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Abstract

We analyze algorithms that predict a binary value by com-

bining the predictions of several prediction strategies, called

ezperts. Our analysis is for worst-case situations, i.e., we

make no assumptions about the way the sequence of bits to

be predicted is generated. We measure the performance of

the algorithm by the difference between the expected num-

ber of mistakes it makes on the bit sequence and the ex-

pected number of mistakes made by the best expert on this

sequence, where the expectation is taken with respect to the

randomization in the predictions. We show that the mini-

mum achievable difference is on the order of the square root

of the number of mistakes of the best expert, and we give

efficient algorithms that achieve this. Our upper and lower

bounds have matching leading constants in most cases. We

give implications of this result on the performance of batch

learning algorithms in a PAC setting which improve on the

best results currently known in this context. We also extend

our analysis to the case in which log loss is used instead of

the expected number of mistakes.

1 Introduction

A central problem in machine learning is the problem of

predicting future events based on past observations. In com-

puter science literature in particular, special attention has

been given to the case in which the events are simple binary

outcomes [16]. For example, in predicting today’s weather,

we may choose to consider only the possible outcomes O and

1, where 1 indicates that it rains today, and O indicates that

it does not. In this paper we show that some simple predic-

tion algorithms are optimal for this task in a sense that is

closely related to the definitions of universal forecasting, pre-

diction, and data compression which have been explored in
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the information theory literature. We then give applications

of these results to the theory of PAC learning [31].

We take the extreme position, as advocated by Dawid

and Vovk in the theory of Prequential Probability [4, 3, 5,

35], Rlssanen in his theory of stochastic complexity [25, 27,

26, 37] and Cover, Lempel and Ziv, Feder and others in

the theory of universal prediction and data compression of

individual sequences [7, 24, 1, 2, 12, 36], that no assump-

tions whatsoever can be made about the actual sequence

y= y],... , Y/ of outcomes that is observed; the analysis is
done in the worst case over all possible binary outcome se-

quences. Of course no method of prediction can do better

than random guessing in the worst case, so a naive worst-case

analysis is fruitless. To illustrate an alternative approach in

the vein of universal prediction, consider the following sce-

nario.

Let us suppose that on each morning t you must pre-

dict whether or not it will rain that day (i.e., the value of

yt ), but before YOU make your prediction you are allowed to
hear the predictions of a (fixed) finite set g = {El,.. ., ~N}
of ezperts, On the morning of day t, each expert has ac-

cess to the weather outcomes yl, . . . . yt_l of the previous

t – 1 days, and possibly to the values of other weather mea-

surements Z1, . . . . ~t-1 made on those days, as well as to-
day’s measurements z~. The measurements z], . . . . ZP will

be called instances. Based on this data, each expert returns

a real number p between O and 1 that can be interpreted as

his/her estimate of the probability that it will rain that day.

After hearing the predictions of the experts, you also choose

a number p e [0, 1] as your estimate of the probability of

rain. Later in the day, nature sets the value of yt to either

1 or O by either raining or not raining. In the evening, you

and the experts are scored. A person receives the loss Ip – yl

for making prediction p G [0, 1] when the actual outcome

is y E {O, 1}. To see why this is a reasonable measure of

10SS,l imagine that instead of returning p c [0,1] you tossed
a biased coin and predicted outcome 1 with probability p

and outcome O with probability 1 – p. Then Ip – yl is the

probability that your prediction is incorrect when the actual

outcome is y.

Let us fix the instance sequence ZI, . . . . Zl, since it plays

only a minor role here, and vary only the outcome sequence

Y=yl, . . ..yf. Imagine that the above prediction game is

played for f days, during which time you accumulate a total

10SS L(Y) = ~~=1 I+t – ytl, where @t E [0, I] is your pre-
diction at time t. Each of the experts also accumulates a

total loss based on his/her predictions. Your goal is to try

to predtct as well as the best expert, no matter what out-

1An alternate logarithmic loss function, often considered in the

literature, is discussed br]efly in Section 8.
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come sequence y is produced by nature.2 Specifically, if we

let L&( y) denote the minimum total loss of any expert on

the particular sequence y, then your goal is to minimize the

maximum of the difference L(y) — L& (y) over all possible bi-

nary sequences y of length 1. Since most outcome sequences

will look totally random to you, you still won’t be able to

do better than random guessing on most sequences. How-

ever, since most sequences will also look totally random to

sll the experts (ss long as there aren’t too many experts),

you may still hope to do almost as well as the best expert in

most cases. The difficult sequences are the ones that have

some structure that is exploited by one of the experts. To

do well on these sequences you must quickly zero in on the

fact that one of the experts is doing well, and match his/her

performance, perhaps by mimicking his/her predictions.

Through a game-theoretic analysis, we find that for any

finite set of experts, there is a strategy that minimizes the

maximum of the difference L(y) – L t (Y) over all possible bi-

nary outcome sequences y. While this minimax strategy can

be implemented in some cases, it is not practical in general.

However, we define an algorithm, called P for “Predict”,

that is simple and efficient, and performs essentially as well

as the minimax strategy. Actually P is a family of algo-

rithms that is related to the algorithm studied by Vovk [34]

and the Bayesian, Gibbs and “weighted majority” methods

studied by a number of authors [23, 22, 15, 29, 28, 13, 18],

as well as the method developed by Feder, Merhav and Gut-

man [7]. We show that P performs quite well in the sense

defined above so that, for example, given any finite set &

of weather forecasting experts, P is guaranteed not to per-

form much worse than the best expert in &, no matter what

the actual weather turns out to be. The algorithm P is com-

pletely generic in that it makes no use of the side information

provided by the instances Z1, . . . . zl. Thus, it would also do

almost as well as the Wall Street expert with the best inside

information when predicting whether the stock market will

rise or fall.

