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Summary

It is known that rotation invariant algorithms are sub-optimal
for sparse linear problems, when # examples n < input dim. d

We show that when noise is added to this sparse problem, rot.-
inv. algorithms still sub-optimal after seeing n > d examples

We prove much better upper bounds on the same problem for a
large variety of algorithms that are non-invariant by rotations.

We analyze the gradient flow trajectories of learning algorithms

d x d Hadamard matrix H  sparse target e;

labels y

Algorithm receives n < d examples and predicts labels for the re-
maining examples
Evaluated by the average squared error loss on all d examples

GD fooled by sparse Hadamard problem (d = 128)
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Surprise: GD on simple two-layer linear net (called “spindly”) simu-
lates EGU and cracks Hadamard problem [A. & W., 2020]
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Fooling goes hand in hand with rotation invariance

Algorithm is rotation-invariant, if predictions unchanged after rotating

Examples: linear, logistic regression, any neural network with fully
connected bottom layer trained by GD

Theorem [A. et al, ALT 2021]
Any rotation invariant algorithms has average square loss 1 — 7 after
n examples on Hamadard problem*™

*after flipping the rows by £ random signs, or choosing the target
column at random

So what — who cares about underconstrained case

In most applications, # of examples > input dimension!
All previous work becomes vacuous when n > d

Main contribution: In overconstrained case, all rotation invariant
algorithms still fooled when noise is added to the sparse targets
(by tactor of d suboptimal)
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X — matrix with orthogonal rows or drawn from rotationally sym-
metric distribution

Algorithms evaluated by their excess risk relative to e;

E {(ﬁ — m;ei)z} , where x4, random row/sample and random noise

Lower bound

Theorem: The expected error of any rotation-invariant learning algo-
rithm is at least

d—1 %
d oc?2+n/d

(with fixed o, error ~ d/n)

Proof essentially by a Bayesian argument:

e Target vector w* drawn uniformly from a unit sphere

 Lower bound for any algorithm by bounding the error of the
optimal (Bayesian) algorithm

* Due to rotation symmetry of the input distribution, rotation in-

variant algorithms have the same error for every target w*, in
particular w* = e;y.
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Upper bounds

For versions of EGU, and spindly:

with early stopping (crucial), the error decreases as ~ loff =

( % faster than rotation-invariant algorithms)

* Many technical details

e New alg. called "priming GD" does not have the log  factor
e Conjecture: they all don’t have this factor

e Similar upper bound with log d factor known for Lasso

Gradient flow trajectories: d = 2
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Analytic solutions to ODEs for continuous algorithms

GD and rotation invariant algorithms go straight to LS solution
EGU and relatives biased toward sparse solutions

Adagrad and relatives biased toward dense solutions
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Test accuracy: Fully conn.
only image features 85%
image + noise features 71%
image + noise + informative 98%




