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A b s t r a c t .  We consider on-line algorithms for predicting binary out- 
comes, when the algorithm has available the predictions made by N 
experts. For a sequence of trials, we compute total losses for both the 
algorithm and the experts under a loss function. At the end of the trial 
sequence, we compare the total loss of the algorithm to the total loss of 
the best expert, i.e., the expert with the least loss on the particular trial 
sequence. Vovk has introduced a simple algorithm for this prediction 
problem and proved that for a large class of loss functions, with binary 
outcomes the total loss of the algorithm exceeds the total loss of the best 
expert at most by the amount cln N, where c is a constant determined by 
the loss function. This upper bound does not depend on any assumptions 
on how the experts' predictions or the outcomes axe generated, and the 
trial sequence can be arbitrarily long. We give a straightforward alterna- 
tive method for finding the correct value c and show by a lower bound 
that for this value of c, the upper bound is asymptotically tight. The 
lower bound is based on a probabilistic adversary argument. The class 
of loss functions for which the c l a N  upper bound holds includes the 
square loss, the logarithmic loss, and the Hellinger loss. We also consider 
another class o f  loss functions, including the absolute loss, for which we 
have an ( / ( o V ~ - ~ )  lower bound, where ~ is the number of trials. 

1 Introduction 

Consider an on-line prediction problem in which the prediction algori thm is to 
predict a sequence of outcomes Yt, t -- 1 , . . . ,  ~. In the usual learning approach, 
the algori thm is provided with instances zt. At trial ~, the algori thm sees the 
instance zt, must  then give its prediction yt of the outcome, and finally sees the 
actual  outcome y~. The  algori thm is charged a loss if its prediction differs f rom 
the actual  outcome, and its goal is to minimize its total  loss over a sequence 
of s trials. To make the a lgor i thm's  task feasible, some sort of relationship is 
assumed to exist between the instance zt and the outcome Yt- 

The on-line prediction problem considered in this paper  is somewhat  different 
f rom the one just  described. Assume that  there are N experts s i = 1 , . . . ,  N,  
each trying to predict the outcomes yt as best they can. Let zt,i be the prediction 
of the i th expert  s about  the t th  outcome. We make no assumptions about  how 
the experts '  predictions zt,i axe generated. Perhaps the experts are different on- 
line learning algori thms tha t  use the instances zt to predict Yt, or perhaps each 
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expert is a human with access to some private information not available to the 
other experts. We give as input to our algorithm at trial t the prediction vector 
xt that  consists of the predictions of the experts at that  trial. The algorithm 
does not see the data  used by the experts to generate their predictions, and 
is thus entirely dependent on the quality of the expert advice contained in the 
prediction vector. Therefore, to predict nearly as well as the best expert is a 
reasonable goal for the algorithm. 

Formally, an on-line prediction algorithm is for us an algorithm that  gener- 
ates at trial t its prediction ~)t based on the prediction vectors X l , . . . ,  xt and 
the earlier outcomes Yl , . . . ,Yt-1.  We take the predictions of both the algo- 
ri thm and the experts, as well as the outcomes, to be real numbers in [0, 1]. 
The performance of a learning algorithm is measured using a loss function L, 
which is a mapping from [0, 1] x [0, 1] to [0, co); sometimes also the value oc 
is allowed. The square loss, Lsq, defined by Lsq(p, q) = ( p -  q)2, is a typical 
loss function. At trial t, a learning algorithm A suffers a loss L(yt,~t). Over 
the whole trial sequence S = ( ( x l , y l ) , . . . , ( x l ,  yl)), the algorithm attempts 
to achieve a small total loss Lossn(A,S) = ~ t=t L(yt, ~)t). Similarly, the to- 
tal loss of the ith expert over the trial sequence is given b~ LOSSL(Ei, S) -- 

l ~t=l  L(yt, xt,i). Then minl<i<N LossL(Ci, S) gives the loss of the best expert on 
the particular sequence S. As explained, we require the algorithm to predict 
almost as well as the best expert. Specifically, we require that  the additional 
loss LossL(A, S) --minl<i<N LoSsL(Ci, S) is small for all sequences S. We do not 
make assumptions about how the experts' predictions are generated, or how the 
outcomes Yt relate to the prediction vectors xt. The only allowance we make for 
the algorithm is that  it can make a large loss if none of the experts is good. 
Our framework for on-line prediction is based on the work of Vovk [16, 17] and 
Cesa-Bianehi et al. [1]. Similar frameworks have also been considered by Cover 
[5], Dawid [6], Feder et al. [8, 14, 18], and Mycielski [15]. See Chung [4] for recent 
related results. 

In this paper, we consider the special case in which the outcomes are re- 
stricted to be binary, i.e., yt E { 0, 1 } for all t. The predictions ~)t of the algo- 
ri thm and xt,~ of the experts are still allowed to range continuously from 0 to 1. 
Thus, the algorithm could predict with ~)~ close to 1/2 to avoid committing itself 
too strongly to either possible outcome yt = 0 or yt = 1. Many of the results can 
be generalized for continuous-valued outcomes Yt C [0, 1] [10]. Cesa-Bianchi et 
al. [2] have considered the case in which both the outcomes and the predictions 
of the experts and the algorithm are required to be binary. 

