
The Minimum Consistent DFA Problem
Cannot be Atxxoximated within any Polynomial

A .I.

Leonard Pitt*
University of Illinois

at Urbana-Champaign

Manfred K. Warmuth**
University of California

at Santa Cruz

Abstract
The xninimum consistent DFA problem is that of finding a
DFA with as few states as possible that is consistent with
a given sample {a finite collection of words, each labeled as
to whether the DFA found should accept or reject). Assum-
ing that P # NP, it is shown that for any constant k, no

polynomial time algorithm can be guaranteed to find a con-
sistent DFA of size opt’, where opt is the size of a smallest
DFA consistent with the sample. This result holds even if

the alphabet is of constant size two, and if the algorithm is
allowed to produce an NFA, a regular grammar, or a regular
expression that is consistent with the sample. Similar hard-

ness results are described for the problem of finding small
consistent linear grammars.

ing function f, can produce (or just determine the ex-
istence of) a consistent DFA of size f(opt), where opt is
the size of the smallest consistent DFA?

Our Main Theorem (Theorem 3.1) answers this ques-
tion negatively by showing that assuming P#NP, there
does not exist a polynomial time algorithm A and con-
stant k such that on input of any finite sets of strings
POS and NEG A outputs a nondeterminiatic finite au-
tomaton (NFA) that is consistent with POS and NEG,
and has less than optk states, where opt is the minimum
number of states of any consistent DFA. This improves
the lower bound on approximability due to Li and Vazi-
rani [14], which shows that a constant factor of i cannot
be achieved.

1 Introduction

We consider the following problem. Given finite sets
POS and NEG of words over a finite alphabet, can
a small deterministic finite automaton (DFA) be con-
structed that is consistent with POS and NEG, i.e., ac-
cepts all words of POS and rejects all words of NEG? It
is known that the problem of determining the smallest
such consistent DFA for a given sample is NP-hard [8],
and thus is unlikely to be solvable with a polynomial
time algorithm [i’]. It is natural to ask whether an ap-
proximately small DFA can be found: Is there an effi-
cient algorithm, that for some reasonably slowly grow-

* Supportedin part by NSF grant IRI-8809570, and by the De-
partment of Computer Science, University of Illinois at Urbana-
Champaign.

**Supported by ONR grants N00014-86-K-0454 and N00014-
85-K-0445. Currently on leave from UCSC at Aikcn Computation
Laboratory, Harvard University, Cambridge, MA 02138.

In the complete paper [17] we show that the Main
Theorem still holds if POS and NEG are sets of strings
over a two letter alphabet (The previous f factor re-
sult of [J.4] holds for the two letter case). Also, as an
extension of the Main Theorem, it is shown that unless
P=NP, no element of any of the naturally used represen-
tations of the regular sets (DFAs, NFAs, regular expres-
sions, or regular grammars) can always be found that
is of size at most polynomially larger than the smallest
DFA consistent with a sample over a two letter alpha-
bet. In [17] we also show that the techniques introduced
here can be used to show that the linear grammar con-
sistency problem cannot be approximated within any
polynomial factor unless P=NP. More specifically, given
two finite sets POS and NEG consistent with some lin-
ear grammar G, it is NP-hard to find a linear grammar
G’ that generates all of the strings of POS, none of the
strings of NEG, and has size bounded by some poly-
nomial in the size o,f G. The extensions of the Main
Theorem and the results on linear grammars are sum-
marized in Section 5.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is be permission of the Association for Computing Machinery, To
copy otherwise, or to republish, requires a fee and/or specific
permission.

0 t her nonapproximability results
There seem to be few naturally arising optimization
problems for which nonapproximability results have
been shown. Indeed, the dearth of such results is one
of the motivations given by Papadimitriou and Yan-
nakakis [15] for their investigation of approximation pre-

0 1989 ACM 0-89791-307-8/89/0005/0421 $1 SO

421

serving reductions. The tr,aveling salesperson problem
(TSP) is perhaps th e most notable optimization prob-
lem that cannot be approximated (in the absence of
other constraints, e.g., triangle inequality) [7] assuming
P#NP. However, the reason that TSP is not approx-
imable is that it is essentiall:y the weighted version of
the NP-complete Hamiltonian cycle problem. Although
one may similarly define optimization. problems based on
other NP-complete de&ion problems in such a way that
the optimization problem cannot be approximated at
all (or at least not very well), such results are typically
uninteresting for two reasons - the problems defined
usually are not natural, and the resulting proofs are
trivial. In contrast, the minimum consistent DFA prob-

lem discussed here is a natural problem, and the non-
approximability result is not obtained by simply adding
weights to an NP-complete decision problem.

Besides TSP, among the seemingly few existing nega-
tive approximability results, two others are well known,
but the bounds are much weaker than that shown for
TSP and the result given here for DFAs. For min-
imum graph coloring [6], it was shown that (unless
P=NP) no polynomial time approximation algorithm
exists guaranteeing a constant factor approximation
strictly smaller than twice optimal. Also, for maximum
independent set (equivalently, maximum clique), it has
been shown that if some constant factor approximation
can be achieved, then any constant factor approxima-
tion can be achieved [7].

The minimum consistent DFA problem
Gold [8] proved that the problem of finding a smallest
consistent DFA is NP-hard. Angluin [4] showed that
it is NP-hard to determine whether there exists a two
state DFA consistent with given data. Trakhtenbrot
and Barzdin [19] gave a polynomial time algorithm for
finding a smallest consistent DFA in the case where the
sets POS and NEG together consist of all strings up to
a given length. Angluin [3] extended Gold’s result, and
showed that if even some small fraction e of strings up
to a given length were missing from POS U NEG, then
the problem is again NP-hard, and also showed that
the problem of finding the smallest regular expression
consistent with a finite sample is NP-hard. In [l] it was
left as an open question whether an approximately small
DFA could be found.

In 1987, Li and Vazirani [14] gave the first nonap-
proximability result for the minimum consistent DFA
problem, showing that if PfNP, no polynomial time al-
gorithm can find a consistent NFA of size smaller than
g times the size of a smallest consistent DFA. In this
paper we replace the constant factor i with any poly-
nomial function of optimal.

Finally, concurrent with this research, Kearns and

Valiant give even stronger nonapproximability results
for. the minimum consistent DFA problem than the one
presented here [13]. However, their results rely on cryp-
tographic assumptions (e.g., that factoring Blum inte-
gers is intractable), whereas our results assume only
that P#NP. We present a discussion of their work, and
its relationship to ours, in Section 6.

Implications for learning DFAs
Although our results have main significance in the con-
text of combinatorial optimization, our original moti-
vation was in the study of the learnability of DFAs
from randomly generated examples in the distribution
independent model of learning (now called pat-learning)
introduced by Valiant [XI]. By results from [5], if in
fact there was a polynomial time algorithm that could,
given two finite sets POS and NEG, produce a con-
sistent DFA of size at most polynomially larger than
the smallest consistent DFA, then DFAs would be pac-
learnable. This is only a sufficient condition for learn-
ability; consequently our results do not show that DFAs
are not pat-learnablel. However, our results do show
that any efficient algorithm for learning DFAs would
have to produce very large hypotheses (unless P=NP).
Further discussion of the learnability of DFAs, the prob-
lem of finding a small consistent DFA, and the relation-
ship between our work and recent work of Kearns and
Valiant [13] (h h w o s ow nonlearnability of DFAs based
on cryptographic assumptions) is given in Section 6.

