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Abstract

An algorithm is a weak learner if with some

small probability it outputs a hypothesis with

error slightly below 50’?ZO. This paper presents

sufficient conditions for weak learning.

Our main result requires a “consistency ora-

cle” for the concept class 7 which decides for

a given set of examples whether there is a con-

cept in F consistent with the examples. We

show that such an oracle can be used to con-

struct a computationally efficient weak learn-

ing algorithm for 7 if X is learnable at all. We

consider consistency oracles which are allowed

to give wrong answers and discusses how the

number of incorrect answers effects the oracle’s

use in computationally efficient weak learning

algorithms.

We also define “weak Occam algorithms”

which, when given a set of m examples, se-

lect a consistent hypothesis from some class

of 2m-(ljP(mJ) possible hypotheses. We show

that these weak Occam algorithms are also

weak learners. In contrast, we show that an

Occam style algorithm which selects a consis-

tent hypotheses from a class of 2~+1 – 2 hy-

potheses is not a weak learner.

1 Introduction

To help introduce many of the notions used in this pa-

per we use the problem of learning DFAs over a binary

alphabet as an example learning problem. A learning

algorithm is given random bitstrings (called instances)

which are labeled with O or 1 depending on whether

they are rejected or accepted by some hidden DFA. The

labeled bitstrings are called examples and each possible
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hidden DFA defines a concept consisting of all bitstrings

which it accepts (or equivalently, the associated indica-

tor function). The set of possible concepts is called the

concept class. Assume the algorithm is given two pa-

rameters: n, a length bound on the bitstrings, and s,

a size bound (number of states) for the hidden DFA.

After seeing a reasonable number of instances labeled

with the hidden target, concept, the learning algorithm

outputs a hypothesis which is intended to approximate

the set of bitstrings of length at most n which are ac-

cepted by the hidden target DFA. We assume that the

instances are generated according to a fixed but arbi-

trary probability distribution and define the error of the

output hypothesis as the probability of the symmetric

difference between the hypothesis and the target.

A strong learning algorithm takes parameters c >0 i~nd

6>0 ancl must, with probability at least 1 – 6, output a

hypothesis having error at most e. To generate this hy-

pothesis, the algorithm is allowed to examine a number

of examples equal to some polynomial p(n, s, l/c, 1/6).

Learning algorithms are called computationally efficient

if both their running time and the running time for eval-

uating the output hypotheses on instances of length at

most 71 is bounded by a polynomial in all four parame-

ters.

This notion of learming was introduced by Valiant

[Va184]. Not too many concept classes have been shown

to be efficiently strongly learnable and a less stringent

definition of learning was given in [KV89]. A weak lea,rn-

ing algorithm must, after seeing m = pl (n,s) many

examples, output a hypothesis that has error at most
I_ l/p2(m) with probability at leastl l/ps(m), where

;I, PZ and PS are polynomials.

Surprisingly, it has been shown that any computation-

ally efficient weak learning algorithm can be used to

build a computationally efficient strong learning algo-

rithm [Sch90, Fre90]. Thus to determine whether a con-

cept class is efficiently learnable it suffices to construct

efficient weak learning algorithms. In this paper we give

sufficient conditions for weak learning,

‘In the original definition of weak learning the para-
meter 1 — 6’ is asd is place of 1/p3 (m). The two definitions
are polynornially equivalent (see Lemma 3.4 of [HKLW91]).
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A standard way to construct a learning algorithm for

some concept class 7 is to find an “Occam algorithm”

which, when given any sequence of m examples labeled

by some concept in the class, outputs a consistent hy-

pothesis from a “small” hypothesis class (which may be

different from the concept class) [BEHW87, BEHW89].

If the size of the hypothesis class used by an Occam al-

gorithm is bounded by p(n, S)rna, where a is a constant

strictly less than 1, then there is a polynomial sample

size bound that makes this algorithm a strong learning

algorithm for Y [BEH W87].

Here we define “weak” Occam algorithms that given a

sample of size m = pl (n,s) output a consistent hypothe-
sis from a set of at most 2~-11/PZ(mJl hypotheses, where

PI and p2 are any polynomials,2 and show that they are

weak learning algorithms. If a weak Occam algorithm

is computationally efficient and its possible hypotheses

can be efficiently evaluated then it is a computationally

efficient weak learning algorithm. Weak Occam algo-

rithms can be viewed as compressing a sample of size m

(containing m labeling bits) into m – (1/p2(m)) “bits”

identifying a hypothesis. In contrast, we present an Oc-

cam algorithm whose hypotheses class has size 2m+1 — 2

(indexed by almost m + 1 bits) that always outputs hy-

potheses of error ~ for some target concept in $. This

means that weak Occam algorithms which compress m

examples to m+ 1 bits do not always lead to weak learn-

ing algorithms.

A weak consistency oracle for a concept class F is given

parameters n, s, and a sequence of m = p(n, s) labeled

examples whose instances are from Xn. In polynomial

time, the oracle determines whether or not there is a

concept in 3S which is consistent with the examples.

The consistency oracle’s answer is a simple yes/no cleci-

sion, making it (apparently) much weaker than an oracle

which returns an $ E Zs consistent with the examples.

We show that if a polynomial time weak consistency

oracle is available then it can be used to construct a

computationally efficient weak learning algorithm for Z

when f is learnable at all, i.e. the Vapnik-Chervonenkis

dimension [VC71] of F grows polynomially in n and

S [BEHW89]. Previously a direct construction of a

strong learning algorithm using the consistency oracle

was given in [HLW]. However this algorithm is only

computationally efficient if the VC dimension of Y is a

constant independent of n and s.

Our computationally efficient weak learning algorithm

is the last in a series of algorithms. The series starts

with a good prediction algorithm which is a special case

of Vovk’s Aggregating Strategy3 [VOV90]. We modify

that algorithm so that its chance of making a mistake

on the last trial is reduced. We next introduce a second

modification so that the algorithm now predicts based

2We only consider polynomials that are nonnegative on
all natural numbers.

3An alternate efficient weak prediction algorithm that

uses fewer consistency queries than the one described in this

paper is given in [HW92].

on the dichotomies (possible labelings) of the sample.

The final modification incorporates random sampling

into the algorithm, resulting in an efficient prediction

algorithm when a weak consistency oracle is available.

Our techniques imply that an even weaker “one-sided

consistency oracle” can be used to construct computa-

tionally efficient weak learning algorithms. The one-

sided consistency oracle takes a sequence S of m =

pl (n,s) labeled instances and returns “yes” if the la-

beled instances are consistent with a concept in ~. If

the labeling is not consistent, then the oracle may return

either “yes” or “no”, however the oracle must return
~~no~>to at lext yTI-(ljPZ(~)l of the possible labelings of

S. The one-sided consistency oracle for F can be viewed

as a consistency oracle for a larger class ?-l which con-

tains 3 and has the property that for each sequence S,

the number of labelin s consistent with concepts in ‘H
7is at most 2m-(1/P21m) .

In future research we would like to explore even less

powerful consistency oracles that may still lead to effi-

cient weak learning algorithms. For example we would

like to relax the one-sidedness of the current oracle and

explore probabilistic consistency oracles. In general,

we see two potential benefits from this line of research,

First we hope that polynomial versions of the discussed

one-sided consistency oracles can be found for concept

classes that have not previously been known to be learn-

able.

