How rotation invariant algorithms are fooled by noise on sparse targets

Manfred K. Warmuth

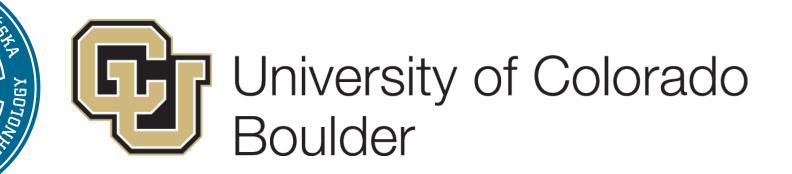
Wojciech Kotłowski

Ehsan Amid

Google & Univ. of Colorado Boulder

Google

Google Research Google DeepMind



Google

Poznań Univ. of Tech., Poland

ALT 2025, Milan.

Summary

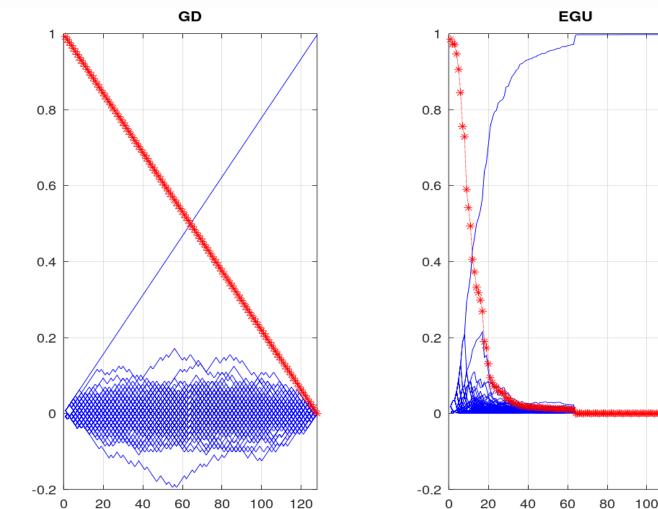
- It is known that rotation invariant algorithms are sub-optimal for sparse linear problems, when # examples n < input dim. d
- We show that when noise is added to this sparse problem, rot.inv. algorithms still sub-optimal after seeing n > d examples
- We prove much better upper bounds on the same problem for a large variety of algorithms that are non-invariant by rotations.
- We analyze the gradient flow trajectories of learning algorithms

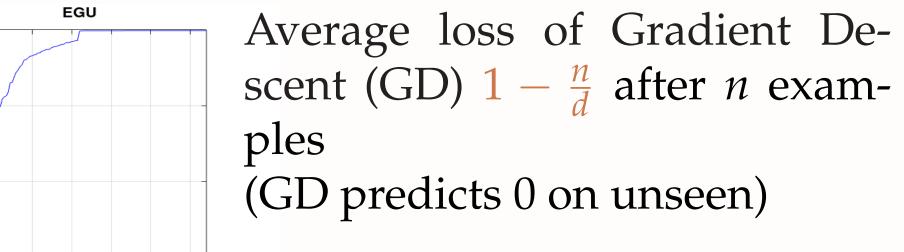
Underconstrained case (d > n)

Algorithm receives n < d examples and predicts labels for the remaining examples

Evaluated by the average squared error loss on all d examples

GD fooled by sparse Hadamard problem (d = 128)