We are interested in what bounds for the worst-case additional loss are possi- 
ble for different loss functions. Vovk [16] introduced a general on-line prediction 
algorithm that  is applicable for all loss functions when the outcomes are binary. 
Vovk's analysis allows for a more general setting than the one we consider; for 
instance, the predictions may be restricted to some discrete set. For the case 
with continuous-valued predictions, which we consider here, Vovk proved for a 
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large class of loss functions bounds of the form 

LossL(A, S) - min LossL(£i, S)  < CL i n n  , (1) 
l ~ i ( N  

where CL is a positive constant determined by the loss function L. For instance, 
for the square loss Vovk's algorithm achieves the bound with CL = 1/2 [16], 
and for logarithmic loss with cL = 1 [7, 16]. Note that the bound (1) for the 
additional loss is independent of the length ~ of the trial sequence S. On the 
other hand, for the absolute loss Labs given by Labs(Y~,~)t) = [y~- Ytl Cesa- 
Bianchi et al. [1] have shown that bounds of the form (1) are not obtainable, but 
the best possible algorithm has a worst-case bound of the form LOSsL(A, S) - 
minl<i<y LossL(gi, S) = O ( ~ ) .  Slightly weaker results for the absolute 
loss were already obtained by Littlestone and Warmuth [13]. 

In this paper, we give a simplified version of Vovk's analysis in the case that 
the predictions can range continuously in [0, 1]. This gives a straightforward 
method for obtaining the value CL in (1). The value CL itself is the same as 
implied by Vovk's results. Further, we see that our method gives optimal values 
for the constant CL. That is, we show that if CL is chosen appropriately, we have 
not only the upper bound (1) for all trial sequences S, but also for some trial 
sequence S the lower bound 

LOSSL(A,S)  - min LossL(g~,S) _~ (eL -- o( l ) ) lnY , (2) 
I</<N 

where o(1) is a quantity that approaches 0 as N and ~ approach co. Hence, for 
the class of loss functions that satisfies our conditions, we have an asymptotically 
tight bound for the worst-case additional loss. 

The conditions the loss function must satisfy for the bounds (1) and (2) to 
hold are natural and can easily be seen to be satisfied by most usual loss func- 
tions, except for the absolute loss. We also define another class of loss functions, 
including the absolute loss, for which we can prove the lower bound 

LOSSL(A,S)  - min L o s s n ( 8 i , S )  = $2 ( ~ )  
l ( i ( g  

Hence, for the loss functions in this class, an upper bound like (1), with no 
dependence on the length t of the trial sequence, cannot be achieved. 

It is possible to construct loss functions that are in neither of our classes, and 
for which we thus do not know any bounds. It is an open problem to provide 
upper and lower bounds that would apply to all loss functions. 

The asymptotically tight loss bounds are given in Sect. 3 together with a 
discussion of the condition the loss function must satisfy for the bounds to be 
applicable. Sect. 4 restates Vovk's algorithm and upper bound proof simplified 
for our purposes. The lower bound proof, sketched in Sect. 5, is based on gen- 
erating the trial sequence by a simple randomized adversary and showing that 
already the expected loss of the algorithm tightly approaches the upper bound 
implied in (1) for the worst-case loss. Thus, in a sense we see that in our partic- 
ular setting, the average case is almost as difficult as the worst case. The proof 
technique with a randomized adversary was used by Cesa-Bianchi et al. [1] in 
the special case of the absolute loss. 
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2 On-l ine Predict ion  and Loss Bounds  

We consider the performance of an on-line learning algorithm A over a sequence 
S = ((xl, Yl ) , . . . ,  (xt, y~)) of g trials. The sequence S is an N-expert trial se- 
quence if the t th  prediction vector xt is in [0,1] g for t = 1 , . . . , g .  Here we 
consider only binary outcomes, with the outcomes y, either 0 or 1. At trial t, 
the algorithm A produces its prediction 9, E [0, 1] as a function of the prediction 
vectors x l , . . . ,  xt and the outcomes Yl , . . . ,  Yt-1. The algorithms considered in 
this paper make their predictions ~)~ independently of the length g of the whole 
trial sequence, but in some situations it is possible to fine-tune the algorithms if 

is known in advance [1]. 
The performance of the learner at trial t is measured by L(y~, fit), where L is 

a loss function with the range [0, oo), or sometimes [0, c~]. For binary outcomes 
Yt E { 0, 1 } it suffices to consider the functions L0 and L1 defined by L0(~)) = 
L(0, 9) and L1(9) = L(1, ~)). 

Example 1. The relative entropy loss Lent is defined by Lent(Y, Y) = yln ~ + (1  - 

y) In ~ By the usual convention 0 In 0 = 0, this gives L0(9) = - l n ( 1  - ~)) and 1-9" 
L1(9) = - ln~)  for L = Lent. In the binary case y e {0, 1 }, the relative entropy 
loss is better known as the logarithmic loss. 

The square loss Lsq is defined by Lsq(y, 9) = (Y - 9) ~. Hence, for L = Lsq, 
we have n0(~) = i) 2 and LI(~)) = (1 - ~))2. 