Second our results have applications to cryptography

that seem promising. For example, there is no efficient

weak learning algorithm for DFA’s given standard cryp-

tographic assumptions [K V89]. Our results show that,

under the same cryptographic assumptions, a one-sided

consistency oracle for DFAs can not exist. For any

fixed set of m instances, the number of labelings cor-

responding to DFAs with at most s states is at most
mo(s 1%$) [Sau72] , since the VC dimension of s-state

DFAs is 0(s logs). When m is polynomial ins this num-

ber of labelings consistent with DFAs is much smaller

than the 2m vertices in the Boolean m-cube. Yet (given

the cryptographic assumptions) there is no polynomial-

time algorithm that answers “yes” on the m“($ 10g’) la-

belings consistent with s-state DFAs and “no” on only

zm _ cp-1/P2(r71) = p(l _ 1 )
21/p’(m)

other labelings.

The following section contains an introduction to our

notation and a clescription of the learning models con-

sidered. Section 3 contains the weak Occam results.

Section 4 describes the Information Gain Prediction Al-

gorithm which is a special case of Vovk’s Aggregating

Strategy [VOV90]. In Section 5, a modified prediction al-

gorithm which has a reduced chance of error on the last

trial is presented. We define a class of priors over the

dichotomies of a sample and analyze the performance

of an algorithm using those priors in Section 6. In Sec-

tion 7 we describe an efficient version of the algorithm

in Section 6 and prove our main theorem.
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2 Notation and Models

Throughout, lg and log denote the binary and natu-

ral logarithms respectively and N denotes the natural

numbers.

Let X be a set of instances called the domazn, and T be

a set of subsets of X called the concept class (F C 2X).

We use subsets of X and their corresponding in~cator

functions interchangeably, so each concept f c F maps

x to {0,1}.

Lower case bold letters, such as z and y denote (fi-

nite) sequences of instances and IZ I is the length of

the sequence Z. For 1 s t < IzI, we use Zt to de-

note the tth component of x, ;* to denote the t-vector

(ZI, Z2,..., mt) and ~“ denotes the empty sequence A.

We will often superscript sequences solely to emphasize

their length.

Examples are elements of X x {O, 1} and samples are

sequences of examples. The sample of f on z is de-

noted by samj (Z ) and is the sequence of examples4

(zl, f(xl)), . . . . (~lzl, f(zlzl)). We define sam>(~) =

{samf (z) : f E F} and call the elements of samr(m) the

dichotomies of F induced by ~. We also use sam. (z) to

denote the set of 21Z I samples where the first example

contains xl, and second example contains X2, and so on.

If S is a sample of m ~ 1 examples, then S– denotes

the sample of m – 1 examples obtained by deleting the

last example of S. If e is an example then “S, e“ is the

sample of m + 1 examples obtained by adding e to the

end of S. We use A to denote the empty sequence (of

samples or examples).

We say that a function f is consistent with a sample S

if there is an z (the sequence of instances in the sample)

such that S = samf(z). Every f E F is consistent with

the empty sample.

We use Efep [a(f)] to denote the expectation of

the random variable a under distribution T’, and

Prj~P [condition(f)] to denote the probability uncler

the distribution P of the set containing all f satisfy-

ing the condition. Throughout, P denotes the prior

probability distribution on 7. For each f c 7, P(f)

represents the extent to which the learner initially (be-

fore seeing any examples) believes that f is the target

function to be learned. Distribution D always denotes

a probability distribution on .Y. We use U to denote

various uniform distributions – in particular [~[0,1] is

the uniform distribution on the continuous interval [0, 1]

and U(zm ) is the uniform distribution on the m! per-

mutations of sequence z.

The volume with respect to P of sample S is writ-

ten VP(S) and denotes Prf=P [f is consistent with S].

Note that the empty sample has unit volume and that

the volume of a sample depends only on the exam-

ples in the sample and not the order in which they

41f x is the empty sequence of instances, then samf (z) is
the empty sequence of examples.

ap ear.
#

Furthermore, for any sample S and z E X,

v (s) = Vp(s, (X, o)) + V’(S’, (z, l)).

For nonempty S, the information gain of S, lP(S), is

defined as – lg(Vp(S)/Vp(S- )). This quantity can be

thought of as the information gained by the last example

of S after seeing the other examples of .$. We define

lP(S) to be infinite when VP(S) = O and VP(S- ) >.0.

When VP(S) = VP(S- ) = O then lP(S) is undefined.

A (randomized) prediction a/gorithm5 A takes a sample,

an instance, and a random numberc in [0, 1] as input

and outputs a prediction from the set {O, 1}. Thus A :

(xx {0,1})” x x x [0,1]+ {0,1}.

A (randomized) learning algorzthm A for a concept class

7 on X receives as input a sample of some concept

f G Z and random number T E [0, 1]. A outputs the repr-

esentation of a concept h in a second concept class H on

X that approximates f. ‘H is called the class of hypothe-

ses. Let A(samj (z’n–l ), z,,,, r-) denote (the representa-

tion of) the hypothesis output by algorithm A when run

on the example sequence samf (x’n-l ), instance Xm, amd

randornization r. Each learning algorithm implicitly de-

fines a (deterministic) evaluation algorithm that takes as

input the representation of a hypothesis and an instance

~ E X, and outputs the value of the hypothesis on x.

There are trivial learning algorithms that simply output

(samf (z), r) as the representation of the hypothesis. In

that case the evaluation algorithm does all the “work”.

The performance of prediction and learning algorithms

can be evaluated in several ways. For learning algo-

rithms we are primarily interested in how well the al-

gorithm’s hypothesis approximates the function being

learned. For prediction algorithms we look at both the

expected number of incorrect predictions made over a

sequence of trials and the probability of an incorrect

prediction on the mth trial.

The error with respect to distribution D on X of a

learning algorithm’s hypothesis h when the concept

to be learned is f is denoted Errn ( f, h). Formally,

Errn(f, h) = PrCcD [f(z) # h(z)].

If A is a prediction algorithm and f 6 ~ then MA,f(z)

is the probability that A makes a mistake on the

last instance of z when learning f. More precisely,

when z is a sequence of m instances, MA,j(z) =

PrTGIJIO ,, {A(samf(x’”-’ ), z,,,, r) # f(x,n)],

where [~[o, 11 is the uniform distribution on [0, 1]. Thus

the expected total nu[llber of mistakes made by A on a

5Here, ancl in the definition of “learuing algorithm” we
use the term “algorithm” loosely, without the requirement
that the mapping be computable. However, all the algo-

rithms we present here are computable when the volumes of
samples can be computed.

6For simplicity we let T be a real number drawn from the
uniform distribution on [0, 1]. More precisely the random

input T given to an algorithm shoulcl be a finite numlber
of random bits and for computationally efficient algorithms
the number of random bits required must be polynomially
bonnded.
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sequence of m instances, X*, is ~~=1 MA, f(Zt).

In some sense learning algorithms and prediction algo-

rithms are interchangeable. Given any prediction algo-

rithm, A, one can create a trivial learning algorithm,

A’, which uses A as its hypothesis evaluator, i.e.

A’(sam~(zm-l), r)(zm) = A(samf(zm-l), ~m, r).