In particular, letting LP (y) denote the total loss of al-

gorithm P on the sequence y and L2 (y) the loss of the

best expert on y as above, we show (Theorem 6) that for

all outcome sequences y of length 1 , LP (y) – L&(y) <

,-+’0’2(!’+’) , and that no algorithm can improve
.

the multiplicative constant of the square-root term.

Previous work has shown how to construct an algorithm

A such that the ratio LA(y) /Ls(Y) approaches 1 in the limit

[34, 23, 7]. In fact, Vovk [34] described an algorithm with

the same bound as the one we give in Theorem 2 for the

algorithm P. This theorem leaves a parameter to be tuned.

Vovk gives an implicit form of the optimum choice of the

parameter. We arrive at an explicit form that allows us to

prove nearly optimal bounds on LA(y) – LE (y). To our

knowledge, our results give the first precise bounds on this

difference.

It turns out that these bounds also give a tight lower

bound on the expectation of the minimal distance between

a random binary string uniformly chosen from {O, 1 }1 and

a set of N points in [0, I]t, which may be of independent

interest from a combinatorial viewpoint.

The remainder of this paper is organized as follows. In

Section 2 we introduce some notation. In Section 3. we char-

acterize exactly the performance of the best possible pre-

2This approach M also related to that taken In recent work on

the competitive ratio of on-l)ne algorithms, and in particular to work

on combining on-llne algorithms to obtain the best competitive ratio

[9, 8, 10], except that we look at the difference in performance rather

than the ratio

diction strategy using a minimax analysis. Section 4 de-

scribes the algorithm P and shows that it achieves the op-

timal bound given above. In Section 4.1 we show that if

the loss L& (y) of the best expert is given to the algorithm

a priori, then P can be tuned so that LP(y) – L&(Y~I <

~-+ w. In Section 5 we show that when no

knowledge of L&(y) is available, then using a simple dou-

bling trick we can still obtain a bound that is only a small

constant factor larger. This algorithm can nearly match the

performance of the best expert on all prefixes of an infinite

sequence y.

Finally, we show how the results we have obtained can be

applied in other machine learning contexts. In Section 6, we
look at the case when one outcome in a sequence of outcomes

is covered up at random. We are asked to predict only this
covered outcome, based on the values of the other outcomes

and other side information. We call this “hold-one-out” pre-
diction, and we show that a variant of P performs optimally

for this problem as well.

Next, in Section 7, we relate the hold-one-out predic-

tion problem to one studied in the PAC learning literature

in which examples (zl, y]), . . . . (z~_l, y~-1) are drawn inde-

pendently at random from some arbitrary distribution on the

set of all possible labeled examples and the goal is to find a

hypothesis that will predict the binary label y~ of the next

random example (zt, y~) correctly with as high a probability

as can be obtained. Using a permutation argument [18, 33],

we are able to apply the bounds obtained in Section 6 for the

hold-one-out variant of P to get distribution-independent

bounds for the performance on this task as well. These

bounds are more robust and improve by constant factors

some of the (more general) bounds obtained by Vapnik [33]

and Talagrand [30] on the performance of an empirical loss

minimization algorithm.

The results presented in this paper contribute to an ongo-

ing program in information theory and statistics to minimize

the number of assumptions placed on the actual mechanism

generating the observations through the development of ro-

bust procedures and strengthened worst-case analysis. In

investigating this area, we have been struck by the fact that

many of the standard-style statistical results that we have

found most useful, such as the bounds given by Vapnik, in

fact have worst-case counterparts which are much stronger

than we had expected would be possible. We believe that

if these results can be extended to more general loss func-

tions and learning/prediction scenarios, with corresponding

optimal estimation of constants and rates, this worst-case

viewpoint may ultimately provide a fruitful alternative fo un-

dation for the statistical theory of learning and prediction.

2 Preliminaries

We denote the set of experts by & = {SI, . . . . ~~}, where

N is the number of experts. The binary sequence to be

predicted is denoted by y = yI, . . . . y~, . . . yl, where t is the

index of a typical time step ( or triaZ) and 1 is the length

of the sequence (if it is finite). The prediction given by

the expert &, at time t is denoted by ~,,t E [0, 1], and the

prediction of the algorithm by ~~ E [0, 1]. Side information

that might be used as input by the experts is denoted by

the sequence of instances x = ZI, . . . . ZP. We denote the loss

that an algorithm A incurs on the sequence Y by LA(Y) =

~~=1 Iv, – Ytl and the loss of the best expert in 8 on the

same sequence by L:(y) = mini <$<N L&, (y).--
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3 An optimal prediction strategy

As described in the introduction, our goal is to minimize

the worst-case difference between the loss of our prediction

strategy and the loss of the best expert. In this section,

we derive the optimal value of this difference. That is, we

exhibit an algorithm that exactly achieves this optimal value

for every sequence y, and moreover, we show that every

other prediction strategy does worse on some sequence y.

To obtain this result, we assume that the learner knows the

length 1 of the sequence y, and is able to foresee the experts’

future predictions. We say that a set of experts is sirnulatable

if, given the sequence of outcomes and expert predictions up

to time t– 1, the predictions of the experts at time tcan be

calculated. Implicit in this definition is an assumption that

the instances x are either irrelevant or known ahead of time.

Theorem 1 Let g be a set of sirnulatable experts. Then
there exists a prediction strategy A* such that for every se-

quence y, we have

LA. (y) – L.(Y) = : – EyJ(L~(y’))

where EYI denotes expectation over a uniformly random

choice of y’ from {O, I}t. Moreover, A* is optimal in the

sense that for every prediction strategy A, there exists a se-

quence y such that

LA(Y) – L&(Y) > ; – ~y~(L.5(Y’)).