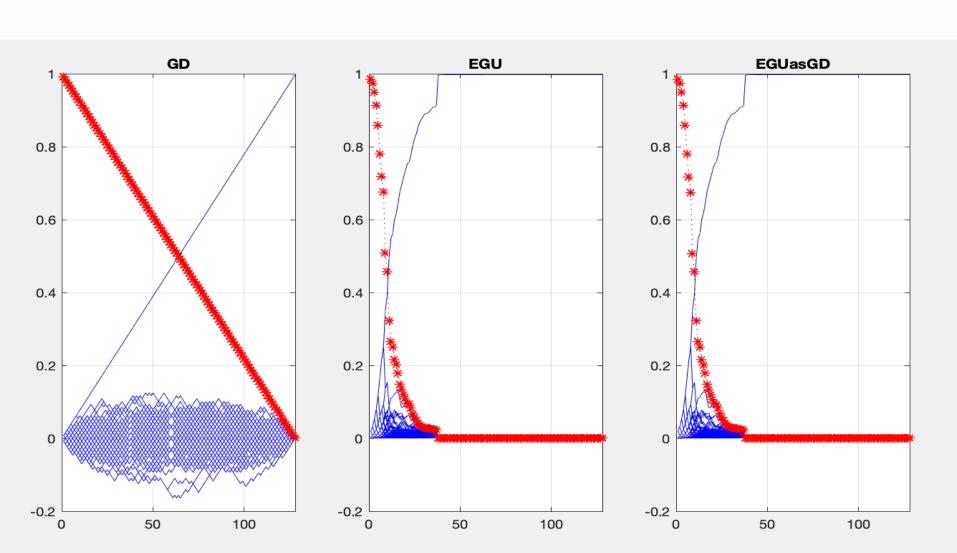


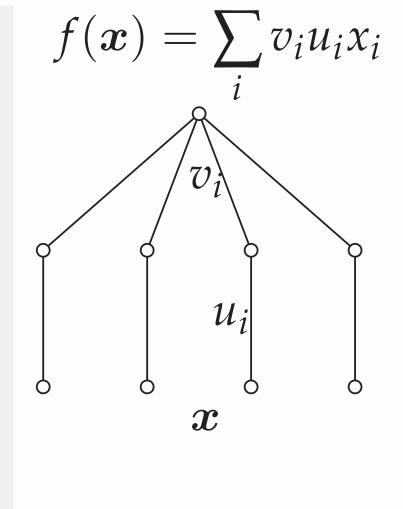
Average loss of Exponentiated Gradient alg. (EGU) $O(\frac{\log d}{n})$

Essentially same on random ± matrices

To handle sparsity you can stick with GD

Surprise: GD on simple two-layer linear net (called "spindly") simulates EGU and cracks Hadamard problem [A. & W., 2020]





Fooling goes hand in hand with rotation invariance

Algorithm is rotation-invariant, if predictions unchanged after rotating

$$\widehat{y}(\underbrace{\boldsymbol{U}\boldsymbol{x}}|\underbrace{(\boldsymbol{X}\boldsymbol{U}^{\top},\boldsymbol{y})}) = \widehat{y}(\underbrace{\boldsymbol{x}}|\underbrace{(\boldsymbol{X},\boldsymbol{y})}_{\text{test}})$$

Examples: linear, logistic regression, any neural network with fully connected bottom layer trained by GD

Theorem [A. et al, ALT 2021]

Matt Jones

Any rotation invariant algorithms has average square loss $1 - \frac{n}{d}$ after n examples on Hamadard problem*

*after flipping the rows by \pm random signs, or choosing the target column at random

So what – who cares about underconstrained case

In most applications, # of examples > input dimension! All previous work becomes vacuous when n > d

Main contribution: In overconstrained case, all rotation invariant algorithms still fooled when noise is added to the sparse targets (by factor of *d* suboptimal)

$$\mathbf{y} = \mathbf{X} \mathbf{e}_i + \boldsymbol{\xi}, \qquad \boldsymbol{\xi} \sim N(0, \sigma^2 \mathbf{I})$$

X – matrix with orthogonal rows or drawn from rotationally symmetric distribution

Algorithms evaluated by their excess risk relative to e_i

 $\mathbb{E}\left[(\widehat{y}-x_{te}^{\top}e_i)^2\right]$, where x_{te} random row/sample and random noise

Lower bound

Theorem: The expected error of any rotation-invariant learning algorithm is at least

$$\frac{d-1}{d} \frac{\sigma^2}{\sigma^2 + n/d}$$
 (with fixed σ , error $\sim d/n$)

Proof essentially by a Bayesian argument:

- Target vector w^* drawn uniformly from a unit sphere
- Lower bound for any algorithm by bounding the error of the optimal (Bayesian) algorithm
- Due to rotation symmetry of the input distribution, rotation invariant algorithms have the same error for every target w^* , in particular $w^{\star}=e_1$.

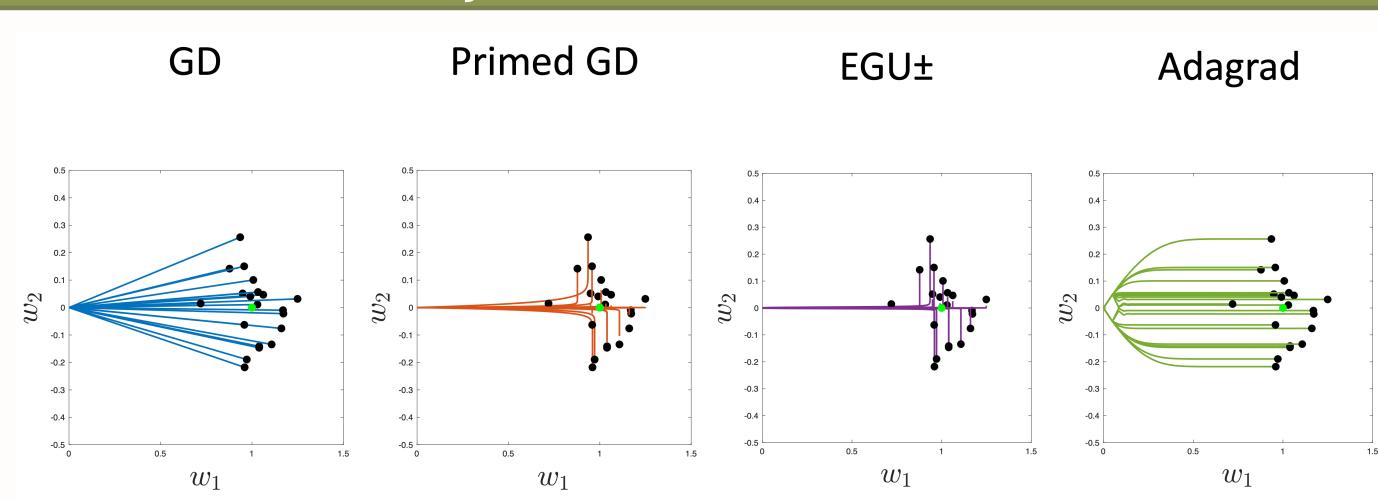
Upper bounds

For versions of EGU, and spindly:

with early stopping (crucial), the error decreases as $\sim \frac{\log a}{n}$: $\left(\frac{d}{\log d}\right)$ faster than rotation-invariant algorithms)