Furthermore, any learning algorithm and its associated

hypothesis evaluator can be used to produce predictions.

Our performance measures for learning and prediction

algorithms can be related as follows. Suppose predic-

tion algorithm A when given samf (Zm - 1), Zm, and r

first uses learning algorithm A’ to produce a hypothe-

sis h. = A’(samj (a ‘-1), r) and then predicts with the

value hr(xm). In this case, with Xm - 1 and f fixed,

EC~em [MA,j(a’’I)] = E,6[0,11 [Errn(f, hr)]. The same

relationship holds when learning algorithm A’ uses the

prediction algorithm A as its hypothesis evaluator.

Usually we are not just interested in learning a fixed

concept class ~ over a fixed domain X but instead

we would like to learn a parametrized concept class

F= F1UF2 U... over a parametrized domain X =

X1 UX2 U.... Informally, the parameter s in ~, mea-

sures the “size’) of the concepts and 7S contains all con-

cepts of size at most s. Similarly, the parameter 71 in

X. measures the “length” of the instances and Xn con-

tains all instances of length at most n. For example,

Xn might consist of all bitstrings of length at most n

and ~$ of all concepts accepted by DFAs of at most s

states. The prediction (or learning) algorithm is given

both parameters as inputs, and the algorithm is poly7Lo-

mial if its resource requirements grow polynomially in

n, s, and the size of the input sample.

Algorithm A is a weak learning algorithm [KV89] for

(J, $, on (Jn X. if there exist three polynomials pl, pz

and p3 s.t. if A is given the parameters n and s then for

all f c 3. and probability distributions V on X. the

following holds: upon receiving a random number r E

[0, 1] drawn according to U[o,ll plus a sample samj (zm),

where Xm is drawn according to Dm and m = pl (n,s),

the algorithm outputs a hypothesis h = A[samj (z), r]

on Xn for which

przczJ-, rw[o,ll
[

1
ErrD(f) h) > ~ – —

2 pz(rn) 1
1

<l–— (1)
p3(nl)

For a strong learning algorilhm [Va184, BEHW89] con-

dition (1) is replaced by the condition

prz~~m,reu[o,ll [ErrD(f, h) > ~] ~ 8,

where c and 6 are additional parameters in [0, 1]. These

parameters are given to the algorithm and the sample

size m is allowed to be polynomial in 7Z and s as well as

l/c and 1/6.

The hypotheses output by a learning algorithm for

U, F. on lJ~ X~ are polynomially evaluatable if the eval-

uation algorithm’s running time on any hypothesis rep-

resentation output by the learning algorithm and any

instance z c Xn is polynomial in the parameters n

and s of the learning algorithm. A computationally ef-

ficient weak (strong) learning algorithm must output

polynomially evaluatable hypotheses and the total run-

ning time of the weak learning algorithm must be poly-

nomial in n and s (respectively in n, s, I/c and 1/6 for

strong learning algorithms).

It has been shown that any weak learning algorithm

A for u, 7, on U,n X. can be used iteratively to

build a strong learmng algorithm for us 73 on Un Xn

[Sch90, Fre90]. Moreover if the weak learning algorithm

is computationally efficient then the strong learning is

also computationally efficient.

In this paper we also use the following sufficient condi-

tion for weak learning (proved using Markov’s Lemma)

in place of condition (1). It bounds the probability that

prediction algorithm A makes a mistake in the last trial

away from ~: for m = pl (n,s)

1 1
GE-D. [MA,j(z)] < ~ – —

p2(m)’
(2)

where pl and p2 are two polynomials replacing the three

polynomials used in the previous condition.

The sufficiency of condition (2) for weak learning follows

from the following lemma applied with a = l/p2(m).

The lemma says that if the expected error is 1- a then

the error is at most is 1 – ~ with probability at most

1–*.

Lemma 1 For any distrzbutzon D on X, any learning

algorzthm A for F on X, and any concept f on X, if

then

Proofi Recall that

prediction algorithm

EZ~n,n [MA,,(Z)]

< 1–*.

when learning algorithm A’ uses

A to evaluate its hypotheses:

[A(samj(zm-’, Xm, r) # f(zm))]

E~ED7n-I ,re~[o,,l

[E~,,,eD [A(.aInf(=m-l, zm, T) # f(~~))] ]

Ezcnm-1 ,rc~[o,ll [Err= (f, A’(samf(mm-l), r))] .

Markov’s Lemma says that for any non-negative ran-

dom variable R, any distribution D and z > 0,

pra~~ [R(a) > zE~eD [R(b)]] < l/z. The lemma fol-
lows by using ErrD ( f, A[samj (.), .]) as the random vari-

able mapping Xm-l x [0, 1] to [0, 1], 2P-1 x U[ql] as
the distribution and z = (~ – f)/(~ – cr). ❑

Although inequality (2) implies inequality (l), the con-

verse is not true. Inequality (2) is a stronger constraint

on the learner than inequality ( 1).
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3 The Consistency Trick

One way to construct a learning algorithm is to use an

“Occam algorithm” which outputs consistent hypothe-

sis from a “small” hypotheses class [BEH W87]. A strong

Occam learning Algorithm A for u. %’. on u,, Xn is

specified by a polynomial p and a constant K < 1 such

that the following holds for all n,s z 1, ~ 6 F. and
~mcx::

when given n, s, and the sample samf (am),

learning Algorithm A outputs a hypothesis on

X. that is consistent with the sample and

is from a class 7in,~,m of cardinality at most

p(n, S)rn’ .

In [BEHW87] it is shown that for each strong Occam

algorithm for us 3~ on Un Xn there is a sample size

polynomial in n, s, I/c and 1/6 for which this algorithm

is a strong learning algorithm.

Here we define “weak Occam algorithms” whose hy-

pothesis classes grow exponentially in m and show us-

ing the methods of [BEHW87] that weak Occam algo-

rithms lead to weak learning algorithms. Thus they can

be used iteratively to build strong learning algorithms

[Sch90, Fre90].

A weak Occam Algorithm A for us T, on Un X. is spec-

ified by two polynomials pl and p2 such that the follow-

ing holds for all n,s z 1, j e F,, m = pl(n, s), and

z~cx::

when given n, s, and the sample samf (am),

Algorithm A outputs a hypothesis on X. that

is consistent with the sample and is from a

class ?fn,~ of cardinality at most 2m - llr’ztmj.

Lemma 2 Lei ‘D be any distribution on X, m c N, f

be any concept on X, and H be any hypotheses class on

X of cardinality at most 2m-1/P(m), for some polyno-

mial p. Let

BAD = {Xm c Xm :311 G R consistent with f on Zm

Then

Prz~Gm. [BAD] <1 –
1

1 + *)

Proofi We repeatedly use the following for proving

that some inequality a < b holds. We find an overesti-

mate ii of a (i.e. a < ii) and an underestimate of & of b

(i.e. ~ < !). Then for a < b to hold it suffices to show

that ii < b.

Let p’(m) = 4mp(m)/ in(2) and p“(m) = 1 +
2p(m)/ in(2). For each h c M, let

BADh = {Zm c Xm : h is consistent with f on W’n

and Errn(f, h) ~ ~ – l/p’(m)}.