In proving this theorem, we find it useful to view the
~blem in a game-theoretic setting in which the value V* =

T— EYJ (15z (Y’)) turns out to be the minimax solution of a
zero-sum, perfect-information, two-person game. Here is a
very brief outline of the proof For any prediction strategy

A, let VA (y) = LA (y) – L&(y). Then the expected value of

VA with respect to a uniformly random choice of y’ E {O, 1}~

is simply 1/2 – Ey, (L& (y’)) since we expect any algorithm to

make 1/2 prediction errors on an entirely random sequence.

Thus, there must be some sequence y for which VA(Y) is at

least as great as this expectation; this proves the second part

of the theorem. For the first part of the theorem, it suffices

to show that there exists a prediction strategy A* that yields

the same difference in loss V* = VA. (y) for every sequence

y. We prove this fact in a constructive manner by induction

on the number of remaining steps 1 – t (details omitted).

Theorem 1 tells us how to compute the worst-case perfor-

mance of the best possible algorithm for any set of experts.

As an example of its usefulness, suppose that S consists of

only two experts, one that always predicts O, and the other

always predicting 1. In this case Theorem 1 implies that the

loss of the optimal algorithm A* is worse than the loss of

the best expert by the following amount :

e

V“=; –p eX() [ e
min{i, 1 — i} N

i %“
1=0

This result was previously proved by Cover [I]; we obtain it

as a special case.

Strategy A* makes each prediction in terms of the ex-

pected loss of the best expert on the remaining trials (where

the expectation is taken over the uniformly random choice of

outcomes for these trials). In general, calculating this expec-

tation exactly is intractable. However, the expectation can

Algorithm P(,B)

1. All initial weights {w1,l, . . . . w.v,l} are set to 1.

2. At each time t,for t= 1 to co, the algorithm receives

the predictions of the N experts, ~] ,t, . . . . fiv, t, and

computes its prediction @~ as follows:

● Commte

● Output prediction +t = F6(rt).

3. After the correct outcome y~ is observed, the weight

vector is updated in the following way.

● For each i = 1 to N, W,,,+] = Wi,t Up(l’$:,t – ?/tI).

There is some flexibility in defining the functions Fp(r) and

Up(q) used in the algorithm. Any functions F@(r) and Up(q)
such that

~ + ln((l – r),8 + r)

21n(*)

forall O~r~l, and

s ~P(~)s
-ln(l – r + r/3)

21n(*)
, (1)

P* < up(q)<1 – (1 –0)9,

for all O s q s 1, will achieve the performance

tablished below.

Figure 1: Description of Algorithm P(/3), with

O<p <l.

(2)

bounds es-

parameter

be estimated by sampling a polynomial number of randomly

chosen future outcome sequences.

Note also that A* relies on the knowledge of how the ex-

perts will predict in the future. In the next section, we wiU

describe a simple prediction algorithm that achieves similar

performance in the absence of this assumption. This algo-

rithm wiU also yield general upper bounds on the optimal

value V* given in Theorem 1.

4 Some simple prediction algorithms

In this section, we present a parameterized prediction algo-

rit hm P that will be used throughout the paper. We will

show that this algorithm achieves performance bounds sim-

ilar to those given in Theorem 1. We assume a basic setup

similar to that in the previous section. However, the predic-

tions generated by algorithm P depend only on the past and

present predictions of the experts and on the previously ob-

served outcomes in the sequence y. Thus, there is no restric-

tion on how the experts generate their predictions. In par-

ticular, the experts might not be simulat able, e.g. because

the experts’ predictions depend on some external sources of

information that are unavailable to the algorithm.

The prediction algorithm P is given in Figure 1. It works

by maintaining a (non-negative) weight for each expert. The

weight of expert i at time t is denoted W,,t. At each time t,
the algorithm receives the experts’ predictions, <I ,t,....(iv)t,
and computes their weighted average, T,. Algorithm P then

makes a prediction that is some function of this weighted

average. Then P receives the correct value y. and shshes the
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weight of each expert t by a multiplicative factor depending

on how well that expert predicts, as measured by If,, t —

yt 1.3 The worse the prediction of the expert, the more that
expert’s weight is reduced.

Algorithm P takes one parameter, a real number ~ G

[0, 1) which controls how quickly the weights of poorly pre-

dicting experts drop. For small ~, the algorithm quickly
slashes the weights of poorly predicting experts and starts

paying attention only to the better predictors. For ,B closer
to 1, the weights will drop slowly, and the algorithm will
pay attention to a wider range of predictors for a longer

time. The best value for /3 depends on the circumstances.

Later we derive good choices of @ for different types of prior

knowledge the algorithm may have.

There are two places where the algorithm can choose to

use any real value within an allowed range. We have repre-

sented these choices by the functions F@ and UP, with ranges

given by (1) and (2), respectively, in Figure 1. In terms of

our analysis, the exact choice for these values is not im-

portant, as long as they lie in the allowed range. In fact,

different choices could be made at different times.

The function UP(q) is called the update ~unction. lts

lower bound is the exponential /?q and its upper bound is

the linear function 1 – (1 – ~)g. In related work, Vovk uses

the exponential update function [34], and Littlestone and

Warmuth [23] use any update between the exponential and

the linear update. It turns out that the linear update has a

nice B ayesian interpret ation. 4

3 If the experts’ weights are normalized so they sum to one, then

the weight of an expert which M predicting well will Increase as the

weights of other experts are reduced

4 Here we wew each expert as a probability dlstrlbutlon on blt

sequences of length 1, and pretend that the actual sequence y n

VI, , Y? IS generated by plcklng an expert uniformly at random and
then generating a bit sequence of length 1 at random according to

the dwtrlbutlon defined by that expert The probability dwtrlbution

for the i’h expert M defined as follows For any yI , ,Yt– I, if the
expert’s estimate of the probability that Y* c 1 given yl , ,Yi–1
M (,,*, then the actual probability that yi IS 1 given yl, ,yt_l IS

defined to be

Pt, t = n + (1– 27J).ft,t, (3)

where v c p/(1+ p) It m easy to see that p,, t IS just the probability

that Y* is 1 if originally Y* is set to 1 with probability .$,, t and O

with probability I – (,,~, and then the value of Yt is flpped With

Independent probability q Hence the value 9 can be interpreted as a

“subjective” noise rate between O and 1/2 Under this Interpretation,

we have the foliowlng result.

