
Additive Versus Exponentiated Gradient Updates

for Linear Prediction

Jyrki Kivinen* Manfred K. Warmutht

Department of Computer Science Computer and Information Sciences

P.O. Box 26 (Teollisuuskatu 23) University of California, Santa Cruz

FIN-00014 University of Helsinki, Finland Santa Cruz, CA 95064, USA

jkivinen@cs.helsinki .fi manfredtlcse.ucsc. edu

Abstract

We consider two algorithms for on-line prediction based on

a linear model. The algorithms are the well-known Gradi-

ent Descent (GD) algorithm and a new algorithm, which we

call EG *. They both maintain a weight vector using sim-
ple updates. For the GD algorithm, the weight vector is

updated by subtracting from it the gradient of the squared
error made on a prediction multiplied by a parameter called
the learning rate. The EG* uses the components of the gra-

dient in the exponents of factors that are used in updating
the weight vector multiplicatively. We present worst-case

on-line loss bounds for EG* and compare them to previ-
ously known bounds for the GD algorithm. The bounds

suggest that although the on-line losses of the algorithms
are in general incomparable, EG * has a much smaller loss

if only few of the input variables are relevant for the predic-
tions. Experiments show that the worst-case upper bounds
are quite tight already on simple artificial data. Our main
methodological idea is using a distance function between
weight vectors both in motivating the algorithms and as a

potential function in an amortized analysis that leads to
worst-case loss bounds. Using squared Euclidean distance

leads to the GD algorithm, and using the relative entropy

leads to the EG* algorithm.

1 Introduction

The goal of this research is to obtain strong worst-case loss
bounds for simple on-line algorithms by using amortized
analysis. Consider the problem of on-line learning of lin-

ear threshold functions. There are two simple algorithms for
this problem: the classical Perception algorithm [Ros58] and
the more recent Winnow developed by Littlestone [Lit88].

The algorithms are similar in that they maintain one weight
per dimension and use a linear threshold function to predict.

However, the updates of their weights are radically differ-

ent. Of particular interest to us is the class of (monotone)

● Supported by Emil Aaltonen Foundation and the Academy of

Finland. This work was done while the author was vmtmg University

of California, Santa Cruz.

ts”pported by NSF grant IRI-9123692.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and 4s date appear, and notice is given
that copym ISby permission of the Association of Computmg
Machinery. o cop otherwise, or to republish, requires

T {a fee andlor speci ICpermission.
STOC’ 95, Las Vegas, Nevada, USA
01995 ACM O-89791-718-9195JO005..$3.5O

k-literal disjunctions over N variables, where we expect N

to be significantly larger than k. This class is a simple sub-

class of linear threshold functions: if the instances x are

N-dimensional Boolean vectors, i.e., x c {O, 1 }N, then the

k-literal disjunction Z,l V X,2 V . . . V ~ik corresponds to the

linear threshold function w . x z 0, where w is a coefficient
vector with W,l = w,= = -.. = w,~ = 1 and wj = O for

jf?{il, Zk }, and the threshold O is 1.
The on-line algorithm Winnow is guaranteed to make

at most O(k + k log (N/k)) prediction mistakes [Lit 88]
when learning k-literaJ disjunctions. This mistake bound

is optimal to within a constant factor since the Vapnik-
Chervonenkis (VC) dimension [VC71, BEHW89] of the class

of k-literal disjunctions is C2(k + k log(ff/k)) [Lit88] and this
dimension is always a lower bound for the optimal mistake

bound. On the other hand, an adversary can force the Per-

ception algorithm to make f2(N – k) mistakes [K W95]. Thus
when k is small, the mistake bound of the Perception algo-
rithm is exponential in the optimal mistake bound (in this

case essentially the VC dimension). This may be seen as an
instance of what is called the curse of dimensionality in the

literature of neural networks and statistics [Hay93, DH73].
To understand the different behavior of both algorithms,

we retreat to the simpler problem of linear regression. Now
the algorithms simply predict with the scalar product of

the weight vector and the input vectors rather than with a
classification obtained by t hresholding the scalar product.