Note BAD = U~efiBAD~. Clearly Pr%~~Drn [BADh

(1 - Err~(f, h))’” s (~ + l/p’(m))m and thus

Pramcnm [BAD] ~ TJ-1/P(m)
(i+A)m

=
2-1’p2(m)(1+*)m

< z-1/P(m) e2m/p’(m)

To show Prz~~n,. [BAD] <1 – l/p’’(n~), it suffices to

show that 2-11P(~)e2~/P’(~J < 1 – l/p’’(m). Taking

logarithms on both sides we get

2m 142) < ~n(l _ %)
— ——
p’(m) p(m) –

2nt

p,f~rn)) s
-ln(l– —

in(2)
H—

p’(m) m“

Since – ln(l – l/p’’(nl)) ~ * = *, it suf-

fices to show that

2m 1 in(2)

p’(m) + p“(m) – 1 < m“

The above is implied by 2m/p’(m) <$ in(2)/p(m) and

l/(p’’(n~) – 1) ~ ~ in(2)/p(rn). These last two inequit-

ies are follow from the choice of p’(m) = 4mp(n~)/ in(2)

and p“(m) = 1 + 2p(nt)/ in(2). Although these chowes

suffice, there are other choices for the polynomials p’

and p“. •1

Theorem 3 If there is a weak Occam algorithm for
(J8 F. on Un X,, then this algorithm is a weak lear-

ning algorithm for U$ ~~ on Un Xn.

Proof: Let pl and pz be the polynomials specifying

the weak Occam Algorithm A and ?tn),,m be its hy-

potheses class when the parameters are n and s. The

proof applies the above lemma as follows: for any n and

s, let D be any distribution on X = Xn, f be any con-

cept in 3s, m = pl(n, s) and ‘H = ‘Hn, r,m. when given

a sample samf (z’n), where Zm c X“’, A outputs a hy-

pothesis of M which is of carclinality at most 2m-lip2(’n).

Denote the output hypothesis by A[samf (Zm)].

Define BAD as in the Lernma 2 with polynomial p(m)

set to pz (m). Then

[

in(2)
PrZ~c=.. Errn(f, A[sam~(~~)]) ~ ~ – 4n1P2(nl) 1

< Prz~cm~ [BAD] .

From Lemma 2, the latter is at most 1 – 1/(1 +

2p2(n1)/ in(2)) and A is a weak learning algorithm. ❑

If the total running time of the weak Occam algorithm

is polynomial in n and s and the algorithm outputs

polynomially evaluatable hypotheses, then the Occi~m

algorithm is a computationally efficient weak learning
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algorithm. Note that a strong Occam algorithm pro-

duces hypotheses with smaller error when the sample

size m is increased [BEHW87] and for some polyno-

mial choice of m the strong Occam algorithm becomes

astrong learning algorithm. This is not necessarily true

for a weak Occam algorithm as the error ( 1/2– l/pz(m))

approaches 1/2 as m increases. Instead, the conversion

algorithms of [Sch90, Fre90] would use the weak Occam

algorithm repeatedly for a number of different samples

of size PI (n, S), where PI (n,s) is the size of the sample
expected by the Occam algorithm when the parameters

are n and s. The samples are drawn according to var-

ious filtered distributions and the resulting hypotheses

are combined using the majority function.

Lemma 2 and Theorem 3 are nearly tight in view of the

following Occam algorithm which is not a weak learning

algorithm because it outputs consistent hypotheses with

error exactly 1/2. Let Xm consist of all bitvectors of

length m and Fm = {.f.,b : v C x~,b C {O, 1}), where

f., b(v’) s v V’ –b mod 2 for any v c Xm. Let O denote
the all zero vector. The concepts f~ ~ and f~, ~ label

the whole domain with O and 1, respec~ively. Call those

concepts the triuial concepts and the remaining concepts

of Fm the non-trivial concepts.

Consider the Occam algorithm that when given m for

both parameters n and s, always requests m examples

and forms its hypothesis as follows. If any of the m

examples are labeled with 1 then it outputs any non-

trivial concept in Fm that is consistent with the sample.

If all m examples are labeled with O then the Occam

algorithm forms a matrix M from the examples (each

example becomes a row of M). If M is singular then it

outputs a hypothesis fv,o such that MU ~ ~ and v # O.

If M is non-singular it outputs the unique hypothesis

f~,l s.t. AU z 1. Again v #0.

Note that in all cases the hypothesis output by this al-

gorithm is consistent with the sample and is a nontrivial

concept of Fm. Thus the hypotheses class used by the

algorithm has size 2m+l – 2. When the target concept is

the trivial concept f~,o E Fm then all m examples are la-

beled O. Furthermore all non-trivial concepts (including

the hypothesis output by the algorithm) have error ex-
actly ~ with respect to fo, o and the uniform distribution

on Xm. We conclude that the above Occam algorithm

which uses a hypothesis class of size 2 ‘n+l —2 when given

samples of size m is not a weak learning algorithm.

4 Prediction by Information Gain

In this section we describe a prediction algorithm which

is a special case of an algorithm introduced by Vovk

[VOV90]. The algorithm is presented for the case when

there is a probability distribution P on ~ available rep-

resenting the prior beliefs about the functions of X be-

ing the target. We call this algorithm the Information

Gain Prediction Algorithm since it predicts b c {O, 1}
with probability proportional to the information gain

obtained when the correct value is 1 – b. This algorithm

is the basis for all our later algorithms. We bound its

expected total number of mistakes over a sequence of m

trials. The proven bound is a special case of the bound

given in [Vov90].

Definition 4 The Information Gain Prediction

Algoritl~m Gp.

Gp is given a sample S, the instance x, and a random

r G [0, 1]. Algorzthm Gp also makes use of the prior P
on the concept class F.

If VP(S) = O then Algorithm Gp predicts arbitrarily.

Otherwise, Algorithm Gp computes both IP(S, (x, 1))

and lP(S, (x, O)) using the prior on the concept class

F, and outputs the prediction O if

F’(s, (z’, 1))

r s Ip(s, (z, 1))+ Ip(.s, (~,o))

and 1 otherwzse.

Thus, for b G {O, 1}, the Information Gain Prediction

Algorithm’s prediction is b with probability

lP(S, (z, 1 – b))

P’(s, (z!, 1))+ 1P(S, (Z, o))

when VP(S) >0.

Even when Vp (S) > 0, it is possible that either

L
Vp S, (z, 1)) = O or Vp S, (z, O)) = O. In that case

$if V (S, (x, 1)) = O then 1 (S, (z, 1)) = co and Gp pre-

dicts O with probability 1. Similarly, Gp always predicts

1 when VP(S, (x, O)) = O.

Lemma 5 For all ‘P on F, S 6 (X x {O, l})*, and z ●

X: if VP(S) >0 then lP(S, (s,0)) + lP(S, (z, 1)) ~ 2.

Proofi Using the definition of 1P, it suffices to show

that

_,g VP(S, (X, o))
– lg

VP(S, (%, 1)) > z

VP(S) VP(,S) – “

Since VP(S) = VP(S, (x, O)) + VP(S, (z, 1)) >0, this

is equivalent to showing, Vp E [0, 1], that – lgp – lg(l –

p) > 2. Clearly the left hand sicle is minimized when

p = ~ and in that case the inequality is tight. •1

Note that the lemma holds when either VP(S, (x, O))=

O or VP(S, (z, 1)) = O, as then lP(S, (x, O)) +

r(s,(z, 1)) = m.