The Hellinger loss LH is given by LH(y, 9) = ½ ( ( V q ' - - y - - ~ 2 +  

(x/-Y-- v/-~2) • Hence, for L = LH we have L0(~) = 1 - V q ' -  ~ and Ll(I)) = 

1 - V ~ .  
The absolute loss Labs is given by Labs(y, Y) = ]Y - 91, and we have Lo(9) = 9 

and L1 (9) = 1 - 9 for L = Labs. 

It is worth noting some properties of the loss functions of Example 1, since 
these will be important later. In each case, the function L0 is increasing and 
L1 decreasing in [0, 1], so the loss L(y, fl) increases as the prediction ~) moves 
away from the outcome y. The functions L0 and L1 are differentiable, and by 
the previous remark, Uo(Z ) > 0 and L~(z) <_ 0 for all z. Except for the absolute 
loss, the second derivatives L~(z) and L]~(z) are positive for all z, which means 
that errors become progressively more expensive as the difference between the 
prediction and outcome increases. 

Consider now a loss function L and an on-line prediction algorithm A. Let 
5: -- ((Xl, Yl) , . . . ,  (x~, Yt)) be an N-expert trial sequence, and let the prediction 
of the algorithm A at trial t of the sequence S be yt- We then have Loss L (A, S) - 

£ 
~t=l  L(y~, [h) as the loss of the algorithm and LossL(E/, S) = E ,=I  L(u,, 
as the loss of the ith expert on the sequence S. We define 

VL,A(S) = LOSSL(A,S) - mia LOssL(£i,S) 
I<iSN 
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to be the additional loss of the algorithm, i.e., the amount by which the loss of 
the algorithm exceeds the loss of the best expert. We let 

VL,A(N,t) = sup { VL,A(((xl,yl),..., (xl, yl))) [xt E [0, 1]Y,yt E {0, 1 } } 

be the worst case amount of additional loss for A. Finally, we let VL(N,i) = 
infA VL,A (N, ~) be the best additional loss obtainable by an on-line prediction 
algorithm A. The goal of this paper is to study for general loss functions L 
what are the lowest additional losses VL,A(N, ~) that can be obtained by an on- 
line prediction algorithm. We are particularly interested in whether VL,A(N,I) 
can have an upper bound that is independent on t. Such bounds have previ- 
ously been proven for square loss and logarithmic toss. For these loss functions 
there are algorithms that satisfy VL,A(N,g) ~ ½1nN and VL,A(N,t) ~ InN, 
respectively [16, 7]. On the other hand, for the absolute loss it is known that no 
upper bound of this form exists, but the algorithm A that minimizes VL,A(N, ~) 
has VL,A(N,t) = 9 (glv/~-~-N) [1]. Many of the upper bounds hold even with 

continuous-valued outcomes y, C [0, 1] [10]. 
Our upper bounds for VL,A(N, t) are not based on probabilistic assumptions, 

but we use probabilistic techniques in the lower bound proofs. We use E[X] and 
Var[X] to denote the expected value and variance of a random variable X. If we 
want to emphasize the underlying probability measure P,  we write E, ep[X(x)] 
and Varxep[X(x)]. The probability of an event ~, according to a probability 
measure P is denoted by Pr~ep[~(x)]. 

We use N+ to denote the set { 1, 2, 3 , . . .  } of the positive integers. 

3 M a i n  R e s u l t s  

The proofs of our upper and lower bounds require that the loss function sat- 
isfies certain constraints. We first state the main result with all the necessary 
restrictions and then discuss the meaning of these restrictions. First, given loss 
functions L0 and L1 that are twice differentiable, we define a function S by 

and a function/~ by 

S(z)=L~(z)L~(z)- L~(z)L~(z) (3) 

we then define a constant CL by 

cL = sup R ( z ) .  (5) 
0 < z < l  

Our main result concerns the case where CL is finite. When CL is finite and the 
loss function satisfies certain other conditions, we can prove an upper bound 
VL,A(N, ~) ~ CL In N and show that the bound is asymptotically tight. 

R ( z )  = - S(z) (4) 
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T h e o r e m  1. Let L be a loss function such that L0(O) = L1(1) = O, Lo and L1 
are twice differentiable in (0, 1), and Lto(Z) > 0 and i i ( z  ) < 0 for  0 < z < 1. 
Assume that the constant eL defined in (5) is finite and S(z )  defined in (3) is 
positive for 0 < z < 1. Then there is an on-line prediction algorithm A for  which 

VL,A(N,g) <_ eL l n N .  (6) 

Further, we have 
VL(N, g) > ( e L -  o(1)) lnN , (7) 

where o(1) denotes a quantity that approaches 0 as ~ and N approach c~. 

The algorithm A that  obtains the bound (6), as well as the proof of the 
bound, are already given by Vovk [16]. The algorithm makes its predictions 
independently of the length g of the trial sequence. We give the algorithm and a 
simplified proof in Sect. 4. The lower bound (7) is based on a probabilistic proof 
that is sketched in Sect. 5. The lower bound also holds for algorithms that  get 
knowledge of ~ beforehand. 