Again, there are two fundamentally different algorithms.
The first algorithm is the classical Gradient Descent algo-

rithm (GD), in this context also known as the Widrow-Hoff
rule and Least Mean Squares algorithm [WS85, Hay93]. It

can be motivated as a gradient descent on the instantaneous
loss of the algorithm and corresponds to the Perception
algorithm. In this paper we introduce several new algo-
rithms that apply the basic ideas of Winnow to the linear
regression problem. The most basic one is the Exponen-

tiated Gradient (EG) algorithm, from which we obtain the

main algorithm called EG ● by a simple reduction. We prove
worst-case loss bounds for both the GD and EG* akorithms

using amortized analysis. This has already been lone for

GD [CBLW93]. The focus in this paper is to prove similar

bounds for the new algorithm EG* and then contrast the

bounds and algorithms.
Since the regression problem is continuous in nature, we

can see connections that are less apparent in the thresholded
classification problem. The first key observation we make is
that both the GD and EG* algorithms can be motivated

as approximate solutions to a minimization problem that
has as one component the distance between the new and

209

old hypothesis of the algorithm. The solution depends on
the choice of the distance function between the hypotheses,

which in our case are N-dimensiomd real weight vectors.
Using the squared Euclidean distance leads to the GD al-
gorithm, and using the relative entropy leads to the EG*
algorithm. The second keyobservation is that the distance
function that motivates the update of the weight vector gets
a second use as apotentird function for the amortized anal-
ysis of the learning algorithm employing that update. In
the full paper we derive a number of additional algorithms

using this framework and prove loss bounds for them using

similar techniques [K W94].

As with the Perception al orithm and Winnow, the per-
‘%formances of the GD and EG algorithms are radically dif-

ferent, the EG* algorithm performing better when only few
of the input variables are relevant. As a simple example, as-

sume that the value to be predicted is the sum of k variables,
out of a total of N variables, and the variables assume only
values —1 and 1. This is the continuous-valued analogue of

k-literal disjunctions. The total squared error of the predic-

tions made by the EG* algorithm is 0(k2 log iV). The GD
algorithm can incur a total squared error of fl(k~), which is

much larger when N > k. Note again the logarithmic ver-
sus the linear growth in the input dimension N. Our bounds

are worst-case bounds, but our experiments show that the
worst-case bounds are quite tight even on simple random

data. The bounds can be generalized to situations in which
no linear combination of the input variables can explain the
values to be predicted, either because of noise or because of
nonlinear dependencies.

The general forms of the loss bounds for the algorithms

are rat her complicated, so in the int reduction we only con-
sider the basic ideas of the bounds. Consider a situation

in which the learner is given inst antes xt, t = 1, 2, ..., and
tries to predict outcomes yt. Assume now that some co-

efficient vector u is a good predictor, i.e., the scalar prod-

uct u . xt in some sense tends to be close to the outcome

yt. Our loss bounds for both algorithms can now be stated
in terms of the norm IIul I of the good predictor and the

largest norm max~ I lx~ I I of the instances. However, for differ-
ent algorithms the bounds depend on different norms. The
bounds for GD depend on a product X2 Uz, where X2 is an
upper bound for the largest Euclidean norm maxt IIxt112of

the instances and U2 is an upper bound for the Euclidean
norm I Iul 12. For the EG* algorithm, the bounds depend on

the product XM U1, where Xm and U1 are upper bounds for
the Lw and L1 norms, respectively. As the products X2 U2
and XQ U1 are incomparable, we expect that also the per-

formances of the algorithms are incomparable. Indeed, it is
easy to construct cases in which the GD algorithm outper-
forms the EG* algorithm. However, we feel that these are

less natural than the cases that favor EG* over GD.
Note that the above pairs of norms corresponding to both

algorithms are dual norms [Roy63]. We can give a lower
bound that contains the product of an arbitrary pair of dual
norms. We conjecture that there are regression algorithms

for arbitrary pairs of durd norms with loss bounds close to
our lower bounds. Finding these algorithms and the distance
functions that motivate them within our framework is one of

the key open problems. However, we believe that the special
cases discussed here for the pairs (L2, ~z) and (LM, L1) are

the fundamental ones.
We were surprised to find that the method of amortized

analyses can be such a powerful tool in the comparative
study of simple machine learning algorithms. We have suc-
cessfully applied our framework to an unsupervised learn-

ing problem [HSSW95] and to temporal difference learning
[SW94]. In each case our framework can be used to derive

the algorithms as well as proving worst-case loss bounds
for them. Whenever there is an algorithm based on Gradi-
ent Descent our method leads to a competitor that is de-
rived using the relative entropy. For example, our method
gives an alternative to the back-propagation algorithm for
training feed-forward neural networks. Whenever there are

local minima, it seems impossible to prove worst-case up-
per bounds. However, we have some preliminary results