We now state the well known fact that information is

additive [HKS91].

Lemma 6 If Vp(samj (z)) >0 then

Izl

~ Ip(samf(x’)) = - lg Vp(samf(z)).

t=l
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_ ~g VP(samj(z)).—
VP(A)

= – lg Vp(samf(~))

We are now ready to bound the probability that Algo-

rithm Gp predicts incorrectly.

Theorem 7 For all P on F, f c F, and x G X*:

Proofi If Vp(samf (z)) = O then the theorem holds

trivially. Otherwise, for each 1< t < IZ 1,

MGP,j(z’)
lp(samt(~t))

= 1P (sam~ (Z ‘-1), (*,, 1)) + Ip(samf(z’-’), (zt, 1))

using Lemma 5. By the additivity of information

(Lemma 6),

as desired. ❑

As done in [HKS91] we consider the case where the “per-

ceived prior” P that the algorithm is using to compute

information gains is different from the “true” prior Q

according to which the target function f is cirawn. Intu-

itively the performance of a prediction algorithm which

calculates volumes with respect to P degrades as the

“distance” between the two priors increases.

Since Theorem 7 bounds the performance of Predic-

tion Algorithm Gp for all target functions, we can get

bounds that hold for any pair of priors P and Q.

‘f’Q[zMG”f(zt)l
<

1
-~Ef,Q [lg Vp(samj(z))] .

Similar, but weaker, results have been shown [HKS91]

for the Bayes7 Algorithm and the Gibbs Algorithm.

Both of these algorithm use volumes with respect to the

‘The Bayes Algorithm is defined for any loss function.
Our case corresponds to the 0,1 loss. Thus the expected loss
is the probability of predicting wrong.

perceived prior P to determine their prediction. Specifi-

cally, they show that for any pair of priors P and Q:

< – ln(2)Ej~Q [lg Vp(samj (z);)] .

We are interested in the extreme case where the true

prior Q is concentrated on one function f c f. In

this worst case setting, the bounds on the expected

total number of mistakes for Algorithm Gp, Bayes,

and Gibbs all grow as – lg Vp(samf(z)), but with dif-

ferent constant factors. By Theorem 7, the constant

factor for Algorithm Gp is at most 1/2. The above

bounds from [H KS91] give constant factors 1 and in(2)

for the Bayes and Gibbs prediction algorithms, respec-

tively (ln2 % 0.7).

It is easy to show that these constants for the Bayes

and C;ibbs Algorithms cannot be improved. Consider

a single instance x (i.e. m = 1) and a prior P that is

concentrated on only 2 functions, f and g, where f(x) #

g(x),

For the Bayes example, set

P(f)= ~+c, and P(g)=~–c

so that

MB.Y.SP,,(X) = 1 and -lg Vp(samg(t)) = - lg(~ -c).

For Gibbs, set

?(f) = c, and P(g) = 1 –e

so that

MGi~,,P,,(%) = c and - lgVp(sam, (x)) = -lg(l - 6).

By letting c go to zero in both examples it can be seen

that the constant factors of 1 for Bayes and in(2) for

Gibbs cannot be improved.

All weak learning algorithms described in this paper are

based on the Information Gain Prediction Algorithm

and the factor of 1/2 seems to be necessary in the deriva-

tion of our bounds for these algorithms.

Recall that the dichotomies of F induced by x is the set

of samples sarllr(z) = {sankf (x) : f < .T}. This set has

one member for each possible way that functions in 3

label the instances of 2.

Definition 8 The partition entropy of P with respect

to F and x M

H~(z) =
z

–VT(S) lg P’(s).
s~sam~(w)
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This allows us to state an important corollary of Theo-

rem 7.

Corollary 9 For all x c X*,

“’P[=MGP1’(Z*)ls‘H:(z)si’g’samF(z)’
The same upper bounds on the performance of the

Bayes Algorithm and Gibbs Algorithm is given in

[HKS91]. However to get the factor of 1/2 for Bayes

and Gibbs it was necessary to average over ~, whereas

in the case of Algorithm GP the corollary follows di-

rectly from the worst case bound proven in Theorem 7.

5 The Random Position Prediction

Algorithm

Proof: If Vp(f(zm )) = O then the right hand side is

infinite, and the theorem is trivial. We now assume that

VP(f(~m)) >0. Recall that MRP,j(gm) is the proba-

bility that, after seeing samf (gm- 1), the prediction of

Algorithm Rp on Vm is different from ~(ym ). When

EYEU(Z) [MRP,j(I/)]

“ :2 EYECI(Z) [R(u, f, t)]
t=l

S * $j ‘VCU(%) [zp(.f(Y’-*), (Yin, .f(Ym)))]
t=l

In this section we change our focus from minimizing = &c
EVCU(Z) [~p(~(vt))]

the total number of expected mistakes to minimizing t=l

the probability of a mistake on the last (rnth) instance.

The desired bound is to hold uniformly for all ~ c T. = &EVeu(x)
We define a modification of the Gp whose probability of [z’p(f(y’))]
mistake in the rn-th trial is an rn-th fraction of the total

number of mistakes in all m trials. As in the previous = &EVCUfZ) [– Ig Vp(samf(ym))] (Lemma 6)

section, we assume that a probability distribution P on

Y representing prior belief is available.
—— –~ lg Vp(samf (&’))

Definition 10 Randomized Position Information

Gain Prediction Algoritl~m Rp.

Rp is given a sample S = samf(x) where x E X*, an

instance x G X, and a random r G [0, 1]. Algorithm Rp

also makes use of the prior P on the concept class F.

If Vp(sam~ (zt-l)) = O then the information gains are

undefined and Algorithm Rp predicts arbitrarily. Oiher-

wise Algorithm Rp starts by splitting r into two random

numbers, t and r’ such that t is uniformly distributed

over {1,2, ..., 1x1} and r’ is uniformly distributed over

[0, 1]. Assuming Vp(sarn~ (zt-l)) >0, the prediction

of Algorithm Rp is O when

lp(sam~(zt-l), (x, 1))

“ S lp(samf (Z ‘-’), (z, 1))+ lp(samf(zt-’), (x, O))

and 1 otherwise. Note that the zt–l is always a prefix of

x, and thus the sequence samf(xt-*) is always avazlable

to the algorithm.

We can obtain a good bound on M~.,f (x) by averag-

ing over all permutations of z. This method has been

used in [HLW]. Recall that U(Z) denotes the uniform

distribution on all permutations of z.

Theorem 11 For all f E F, m E N, and Zm c Xm;

–~ lg Vp(samf (Zm)).EymEU(Z-) [MRP,#’?] < Zm

= –~ lg Vp(samf(Zm))

as desired. •1

[ dThere are cases where EV6U(Z) MBayeSP,j I/) ,

[EVCD~MGibbsp,J(v)], and Evcnm [MGP,f(Y)] all

equal 1/2. For example, consider an Xm and concept

class X of m + 1 functions: f. which maps all Zt to O

and for each 1 ~ i < la 1, the function fi mapping xi to

1 and all other xj to O. Now if the target function is f.

and P is uniform on 7, then all three prediction algo-

rithms have a mistake probability of ~ on the last trial.