Example 2. Consider the loss functions of Example 1. For the logarithmic loss, 
R(z)  is identically 1, and therefore CL = 1. For the square loss, we have R(z)  - 
2z - 2z 2, and hence CL = 1/2. For the Hellinger toss, we have R(z )  = zx/1 - z +  
( 1  - z)yff,  and it is straightforward to show that  R(z )  is maximized for z = 1/2. 
Hence, CL = 2 -1/2. For the absolute loss, the denominator of R(z)  is identically 
O, SO CL =0¢ .  

If the function R defined in (4) is unbounded in (0, 1), and hence the value cL 
is infinite, we do not have good general bounds for the achievable additional losses 
~ , A .  The special case of absolute loss was considered by Cesa-Biunehi et al. [1]. 

show that for the optimal algorithm A we have VL,A(N, ~) = 0 (~I~/-[~N). They 

For the absolute loss, the value CL is infinite because the denominator S(z)  is 
0 for all z. For the logarithmic loss, the square loss, and the Hellinger loss, the 
value S(z)  i s  positive for all z. As we shall soon explain, the sign of S(z)  is 
intimately connected with the uniqueness of the Bayes-optimal prediction in a 
certain probabilistic prediction game. 

Let Q be a probability measure on { 0, 1 }, with PrycQ[y = 1] = q. For a 
prediction z C [0, 1], the expected loss for probability measure Q, or for bias q, is 
Eueq[L(y , z)] = (1 -q )Lo(z )+qLl ( z ) .  Here we define 0.0o = 0. For example, for 
the logarithmic loss we have L0(1) = cx~, but the expected loss for prediction 1 
is defined to be 0 for bias 1. For other biases it would be infinite. A prediction z 
is Bayes-optimal for bias q if it minimizes the expected loss. Note that  since we 
assume L0 and L1 to be continuous in a closed interval, the expected loss always 
has a minimum value at some z. This holds even if we allow infinite losses. If  L0 
is increasing and L1 decreasing, then the prediction 0 is Bayes-optimal for bias 
0 and the prediction 1 for bias 1. If a value 0 < z < 1 is a local extremum point 
for the expected loss, then 

(t  - q)L~(z) + qn i ( z  ) -- 0 . (8) 
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If 1 - q # 0 and L~(z) # O, this implies q/(1 - q) = -L 'o(z) /L ' l ( z ) .  More 
generally, if either L'o(z) or L'l(z) is nonzero for ag iven  value z • (0, 1), then 
there is a unique value q • (0, 1) for which (8) holds, and hence z cannot be a 
Bayes-optimal prediction for more than one bias. If (1 - q)n~(z)  + qL'l'(z) > 0 
holds in addition to (8), then z is a local minimum point. There may be one or 
more Bayes-optimal predictions for a given bias. 

Eaample 3. For the logarithmic and square losses, it is easy to show that  z = q 
is the unique Bayes-optimal prediction for bias q. 

For the Hellinger loss, solving (8) shows that  the unique Bayes-optimal pre- 
diction z for a bias 0 < q < 1 is given by z = 1/(1 + (1/q - 1)2). 

For the absolute loss, z -- 0 is the unique Bayes-optimal prediction for biases 
q < 1/2 and z = 1 for biases q > 1/2. For the bias q = 1/2, any prediction is 
Bayes-optimal. 

The following lemma gives the connection between S(z)  and Bayes-optimality 
(proof omitted).  

L e m m a  2. I f  S (z )  > 0 for all z, then for all biases 0 < q < 1 there is a unique 
Bayes-optimal prediction z. I f  for all biases q the Bayes-optimal prediction is 
unique, then S(z)  > 0 for all z, and there is no interval [a, b] with a < b such 
thai S(z )  = 0 for all z • [a, b]. 

In Sect. 5 we also prove the following lower bounds, which show that  if the 
denominator S is not always strictly positive, the gap VL,A(N,g) cannot have 
an upper bound that  is independent of g. 

T h e o r e m 3 .  Let L be a toss function such that Lo and Lt  are twice differentiable 
in (0, 1), and Lto(Z) > 0 and L](z)  < 0 for all z. Let S be as in (3). 

1. I f  S(z)  = 0 for some 0 < z < 1, we have VL(N,e)  = a ( g l 1 2 - ~ ~  for 
all ~ > O. 

2. I f  S ( z )  < 0 for some 0 < z < 1, orthere are values a < b such that S(z )  = 0 
for all a < z < b, we have VL(N, g) = 1"2 ( V / ~ - - ~ .  

Finally, it is possible to construct loss functions L for which the value cz is 
infinite, but  the denominator S(z )  is positive for all z. For such loss functions 
the results of this paper have no implications whatsoever. 

Example4. Define a loss function by Lo(z) = (1 - z) -~  - 1 and Lt (z)  = z -~  - 1 
for some positive value a. We then have R(z)  = ( a / ( a  + 1))(z-=(1 - z) + (1 - 
z ) -~z ) .  Therefore, R(z)  approaches oo as z approaches 0 or 1, and CL is infinite. 
Hence, our results give no upper bound for VL(N,I) .  However, the denominator 
S(z )  is given by S(z)  = az ( a  + 1)(z(1 - z)) -~ -2  and is hence strictly positive 
for 0 < z < 1. Therefore, we have no lower bound, either. For this loss function 
it is an open problem to define the value VL(N, i ) .  