2 Definitions

2.1 DFAs and NFAs

For a finite alphabet E, the set C* consists of all words
(or strings) of finite length formed from the symbols of
C. If w E C’ then]w] denotes the number of symbols
of w, and is called the length of w. The empty word X
is the unique word with length 0 in C*.

A deterministic finite automaton (DFA) A is a 5-tuple
(Q, x, 4 enit, F), where Q is a finite set of states, C is
a finite alphabet, sinit E Q is the initial state, 6 is the
transition junction which maps Q x C to Q, and F C Q
is the set of accepting or final states. A nondeterministic
finite automaton is a 5-tuple with the same parameters
except that the transition function maps Q x (C U {A})

to 2Q, the power set of Q.
We will use the standard graph representation of an

NFA in which the vertices are the states of the NFA, and
in which there is a directed edge (or transition) labeled

’ Angluin [23 has recently shown that DFAs are not learnable if
the learner may only ask equivalence queries instead of receiving
randomly generated examples. This result has no bearing on the
optimization problem considered in this paper.

422

with o E I= U (A} from state s to state t if t E b(sr a).
Note that some edges may be labeled with X. DFAs may
be viewed as NFAs with the additional restriction that
there are no X-transitions, and for each state s E Q and
letter a E C, there is exactly one edge leaving B which
is labeled with a.

A string w E C’ is accepted by the NFA (DFA) A iff
there is a directed path leading from the initial state
to some accepting state such that the concatenation of
the symbols of the edges of the path forms the string w.
(We say that the path is “labeled with” w.)

For any states s, t in Q, and any string w, we say w
leclda from s to t if there is a path labeled with w from s
to t (In the case of a DFA, such a path is always unique).
We also write w leads to t iff w leads from sinit to t.

A positive ezample of A is a word accepted by A and a
negative example is a word in C* that is not accepted by
A. The language accepted by A, denoted by L(A), is the
set of all words accepted by A. The class of languages
accepted by DFAs is identical to the class of languages
accepted by NFAs and is called the class of regular ian-
guages [12].

2.2 The Consistency Problem

A set of representations (encodings) of a class of lan-
guages C is a set d such that each A E A denotes
a language L(A) E C, and for each language L E L
there is at least one element of A that denotes L. Let
L(d) = {L(A) : A E d} (thus if A is a set of rep-
resentations for L then L(d) = C). For example, the
set of deterministic finite automata (DFAs) is a set of
representations for the regular languages, as are NFAs,
regular grammars, and regular expressions. We asso-
ciate a size measure with each set of representations.
The size (a nonnegative integer) of any element A E A
is denoted by jAI. For the case of DFAs or NFAs, IAl is
defined as the number of states of the automaton.

Definition 2.1 A representation A is consistent with
two sets offinite strings POS and NEG if POS is con-
tained in L(A) and NEG is disjoint from L(A).

Definition 2.2 Let A and 23 be sets of representations
of languages and let L(d) c L(B). The minimization
problem MIN-CON(.4,23) is defined as follows.

Input instance: An instance I of MIN-CON/d, 23)
consists of two finite sets of strings, POS and NEG,
consistent with some element A E A.

Feasible solution: Any element B E I3 that is consis-
tent with I is a feasible solution. Note that there
always exists a feasible soZution.

Cost: The cost of a feasible solution B is the size IB 1
of the representation B.

Optimal solution: For any instance I, the value
opt(I) is defined as the site of the smallest element
of A that is consistent with I.

Note that a feasible solution of the problem requires
a representation from the class B, and optimality is de-
fined with respect to elements of the class A. Thus for
some choices of A and B, there may be no feasible solu-
tions with cost as small as an optimal solution. (For ex-
ample, consider MIN-CON(NFA,DFA)). Although the
general definition assumes nothing regarding the re-
lationship between the size of the smallest -consistent
members of A and 13, in this paper the latter is usually
equal to or smaller than the former.

MIN-CON(DFA,NFA) is the main optimization prob-
lem we consider. This problem is easier than MIN-
CON(DFA,DFA), since (1) every DFA is an NFA, and
(2) in some cases, the smallest consistent NFA for a
language is significantly smaller than the smallest con-
sistent DFA.

Definition 2.3 Let d, 13 be sets of language represen-
tations, and f be any function of the single variable opt.
Then MIN-CON ($I, I?) is f (opt) -approximable in there
exists a constant c and a polynomial time algorithm AP-
PROX such that on input of any instance I of MIN-
CON(d, 8) for which opt(I) > c, APPROX outputs a
representation B E t3 that is consistent with I and such
that IBI < f(opt(I)).

Note that the definition of f (opt)-approximable does
not require the approximation algorithm to perform well
on all instances, but only on those instances I with suf-
ficiently large values of opt(I). Consequently, a result
showing nonapproximability must show, for all approx-
imation algorithms, that for arbitrarily large values of
opt there are instances 1 with opt(I) = opt, and for
which the approximation algorithm fails to achieve the
desired bound. Thus this is a stronger negative result
than simply showing that the bound f(opt) is not ob-
tainable for particular values of opt.

The definition of MIN-CON(A,B) depends on the
(implicit) size measures used for A and B. However the
results of this paper are in the following form: MIN-
CON(d, B) is not f (opt)-approximable for any function
f that is polynomially bounded. Such results are robust
with respect to any size measure that is polynomially
related to ours.

423

2.3 Using gaps to force nonapproxima-
bility

Our goal will be to show t,hat, assuming P#NP, MIN-
CON(DFA,NFA) is not f(opt)-approximable for any
function f bounded above by some polynomial. Non-
approximability results may be obtained by exhibiting
“gaps” in the cost measure for a minimization problem.
Intuitively, if we can transform an instance of an NP-
hard decision problem into a MIN-CON problem, such
that if the answer to the NP-hard decision problem is
“yes” then the optimal solution to t:he MIN-CON prob-
lem is some number p, whereas if the answer is “no”,
then there is no solution to the MIN-CON problem of
size smaller than f(p), then we can show that f(opl)-
approximability of the MIN-CON problem implies that
P=NP. More formally, we have the following sufficient
condition.

Lemma 2.4 Suppose there are infinitely many positive
integers p such that there exists a polynomial time trans-
formation .I(,, with the following properties:

Property 1 I& takes as ,input some instance I of an
NP-comp2ete language S, and outputs an instance
of MIN-CON(d) B).

Property 2 If instance I E S then %(I) has an opti-
mal solution with cost opt(I) = p.

Property 3 If1 gf S, th en there does not e&t a solu-
tion for I?+(I) with cost less than f(p).

Then, under the assumpi,ion that P#NP, MIN-
CON(d) 23) is not f (opt)-approzimable.