[HKW95] that show that our amortized analysis technique

can give worst-case loss bounds for a single linear neuron

with a sigmoid activation function. The latter problem does

not have local minima if we use the entropic loss instead of

the square loss.
We are looking for high dimensional natural problems

that would bring out the advantages of the new algorithms.
The logarithmic growth of the loss bounds with the dimen-

sion makes the following approach feasible. Try a large set of
basis functions (non-linear functions of the original inputs)

and do a pass over the data with EG* training one weight
per basis function. Then exchange basis functions which

have small remaining weight with new guesses of good ba-
sis functions and iterate. The new basis functions could,
for example, be derived from basis functions that received a
large weight in the last iteration. At the end of the paper
we give an experimented comparison of the two competing
algorithms for a case when the instances are expanded to a
large set of basis functions and the target uses only a few of
them.

We propose a systematic study of on-line learning algo-

rithms using amortized analysis. The learning algorithms
should be derived and analyzed using as few parameters as

possible. We propose to use the potential function as the

main parameter which encodes a way of searching through

the solution space. The goal is to explain most simple learn-

ing algorithms by simply changing the potential function.

For example, for a simple mixture problem [HSSW95] we
were able to reverse-engineer the potential function deriving

the algorithm corresponding to another statistical technique

called Estimate Maximize. Going to a continuous domain
led to the development of a unifying framework which lets
us see new connections. It seems that all basic algorithms

are incomparable and in the linear case our loss bounds can
be used to predict which algorithm will do best.

The full version of this paper [KW94] contains additional
theoretical and experimental results.

2 Framework of analysis

A linear on-line prediction algorithm is an algorithm that

predicts real outputs from N-dimensional real inputs accord-
ing to a certain protocol. In this protocol, the predictions
are made in a sequence of.4 trials for some positive integer L

At the beginning of the trial sequence, the algorithm chooses
some start vector WI c RN. Then at trial t, for t= 1, t’,

the algorithm

1.

2.

3.

4.

receives the instance xt c RN,

gives its prediction jt = wt . xt,

receives an outcome yt, and

chooses for the next trial the vector w~+ I G RN that ‘
may depend on wt, xt, and yt.

210

Thus, the weight vector w~ can be considered the algo-
rithm’s hypothesis before trial tfor the best way of predict-

ing the outcome as a linear combination of the components

of the instance. The mapping that gives wt+l as a function
of Wt, Xt, and yt is called the update rule of the algorithm.

For the purpose of the worst-case analysis we are in-

terested in, the on-line prediction protocol can be consid-

ered a game between the prediction algorithm and an ad-
versarial environment. The algorithm may choose its start

vector and update rule, the environment may choose the

instances and outcomes subject to some mild constraints.
For scoring the game, we use a loss function L that is

a mapping from R2 to [0, co). In a trial sequence S =

((X1, W),..., (x4, 9/)), the total loss of the algorithm is de-

fined to be LOSSL(A, S) = ~~=1 L(y~, j,). Analogously, the

tot$ loss of a fixed weight vector u is given by LOSSL(U, S) =

2,=1 L(lh,Ux t). We omit the subscript L if the 10SS func-

tion is the square 10SSgiven by L(y, z) = (y–z)z, which is the

case for the main results of this paper. For the square loss,

the value inf ydtN Loss(u, S) is the total loss of the solution
to the linear east squares problem defined by the instances

and outcomes. More generally, we are interested comparing
the loss of the algorithm to the value infueu LOSSL(u, S)

for some comparison class U c RN. We sometimes refer
to the vectors u c U as comparison vectors. The value

inf u~u LOSSL(u, S) is the lowest loss that COUIC1be achieved
if it were Dossible to choose in advance the best comparison

vector for predicting. The algorithm cannot see the whole

sequence in advance, and therefore incurs an additional loss

LOSSL(A, S) – infucu LOSSL(u, S) as it searches for the best
vector u and makes on-line predictions while it searches.