Since S(z)  is positive, we know that  the Bayes-optimal prediction z for each 
bias q is unique. Specifically, we have z = 1/(1 + ( i / q  - 1)1/(~+1)), as can be 
seen by a straightforward calculation. 
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4 T h e  A l g o r i t h m  a n d  t h e  U p p e r  B o u n d  P r o o f  

We consider an algorithm first introduced by Vovk [16]. We give a brief summary 
of the algorithm in the special case where L0 is continuous and increasing and 
L1 continuous an d decreasing. For a more detailed exposition, and examples for 
various loss functions, see also Kivinen and Warmuth [10]. 

A continuous and increasing function L0 has a continuous and increasing 
inverse defined in [L0(0), L0(1)]. We say that a function no 1 defined in [L0(0), oo] 
is a generalized inverse of L0 if L ~ I ( L o ( 9 ) )  = ~) for 0 < 9 _< 1 and, additionally, 
L o l ( z )  > 1 for z > L0(1). We further assume that L0(0) = 0. Then with 
the constraint 0 < ~) < 1, ~) < Lf f l ( z )  is equivalent with L0(~) < z for z > 0. 
Similarly, assuming that L1 is continuous and decreasing and satisfies L1 (1) = 0, 
we call L11 a generalized inverse of L1 if L'~(n~( f¢) )  = ~) holds for 0 < ~) < 1 
and, additionally, L ~ l ( z )  < 0 for z > LI(0). 

For instance, if L is the square toss Lsq, we have the generalized inverses 
Lol(z) = V~ and L-~t(z)  = 1 - ~ for 0 < z < 1. For the relative entropy loss 
Lent we have L o l ( Z )  = 1 - e - z  and L { l ( z )  = e - z .  For the absolute loss Labs we 
have Lol(z)  = z and n ~ l ( z )  = 1 - z. 

A l g o r i t h m  4 (The  Gener ic  Algor i thm)  Let L0 be continuous and increas- 
ing and L1 continuous and decreasing, with L0(0) = LI(1) = 0. Let Lo 1 and L~ "1 
be generalized inverses of L0 and L1. Let c and ~ be arbitrary positive constants. 

Ini t ial izat ion:  Set the weights to some initial values wl,i > O. 

Pred ic t ion :  Let vt,i = w t , i / W ~  where W~ = ~ g  1 wt,i. At the beginning of 
trial t, compute A(0) and A(1) where 

N 

A(y) = - c l n  (9) 
i=1  

On receiving the tth input xt, predict with any value ~ that satisfies the 
condition 

L{'I(A(1)) _< ~) < Lot(A(0)) . (10) 

It no such value ~)t exists, the algorithm fails. 
U p d a t e :  After receiving the tth outcome Yt, let 

wt+ l,i = wt,~c -~z(~ '~ ' ' i ) ,  (11) 

Given values c and r/, we say that the loss function L is (c, rl)-realizable if it 
never fails with these parameter values, i.e., if for these values of c and ~/the 
inequality L~I(A(1)) _< LoI(A(0)) holds for all possible wt and xt. The main 
technical problem in the analysis of the algorithm is finding for a given loss 
function L values ~/and c for which L is (c, rl)-realizable. For now, assume that 
such values of c and ~ are given. 

To understand the algorithm, note that by (9) and (11) we can write A(yt) = 
Ut+~ - Ut, where Ut = - c l n  Wt. The condition (10) implies L(yt ,  ~t) <_ A(Y t )  
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both for y, = 0 and y, = 1. Hence, we can consider - c l n W ,  as a potential 
function, and the condition (10) means that at each trial, the increase of the 
potential must be at least as large as the loss of the algorithm. Adding these 
bounds for t = 1 , . . . , g  gives us LossL(A, S) <_ - c l n ( W t + l / W ~ ) .  Finally, by 
noting that for 1 < i < N we have Wt+~ > wl+l,i = w~,iexp(LOssL(£i,S)) we 
obtain the following basic bound [16]. 

T h e o r e m S .  Let L be any toss function. Let S --= ( ( x l , y l ) , . . . , ( x t , y l ) )  be an 
N-expert trial sequence. Assume that during this trial sequence, the Generic 
Algorithm ~ with parameters c and ~1 does not fail but produces at each trial t a 
prediction ~lt. Then for all i the total loss satisfies 

Wl+l ~ Wl , i  
LOSSL (A, S) < - c  m ~ < - c  m ~ + c~LOSSL (£i, S) . (12) 

We now need to choose values c and ~ for which L is (c, ~/)-realizable and 
the right-hand side of (12) is as small as possible. Our main goal is to have 

= 1/c, which makes the ratio LossL(A, S)/LossL(£~, S) approach 1 as the 
losses increase. The second goal is to make c as small as possible while keeping 
~l = 1/c. 

L e m m a 6 .  Let L be any loss function such that Lo and L1 are twice continuously 
differentiable, L0(0) = L1(1) = O, and L~o(z) > 0 and L~(z) < 0 hold for 0 < 
z < 1. Assume that the value cn defined in (5) is finite, and S(z) defined in (3) 
is positive for all z. Then the loss function L is (c, 1/c)-realizable i f  and only i f  
C >  CL. 