2.4 I-in-S-SAT

The NP-hard problem we use in our reductions is
a variant of 3-SAT, the “monotone 1-in-3-SAT prob-
lem” [‘I, 181. A n instance 1’ of monotone l-in-3-SAT
consists of a set of variables ‘V = {vi, vr , . . . , v,} and a
nonempty collection of clauses {c;}i<i<,, each of size 3.
(Le., each ci is a 3-element subset Of-V). For brevity,
we henceforth omit the word “monotone”, and refer to
the problem as “1-in-bSAT”, 111 denotes the size of the
instance I according to some fixed encoding scheme. In
particular,]I] is always at least as large as the num-
ber of variables plus the number of clauses of instance
I, and is not more than polynomially larger. A (truth)
assignment is a function T : V --+ {O,l}. An assign-
ment 7 is a solution to 1 if for every clause (v,, vv, vZ)
of 1, the multiset {T(v~),T(v~), 7(vZ)) = {O,O, 1). If
we write that v, is assigned true (respectively false) by
7, we mean T(v=) = 1 (resplectively, ~(21~) = 0). The
decision problem for 1-in-3-S.AT is to determine for any

input instance 1, whether or not there exists a solution
to I.

2.5 Counter DFAs

The smallest consistent DFA for the examples of the re-
ductions presented will be of a very special form which is
defined as follows. A Counter DFA (CDFA) over alpha-
bet V is a deterministic finite automaton that counts
the number of occurrences of characters in a subset V’
of V mod p for some number p as follows: The labeled
graph representing the CDFA consists of a simple cycle
of p states, with the labeled edges of V’ advancing one
state around the cycle, and the labeled edges of V - V’
returning to the same state. Thus each character of V’
read increases the “count” by 1 mod p, and a character
of V- V’ leaves the count unchanged. Further, the start
state is the same as the unique final state, thus CDFAs
count from 0 to p - 1 mod p. CDFAs are a restricted
subclass of DFAs that are contained in a class which is
pat-learnable. Further discussion appears in Section 6.

Definition 2.5 Let T : V -+ {O,l} be a truth assign-
ment to the variable set V. Then C(p) T) is the CDFA
that counts all true variables (i.e., counts the set r-l(l))
mod p as described above.

3 Outline of the Proof of the
Main Theorem

Theorem 3.1 (Main Theorem)
For all positive integers k, MIN-CON(DFA,NFA) is not

optk-approzimable unless P=NP.

Proof: We provide a reduction from the l-in-3-SAT
problem to the MIN-CON(DFA,NFA) problem that in-
troduces a gap between p and pk. Let k be any constant,
and let m = 3 - 2k-1. We show that for all sufficiently
large primes p (in particular, for p > 2k-1+m), there
exists a reduction &,,k that is computable in polyno-
mial time (Proposition 4.3) that takes as input an in-
stance I of a l-in-J-SAT problem, and produces two
sets POS(p, k, I) and NEG(p, k, I) which satisfy Lem-
mas 3.2, 3.3, and 3.4 (stated immediately below). It
follows that the hypothesis of Lemma 2.4 is satisfied
with f (opt) = optk, and thus unless P=NP, MIN-
CON(DFA,NFA) is not optk-approximable. q

The description of %,k, and of the sets POS(p, 8, I)
and NEG(p, k, I), are given in Section 4.2. The key
lemmas used show that there is a p state counter ma-
chine C(p) T) (L emma 3.2)) which is in fact optimal
(Lemma 3.3)) and that any NFA with fewer than pk

424

states provides a solution to a 1-in-3-SAT problem
(Lemma 3.4).

Lemma 3.2 Let I be an instance of 1-in-3-SAT. 1f 7
is a solution of I, then for all positive integers k and p,
C(p, T) is consistent with POS(p, k, I) and NEG(p, k, I).
Thus if I has some solution, then there exists a consis-
tent p state DFA.

Lemma 3.3 Let k and p be any positive integers, and
let I be any instance of 1-in-tSAT. Then any NFA that
is consistent with POS(p, k, I) and NEG(p, k, I) has at
least p states.

Lemma 3.4 Let k be any positive integer, and let p be
a prime such that p > 2k-1+m. If I is any instance
of 1-in-3-SAT, and if A = (Q, C, 6, Sinit, F) is an NFA
such that IQ/ < pk and such that A is consistent with
POS(p, k, I) and NEG(p, k, I), then I has some solu-
tion.

Lemmas 3.2 and 3.3 are proved in Section 4.3, and
Lemma 3.4 is proved in Section 4.4. Before delving into
the details of the proofs, we give a general overview
of the techniques involved. Given an assignment 7, a
string is accepted by the counter machine C(p, T) iff the
number of true variables in the string is congruent to
0 mod p. In fact, if a string 7 leads from any state
in C(p,r) back to that state, then the number of true
variables in 7 is congruent to 0.

We may rewrite the above property of C(p, T) as fol-
lows. For any string 7, let 7 = (zl,zz, . . . z,), such that
for each i, 1 5 i 2 n, the number of occurrences of vi
in 7 is congruent to Zi mod p. Then 7 leads around a
cycle in C(p, T) iff 7.7 = 0, where the assignment 7 is
interpreted as a Boolean vector of length n, “.” is the
dot product, and all arithmetic is mod p. Consequently,
given a collection of strings (7i) that lead around a cy-
cle in some unknown counter machine C(p, T), one way
of determining T would be to solve the simultaneous sys-
tem of equations {-Ji . 5 = 0). This suggests a strategy
for constructing POS(p, k, I), NEG(p, k, I): try to force
the above property in any small consistent NFA, not
simply a counter DFA. Thus we construct POS(p, k, I)
and NEG(p, k, I) such that

l If 7 is any solution for I, then C(p, 7) (which
has p states) is consistent with POS(p, k, I) and

NEG(P, k, I);

l A single carefully constructed positive example
forces a cycle in any accepting NFA with strictly
less than pk states;

l From the cycle, a set of strings (7i} may be ex-
tracted;

l If S is the matrix with rows (7:) representing the
equations {< . z’ = 0), then the set of solutions
to the system S contains an element that is (0, 1)
valued, and is a solution of I. Thus the existence
of a consistent NFA with less than pk states implies
that I has some solution.

The last property is achieved by including in
NEG(p, k,I) examples that rule out consistent au-
tomata with less than p” states whose induced set of
equations (those extracted from strings leading around
the cycle) do not include a solution of I.

4 Technical Details

4.1 Definitions

Let k be any constant. Let m = 3 * 2”-‘. Let
p be a prime number such that p > 2k-1Sm. Let
P = (0, 1,. . . , p - 1). P” denotes all vectors of length
n with elements in P. Vectors 5, y’, d will always denote
elements of P”. All vectors are indexed starting at 1,
thus 5 = (zl, z2,. . . z~). We assume the standard lexi-
cographic ordering on P”. Thus 2’ < y’indicates that 5
comes first in the lexicographic order. Matrices are sets
of row vectors in P”, All matrix operations are mod p.
CO&(M) denotes the set {i : the i-th column in M is
nonzero}. Note that COL(M) is also defined if M con-
sists of only one row. Let K(M) denote the kernel of
M, i.e., K(M) = {Z : MS = 6}, and let spun(M) be
the set of all linear combinations of rows of M. Recall
from linear algebra that if M is a matrix and B is a
basis of M (more precisely, a basis of the vector space
spun(M)), then K(IM) = K(B).