However, for the above example we have the following

bound for Rp (Theorem 11):

This shows that that Algorithm Rp has a lower proba-

bility of predicting wrong in the last trial than either of

the other three algorithms. The crucial feature respon-

sible for the improved performance of Algorithm Rp

over the Algorithm (lp (and Vovk’s Aggregating Strat-

egy [VOV90]) is the fact that Rp predicts from a random

position.

It is not necessary to use random bits to select a random

position. The sample can be sorted on the instances and

only that part of the sorted sample whose instances are
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less then Xm is used to predict on Xm. This gives the

same bound (averaged over permutations) as given in

Theorem 11 for Algorithm Rp.

Let us return to our method of predicting from a ran-

dom position as done in Rp. one can also mod-

ify Bayes and Gibbs to predict from a random posi-

tion. The bounds are again of the form “constant times

– ~ lg VP(samf (z”))” for all functions ~ c 3. How-

ever the constant obtainable for the modified Bayes and

Gibbs are 1 and in(2), respectively, instead of the con-

stant 1/2 for Rp given in Theorem 11.

There is another prediction algorithm that achieves the

factor of 1/2 for certain “uniform” priors (the uniform

prior on sam7(zm) discussed in the next section). This

is the prediction algorithm of [HLW] based on the 1-

inclusion graph [Bon72, AHW87]. The disadvantage of

this algorithm is that it is not computationally efficient

whereas we will show that Rp leads to an efficient weak

learning algorithm.

We conclude this section by stating two simple corollar-

ies of Theorem 11.

Corollary 12 For all D on X, m ~ 1, and f c F:

[Ig Vp(samj

MR~,f(~)]]

x))] .

= –~EzeD~ [lg Vp(samf(m~))]

❑

Corollary 13 For all D on X, P on F, and m ~ 1:

Et,>,zeD~ [WrP,,(Z)] S -++D- [H?(z)] .

The same bound as in the above Corollary can be

shown for the Bayes Algorithm and the Gibbs Algo-

rithm [HKS91]. However to obtain these bounds aver-

aging over the prior P is needed, whereas for Algorithm

Rp the above bound directly follows from Theorem 11,

whose bound holds for all functions.

6 Dichotomies

In this section we shift our focus from concept classes

to the set of dichotomies, samr(z). Recall that

sam~(z) = {samf(z) : f C X}.

The previous section described Algorithm Rp which re-

ceives three inputs: a sample in sam~(zm- 1), an ad-

ditional instance Xm c X, and a random number r

drawn uniformly from [0, 1]. Algorithm Rp also u:;es

the prior P on the concept class $. Actually, Algo-

rithm Rp uses the prior only to evaluate the volumes

Vp(samf(mt-l), (z~, 1)) and Vp(sam~(z~-l), (z~, O))

for some 1 ~ t ~ m. The following shows how these

volumes can be computed from the volumes of samples

in sam~(mm).

Foranym EN, x~Xm, l~t< m,j EF and

bE{O,l}.

Vp(samf(z’-’), (z~, b)) = ~ VP(S)

SET

where T = {S : S G sam~(ir ) and S contains all exalm-

ples of samj(a’-l), (zm, b)}.

This motivates using a new prior on sam~(xm), rather

than the old prior on F, when the algorithm is to pre-

dict on Zm from a sample of Z~- 1. Clearly this new

prior depends on mm. Essentially, Zm defines a set of

equivalence classes on F. Each dichotomy in samy(z’n )

represents one of these equivalence classes. The prclb-

ability of a sample under the new prior is the sum (or

integral) of the probabilities given to the functions in

the equivalence class by the old prior.

One interesting prior is the uniform prior on sam~(zn’).

Using this prior, conlputing the volume of a sample S

amounts to counting the number of ways S can be “ex-

tended” to samples in samz(~’”).

Recall that samx (z) is the set, of all 21ZI possible samples

whose examples from the sequence w.

Definition 14 For any subsequence y of z and sam-

ple S c samx(y), N:(S) is the number of samples in
sam7(zm) that contain all examples of S.

Note that N$ (A) = lsarn~(z)l and for any f G 3,
Ny(samf (z)) = 1. When P is the uniform prior on

sam~(mm), VP(S) = Nj!(S)/ lsam~(z)l.

We now generalize our notation of prior so that any of

the 2m samples in samx (mm) can have positive probabil-

ity, rather than just those of sam~(z~). We are particu-

larly interested in weizhted combinations of the uniform

pri& on samz(m) an~ the uniform prior on samx (ZB).

These weighted combinations ensure that each sample

in sam, (z) has a significant probability, a fact that will

prove useful in Section 7. The following definition pro-

vides notation for these combination priors,

Definition 15 For any m c N, ~ c Xm and c g [0, 1],
let (J}(x’n) denote the foiiou.nng praor on sam. (xn’).

For any S E sam. (z’n):

u;(’z~)(s) =
(1 – c) lsam~(zm)l + C2’;

and if S E (sam*(z’”) – samz(zm)) then

?l$(%~)(s) =
(1 – c) lsam~(xm)l + c2’; ”
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Note that U$ (xm ) is the uniform distribution on

sam~(mm ) and U$(Zm ) is the uniform distribution on

sam* (zm ).

The above definition leads to the following expression

for the volume of a sample with respect to the prior

u;(x).

Lemma 16 For any m G N, z c Xm, any subsequence

Y ofz, and any S E sam. (y):

VW)(S) =
(1 – C)fvg(s) + c2~-134

(1 – c) lsam~(~m)l + c2m

Proof: Follows immediately from the definitions of

volume and U>(Z). ❑

Algorithm R’ is the prediction Algorithm RP using the

prior P = U$(zm), where am-1 are the instances in the

sample and xrn is the additional unlabeled example.

Definition 17 Algorithm R’

Algorithm R’ is given the parameter c c [0, 1], a sample

S = samf(x) where z E Xm-l, an additional instance

xm c X, and a random number r E [0, 1]. Algorzthm

R’ jirst splits r into a random position t c {1,..., m},

and an independent random number r’ e [0, 1]. Ii

then determines U. = N~(f(zt-l), (zm, 0))/2m-~ and

UI = N#(.f(~t-l), (Zm, 1))/2m-~. Since S 2s a sample

of some f ~ 3, either U. or U1 will be positive. If c = O

and U. = O then Rp predicts 1, and af c = O and u] = O

then Rp predicts O. Otherwise, at least two of c, Uo,

and U1 are positive, and Algorithm Rc predicts O when

Ig (1 +- *)
r’ <

Ig(l+S)+lg (l+*)

and 1 when r) is greater than the ratio.

Note that U.+ UI = Nj#(f(zt))/2m-~-1 which is likely

to be less than one. Algorithm R’ predicts 1 with prob-

ability

(lg l+--
)

)
lg(l+x)+lg(l+m

Furthermore the above equals

lg (
nO+nl)(l-c)+c2’” -’+’

711J l-c +c2m-f

lg ~n”~o$;~:f:t-’+’ + lg (n”+n’)(1-c)+c2 ”’-’+’
~1(1-c)+czm-~

where no = fV$(f(mz-l), (s~, O)) and 7tl =
Ng(f(zt-1), (Zm, 1)). Thus R’ is the prediction Al-

gorithm Rp where P = U$(Zm).