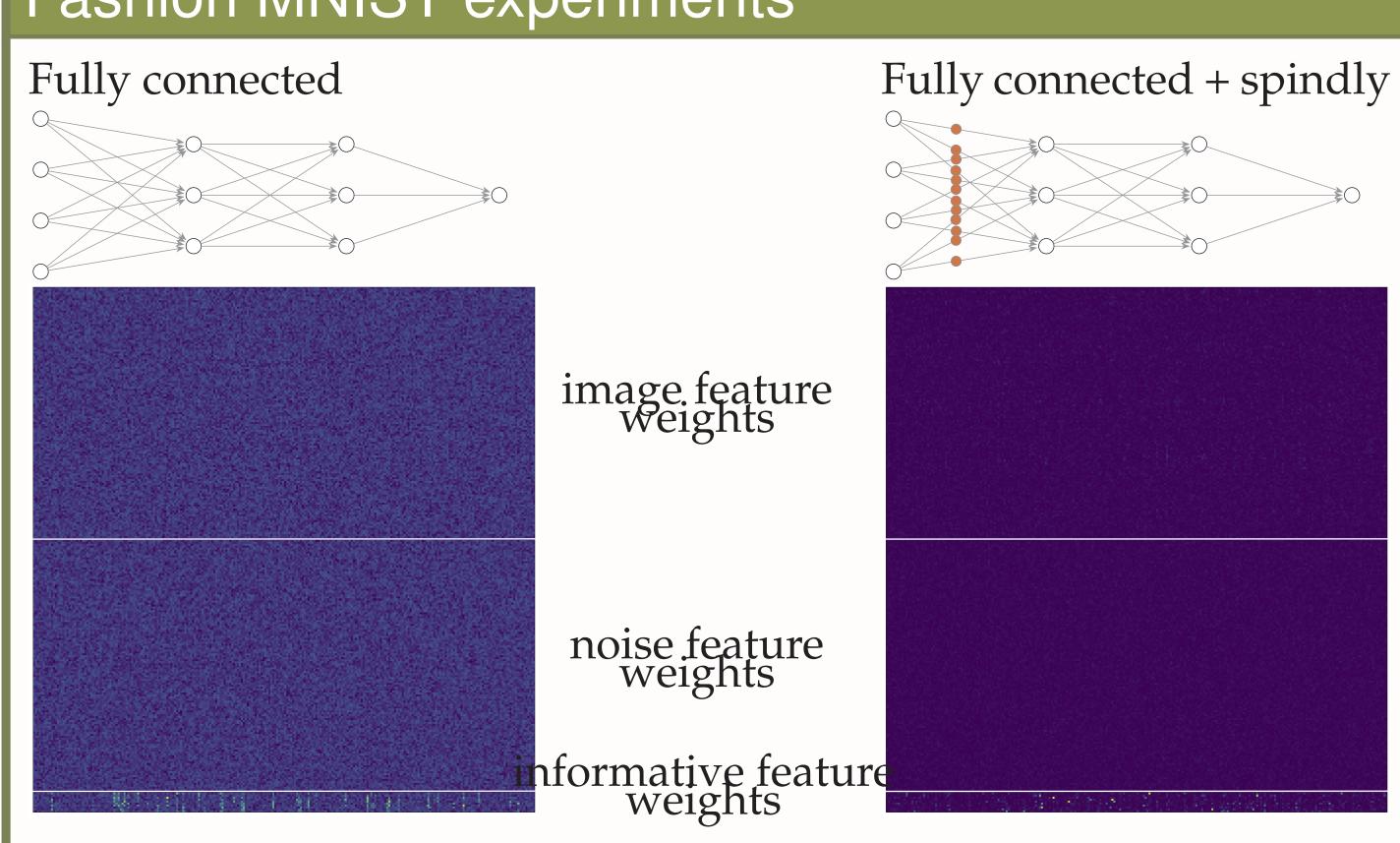
- Many technical details
- New alg. called "priming GD" does not have the log d factor
- Conjecture: they all don't have this factor
- Similar upper bound with $\log d$ factor known for Lasso

Gradient flow trajectories: d = 2



- Analytic solutions to ODEs for continuous algorithms
- GD and rotation invariant algorithms go straight to LS solution
- EGU and relatives biased toward sparse solutions
- Adagrad and relatives biased toward dense solutions

Fashion MNIST experiments



Test accuracy:	Fully conn.	Spindly
only image features	85%	85%
image + noise features	71%	85%
image + noise + informative	98%	100%