Any truth assignment T may also be interpreted as
a vector (I, 7(vz), . . . , A) E {O,l}” C P”. The
symbol T will be used to denote either the function, or
the vector; the meaning will be clear from context. For
example, in “r(v)“, the function is denoted, whereas
the vector is denoted in ‘55. 7”. Similarly, any vector
2’ E (0, l}n may be interpreted as a truth assignment, in
which vi is assigned false (respectively, true) iff 2i = 0
(respectively 2i = 1).

Definition 4.1 If I is an instance of 1-in-3-SAT over
variable set V, and V’ E V, then the instance I re-
stricted to V’ (written I/v,) is the instance of l-in-
3-SAT over variable set V,” that contains ezactly the
clauses c of I for which every element of c is in V’.
If I’ is an instance of l-in-S-SAT over n variables (pos-
sibly an instance derived by restricting another instance
as above) then S_OL(f) = (S E (0, l}n : 2’ is a solution
to the instance I}.

425

4.2 The Reduction and Examples

Let I be an instance of 1-in-3-SAT, with variables V =

-fw,v2, .", v,}. We let the alphabet B for the problem
MIN-CON(DFA, NFA) be V.

Recall that for any string ‘7 ff C’, +’ = (~r,zr, . . . z~),
such that for each i, 1 < i 5 ti, the number of occur-
rences of ui in 7 is congruent to xi m.od p.

We now define a special word q, which is specified by
a product (denoting concatenation) of all words of the
following form: For any vect,or 2’ E P”, define

-2
V = VIZl v2=a . . . q&y)lP--=l 02p--- . . . vnP--xn*

Note that v”” has p occurrences of each letter wi. Since
the product sign below in the definition of q denotes
concatenation, to be unambiguous, we must specify the
order in which the terms (subwords) are concatenated:
The choice in the product below is made in lexicographic
order of the vectors 5.

cl= rI
+z’ v .

5 E P’n
ICOL(2’)1<k

Note that f = 0’. Whenever they appear, CY and /3
(and subscripted versions) will denote prefixes and suf-
fixes, respectively, of q.

On input I, the transformation .I$,+ outputs
Rp,k(l) consisting of the two sets, POS(p, Ic,l) and
NEG(p, k, I). W e will show that these sets have the
properties sketched above. Note that the transforma-
tion Rp,k need only be computable in time polynomial
in 111, since p and Ic are constants. However, to prove
the same results for DFAs and NFAs over the fixed two
letter alphabet {0, l}, we use the fact, proved below,
that the transformation is also polynomial in the value
p. (The reliance on k is doubly exponential however.)
We now describe POS(p, L, I) and NEG(p, L, I).

POS(p, Ic, 1) consists only of the word qPh.

NEG(p, k, I) is constructed as follows. Let (cr;}& be
any collection of m prefixes of q (recall m = 3 +

Zk-l), let {p;}gr, b e any collection of m suffixes
of q, and let (pl,pz, . . . , P,~) be any element of Pm.
Define 7i = cr&. Let 7 = ncr(^(;)P’. Then if
there exists a set D such that

1. (D/Sk-l+m

2. COL(;J) c, D 5 v

3. SOL(I/D) l-l K(y’) =: 0

then for any numbers a, b, c (0 5 a, b, c 5 pk), in’-
elude in the set NEG(p, k, 1) the string 7+,C =

q”(I-IZ1 f7isrb)“h”.

Proposition 4.2 The length of each ezample in
POS(p, k,I) and NEG(p,Ic,1), and the number of ez-
amples in these sets, is polynomial in 111 and in the
value p.

Proposition 4.3 For any k and p, R+(I) is com-
putable in time polynomial in III and in the value p.

Proof: By Proposition 4.2, clearly the only possi-
ble problem would be in determining for which strings
7, the strings {7+,c}u+,+~pL should be included in
NEG(p, k, I). I n order to make this determination, it
is sufficient to check all possible (at most O(nk-‘+“))
sets D of size 101 5 k - 1 + m and observe whether
SOL(I/D) rl K(y) = 0. The determination of whether
this intersection is empty can be achieved by enumerat-
ing every possible element in SOL(I/D) and checking
whether any element is also an element of K(y). Note
that I/D has at most lOI clauses, hence SOI;(I/D) can
be enumerated in time 0(2k-1+“lD13) which is con-
stant. Further, for each truth setting of SOL(I/D) it
takes O(k - 1 + m) time to check whether it lies in K(y’)
and this too is a constant. cl

4.3 A small consistent counter machine

We show that if I has some solution r, then there is
a small (p state) DFA consistent with POS(p, k, I) and

NJWP, k, I>-

Proof of Lemma 3.2:
Recall that C(p, T) accepts a string 7 iff 7 E K(T),
i.e., iff the number of true variables occurring in 7 is
zero mod p. Since 5 = 8, then for any power qa of q,
q% = 0’. Clearly, r E .K(q%), and thus C(~,T) accepts
qa. In particular, C(p, T) accepts the only element qPh
of POS@, k, I).

To see that C(p, 7) rejects all elements of
NEG(p, k, I), we show that if C(~,T) accepts a string
7Q,e (as described in the definition of NEG(p, k,I)),
then 7Q,C is not an element of NEG(p, k,I). Note
that since q contains each variable occurring a num-
ber of times congruent to 0 mod p, if C(p, 7) accepts
7ll,b,C, then it also accepts any word formed from 7a,b,e
by removing any number of copies of q. In particu-
lar, it also accepts 7, (described in the definition of
NEG(p, kc, I>>. F rom the above comments it follows
that 7 E K(y’). Furth er, by assumption r E SOL(I),
hence for any D C V, r E SOL(r/o). Thus cer-
tainly there is no set D G V of size IDI < k - 1 + m,
such that SOL(I/D) n K(T) = 0, and therefore, for no
choices of a, b, and c would the string 7Q,,c be placed in
NWP, k, I>. q

426

Figure 1: The loop of path $, and a bridge from s to t

To prove that p states are necessary in any NFA con-
sistent with POS(p, le, I) and NEG(p, Iz, I) (Lemma 3.3),
we first introduce some notation that will also be used
in the proof of Lemma 3.4.

Let A = (Q,%h~t, F) be any NFA with fewer
than pk states that is consistent with POS(p, L, I) and
NEG(p, Ic, I), and consider the graph representation of
A. Since A is consistent, the positive example qPh de-
fines a path 11, from s;,,it to some accepting state s+.
Since A has less than pk states, there exist numbers
d, e, and f such that d+l+e+ f = pk, and states s and
t on path $J such that: qd leads from sinit to s; q leads
from s to t; qe leads from t to s; and qf leads from s to
s+. Figure 1 shows the loop of $, together with states
s and t, and the strings qd, q’, qf .

