “
1´ puptq ` 2vptqqz ` 2vptqpz2 ` log zq

z
.

Given (105), if we can show

h1tpzq ď plogtq
˚1pzq,@z ď 1,@t P r0, 1q (106)

then, since all related functions are continuous, we obtain

plogtq
˚pzq ď htpzq,@z ď 1,@t P r0, 1q. (107)

(106) is the same as

1´ puptq ` 2vptqqz ` 2vptqpz2 ` log zq
loooooooooooooooooooooooomoooooooooooooooooooooooon

.
“itpzq

ď p1´ uptqqz1´t˚

loooooooomoooooooon

jtpzq

,@z ď 1,@t P r0, 1q. (108)

Since itp1q “ jtp1q, (108) is guaranteed if i1tpzq ě j1tpzq,@z ď 1,@t P r0, 1q. This condition can be formulated as (for any
c):

4vptqz `
c

z
`

2vptq ´ c

z
ě uptq ` 2vptq `

p1´ t˚qp1´ uptqq

zt˚
,@z ď 1. (109)

Now pick c .
“ puptq ` 2vptqq2{p16vptqq. We can check that

c ď vptq,@t P r0, 1s ; 4vptqz `
c

z
ě uptq ` 2vptq,@z ě 0,@t P r0, 1q, (110)

so we get

4vptqz `
c

z
`

2vptq ´ c

z
ě uptq ` 2vptq `

vptq

z
,@z ď 1,@t P r0, 1q. (111)

To get (109), it is thus enough, since t˚ P r1{2, 1s, uptq P r0, 1s, z ď 1, that we show vptq ě 1´ t˚, which after reordering,
yields equivalently plogtq

˚p1q ě t˚t
˚

´ t˚. Using t˚ .
“ 1{p2´ tq and multiplying both sides by 2´ t yields in compact

form the requirement

p2´ tqplogtq
˚p1q ě p1´ tqplogtq

˚p1q, (112)

which, since plogtq
˚p1q ą 0 for t P r0, 1q, indeed holds. In summary, we have shown:

plogtq
˚pzq ď htpzq,@z ď 1,@t P r0, 1q. (113)

There remains to cover the cases z ą 1 and it is sufficient to change the polarity of (106), (108) and thus show

itpzq ě jtpzq,@z ě 1,@t P r0, 1q. (114)
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t
“

0
t
“

0.
5

t
“

1.
0

Figure 4: Voronoi diagrams associated to the left population minimizer of the 1D t-exponential (domain = R2
´˚) of the

vertices of a rotating regular pentagon, for t P t0, 0.5, 1u.

We now restrict the interval to check for t. We remark that

h2t pzq “
vptq

z2
¨
`

2z2 ´ log z ´ wptq
˘

, wptq
.
“

1´ vptq

vptq
;

We note wptq P r
?

2 ´ 1,`8q. Since vptq ě 0, for all ts such that p2z2 ´ log z ´ wptqqpr1,`8qq does not contain
0, ht is convex for z ě 1. Since plogtq

˚ is concave, we shall get our result. What is the set of such ts ? The function
z ÞÑ 2z2 ´ log z ´ wptq is strictly increasing for z ě 1. Thus, we seek t such that wptq ď 2, or equivalently vptq ě 1{3:
for any t such that vptq ě 1{3, ht is convex over r1,`8q and our result (103) holds. We thus refine (115) by checking

itpzq ě jtpzq,@z ě 1,@t P r0, 1q : vptq ď 1{3. (115)

Since z1´t˚ ď z and log z ě 0 for z ě 1, (115) is implied by showing 1´ puptq ` 2vptqqz ` 2vptqz2 ě p1´ uptqqz (we
recall vptq ě 0), which provides us with the degree-2 polynomial condition

1´ p1` 2vptqqz ` 2vptqz2 ě 0, (116)

and this needs to be checked for z ě 1, t P r0, 1q : vptq ď 1{3. We compute the roots

z˘
.
“

1` 2vptq ˘ |1´ 2vptq|

2
, (117)

and check that the largest root, under the condition vptq ď 1{3, is z` “ p1{2qp1` 2vptq ` 1´ 2vptqq “ 1. In other words,
(115) holds and we have completed the proof of (85), and thus the proof of Theorem 7.1.

IX Voronoi diagrams

Figures 4 and 5 present more detailed Voronoi diagrams for the same setting as described in the main file.
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t
“

0
t
“

0.
5

t
“

1.
0

Figure 5: Voronoi diagrams associated to the right population minimizer of the 1D t-exponential (domain = R2
´˚) of the

vertices of a rotating regular pentagon, for t P t0, 0.5, 1u.


	INTRODUCTION
	PROBLEM AND RELATED WORK
	TEMPERED EXPONENTIAL MEASURES AND CO-DENSITIES
	AN INFORMATION THEORETIC/GEOMETRIC RESULT
	CLUSTERING AND POPULATION MINIMIZERS
	EXPERIMENTS
	DISCUSSION
	CONCLUSION
	Cheatsheet for t-functions, t-algebra and related functions
	Proof of Theorem 3.2
	Proof of Lemma 3.3
	Proof of Theorem 4.1
	Proof of Lemma 5.2
	Proof of Lemma 5.3
	Proof of Lemma 5.4
	Proof of Theorem 7.1
	Voronoi diagrams