When the update funct%on UP of the algortthm P(p) has the form

u~(g) = 1 – (1 – fl)q,

then the (normalwed) wetght w,,t/(~~=l Wj, t) tS the wster~or

p~obabtltty that the outcome sequence M betng generated from the

dtstrtbutaon dejined by the i’k expert gaven the preutous outcomes

Y1 , , Y*- I t assum%ng that all IV expevt d%$tT%but%Ons are a prlOrl

equally l%kely to be gene~at%ng the sequence.
Since the weights are postertor probabll}tles on the experts, the

weighted average rt of the expert’s predlctlons, computed by the algo-

rithm P, also has a Bayes]an Interpretation It IS simply the posterior

probabll]ty that yt = 1 g!ven yl , , y+_l The only aspect of the

algorlthm that does not have a Bayeslan Interpretation !s the predzc-

tton functzon Fe(r). A Bayes method would predict 1 whenever the

posterior probability rf M greater than 1/2 and predict O otherwwe, In

order to mlnimlze the posterior expectation of the loss l~~t –Y*[ Thus

a Bayes method would use a step function at 1 /2 for the prediction

funct!on F6(r) However, as IS clear from Figure 2, th!s function Iles

outside the allowable range for Fd(r), and this )s no accident The

Bayes method does not perform well In the worst case for this predic-

tion problem, as was shown !n [17, 7] Hence we must deviate from

the Bayes method at this step

0.s

0.6

0.4

0.2

0

vovk ---
1111 . . .

0 0.2 0.4 0.6 0.8 1
r

Figure 2: This figure shows the upper (high) and lower (low)

bounds on the possible values of the prediction function F@

for ,B = O (Inequality (1 )). Also shown are two possible

choices for FP, a piecewise linear function (lin) given in (4),

and the function that has been suggested by Vovk’s work

(vovk) given in (5).

One function that satisfies the requirements for FP is the

piecewise linear function5

(4). .

where . = ‘1+ ~)ln(i%)
2(1 –/3) “

Another possible choice for F@ is suggested by Vovk’s work6 [34]

ln(l – r + r~)
(5)‘~(’) = ln(l _ r + ,8) +ln((l – .)8 +r)’

These functions, for $ = O, along with the upper and

lower bounds for FP, given in Inequality (1), are shown in

Figure 2. As ~ goes to one the two bounds merge at r-.

Algorithm P’s performance is summarized by the folkJw-

ing theorem. This parameterized bound was first proved by

Vovk [34] for his version of FP and the exponential upda,te.

For the noise-free case (~ = O), slightly weaker upper bounds

have been proved for an algorithm known as the Gibbs algo-

rithm [23, 17]. Also, Littlestone and Warmuth [23] prove a

5 A slmllar ptecewlse Ilnear function was suggested by Feder et

cd [7], in a related context

6 Vovk’s algorlthm generates Its prediction according to the predlc.

tion function

where the weights are normalized so that they sum to one Note that

thw function depends on the experts’ predictions in a more compli-

cated way than just through the weighted average rt Hence It does

not always satisfy our assumption of Inequality (1) However, when

the experts’ predictions are all In {O, 1}, then Vovk’s prediction func-

tion IS equivalent to the one described in Equat]on (5)
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bound for their Algorithm WMC which haa the same form

as the bound below except the denominator 2 in ~ is re-

placed by the smaller function of 1 – /3. However their algo-

rithm works for the more general setting when the outcome

y~ can be in [0, 1] aa opposed to being binary.

Theorem 2 For any O s /3 <1, for any set S of N experts,

and for any binary sequence y of length 1, the loss of P(p)
is bounded by

~P(@(Y) s
lnN– Ls(y)ln~,

21n*

The “proof of the theorem is baaed on the following lemma.

Lemma 3

Proofi We will show that for 1 ~ t ~ 1,

l*t– Ytl<
‘n(z:f’:) (,,

21n*

The lemma then follows from summing the above inequality

for all choices of t.We first lower bound the numerator of

the right-hand-side of the above inequality:

(In the last equality we use the fact that yt E {O, l}.) Thus

Inequality (6) is implied by

14, – Ytl <-
ln(l – (1 – ~)lrt – Vtl)

21n& “

The above splits into two inequalities since yt is either O or 1.

These two inequalities are the same as the two inequalities

of (1) which we assumed for the prediction function. 1

Proof of theorem 2: All initial weights equal 1 and thus

~~1 W,, I = N. Let j be an expert with minimum total

loss on y, that is, ~~=1 lf~,t – y~] = L.E(Y). We first show

that the total final weight, ~~1 w,,l+l, is lower bounded

by DLetY): Since Up(q) z /?9 (Inequality (2)),

N

Now the theorem

2 W,,f+l = W,,l fpm,t-Ytl)

t= 1

e

t=]

follows from Lemma 3. H

4. I Performance for bounded L&

So far we have ignored the issue of how /3 is chosen. In this
section we show how ,i3 can be chosen when there is a known
bound K on the loss of the best expert.

It turns out that the following function is important for
the proper choice of /3:

9(~)= 1-2--l, (7)
z

and we define g(0) = O. The key property of this function is
the following inequality

Lemma 4 For any real value z >0

1 1 – z ln(g(z))
z+@+—

21n(2) z 21n(2/(1 + g(z)))

Using the function g to make our choice of/3 we get the

following bound.