For each 3 E P” for which ICOL(r?)/ 5 k we define a
particular prefix as and suflix /3~ of q as follows

t&J =

and /3~ is the unique suffix such that a& = q. In other
words,

p,- = qP-Zi*2P-=a . . . y,P-=n

Proof of Lemma 3.3:
It suffices to show that any consistent NFA with less
than p” states has at least p states. Let n be the number
of variables of I and let {vi, Vi, ‘uk) be any clause of I.
Let 2; be the n-component vector which contains all
OS except for components i, j and lo, which are 1. Let
2:=rZr,forO<T_<p-l.

For any prefix w of qp’, let sinit denote the state’
that w leads to along $J. It suffices to show that the
states {sinit(qdCYdr)}ojr_<p-l are distinct. Assume to
the contrary, that for some T and T’ such that 0 <
T’ < T _< p - 1, we have sinit qdCrzr (> = sinit(9”~a,,).
Observe that qda~,&,qeSf = qdas,,P,-,,q’+f = qPh.
Since sinit (q da,t,) = sinit(qdQ$,,), we conclude that the
word p = qd a,-Jz,, qc qf is accepted. We now obtain a
contradiction by showing that p E NEG(p, k, I). Thus
sinit (qda,-?) # sinit(qdQJr,), and A must have at least
p states.

To see that p is a negative example, recall the def-
inition of NEG(p, k, I). Set 71 to as,&,, and 71 to

Q&b, = q, for 2 5 I 5 m. Let (pr,pz,‘. , .,pm)
be the vector (l,O,. . .,O) of P” and set D to be
the clause (Vi, uj, ?.$}. The word p can be rewrit-
ten as qd(n~l(7iq”)Pi)qf = qdylqeqf . To show that
p is a negative example we only need to show that
SOL(I/I,) n K(y’) = 0 for 7 = flz”=,(7i)Pi = 71. Note 7
consists of all zeros except for the components i, j, and
k, which have value T - T’. The restriction I/D consists
of the clause D and thus any solution of SOL(I/D) must
have exactly one of the three components corresponding
to the variable of the clause set to 1 and the others set
to 0. Since 1 5 T - T’ 5 p - 1, this implies that such a
solution cannot lie in K(y) and SOL(I/D) f~ K(q) = 0.

q

4.4 Forcing polynomially larger NFAs

In this section we prove Lemma 3.4 by showing that
if there exists an NFA consistent with POS(p, k, I) and
NEG(p, k, 1) with fewer than pk states, then there exists
a solution of instance 1. Before sketching the proof of
Lemma 3.4, we need a number of supporting proposi-
tions. The arguments to follow apply to any given NFA
A that satisfies the hypothesis of Lemma 3.4. As de-
scribed above, A must have a loop; in what follows we
use the notation given in Figure 1.

For any set X 5 {1,2,. . ., n} such that (XI = k, we
define an X-bridge as follows. The string a& is an X-
bridge iff 5 # y’, COL(2’) and COL(y’) are both subsets
of X, and the string (Y& leads from s to t. Figure 1
depicts a bridge.

Proposition 4.4 For all X C {l, 2,. . . , n} such that
1x1 = k, there exists an X-bridge.

Proof: Consider any X as in the hypothesis of the
proposition. There are exactly pk vectors 2’ such that
COL(Z) s X. Since I&I < pk, there must be two such

2Technically, if there are X-transitions along $, then bini*
is not necessarily well de&cd. However, X-transitions can be
eliminated without increasing the number of states [X2].

427

vectors 5 # y’ such that for some state T, the states
;;r;s(4f:;;) 3=Bsyt(qdag) = T. The lstring c@f = Q

- init to t == rrin;t(qd+‘), and thus /?g
leads from T to t. Consequently, (Y&G leads from s to t,
and is therefore an X-bridge. q

A bridge is a string that for :some X of size k, is an
X-bridge. For each bridge a:& let the string 7~ f =
cr&q’. By the definition of a bridge, and e, any 7gg
leads from s to t and then back to s. Thus qd (which
leads from sinit to s), followed by any sequence of strings
of the form 735, followed by qf (which leads from s to
s+) is accepted by A. (Refer to Figure 1.) We have just
proved the following proposition.

Proposition 4.5 Let {cxi)~zl i5e any col2ection of pre-

fixes of q, and {Pi}$ any co%lection of sufizes of q,
such that for each i, 1 _< i <g rn, the string 7i = (Y&
is a bridge. Then for any (pl,pz, . . .,p,,,) E P”, and
for any string 7 = n~zl(7~qC)*ij the NFA A accepts the
string qd7qf.

Recall our earlier observation that in any counter ma-
chine C(p, T), if 7 is a word thal; leads from a state back
to the same state, then T satisfes y - T = 0. Since ev-
ery bridge 73-j is a word that forms a cycle in A, we
will follow the approach discussed earlier, and from 72 g
we derive the equation 7~ f. ,? = 0. Our goal is to ex-
tract from A a small collection of bridges S such that at
least one solution of the collection of associated equa-
tions is also a solution to the instance 1. The examples
NEG(p, k, I) will rule out collections of bridges whose
corresponding sets of equation:; do not have this prop-
erty.

Let R be the matrix with a row 7s~ for each bridge
75~ of A. Since for each X of size at most k, there
is an X-bridge (Proposition 4.4), and each X-bridge is
a string 7;~ such that COL(5’) and COL(y’) are both
contained in X, it follows that the vector 7;; also is
such that CO2s(qs,) C X, since it consists only of a,-,
&, and some copies of q. Fmther note that yz,- # 0’
because in any bridge 75 J, S # g. Thus for each X E
{1,2, *. . n} of size at most k, th.ere is a nonzero row in R
with all nonzero entries appearing in columns indexed
by a value of X. Such matrices have special properties
that we exploit. In particular, we prove the following

Proposition 4.0 There exists a subset C c {l, . . . , n)
(called a “core” of R) such th:at ICI 5 k - 1, and for
each number i E Cl,. . . , n) - C, there is a row 5 of R
(called a determining row of index i) such that COL(Z)
2 C U {i} and such that xi is nonzero.

In other words, there are at most 2k-1 solutions to the
system R; once the variables indexed by the core C are
set, the values of all other variables are forced.

Now let S be any matrix of n - ICI rows of R con-
taining exactly one determining row for each index of
{1,2 ,..., n} - C. Let Vc denote the set of variables
indexed by the core, i.e., {vi : i E C}. For any set T
of rows of S, let V(T) = V~OJ,(T), the variables that
occur with nonzero coefficient in some row of T. Given
a setting of values for VC, i.e. fl : VC -+ (0,. . .,p - 1)
then the determining rows in S for all indices outside of
the core ensure that there is exactly one extension of u
to a setting of all variables u’ : V -+ (0, . . . , p - 1) that
lies in K(S).

Proposition 4.7 Consider the numbered statements
below.

(i) SOL(I) nK(S) = 0.

(ii) There exists a subset of rows T of S such that ITI 5
m = 3. 2k-f, and such that

SOL(UC~V(~)) n K(T) = 0.

(iii) There exists an element w’ of span(T) such that

~~W/C,V(T)) n K(G) = 0.

Then (i) + (ii) + (iii).

Proof (sketch) that (i) implies (ii): This portion
of the proposition asserts that if the system of equations
S has no solution in common with the set of satisfying
assignments of I, then a constant sized subset T of S
has no solutions in common with the set of satisfying
assignments of I restricted (see Definition 4.1) to those
variables VC of the core, and those variables V(T) with
nonzero entries in some row of T.