Proof sketch. Define p(z) = exp( -Lo(z ) / c )  and q(z) = e x p ( - L l ( z ) / c )  for 0 < 
z < 1, and define f ( r )  - e x p ( - L l ( L o l ( - c l n r ) ) / c )  for r in the range ofp. Note 
that f (p(z) )  = q(z). A straightforward computation shows that f " (p(z ) )  < 0 
holds if and only if c >_ R(z).  Hence, f is concave if and only if c >_ eL. Assume 
now that this is the case. 

Let ri = p(x~,i) and si = q(x~,i) = f ( r i )  for i = 1 , . . . , N .  Then for 
rl = 1/c we have A(0) = - - c ln (~  i vt,irl) and A(1) = - - c ln (~  i vt,~si). The 
assumption f " ( r )  < 0 implies ~ i  vt,isi = ~ i  vt,if(ri) < f ( ~ i  vt,iri) and, 

> - c l n f  . v t i r i )  This is equivalent with A(1 > hence, - c ln~ iv~ , i s ,  _ 1 ( ~  ' " ) - 
Ll( /o l (A(0) ) ) ,  from which L~- (A(1)) _< Lol(A(0)) follows since L~ -1 is de- 
creasing. [] 

In particular, we see that since the Generic Algorithm 4 does not fail with the 
parameters c = CL and ~ -= 1~eL, we get the upper bound claimed in Theorem 1 
by applying Theorem 5 with the initial weights wl,i ---- 1 for all i. 

T h e o r e m  7. Let L be a loss function for which the constant cL is finite and 
the value S(z)  positive for all z. Let A be the Generic Algorithm 4 with the 
parameters c = CL, ~ = 1/CL, and the initial weights wx,i = i for all i. Then for 
all N and £ the additional loss of the algorithm satisfies VL,A ( N, t) << CL In N. 
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5 Lower Bounds  Proofs  

This section contains proofs of the lower bounds for VL(N,~) stated in Theo- 
rems i and 3 in Sect. 3. The lower bounds hold even for algorithms that receive 

as input before the first trial. Theorem 9 shows how a probability measure for 
the experts and outcomes leads to a lower bound for VL(N, ~) for large N and L 
The proof of Theorem 9 is based on Lemma 8, which shows that we can change 
the order of taking expectations and going to the limit with certain random 
variable sequences. The lower bound in Theorem 9 is in terms of certain char- 
acteristics of the probability measures, and is interesting only if the probability 
measures are chosen carefully. Lemma 10 shows a particular way of choosing the 
probability measures, when a prediction b is the unique Bayes-optimal predic- 
tion for a bias q. Lemma 11 show a way to choose the probability measures in 
Theorem 9 if the Bayes-optimal prediction is not unique. Finally, we combine the 
results by showing that either each prediction z can be made to be the unique 
Bayes-optimal prediction by choosing a suitable bias, in which case Lemma 10 
yields a lower bound for Vz(N, t) in terms of eL, or else there is a bias for which 
two distinct Bayes-optimal prediction exist and Lemma 11 yields a lower bound 
V (N,e) = 

We begin with a technical lemma that shows that under the conditions that 
arise in our main proof, certain expectations converge as we desire. 

L e m m a  8. Let P be a probability measure in X and Q a probability measure 
in Y .  For ~ E N+ and y E Y ,  let U~l, . . .  , U~t be N independent identically 
distributed random variables such that = 0 a n d  = 

1. Assume that there are independent identically distributed random variables 
F t , . . .  ,FN such that the sequence U~, U~2,... converges in distribution to Fi for 
all i and y. Further, let rl, r2,°., be functions on Y such that l i m t . ~  rL(y) = 1 
holds with probability I for y drawn according to Q, and Irdy)l < B holds for 
all y for some constant B.  Then 

lim Ey~Q r~(y)E~p l~i<n ~Y(x) = E [I<,<N J 

Theorem 9 shows how a probability measure for the experts and outcomes 
leads to a lower bound for VL(N, ~) for large N and t. 

Theo rem 9. Let P be a probability measure on [0, 1] and Q a probability measure 
on { 0 , 1 ) .  Assume that for y -- 0 and y = 1, the condition Prxep[L(y,z) > 
K] = 0 holds for some constant K .  Let b be a Bayes-optimal prediction for Q. 
Let r = EyeQ,xep[L(y, x)] and a2 _ EyeQ [Varx~p [L(y, x)]]. Assume that for 
y = 0 and y = 1 the variance Var~ep [L(y, x)] is strictly positive. Then for all 
¢ > 0 there is an ~ such that for a l l i  > £~ we have 

VL(N, t) _> tEyeQ [L(y, b)] - tv + (aN -- ¢)¢r ~X~ N , (13) 

where limN--.¢o aN = V/2. 
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Proof. Given x E [0, 1] Nxg and y E { 0, 1 }g, we define an N-expert trial sequence 
of length g by <x, y) = ((Xl, y l ) , . . . ,  (xl, yt)). For an on-line prediction algorithm 
A, consider VL,a((x, y)) as a random variable, with x and y drawn from the 
product measures pNxt. and Qg, respectively. The expected value of a random 
variable is clearly a lower bound for the supremum. Combining this with the 
linearity of expectation, we get 