Theorem 5 Let ~ = g(li’/ln N), for the g defined in Equa-
tion (7). Then for any set f of N experts and for any se-

quence y such that L&(y) s h>, we have

Iogz N
Lr(p)(y) – LE(y) < m+ ~.

The proof is a direct application of the inequality given in

Lemma 4 to the bound given in Theorem 2.

4.2 Performance for known sequence length

As a corollary of Theorem 5, we can devise a choice for ,0

that will guarantee a bound on the difference between the
loss of the algorithm and the loss of the best expert for the

case where 1, the length of the sequence to be predicted, is

given to the algorithm in advance. We will later show that

the guaranteed difference is very close to optimal.

Theorem 6 Let/3 = g(l/2 in N). Then for any set ~ of N

experts, and for any sequence y of length t

LP(P) (Y) – Ls(Y) S
Fv+10g2(: +1)

Proof: Add an N + 1st expert that predicts the opposite
of the first expert, i.e. &.~+l,t = 1 – &,t. Then L2(Y) < 1/2

for all y. The result follows from Th. 5 with K = t/2. ~

We remark that while the bound stated in Theorem 6

holds for all 1, there is a slightly better bound on P(/3) when

e+w:

LP(P) (q – L&(Y) S
F

+ (~ + o(l)) lnN.

This is (asymptotically) the best bound that can be proved

for P using Theorem 2.

We now use Theorem 1 to give a matching asymptotic

lower bound on the performance of any prediction algorithm.

Theorem 7 There exists a set S of N ezperts such that for

every prediction strategy A, there is a sequence y of length /

such that

r
LA(Y) – L.E(Y) 2 (1 – o(1)) ~

where o(1) is a quantit~ that tends to zero as 1, N ~ m.
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The proof of this theorem is based on the following well-

known lemma about order statistics.

Lemma 8 For each 1, N ~ 1 let S1,l, . . . . Sl,~ be N inde-

pendent random variables, where S!,, is the number of heads

in 1 independent tosses of a fair coin.

Let A/,N = minl<,<N{Sl,, }, Then

The proof of the lemma is based on the central limit theorem

and a theorem about the expected value of the minimum of

a set of independent normally distributed random variables

(see e.g. Galambos [II]).

Proof of Theorem 7: We use the following random

construction. Assume that each bit in the sequence y of

length 1 is chosen independently at random using a fair coin

flip. Assume that each prediction of each expert is similarly

chosen independently at random to be either O or 1. From

Lemma 8 it follows that the expected value of Lt, over the

random choice of y and of the expert predictions, is //2 –

(1 – o(l))~m. Thus there exist specific choices of

expert predictions for which the expected value of L& over

the random choice of y is at most 1/2 – (1 – o(l)) ~~2.

Assume we fix such a choice.

Assume now that we make predictions using the min-max

algorithm from Theorem (1). Clearly, this prediction algo-

rit hm, as well as any other prediction algorithm, will suffer

a loss of exactly 1/2 on average over uniformly distributed

binary sequences. On the other hand, Theorem 1 guarantees

that the difference between its loss and the loss of the best

expert is the same for every sequence, and is thus at leaat

(1 –o(l))<m, for the fixed experts’ predictions and for
every sequence y. Finally, as this is the min-max algorithm,

for every other algorithm A there exists a sequence yA on

which the difference between the loss of the algorithm and

the loss of the best expert is at least (1 – o(1)) ~-.

!

As a final note, from Theorem 6 we get an interest-

ing corollary concerning the uniform distribution on binary

strings.

Corollary 9 Let A be a finite set of points in [0, 1]1, let y

be m {O, 1}4 and let d(y, A) denote the 11 distance between

y and the closest point in A. Then

1? dlln(\A/ + 1) log, (lAl + 1, < E(d(y, A)) S ;

z– 2– 2–

where the expectation is over the uniform distribution on

points y in {O, l}l.

The proof of this is based on the case in which the predictions

of the experts depend only on the time t. In this case S is

isomorphic to a set of points in [0, l]l. The left inequality

follows from Theorem 1 and the loss bound proven for P in

Theorem 6. The right inequality is elementary.

5 Prediction without prior knowledge

In the previous section we showed how to tune ,B so that

P(p) has optimal performance when either a bound on the

loss of the best expert or the length of the sequence, 1, is

known to the algorithm. Here we present a version of the

Algorithm P* (u, .):

Parameters a and c are constants. We show later that

good values for these parameters are a = 1 and c = 2.618

forl:=ltocodo

JU := azctln N;

bl:=kl+~-+~

Reset all weights of the experts to 1.

repeat

run P (g(k[ / In lV) ) to generate predictions

until the total loss in this loop exceeds bl.

Figure 3: Description of Algorithm P*.

algorithm, Algorithm P*, that achieves similar performance

when neither the length of the sequence nor the loss of the

best expert is known. Algorithm P* repeatedly guesses diff-

erent loss bounds until it guesses a bound greater than the

remaining loss of the best expert.

Algorithm P* (see Figure 3) takes two parameters, a

and c, which control how it guesses loss bounds. We show

later that a good choice for these parameters is a = 1 and

c = 2.618. At the start of each iteration i of the outer loc)p,

a bound on the best expert’s remaining loss, kl, is guessed.

Algorithm P* resets the experts’ weights and uses Algo-

rithm P(g(kl / in N)) (for the function g defined in Equa-

tion (7)) to generate predictions. If the bound kl is correct

then the remaining loss will be no greater than bl. If the to-

tal loss incurred by Algorithm P during the iteration exceeds

bl, then the guessed bound on the loss of the best expert is

incorrect, and Algorithm P* proceeds to the next iteration

of the outer loop.