Since S consists of n - ICI determining rows for vari-
ables in V - Vc, there are exactly 21cl 5 2k-r solutions
of S. Since every solution r is not a satisfying assign-
ment of I, either T is not (0,l) valued, or r violates
some clause of I. In the first case there is a row of S
that, once the variables Vc are assigned, forces some
variable of V - Vc to have nonzero value. In the second
case there are at most three rows of S witnessing that
some clause of I is violated (one determining row for
each variable of the clause). Thus we may include in T
at most three rows for each of at most 2’-l satisfying
assignments of S. It follows that if S had no solution
that was a satisfying assignment for I, then T also has
this property, for the version of I restricted to the fl-
nite set of variables consisting of VC together with the
variables V(T).

Proof that (ii) implies (iii): Suppose to the con-
trary, that no such element w’ existed. Then for each
element w’ of span(T), SOL(l/cUv(~)) n K(G) # 0.
Since V(G) c V(T), if T : C U V(T) --) (0, l}, then
either all extensions T' : V -+ {O, 1) of T are such that

428

7’ E SOL(l/cUv(q) n K(w’), or no extensions 7’ are
such that r’ E SOL(If c”v(T)) n K(G). In the first
case, we say that T is a witness to the nonemptiness
of SOL(I/~,~(q) fl K(G). Since for each G, we have
SOL(I/ov(q) n K(w’) # 0, there is a witness for each
w’. There are at most 2k-1fm witnesses. Thus there
must be some assignment
is a witness for at least

70 : C U V(T) --f {O,l} that

elements of spun(T) (because p > 2k-1+“). Let B
be the subset of elements of spun(T) for which n-, is
a witness, i.e., B is the set of elements of span(T)
such that for every w’ E B, every extension of TO is
an element of SOL(I/cuv(~)) n K(Z). Immediately
we have that every extension of 70 is an element of
SOL(IICW(T)) n K(B).

The above bound on the size of B may be used to
prove that B contains a basis of span(T) and thus
K(T) = K(B). (Th e g eneral lemma states that for any
set of vectors M, if U 2 spun(M) has size larger than
F, then U contains a basis of span(M).) Thus

S~L(IICW(T)) n K(T) = SOL(I/C~V(T)) n K(B).
But since every extension of TO is in SOL(I/c,v(q)
n K(B), this implies that SOL(I/~~(TJ) n K(T) is
nonempty, contradicting the hypothesis of the proposi-
tion. Cl

Proof of Lemma 3.4: Assume the hypothesis of the
lemma is true, we need only show there exists a solution
of instance I. Thus Lemma 3.4 follows immediately
from:

Proposition 4.8 SOL(I) n K(S) # 0.

Proof: Suppose to the contrary that SOL(I) n
K(S) = 0, then by Proposition 4.7 there exists T E S of
size at most m such that SOL(l/cUv(~l) n X(T) = 0.
This implies, again by Proposition 4.7, that there ex-
ists a vector w’ E spun(T) such that SOL(l/o~(T~) n
K(G) = 0.

Recall that T consists of I 5 m vectors yi, j$, . . . ,-J,
corresponding to bridges 71,72, . . , ,71, where each 7i is
formed from the concatenation of some prefix cri and
some suffix pi of Q. For syntactic convenience, define
7j = 71 for I < j 5 m. By the definition of span(T),
there exists p’ E Pm such that w’ = Cz”=, piyi. Let the
string y = nLl(-/i)Pi. Then clearly q = d, and thus
SOL(I/cuv(q)nK(;J) = 0. Now define D = CuV(T),
and we have that SOL(I/n) n K(y) = 0, jD(5 k -
1 -k m, and COL(y) C D. Then by the definition of
NJWP, 8, I), for any a, b, C, 7a,a,c = q”(17z1 (7iqb)pi)qc
is an element of NEG(p, k, I). But when a = d, b = e,

and c = f, by Proposition 4.5, this string is accepted by
A, contradicting the consistency of A. We conclude that
SOL(I) l-l K(S) # 0, completing the proof of Proposi-
tion 4.8 and Lemma 3.4. Cl

5 Extensions

In the complete paper [l?] we show that our Main The-
orem (Theorem 3.1) remains true for the two letter case.
Let DFA(Orll denote the class of DFAs over the two let-
ter alphabet (0, 1) and similarly for NFAfo8rl.

Theorem 5.1 If PfNP, then for alI positive inte-
Q.98 k, MIN-coN(DFA’“‘ll, NFdo’1’) i8 7d Optk-
approzimable.

The proof of this theorem uses a modification of the
reduction of the previous section. In the new examples
each of the n variables of the instance of 1-in-3-SAT is
encoded as a bit string of length (roughly) logn.

Let REGEXPRI’I~} and REGGRAM{‘ll} be the class
of regular expressions and regular grammars [12], re-
spectively, over the two letter alphabet {0, 1). Let the
size of a regular expression be the number of symbols
in the expression and let the size of a regular grammar
be the total number of symbols in all of the productions
of the grammar. Since for each regular expression (and
similarly for each regular grammar) there is an NFA of
size at most a constant larger that accepts the same
language [12], the following is implied by the previous
theorem.

Theorem 5.2 If PfNP, then for all positive in-
tegers k, MIN-CON(DFA{0911, REGGRAM{‘I~)) and
MIN-CON(DFA {olll, REGEXPR{‘*‘l) are not optk-
approzimable.

Because the above theorem shows polynomial nonap-
proximability, the theorem holds with respect to other
natural size measures than the ones introduced above.
By an involved extension of the reduction of the pre-
vious section we prove a nonapproximability result for
linear grammars in [17]. Let LIN be the class of linear
grammars.

Theorem 5.3 If PfNP, then for aZl positive integers
8, MIN-CON(LIN,LIN) is not optk-approzimable.

6 Approximability and Learn-
ability

Following [7], let II be a minimization problem, let I
be any instance of II, and let A be an approxima-
tion algorithm. There are a number of ways we might

429

wish to measure the performance of ,4. One measure
is to simply express the size of the approximate so-
lution as a function of the size of the smallest feasi-
ble solution. Consider the minilmization problem MIN-
CON(DFA {‘*ll NFA{‘*‘l) of Theorem 5.1. In this case,
an instance I Consists of a collection of positive and
negative examples, opt(I) is the number of states in the
smallest consistent DFA, and for any a.pproximation al-
gorithm A, A(d) is the consistent NFA produced by A
and (A(I)] is the number of states of the NFA produced.
Theorem 5.1 states that if PfNP, then no polynomial
time algorithm A for MIN-CON(DFA{O*ll, NFA{08’})
can achieve IA(I)/ < opt(l)” for any constant k.

Another reasonable measure is to express the ratio

4 $rl! as a function of the size of the input (denoted by

]I[). In the case of MIN-CON, 111 is the total number
of letters in all of the examples. In the reductions %,k
of this paper, 111 grows quickly relative to opt(l) = p
and k. (If p 2 n, the number of variables, then 11) may
be as large as p o(k2hl.) Consequently, the best non-
approximability result with .respect to this measure is
obtained for the special case k := 2. In this case, in [17],
we present a very different reduction (the techniques of
which are of interest in their own right) introducing a
quadratic gap for which we show the bound of Theo-
rem 6.1 below. These bounds are stronger than those
obtained by using the reductions &,2 of this paper.