VL,A(N, g.) >_ ExepN×, Eyeq ,  VL,A((X, y)) 
g 

= EEyeQ[L(y,~h)]- ExepNxtEyeQt LI</<NF min LossL(&, (x ,y))]  
j=l  

>_gEy~Q[L(y,b)]-Ex~laNx'EycQ,[l~i<_nLossL(~i,(x,Y}) ] 

Since this holds for any A, we obtain (13) if we can prove that 

ExepNx,EyeQ, [ min LossL(£i, <x,y>)] < gr-- (aN -- e ) ~ n N  . 
[*<i_<N j 

(14) 

Let q = PryeQ[y = 11. Then r = (1 - q)E~ep[Lo(x)] + qE,;ep[Ll(x)] and 
cr 2 = (1 -q)Var~:~p[Lo(x)]+qVar~ep[Ll(x)]. Given a sequence y C { 0, 1 }oo and 
g C N+,  define ql(Y) = ~ ~ = 1  Y/" We also let q-~(y) = (1 - ~(y))E~:~p[Lo(x)] + 
(lt(y)Exep[L1(x)] and &t(y)2 = (1 - (l~(y))Var,:~p[Lo(x)] + 41(y)Var~ep[Ll(x)] 
be the estimates obtained for r and a2 by using ~ ( y )  instead of the true prob- 
ability q. 

For x e [0,1] yx°° and y e {0 ,1}  ~°, let T/Y(x) = L(yj,xlj) be the loss 
of expert i at trial j ,  if x is the sequence of experts' predictions and y the 
sequence of outcomes. We consider T/y as a random variable on the domain 
[0, 1] avx~. We now define for i = 1 , . . . ,  N and g = 1, 2 , . . .  the random variable 
&~ in the domain [0, 1] Nx°° x { 0, 1 }~o by &l(x,  y)  = ~ - 1  n(yj, xii) to denote 
the loss of expert i in the first g trials. We also define-for a given sequence 
y e {0,1 }oo the random variable S y by SY(x) = & t ( x , y ) =  ~ = 1 T i Y ( x ) .  
The underlying probability measures for these random variables are the product 
measures defined by P and Q, so for a fixed y the random variables Ti y and T/y, 

are independent for (i, j )  ¢ (i', j ' ) .  To study the distribution of S y ,  we define a 
suitably normalized random variable U y .  Let 

y g y 
S~ - ~ i : 1  E[T/j ] u y :  
~ / E j = I  Var[Tij ] 

(15) 

Then E[U y]  = 0 and Var[U y] = 1. Further, since we have assumed that  
PrNT/Yl] > K) = 0, the Lindeberg form of the central limit theorem implies 

that  each sequence U y ,  u Y , . . ,  converges in distribution to a standard normal 
random variable. 
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We now apply Lemma 8 to the random variables U y .  Then the random 
variables Fi in Lemma 8 have standard normal distribution. By a standard result 
[9], their minimum F.  has expectation E[F,] = --aglv/~--N, where limN--oo aN = 
X/2. We take r l (y)  = &l(y)/~r. Then ]r~(y)] < Z/cr, and by the strong law of 
large numbers we have liml-~oo r~(y) = 1 for almost all y.  Lemma 8 now implies 

lim E v e o ~  [ ~ ( Y ) E x e p N x ~  [ m i n  uY] ]  = - a N ~  (16) 
~ o o  - ~ L l < i < y  JJ 

By partitioning the summations in (15) into two parts according to whether 
yi = 0 or yi = 1, we can write 

S y - g((1 - ql(y))Ezep[no(x)] + ql(y)Ezep[nl(x)] ) S y - g#~(y) 

 dy)v7 
By substituting this into (16), we obtain 

lim E y e o ~  [ExEpN×°° [minl_<i_<g SY(x ) -g+~(y ) ] ]  = --aN l ~ n N  
t--+oo O'V~ 

Therefore, for all s > 0 there is a value it  such that for all g > gc we have 

= E y e o ~ [ E x e p N x ' [ m i n L ° s s L ( £ i < x ' Y ) ) ] ]  

< - ( a N  - g 

This implies (14), as desired. [] 

We now see how Theorem 9 implies a lower bound for VL(N,g) when the 
probability measure P for the experts is chosen suitably. 

L e m m a  10. Let L be a loss function such that Lo and L1 are twice differentiable, 
and L~o(Z) > 0 and L~(z) < 0 hold for 0 <  z < 1. Assume that b e (0, 1) is a 
Bayes-optirnal prediction for bias q E (0, 1). 

1. / f ( 1 -  q)L~(b) +qL~(b) > O, then VL(N,g) > ( R ( b ) - o ( 1 ) ) l n N ,  where 
R(b) is as in (4) and o(1) denotes a quantity that approaches 0 as g and N 
approach oo. 