Before analyzing Algorithm P*, we state a few simple

facts that will be needed. First, from the description of the

algorithm,

Also, since at most one unit of loss is incurred by any predic-

tion, the loss incurred by Algorithm P* during any iteration

2 of the outer loop is at most bi + 1.

Lemma 10 If Algorithm P* exits iteration 1 of the outer

loop then, for all &, G &, the loss incurred by &, while Algo-

rithm P* is executing iteration 1 of the outer loop is greater

than kl.

Proof: If some expert incurs loss at most kl during the

outer loop indexed by 1, then Algorithm P has loss at most

b~ during this iteration (by Theorem 5), and iteration 1 is

not exited. I

Corollary 11 If iteration 1 of the outer loop is exited when

Algorithm P* is running on sequence y then

where yj is the sequence of instances seen during iteration

j of the outer loop. Thus if last is the index of the last loop
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entered, then loop last — 1 is exited and

Solving for last yields

(last ~ loge 1 +
Ls(y)(c–1)

)a21n N “

The above corollary shows that Algorithm P* executes

the outer loop a finite nnmber of times whenever the loss

of the best expert is bounded. Thus our bounds on Algo-

rithm P* hold even for infinite sequences, as long as the loss

of the best expert is finite over the infinite sequence.

Theorem 12 Let .S be a set of N experts, and y be any

sequence. If Lf(y) w finite then for all a ~ O, the difference

Lp. (y) – L~(y) is at most

( 0.7675
3.3302 + —

a +~)~+alnN

when Algorzthm P’ is given parameters c = 2.618 and a.

Note that the constant in front of the ~m term

can be made arbitrarily close to 3.3302 by choosing the con-

st ant a large enough.

Since the Algorithm P* is not given the length of the

sequence y, the bound of Theorem 12 holds for all prefixes

y of any infinite sequence y’. Different experts might have

minimum loss for different prefixes of y’, but the loss of P*

is always close to the best expert on each prefix.

6 The hold-one-out model of prediction

We now turn to a slightly different prediction problem. As

above, let x = Z1, . . . . xe be a sequence of instances chosen

from an arbitrary set X, y = yl, . . . . y~ be a sequence of

binary outcomes, and ~ = {&I,..., ~,V } be a set of experts.

In this section we will assume that each expert t, is a func-

tion from X into [0, I], i.e., the ith expert’s prediction at

time t,denoted ~,, t, depends only on the instance xt, and

not on previous outcomes or instances. We call such experts

tzme independent. As above, the total loss of the ith expert

is Lc, (Y) = ~~=1 If,, t — y~l, and the total loss of the best

expert is Lt(y) = minl<,<~ L&, (y).

In hold-one-out pred;c~ion, the goal is still to predict al-

most as well as the best expert, but the prediction algo-

rithm is allowed more information to help it make its pre-

dictions. In particular, when asked to predict the outcome

yt, the prediction algorithm is provided with all the instances

x=z I,. ... xP, theentire matrix g,, t, 1 <iSN, 1 St <l,
giving the advice of each expert on each instance, and the

outcomes VI, . . . , w-l, yt+l, ..., YI, i.e., all outcOmes except

yt. Given this input, a hold-one-out prediction algorithm
produces a prediction ~t E [0, 1]. The total loss of the

hold-one-out prediction algorithm A on outcome sequence

y is defined in analogy with the on-line prediction 10SS by

~~ (y) = ~~=, [~t – ~~1. This total loss can be viewed as the

S{rn of the losses of 1 separate runs of the algorithm, where

in each run the algorithm is asked to predict a different out-

come yt.

It is clear that any on-line prediction strategy can also be

used as a hold-one-out prediction strategy: the hold-one-out

version of the strategy simply ignores the additional infor-

mation available to it and makes its prediction of yt based

solely on the instances xl, . . . . zt, the predictions of the ex-

perts on these instances, and the outcomes y], . . . . yt–l. In

this case the total hold-one-out loss is the same as the total

on-line loss. One might suppose, however, that significantly

smaller hold-one-out losses could be obtained by employing

more sophisticated strategies which take into account all the

information that is available. Curiously, this is not true, at

least in the worst case: the minimax value of the hold-one-

out prediction problem is the same as that of the on-line

problem given in Theorem 1.

Theorem 13 For any lengthl, anyseguencex = xl, . . . . xe,

and any set & of N time independent experts, the minimum

over all ho!d-one-out prediction strategies A of the maxi-

mum over cdl binary outcome sequences y = yl, . . . . ye of the

difference L~(y) – Ls(y) is //2 – Ey, (L&(y’)), where EYI

denotes expectation with respect to the uniform distribution

over binary strings y’ in {0, l}l.

Proof: The minimax value of the hold-one-out prediction
problem is at most that of the on-line problem, since ev-

ery on-line strategy is also a hold-one-out strategy with the

same loss. Thus Theorem 1 shows that L:(Y) – L: (Y) <

//2 – EY, (Lt(y’)). To see that this bound is tight, consider

the case when y is chosen at random, and note that the ex-

pectation of LX(Y) – L& (Y) is equal to the right-hand-side

for any hold-one-out strategy. I

Theorem 14 Let P be the on-line prediction algorithm de-

fined in Section 4. For all 1 and N, if ~ is chosen to be

g(l/2 in N), where g is as defined in (7), then for any x, any

set E of N time-independent experts, and any sequence y of

length 1, the total hold-one-out loss of P is bounded by

This is optimal in the sense that for all f and N there ex-

ists a set of time-independent experts E such that for every

prediction strategy A there is a sequence y where

Jlln Ifl
L~(Y) – L&(Y) > (1 – o(1)) ~

where o(1) ~ O asl, N ~ cm.