Note that if P=NP, then $# = 1 for MIN-

CON(DFA{‘I’), NFA{‘jll). For an arbitrary DFA or
NFA M, let]/Ml] be the number of bits needed to en-
code M according to some standard encoding. Recall
that (Ml is the number of states of M. We assume that

IIWI 2 WI*
Theorem 6.1 If PfNP, then for any E > 0,
for any polynomial time approzimation algorithm A
for MIN-CON(DFA{09’l, NFA’:‘I~~), and for infinitely
many numbers c, there are instances I of MIN-
CON(DFA{ , ‘11) NFA(ol’l) such that opt(I) 2 c, and

Ilaoll for which the performance ratio of A satisfies opt(I) >

MJ > ~f~~/O4f’).

A standard measure of per:formance of an approxi-
mation algorithm A is the asymptotic performance ra-
tio (denoted Ry) [7], defined by RT = inf {r 2 1 :

for some positive integer c, w < T for all in-
stances I such that opt(I) 1 c}. Theorem 6.1 above
implies that, unless P=NP, .RT is infinite for MIN-
CON(DFA{0811, NFA{0811).

We next introduce another measure of approximation
performance which is motivate:d by recent work in com-
putational learning theory. F’ac-learning of a class of
objects (e.g., of DFAs) requires that from randomly gen-

erated examples of some unknown member of the class
(the target DFA), a (p ossibly different) member of the
same class (called the hypothesis) is produced that is
likely to agree (in a precisely quantified way) with fu-
ture examples generated from the same distribution [20].
A relaxation of this definition allows pat-learning of a
class in terms of some other class [16]. For example,
to pat-learn DFAs in terms of NFAs, a learning algo-
rithm may choose its hypothesis from the class of NFAs.
Thus pat-learning of DFAs in terms of NFAs is easier
than pat-learning of DFAs (in terms of DFAs). It fol-
lows from [5] that the pat-learnability of DFAs in terms
of NFAs would be established from the existence of a
polynomial time algorithm A, and any constants a > 0
and /3 < 1, with the following properties: A, on input
of any instance I of the MIN-CON(DFA{0811, NFA{“‘l)
problem (i.e., finite sets POS and NEG), will produce a
consistent NFA A(I) such that

II-WI L oz+)Qcard(I)P, (1)

where opt(I) is the size of the smallest DFA consistent
with the examples of 1, and card(l) is the number of
examples of I.

If we restrict our attention to pat-learning DFAs in
terms of NFAs from polynomially length bounded ex-
amples (all examples with nonzero probability are at
most polynomially larger than the size of the DFA to
be learned), then the results of [5] also give that pac-
learnability is implied by the existence of a polyno-
mial time algorithm A, and any constants Q 2 0 and
,B < 1, such that on in
CON(DFAfojll, NFA{“l P

ut of any instance I of MIN-
), A outputs a consistent NFA

A(I) such that

where]I] is the total size of all examples of I.
Consequently, an approach toward pat-learning of

DFAs in terms of NFAs from polynomially length
bounded examples is to produce a polynomial time al-
gorithm that satisfies the guarantee of inequality (2) for
instances of MIN-CON(DFA{‘j’), NFA{“l’l) for which
the elements of POS and NEG are polynomially length
bounded in the size of the smallest consistent DFA.

All of the nonapproximability results of this paper in
fact apply to a restricted version of MIN-CON in which
the size of the elements of POS and NEG are polyno-
mially length bounded. We complete this section by
investigating the implications that these (and other) re-
ductions have with respect to the performance criterion
given by inequality (2).

Recently, Kearns and Valiant [13] have shown that
DFAs are not polynomially predictable based on any
of several well established cryptographic assumptions:

430

that deciding quadratic tesiduosity is hard, that the
RSA public key ctyptosystem is secure, or that factor-
ing Blum integers is hard. ‘Their results hold even if the
examples ate polynomially length bounded.

Polynomial predictability is equivalent to pac-
learnability in terms of the class of polynomially sized
programs (i.e., the hypothesis may be any polymomial
time algorithm for classification of examples which is
representable with polynomiallymany bits) [lo]. In [13],
it is shown that the nonpredictability of DFAs, together
with the results in [5], imply that there is no polynomial
time algorithm A for MIN-CON(DFA(osll, NFACoal})
producing a consistent NFA A(I) such that inequal-
ity (2) h Id f o s or any constants a 2 0 and p < 1,
unless the previously mentioned cryptographic assump-
tions are false.

Our results, given in Corollary 6.2, complement those
presented in [13]; we obtain analogous nonapproxima-
bility results for restricted choices of a and /?, but using
the (ostensibly weaker) assumption that P#NP.

Corollary 6.2 IfP#NP, then for any polynomial time
approzimation algorithm A for MIN-CON(DFA{O*l),
NFA{“‘ll), and for infinitely many numbers c, there are
instances I o~MIN-CON(DFA{‘~~~, NFA(‘ll)) such that
opt(I) > c, and for which the performance of A satisfies
l\A(I)jl 2 IA(I)] > ~pt(I)~)I)fi for any of the foBowing
choices of CY and p:

I. for any cy > 0, when p = 0;

2. for a = 1 and any j3 < A;

3. for any 0 < (Y = l+cr’<2 and any/3< *.

Besides the use of different assumptions (i.e., ctypto-
graphic versus P#NP), another difference between out
work and that appearing in [13], is that while the ctyp-
tographic based results of [13] rely on the inability to
predict DFAs, the subfamily of DFAs for which we show
nonapproximability results is actually easy to ptedict.
The class of CDFAs accept permutation invariant lan-
guages (w is accepted iff any word formed by permuting
the characters in w is accepted), and for each CDFA
the start state equals the unique final state. DFAs with
these properties have been shown to be predictable [ll],
thus the techniques of [13] cannot apply to show that
the related MIN-CON problem for this restricted class
of DFAs is not polynomially apptoximable.

7 Conclusion

The problem of finding an approximately small DFA
consistent with a finite sample was investigated. It was
shown that unless P=NP, no polynomial time algorithm

can be guaranteed to produce a DFA, NFA, regular
expression, or regular grammar of size at most poly-
nomially larger than the smallest consistent DFA. The
minimum consistent linear grammar problem was also
shown to have the same nonapptoximability properties.
Out results are summarized by the statements of The-
orems 3.1, 5.1, 5.2, 5.3, and 6.1. A complete proof was
given for the Main Theosem {Theorem 3.1), the nonap-
proximability result for MIN-CON(DFA,NFA) (variable
alphabet size). For detailed remaining proofs we refer
the reader to the complete paper [Ii’].