From Theorem 11 and Definition 15 we get the following

for Algorithm R’.

Corollary 18 For all f ~ 3, m G N, Xm E Xm, and

O<c<l:

‘wU(Z-) [MRc,f(v)l < + k (Isamr(z)l (1 – c) + c2m)

~ Ig (lsam~(~)])EYcu(~m) [MRo,j(v)] < Zm

EyaJ(Z~) [“R’ ,j(Y)] = ;.

As in Corollary 12, the expectations over permutations

of Xm can be replaced by expectations over mm drawn

at random from Vm.

For the case of the uniform prior on samr(~) the 1-

inclusion graph prediction algorithm of [HLW] (here de-

noted by l-inc) is a good predictor. For all ~ E ~,

m E N, and Xm E Xm its performance is bounded as

follows:

where maxdensz(z ) is the maximum density (number

of edges over number of vertices) of any subgraph of

the l-inclusion graph with respect to 7 and a. In

[HLW] it is shown that this density is upper bounded

by the Vapnik-Chervonenkis dimension of the class Y

[VC71, 13EHW89]. It is easy to show by induction on

m that ~ Ig (lsarn~(w)l) is a second upper bound on the

density. Thus the probability that the l-inclusion graph

prediction strategy predicts wrong on the last trial is

bounded by the same bound given for RO in the above

corollary.

The parameter c has an interesting effect on the pre-

dictions of Algorithm R’. As c increases from O to 1,

the probability that R’ predicts O (or 1) gets biased

more and more heavily towards ~. When c = 1, the

algorithm ignores the sample and predicts with a ran-

dom coin flip. Increasing c also increases the bound on

Eycu(%~) [M~<if (y)], as would be expected since the

algorithm’s prechctions become more and more random.

To gain more insight into how the predictions of R’

are effected by the parameter c we now compare

the probabilities that R’ and RO predict 1. Re-
call that U. = N$(f(&l), (Z!m, 0))/2~-t and U1 =
N:(f(z~-l), (Zm, 1))/2~-~.

If Uo = U1 = ~ then both RC and RO predict 1 with

probability ~. I; U. < U1 then both ratios are more than

~, but the probability that R,c predicts 1 is smaller then

the probability that RO predicts 1. Conversely, if U. >

U1 then both ratios are less than ~, but the probability

that R“ predicts 1 is larger then the probability that RO

predicts 1. Both of these differences are due to the bias

towards ~ induced by c.
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7 Randomized Counting

Since sam~(z) is often exponentially large for interest-

ing concept classes X, an efficient implementation of

R’ can not

simply compute U. = IV$(~(st-l, (xm, 0))/2m-t and

U. = JV$ (~(mi-l, (zm, 1))/2m–$. We use random sam-

pling and a weak consistency for 7 to estimate these

quantities.

For arbitrary F and Xm, determining if an element of

samx(z) is in samr(~) can be difficult. To avoid this

difficulty, we require a weak consistency oracle for X.

Definition 19 A weak consistency oracle for 7 =

U, 3, on X = Un X. is given n, s, m, and a sample

S ~ sam. (am) where mm ~ (Xn)m. The oracle answers

“yes” zfS = samf(~m) for some f E F. and “no” oth-

erwise. A polynomial time weak consistency oracle is a

weak consistency whose answers are computed in time

polynomial in n, s, and m.

We call these oracles weak to emphasize the fact that

they do not return functions in Y’s, only whether or not

there exists a function in ~~ consistent with the sample,

We form an estimate do for U. by creating q new samples

of length m. Each new m-sample is constructed by ap-

pending the (t – 1)-sample samf(z~-l) with a randomly

drawn sample from sam. (z~, x~+l, . . . . x~_l) and finally

adding (Zm, O) at the end. Our estimate of U. is the

number of these new m-samples in sam~(z) divided by

q, the number of the m-samples created for estimating

?@.

We obtain the estimate ill for U1 in similarly, except the

final example in each of the q samples is set to (zm, 1)

rather (Zm, O). If q is large enough, then both Iii. –

Uol and Itil – U1 I are likely to be small. We will use

Hoeffding’s inequality to measure the accuracy of our

estimates.

Note that (1 – C)tio + c is less sensitive to the error

Iii. – Uol the closer c is to 1. The following corollary

gives a reasonable choice for c.

Corollary 20 For all f E 3, m G N, and Zm ~ Xm

for which Isamr(x)l s 2m-a, if c = ~~, which is

always at most ~, then

Proofi The inequality follows from Corollary 18 and

our choice for c.

‘vW(Z) [“Rc,f(z)]

~lg(lsam~(m)l(l
5 2m

- c)+ c2m)

< &lg ((1 – C)2”= + c2m)

—— &(m-a)+ ~lg(l-c+c2a)

The value of c is at most ~ since 1 + a in 2< 2a. ❑

Note that if c = O then by Corollary 18 the edge of

the algorithm is cr/(2m). Thus increasing c from O to

& ~ reduced the edge of the algorithm from a/(2m)

to 3a/(8 m).

We now define our final algorithm, Algorithm @.

Definition 21 Algorithm @g

Algorithm ~ is given a sample S = samf(x), the ad-

ditional instance z, and a random r c [O, 1], as well as

its two parameters c E (O, 1] and q 6 N. Algorithm ~

also makes use of a weak consistency oracle for F.

Let m = ISI + 1. Algorithm ~q splits r into a ran-

dom positton t tn {1, . . . . m}, an independent sequence

of2g(m-t) random bats, and an independent r’ c [0, 1].

Algorvthm ~ then uses the 2q(m – t) random bits to

generate 2q independent samples untforrnly at random

from samx(x~+~, x~+~, . . . . x,n_l). Half of these samples

are concatenated with the sample “samf (xt-l), (x, ())”

to form q samples of length m. Each of these m-samples

is fed to the weak co7wiste7tcy oracle. Let ii. be the frac-

tion of them that are consistent wtth any function in F.

Similarly, the other hatfof the randomly generated sam-

ples are concatenated with samj(xt-l), (x, 1) and then

fed to the weak consistency oracle. Let U1 be fraction of

these samples that are consistent with any function in

F.

Predtctton Algortthm k; outputs the prediction O when

and 1 otherwise.

Theorem 22 For all z E Xm for which lsam~(a)l ~

2m-o, zfc = &~ and q ~ 1066n12 f~ln”~~

then the followtng holds for any f E F:

We first present some implications of Theorem 22 and

then give its proof.

Corollary 23 lf~or all ~ E X’n, lsam~(m)l ~ 2m-’a,

then for any f E F

where c and q are chosen as in Theore7n 22.
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Corollary 24 Let 7 = us 3. and X = U,n X. be Proofi Let b = ~(x~ ), then from the definition of ~

a prediction problem. If there is a sample s~ze m = and R= we can write:

pl(n, s) such that for all n, s, z E (X~)m, lsam~, (z) I S

2m-a where a = l/p2(m) and if there is a polynomial
1 c til_b+c

lg (1 + *-

te~mi = )
time weak consistency oracle for F then ~ leads to a

weak learning algorithm. ‘“1 b+c)+’g(l+-)lg (l+*

(l-c) ul_b+c
lg(1+ (1-c) tlb+cProof: If m = pl(n, s) and a = l/p2(m) then ~ with termt =

)

c and q set as in Theorem 22 uses time (including calls to
“-’’”’-b+’) +lg(l +-)lg (1 + (l-’)u’+c

the weak consistency oracle) bounded by a polynomial

in n and s. El and

If ~ = us ~, on X = u. X. is learnable, then the

VC-dimension of FS on X. is bounded by some p(n, s)

(where p is a polynomial) [BEHW89]. By Sauer’s

Lemma [Sau72], for any m and ~ ~ (X~)m Isamr$(z) I S
~:$y) (~). When m = 2p(n,s) this sum’ is 2m-’.