When the value L6 (y) is given, we can use Algorithm P

with an appropriately tuned ~ (as in Theorem 5) to get

a good hold-one-out prediction algorithm. When neither

this value nor the length of the sequence is available, Al-

gorithm P*, which iteratively guesses the loss of the best

expert, can be used. However, Algorithm P* ignores the ex-
tra information provided and its bound has a factor greater

than one multiplying the ~- term. It is better to use

the observed losses of the experts on the 1 – 1 outcomes

provided to estimate L& (y). Unfortunately, we are unable

to show that when these estimates are plugged directly into

Algorithm P, a small total loss results. The problem is that

different runs of the algorithm could use different values of

@ resulting in different predictions. Conceivably, the worst

prediction in each run could be the one used to predict the

held out label.

Our solution is to discretize the estimated total loss. A

little randomization is used to ensure that the estimate is
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Algorithm PH (t):
{ The algorithm receives a sequence of instances, x =

xlj. ... xe, a sequence of binary outcomes, yt =
~1, . . . ,Ut-l, ut+l, . . . , VI, ancl the predictions t,,, of each ex-

pert &, for 1 s i s N on each instance X3 for 1 s j s A The

algorithm produces a prediction @~ for the held out outcome

yt. )

1.

2.

3.

4.

Pick T c [0, 1] uniformly at random;

Compute

( )
Lob. = mint ~~~~ !St,j – !Jj[ + ~~=,+1 I’%j – yjl ;

Compute Lest = ([~-– rl + r)2;

Run Algorithm P (g(Le~t / in N)) on the sequence of-.
instances xl, . . . . zt and observations yl, . . . . yt–1, and

predict with the ~t (for yt) generated by P.

Figure 4: Description of Algorithm PH for hold-one-out pre-

diction.

likely to be the same regardless of which label is held out.

The resulting algorithm is Algorithm PH, described in Fig-

ure 4. The square and square-root functions together with

the ceiling increase the probability that all of the estimates

are the same when the best expert’s loss is large.

Theorem 15 For a~gorithrn PH, any x, any set ~ of N

time independent experts, and any sequence Y,

L; H(y)–L&(y) < ~~(~+l)+3@+& in(N)

7 Relation to the PAC model for learning

We now give an application of these results to a PAC learn-

ing framework [31]. We look at a special variant of the PAC

model in which nothing is assumed about the “target con-

cept” that generates the examples other than independence

between examples (sometimes referred to as agnostic Zearn-

irtg [20]), and in which the learning algorithm is not required

to return a hypothesis in any specific form.

Let X be any set and D any probability distribution

on X x {O, 1}. When X is uncountable, appropriate as-

sumptions are made to insure measurability. In our version

of the PAC model, a sequence s = (ZI, YI), . . . . (z?, Yt) of

training examples is drawn from the product distribution
DP (i.e. each example is drawn independently according

to D) and a PA C learning algorithm A takes these train-

ing examples as input and outputs a function h = A(s)

that maps from X into [0, 1]. The function h is called a

hypothesis. The error of the hypothesis h is defined by

erD(h) = Ef=,yJGDlh(Z) — YI, where ~(qJ)ED denotes the

expectation over (z, y) drawn randomly according to D. In

PAC learning, the goal is to minimize this error under the

worst-case distribution D. This leads to a kind of L1 regres-

sion problem (see also Kearns and Schapire [19]).

The learning algorithm is given a set ‘H of mappings from

X into [0, 1], which is called a hypothesis space. These play
a role similar to that played by the experts above. Namely,

let erD (M) = inf ~~~ erD (h). Thus erD (~) is the error of

the best hypothesis in ‘H for the particular distribution D.

In the agnostic version of PAC learning, the goal is to find

a learning algorithm A that minimizes the maximum over

all distributions D of Ese~~ (er~ (A(s))) — erD (H), where

s=D, (.) denotes expectation over sequences s of trainingE

examples drawn from the product distribution De. Thus a

good learning algorithm is one that, for any distribution D,

produces a hypothesis that on avera e has error as close as
5

possible to the best hypothesis in 7-L

While we cannot provide a minimax solution to this prob-

lem, we can use the algorithm developed in the previous

section to get good upper bounds on the minimax value in

certain important cases, better than those obtained by the

only other methods that we are aware of [32, 30].8 Before

stating these bounds, we need to make a few definitions.

Our first definition deals with the issue of optimizing the

error on the training examples (called empirical error) ver-

sus optimizing elD, the error with respect to the underlying

distribution D. This is often referred to as the problem of

overjitting. Let

Thus ;rl,D (’l-t) is the expected empirical error of the hypoth-

esis in ‘h! that does best on a random set s = (zl, Yl), . . . . (ZI, Yt)

of 1 training examples drawn independently according to the

distribution D. The quantity

will be called the expected ouerjit for 1 training examples. It

is clear that this quantity is nonnegative for any 1, D and

N, since

erD(~) = in~erD(h)

In other words, the expected empirical error of the best hy-

pothesis on the training examples is always smaller than the

expected error of the asymptotically best hypothesis o n a

set of random “test” examples.

Finally, for any hypothesis space H and sequence x =

xl, . . . , zt, let us define

Hlx = {(h(z, ),..., h(z~)) : h E H}.

We will call ‘HIx the restriction of H to x.

7Typ1cally, tail bounds are also given that bound the probabil-

ity that the hypotheses returned m .wgruficantly worse than the Ibest

hypothesis In 7i Our current methods do not provide these, but stan-

dard “ confidence boosting” methods can be applied on top of them

to achieve good tail bounds [14, 21]. More direct methods are given
by Littlestone and Warmuth [23].