2. / f  (1 - q)Lg(b) + qL~(b) = O, then for all a > 0 we have VL(N,g) = 

Proof sketch. We apply Lemma 9 with Q and P such that PryeQ[y = 1] = q and 
Prxep[x = b - h] = Pr~ep[x = b + h] = 1/2, for some small h. We use second 
order Taylor approximations of L0 and L1 around b to get approximate values 
for the quantities v and ~. The quantities q and 1 - q can be stated in terms of 
Uo(b ) and L~ (b) by applying (8). We then choose h that  maximizes the resulting 
approximation for the right-hand side of (13). E] 
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If for some bias q we have two Bayes-optimal predictions bl and b2, applying 
Theorem 9 to the probability measure P with Pr ,ep[~ = bl] = Pr ,ep[x  = b2] = 
1/2 gives the following result. 

L e m m a  11. Let L be a loss function such that Lo is strictly increasing and L~ 
strictly decreasing. Assume thai for bias q there are two distinct Bayes-optimal 
predictions bl and b2. Then for all ¢ > 0 there is an gc such that for all g >__ ~ 
we have VL(N,g) >' (aN -- ¢)ax/TlnU,  where limu--.oo aN = ~ and cr 2 -- 
1-q 4 (L°(bO - L°(b:)) 2 + ~ (Ll(bl )  - Ll(b2)) 2. 

Note that  for the absolute loss, we can apply Lemma 11 with q - 1/2, bl = 0, 
and bl = 1. This gives a = 1/2, and hence VL(N, I )  > (1 - o(1 ) )~ / (g lnN) /2 ,  
which is the result obtained by Cesa-Bianchi et al. [1]. 

The following lemma implies that  if some b E (0, 1) is not Bayes-optimal for 
any bias and hence cannot be applied in Lemma 10 to give a lower bound, we 
obtain a lower bound by applying Lemma 1 I. 

L e m m a  12. I f  a prediction z E (0, 1) is not Bayes-optimal for any bias q E [0, 1], 
then there are two predictions bl and b2 with bl < z < b2 such that for some bias 
q both bl and b2 are Bayes-optimal. 

The lower bounds in Theorem 1 and Theorem 3 follow directly from the 
following theorem. 

T h e o r e m 1 3 .  Let L be a loss function such that Lo and L1 are twice diffcren- 
tiable, and L~(z) > 0 and L~(z) < 0 hold for all 0 < z < 1. Let S ( z )  be as in 

1. I f  S (z )  > 0 forO < z < 1, then VL(N,e)  > (cL -- o(1)) lnN,  where CL is as 
in 

e. IS S(z) = o Sot some 0 < z < 1, then = Sot  all 

o~>0.  
3. I f  S ( z )  < 0 for some 0 < z < 1, or S(z )  = 0 for all the values z in some 

continuous interval, then VL(N,g)  = I2 (gig-n--N). 

Proof. If for some bias there are two distinct Bayes-optimal predictions, we have 

by Lemma 11 the bound VL(N,g) = 12 ( ~ ) ,  which is the strongest of the 

bounds claimed here. Thus, we only need to consider the case in which for each 
bias there is at most one Bayes-optimal prediction. By Lemma 12, we then have 
for all predictions z a bias such that  z is Bayes-optimal. By Lemma 2, the value 
S(z)  is always nonnegative and cannot be zero on any continuous interval. 

Recall that  when z is Bayes-optimal for q, the condition (8) implies (1 - 
q)L~(z)+qn~'(z)  = S(z) .  If S(z) = 0, then applying Lemma 10 (2) with the bias 

that  makes z Bayes-optimal gives the bound VL(N,g) = 0 (O/2-~x/]-n-N) for q 

all a > 0. If S(z)  > 0 for all z, Lemma 10 (1) gives VL(N, ~) > ( R ( z ) -  o(1))In N 
for all z, from which V L ( N , g )  > (cn -- o(1))ln N follows, r3 
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6 F u r t h e r  W o r k  

One of the most challenging open problems is to give tight bounds for the ad- 
ditional loss of the prediction algorithm compared to the loss of the best expert 
for even more general classes of loss functions than those considered in this pa- 
per. When the outcomes y, are binary, it might be possible to produce such 
bounds for arbitrary loss functions. The next challenge is to extend the results 
for continuous-valued outcomes [10] to more general loss functions. Another di- 
rection worth exploring is to let outcomes be discrete valued with more than two 
choices. The recent results of Chung [4] address some of these problems. 

In this paper we restricted the predictions of the experts to lie between 
zero and one. More general ranges can be allowed if simple scaling methods 
are applied [10]. It would be interesting to do a thorough investigation of how 
scaling the range of the variables affects the results. Bounding some norm of the 
prediction vector might also lead to interesting problems. Restricting the range 
of the predictions of individual experts is related to bounding the infinity norm 
of the prediction vectors. 

In this paper we have given bounds of the additional loss of our algorithms 
over the loss of the best expert. A more challenging problem is to bound the 
additional loss of the algorithms over the best linear combination of experts 
[12, 3, 11]. The only worst-case loss bounds for the latter case that have been 
obtained are for the square loss function. Hopefully, some of the results of the 
present paper can be generalized to the linear combination case. An intermediate 
case worth exploring is the case of bounding the additional loss of the algorithm 
compared with the best "stretched" expert, i.e., an original expert multiplied by 
some positive constant. 
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