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Summary
• It is known that rotation invariant algorithms are sub-optimal

for sparse linear problems, when # examples n < input dim. d
• We show that when noise is added to this sparse problem, rot.-

inv. algorithms still sub-optimal after seeing n > d examples
• We prove much better upper bounds on the same problem for a

large variety of algorithms that are non-invariant by rotations.
• We analyze the gradient flow trajectories of learning algorithms

Underconstrained case (d > n)
x1 →
x2 →
x3 →
x4 →


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1


︸ ︷︷ ︸

d× d Hadamard matrix H


0
0
1
0


︸ ︷︷ ︸

sparse target ei

=


+1
+1
−1
−1


︸ ︷︷ ︸
labels y

← y1
← y2
← y3
← y4

Algorithm receives n < d examples and predicts labels for the re-
maining examples
Evaluated by the average squared error loss on all d examples

GD fooled by sparse Hadamard problem (d = 128)
Average loss of Gradient De-
scent (GD) 1 − n

d after n exam-
ples
(GD predicts 0 on unseen)

Average loss of Exponentiated
Gradient alg. (EGU) O(

log d
n )

Essentially same on random ±
matrices

To handle sparsity you can stick with GD
Surprise: GD on simple two-layer linear net (called “spindly”) simu-
lates EGU and cracks Hadamard problem [A. & W., 2020]
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Fooling goes hand in hand with rotation invariance
Algorithm is rotation-invariant, if predictions unchanged after rotating
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) = ŷ( x︸︷︷︸
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)

Examples: linear, logistic regression, any neural network with fully
connected bottom layer trained by GD

Theorem [A. et al, ALT 2021]
Any rotation invariant algorithms has average square loss 1− n

d after
n examples on Hamadard problem?

?after flipping the rows by ± random signs, or choosing the target
column at random

So what – who cares about underconstrained case
In most applications, # of examples > input dimension!
All previous work becomes vacuous when n > d
Main contribution: In overconstrained case, all rotation invariant
algorithms still fooled when noise is added to the sparse targets
(by factor of d suboptimal)
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X – matrix with orthogonal rows or drawn from rotationally sym-
metric distribution
Algorithms evaluated by their excess risk relative to ei
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, where xte random row/sample and random noise

Lower bound
Theorem: The expected error of any rotation-invariant learning algo-
rithm is at least

d− 1
d

σ2

σ2 + n/d
(with fixed σ, error ∼ d/n)

Proof essentially by a Bayesian argument:

• Target vector w? drawn uniformly from a unit sphere
• Lower bound for any algorithm by bounding the error of the

optimal (Bayesian) algorithm
• Due to rotation symmetry of the input distribution, rotation in-

variant algorithms have the same error for every target w?, in
particular w? = e1.

Upper bounds
For versions of EGU, and spindly:
with early stopping (crucial), the error decreases as ∼ log d

n :
( d

log d faster than rotation-invariant algorithms)

• Many technical details
• New alg. called "priming GD" does not have the log d factor
• Conjecture: they all don’t have this factor
• Similar upper bound with log d factor known for Lasso

Gradient flow trajectories: d = 2

• Analytic solutions to ODEs for continuous algorithms
• GD and rotation invariant algorithms go straight to LS solution
• EGU and relatives biased toward sparse solutions
• Adagrad and relatives biased toward dense solutions

Fashion MNIST experiments
Fully connected Fully connected + spindly

image feature
weights

noise feature
weights

informative feature
weights

Test accuracy: Fully conn. Spindly
only image features 85% 85%
image + noise features 71% 85%
image + noise + informative 98% 100%