8Bounds given by Vapnik ([32], Equation (1 1)) imply a boun,ri m

the same form as the second bound in Theorem 16, but with an ad-

ditional factor of 2 in the leading term However, these bounds do

hold In more general cases than the one we consider here Talagrand
gives slmllar general bounds without the factor of 2, but with an un-

specified constant K in the lower order term. It M not clear that the

constant K can be made small enough to get practical bounds for

small sample size 1.
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Theorem 16 For any instance space X and any hypothesis

space % on X, there exists a PAC learning strategy A such

that for all k and ail distributions D on X x {O, 1}

-%@(erD(A(s))) – erD(~) s
Ex/1~ + Ex(log2(lHlx\ + 1))

m
2(/+ 1) -

er6+l,~(Wj

where Ex denotes expectation over x = XI, . . . Xz+l, each xt

drawn independently at random according to the marginal of

D onX.

There also exists a PAC learning strategy A such that for

all 1 and all distributions D on X x {O, 1}

where V = Exln I’Hlxl.

Using the results from the previous section, the proof of

this theorem rests on the following lemma.

Lemma 17 Let A be a hold-one-outprediction strategy. Then

A can be converted into a PAC learning strategy B such that

for any hypothesis space ItI any k, and any distribution D

on Xx{ O, l},

‘SGD~(erD(~(s))) – erD(fi) =

where ~(x,y)~Di+l denotes expectation over x = xl, . . . xe+l

and y = yl, . . . . yt+l, each (x~, y~) drawn independently at

random according to D, 1 ~ t ~ 1 + 1.

Sketch of proof of Lemma 17:

The PAC learning strategy B works as follows. For any

sequence of examPIes s = (xl, yI ), ..., (xl, YI) and any in-

stance r, the value of the function h = B(s) on input z is

defined by inserting x into a random position in the sequence

s and running the hold-one-out prediction strategy A to pre-

dict the label of x, using the hypotheses in ?-l as experts [17].

More formally, h(z) = ~ ~~~~ tit, where +t is the output

of A when A is given as input the sequence of instances

X=zl, . . ..x]. z,zt, t, . . . . z1, the set HIx of experts, and

the observed outcomes y = yl, . . . . yt–1, ?, yt, . . . . Y?, where

‘?’ denotes the location of the missing outcome to be pre-

dicted. It can be shown that the strategy B has the desired
performance; details are omitted. n

Sketch of proof of Theorem 16:

The first bound follows directly from Theorem 14, using

the above lemma, with A being the hold-one-out prediction

strategy from Theorem 14. The second and third bounds

follow from Theorem 15 and the above lemma, with A being

the hold-one-out prediction strateg from Theorem 15, using

the Cauchy-Schwarz inequality. i

It is easy to see that the constants in the leading terms of

the bounds in Theorem 16 are the best possible. The argu-

ment is similar to our previous lower bound arguments. We

assume that the distribution D is such that for a random ex-

ample (z, y), the value y is 1 with probability 1/2 and O with

probability 1/2, independent of z. Hence, every hypothesis

h has er~(h) = 1/2. This implies that Es6~~ (erD(A(s))) –

erD (H) = O for any hypothesis space H and algorithm A.

On the other hand, suppose that the N hypotheses in H are

chosen randomly such that they predict 1 with probability

1/2 and O with probability 1/2 on a random instance z (this

is not hard to arrange). Then Lemma 8 implies that the ex-

pected overfit efi+l,D (H) is (1 + o(l))=. The expected
.-..

overfit appears with a minus sign on the right hand side of

the first bound in Theorem 16. Hence for this bound to be

nonnegative, as required in this case, the constant in the first

term on the right hand side must be at least (1 + o(l) )/fi.

This shows that this constant cannot be improved in gen-

eral. The same is true for the leading constant in the other

bounds of Theorem 16.

8 Extensions

We are currently considering several extensions of these re-

sults. One issue is the use of other loss functions. Since a

prediction strategy defines a conditional probability distri-

bution on the next bit given the values of the previous bits,

a natural choice of loss function is the information gained by

seeing the next bit, with respect to this conditional distribu-

tion. Hence if the strategy predicts y~ = 1 with probability

~, and yt = O with probability 1 – @t, then the loss at time
t will be –log~~ if yt = 1 and –log(l – ~t) if y~ = O. We

call this log loss. The nice thing about the log loss is that

for any prediction strategy A, the total log loss on y], . . . yp,

denoted L#, (y), is the total information gained from the se-

quence y, under the conditional distributions represented

by A. Moreover, any distribution on {O, 1 }t induces a con-

ditional distribution on the ttk bit given any values for the

previous t– 1 bits for all 1 ~ t < 1,and hence defines a

prediction strategy. Conversely, any prediction strategy A

on {O, 1}~ defines a probability distribution PA on {O, 1 }l.

It is easy to see that for the log loss, LA(y) = – log PA (y).

It is well known that for the log loss, for any set t of

N experts (i.e., distributions) there is a prediction strategy

A such that for any sequence y, L.4 (y) – L:(y) < log N,

where Lt (y) is the total log loss of the best expert for y

[26, 6, 36, 13, 37]. The strategy is just the Bayes algo-

rithm with uniform prior on the distributions represented

bv the exDerts. We have done an exact minimax analvsis. .
of this case as well, and the result is quite simple. For each

y c {0, 1}? and each expert S, E ~, let P,(y) denote the
probability of y under expert g,. Define the probability of
y for the algorithm A by

PA(Y) =
max~<,<~ P,(y)

Xy,{o,,}t --max~<,<~ P,(y) “

Then A minimizes the maximum of the difference LA (y) –

Lt (y) over all sequences y. Furthermore, this difference is

the same for ail sequences y:

Other topics we are investigating focus on extensions of

the results to the case when the set of experts is infinite,

and to the case when the outcome is real-valued rather than

binary-valued. In both these cases, results by Littlestone,
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Long and Warmuth [23, 22] can be applied to extend the
methods we have presented here. We have also obtained

some related results for the quadratic loss in these cases (see

also Vovk [34]).
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