It should be noted that the proofs of each of these
theorems was nonconstructive in the sense that from
an approximately small NFA (regular grammar, regular
expression, linear grammar, respectively), it was shown
that a solution to an instance of l-in-tSAT must have
existed. The proofs can be easily modified so as to be
constructive, i.e., so that from an approximately small
NFA (for example), a solution to the relevant l-in-3-
SAT instance can be found in polynomial time. Of
course, since the problem of finding a solution to a l-
in-3-SAT problem reduces in polynomial time to the
decision problem, our observation concerning construc-
tiveness is of dubious interest.

In our definition of apptoximability (Definition 2.3)
we required that the approximation algorithm must out-
put a representation of size less than the upper bound.
It should be noted that all nonapproximability results of
this paper still hold when the approximation algorithm
only decides whether there exists a consistent reptesen-
tation of size less than the upper bound.

Because the DFAs used in the reductions of this pa-
pet were of a very special form (CDFAs or counter-like
DFAs), the proof of Theorem 3.1 (for example) actually
shows the stronger result that for any constant k, MIN-
CON(CDFA,NFA) (and thus MIN-CON(DFA,NFA)) is
not optk-approximable unless P=NP. As discussed at
the end of the previous section, it has been shown that
CDFAs are polynomially predictable [ll].

The research presented here suggests a large num-
ber of open problems. The investigation of the ap-
ptoximability of versions of the MIN-CON problem
other than the ones considered here seems appropri-
ate. Can the nonapproximability results (assuming
P#NP) for MIN-CON(LIN,LIN) be extended to MIN-
CON(CFG,CFG)? (At present, it is not even known
whether it is NP-hard to find the smallest consistent
CFG). In the problem MIN-CON(DFA,NFA), the ap-
proximation algorithm has the “freedom” to output
a consistent NFA instead of a consistent DFA. Fut-
ther generalizing along these lines, it would be of in-
terest to know whether similar nonapproximability te-
suits may be shown for MIN-CON(DFA,%DFA), MIN-
CON(DFA,2NFA), MIN-CON(DE’A,LIN), and MIN-

431

CON(DFA,CFG), etc., where 2DFAs and 2NFAs are
the two-way versions of DFAs and NFAs, respectively.
It has been shown that MIN-CON(DNF,DNF) is not
(2 - e)opt-approximable [16], (where DNF denotes the
set of Boolean formulas in disjunctive normal form).
Can this result be strengthened using the techniques
of this paper?

Another set of Boolean functions (other than .DNF
that is of interest in computational learning theory is the
set of Boolean decision trees (DT). It has been recently
shown in [9] that MIN-CON(DT,DT) is not opt + optp
approximable for any constant fir < 1. The decision trees
used in the reduction are very unbalanced. Let a bal-
anced decision tree (BDT) have the additional property
that all leaves are on the same level. Can it be decided
in polynomial time whether there is a BDT that is con-
sistent with given examples POS and NEG?

In Section 6, the work of [13] was discussed. These re-
sults show nonapproximability for DFAs based on cryp-
tographic assumptions. By relying instead on the as-
sumption that P#NP, our results strengthen theirs, but
only for a subrange of the parameters LY and p. Can the
entire range of results presented in [13] be proved using
only the assumption that P$NP?

This paper presented a number of very strong non-
approximability proofs for certain types of NP-hard op-
timization problems. A final open problem is whether
similar proof techniques can be used to obtain nonap-
proximability results for other classical NP-hard prob-
lems.

Acknowledgments
We thank Dana Angluin,
for getting us interested

Ming Li, and Umesh Vazirani
in tlhis problem, Don Hatch

for helping to clarify the group theoretic structure in
some of our early reductions, and Michael Kearns for
discussions regarding the material of Section 6. Addi-
tional thanks to Dana for csre!fuliy plowing through an
early draft containing the technical arguments (and lit-
tle else).

References

PI

PI

PI

[41

D. An&k An application of the theory of com-
putational complexity to the study of inductive infer-
ence. 1976. Ph.D. Thesis, Electrical Engineering and
Computer Science Department, University of Califor-
nia, Berkeley.

D. Angluin. Negative Results for Equivalence Queries.
Technical Report YALEU/‘DCS/RR-648, Department
of Computer Science, Yale ‘University, September 1988.

D. Angluin. On the complexity of minimum inference
of regular sets. Inform. Co&r., 39(3):337-350, 1978.

D. Angluin. Private commmication. 1988.

151

PI

PI

181

PI

[a

WI

[=I

P31

P41

WI

WI

P71

WI

WI

PO1

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. War-
muth. Occam’s razor. Inform. Process. Letters, 24:377-
380, 1987.

M. Garey and D. Johnson. The complexity of near-
optimal graphhcoloring. J. ACM, 23(1):43-49, 1976.

M. Garey and D. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness. W. H.
Freeman, San Francisco, California, 1979.

E. M. Gold. Complexity of automaton identification
from given data. Inform. Contr., 37:302-320, 1978.

T. Hancock. Finding the smallest consistent decision
tree is NP-hard. 1989. Unpublished manuscript, Har-
vard University.

D. Haussler, M. Kearns, N. Littlestone, and M. K. War-
muth. Equivalence of Models for Polynomial Learnabil-
ity. In Proceedings of the 1st Workshop on Computa-
tional Learning Theory, Morgan Kaufmann, San Mateo,
CA, August 1988.

D. Helmbold, R. Sloan, and Manfred K. Warmuth.
Bootstrapping One-sided Learning. 3988. Extended ab-
stract, Dept. of Computer and Information Sciences,
University of California at Santa Cruz.

J. E. Hopcroft and J. D. Ulhnan. Introduction to Au-
tomata Theory, Languages, and Computati:on. Addison-
Wesley, Reading, Massachussetts, 1979.

M. Kearns and L. G. Valiant. Cryptographic lirnita-
tions on learning Boolean formulae and finite automata.
In Proceedings of the dlst Annual ACM Symposium on
Theory of Computing, Assoc. Comp. Mach., New York,
May 1989. Begins next page of these proceedings.

M. Li and U. Vazkani. On the learnability of finite au-
tomata. In Proceedings of the iat Workshop on Compu-
tational Learning Theory, Morgan Kaufmann, San Ma-
teo, California, August 1988.

C. H. Papadimitriou and M. Yannalcakis. Optimiza-
tion, approximation, and compIexity classes. In Pro-
ceedings of the 20th Annual A CM Symposium on The-
ory of Computing, pages 229-234, Assoc. Comp. Mach.,
New York, May 1988.

L. Pitt and L. G. Valiant. Computational limitations on
learning from examples. J. ACM, 35(4):965-984, 1988.

L. Pitt and M. K. Warmuth. The Minimum Consis-
tent DFA Problem Cannot be Approximated within any
Polynomial. Technical Report UIUCDCS-R-89-1499,
University of Illinois at Urbana-Champaign, February
1989.

T. J, Schaefer. The complexity of satisfiability prob-
lems. In Proceedings of the 10th Annual ACM Sympo-
sium on Theory of Computing, pages 216-226, ASSOC.
Comp. Mach., New York, 1978.

B. A. Trakhtenbrot and Ya. M. Barzdin. Finite Au-
tomata. North-Holland, Amsterdam, 1973. pp. 98-99.

L. G. Valiant. A theory of the learnable. Comm. Assoc.
Comp. Mach., 27(11):1134-1142, 1984.

432