Thus lsam~, (z)l < 2m-1 and we can apply Corol-

lary 24.

Corollary 25 If F = us F, on X = Un X. is learn-

able and there is a polynomial consistency oracle for F

then there is a cornputationally efictent weak learning

algorithm for F.

Proofi (of Theorem 22) We begin by stating the ob-

vious relationship between the mistake probabilities of

Prediction Algorithm &q and Prediction Algorithm R“.

%/w(z) [%;,f(?d]=

where b = f (zm ). This is a slight misuse of notation

as the Uo, Ul, iio, and til all depend on ~, y, and t.

In addition, ii. and iil each depend on the q samples

of length m selected by the algorithm’s randomization.

What we will show is that for any f, y, and t the ex-

pectation of the difference inside the sum with respect

to the randomization of ~ is at most &. We consider

two cases.

Case 1: either ltio – UOI > ccr/8rn or Iiil – Ull > c@/8m.

By Lemma 28 (applied with -y = ccr/8m) of the Ap-

pendix, this case happens with probability at most &.

Note that the bound q ~ 1066m2 ~~- In ~ implies

that

ln(32rn/cv)
q>

272

‘@J(q [“RCJ(Y)] + ‘?/W(Z) [“k,,,@)- ‘W(Y)] _ ln(32m/a) (8m)2
—

2 (Ccr)z
1“ 2 “t follows from Corollary 20 thatSince c= *T I

ln(32rn/a) 64m2(16)(2a – 1)2

%u(z) [MR;,,(Y)] <

——
2 a4 ln2 2

1
~ +EYW(Z, [“&@-MRc,f(Y)]

as required by Lemma 28.

~–8m Case 2: both Itio – Uol s ca/8rn and Itil – Ull ~

ca/8m. Applying Lemma 29 in the Appendix, for

Lemma 26 (below) completes the proof of the theorem bE{o,l},

by showing that

(

~g ~ + (1 –C)til-b+ c

)(

_lg ~+(l–c)ul-b+c

MR8,f(Y) – MRG,!(Y) S &
(1 – c)ti* + c (1–c)ub+c )

is at most ~/(4rn + a). Thus by Lemma 30 (also in the

for c= &~ and q ~ 1066m2 ~ In ~. •1 Appendix), te~mt – term is at most cr/8n~.

when c = &~.

81n general, ~~=0 (~) is bounded by md + 1. When
m = 2P(n, S) we are summing half the binomial coefficients,

so the sum is exactly 2~-1.

We now combine the cases by noting that te~mt and

term are both mistake probabilities, and so can never

be greater than one. Thus if a s a/8n~ is the probability

of Case 1, then the difference between the terms is at

most

•1

The bound on the number of queries q in Theorem 22

is 0((2a — 1)2/a4). This is exponential in m as a goes

to m and is unbounded as a goes to zero.
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Note that if Isamr, (z)l s 2m-a then lsam~. (z)[ <

2m-@’ for all a’ < cr. Thus we can use a smaller a

as long as q remains polynomial in n and s. Clearly

if m is polynomial in n and s, and a = l/p2(rn) for

some polynomial p2, then q is polynomial in n and s

as well. An alternative to simply using a smaller cr is

to embed the concept class f into some larger class 7i

with lsam~,(~)l ~ 2m-(liPz(mJJ. There is an additional

benefit to the embedding in that it maybe easier to find

a weak consistency oracle for ‘?-l than for F.

This leads us to the following definition of a “one-sided”

consistency oracle:

Definition 27 A one-sided consistency oracle for F =

U, F, on Un X. is given n, s, m, and a sample S c

sam*(icm) urhere Zm e (Xn)m. The oracle must an-

swers “yes “ if S = samf(zm) for some f E 7$ and

may answer either “yes’) or “no” otherwise. However

the total number of “yes” answers on the 2m examples

of S C sam. (zm) can not exceed 2m-1/p2fm), for some

polynomial pz. Such an oracle w called polynomial If its

answers are computed in ttme polynomial in n, s, and

m.

Clearly the existence of a polynomial one-sided consis-

tency oracle for $ implies polynomial weak learnability,

Such an oracle might be much easier to find than a weak

consistency oracle for ~. Even weaker oracles will be

explored in future research.
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A Appendix

Lemma28 Ifq~~ then for Prediction Algorithm

~

Prr,~[O,,l [Itio - UOI > y or Iiil - ull > -y] < &.

Proofi By symmetry, “ suffices to

show l’rrcu,O,ll [Itio-uol > -i] s & Since q queries

are used to estimate no, Hoeffding’s inequality shows

Prrcu[O,ll [Itio - uol > -f] ~ 2e-2’v’.

Using the lower bound on q we see that this probability
is at most ~ as desired. ❑

Lemma29 IfO < UO,tiO, UI, iiI < 1, 0 < T < ~~,

[~o-~ol <?, l~l-ull <~, o<c<l, andac (O, m]
then both

and

are at most *.

Proof: By symmetry it suffices to show the first in-

equality. First observe that

~+(l–c)tio+c

(1 – C)ti, + c

< ~+(l-c)uo+c+(l-c)~
—

(1-c) u,+c-(1-c)~

(1 –c)(w) +Ul) +2C

= (1-c) u,+c-(1-c)~

~ (1 -C)(uo +U,) +2C 1

(1 - C)u, +C 1 – Y(1 – c)/c

(

~+(l–c)uo+c

)

1
=

(1 – C)ul +C 1 – T(1 – c)/c

Similarly,

~+(l–c)tio+c

(1 – C)ti, +C

> ~+(l-c)uo+c-(l–c)~
—

(1-c) u,+c+(l-c)~

_ (l– C)(UO+U, )+2C
—

(1-c) u,+c+(l-c)y

> (1 –C)(U* +U,) +2C 1
—

(1 – C)u, + c 1+7(1 – c)/c

(

~+(l–c)uo+c

)

1
=

(1 – C)ul +C 1 +y(l – c)/c

(3)

(4)

Combining (3) and (4), dividing by 1 + ~1~]~~~~ and
taking the lg of all sides gives us:

-lg(l+’=)

Lemma 30 For any non-negative numbers a and b

such that a + b ~ 2, and any 60 and 61 whose abso-

lute values are both at most 6 = *~iJ

a+bo a
—— <:.

a+ b+ 60+61 a+b

Proof:

a+bo a
.—

a+ b+60+ti1 a+b

a(a+b)+ 60(a+b) –a(a+b)–a(tiO +&l)
=

(a+ b+60+ti1)(a+b)

bob – 61a——
(a+ b+60+61)(a+b)

(a+ b)6

5 (a+ b - 2ti)(a + b)

6
<—

2–26
CY

=
G“

❑
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