Our goal is to obtain a small additional loss for interest-
ing comparison classes when the trial sequence satisfies some

mild constraints. Recall that for p G (O, CO), the LP norm for

vectors in RN is defined by Ilwllp = (~~1 Iw,lp) l’P; this is

generalized for p = cm by IIwIIM = max, Iw,]. We take the

comparison class U to consist of all the vector u c RN that
have Lp norm at most U, for some p and U. Similarly, we

assume that the instances xt have a bounded La norm for
some g. We consider the case p = q = 2 and the case p = 1,
q = co. These pairs of norms satisfy I/p + l/q = 1 and are

hence duaJ [R.oy63].

In addition to norms, we use the relative entropy (also
known as Kullback-Leibler distance)

N

dRE(U, S) = ~ U, h :
,=1

(1)

between vectors u and s. Using the relative entropy requires

that the vectors have only positive components, and the

components of each vector sum to 1.

Subject to the norm constraint, the instances can be ar-
bitrary. We make no assumptions about the process that

generates them. Neither do we make assumptions about
how the individual outcomes and inst antes relate to each
other. If there is no reasonably accurate linear relationship
between the instances x~ and the outcomes ~t, then the loss

LOSSL(A, S) of the algorithm is expected to be high. How-
ever, in that case the loss infueu LOSSL(u, S) of the best
comparison vector will be high as well, so it is still feasi-
ble to try to achieve a small additional loss LOSSL(A, S) –
inf Ueu LOSSL(u, S). This is in contrast to more common

approaches where statistical assumptions about the distri.
bution of the instances and the dependence of the outcomes

on the instances are applied in deriving probabilistic loss
bounds for the prediction algorithm [Hay93, WS85].

The research reported in this paper was inspired by
Littlestone [Lit 88, Lit 89], who proved worst-case on-line

loss bounds for the case of thresholded linear functions.
Recently, there has been some work on the special case

where the comparison class consists of the N unit vectors

(0,...,0,1,0,..., O) [LW94, VOV90, CBFH+95, HKW94].

The immediate predecessors of this work are the papers by
Cesa-Bianchi et al. [CBLW93] and Littlestone et al. [LLW91]
on linear on-line prediction.

3 The algorithms

For simplicity, we introduce the algorithms only for the

square loss, although they can easily be generalized. In all

the algorithms we consider here, the update is based on the

gradient of the loss at trial t. We define for this gradient a
shorthand notation by

v, = Vw, qyt,wt . Xt) .

For the square loss we therefore have

(2)

Vt,, =
a(yt– Wt . Xt)z

awt,,
= 2(jt – yt)zt,: (3)

where jt = wt . xt. Notice that for any loss function, the
vector Vt is parallel to the instance xt. The other basic

ingredient of the updates we consider is a positive iearning

rate qt, which typica13y depends on some norm of the in-

stance Xt and some parameters fixed at the beginning of the

trial sequence.

One of the simplest learning algorithm is the Gradient

Descent (GD) algorithm for linear prediction, also known

as the Widrow-Hoff algorithm and the Least Mean Squares
algorithm. Using the gradient Vt given in (3), the update
of the GD algorithm can be written as wt+l = wt — qtVt,
or componentwise as

Wt+l,: = ‘wt, z – ?ltVt,i . (4)

Thus, the weight vector moves to the direction of the steep-
est descent of the loss by an amount that depends on the

learning rate. Note that if the initial weight vector of the

algorithm is W1, we have w~ = WI + ~~jl atxt for some

real coefficients at. Typically, one COU1~-choose the zero
start vector WI = O. The choice of the learning rates qt
can have a great effect to the performance of the algorithm.
We shall discuss this in the context of our upper bounds in
Section 5. A simple example could be qt = l/(411xt 112).

In this paper we contrast the GD algorithm with a new

on-line predict ion algorithm, which we call the Ezponen-
tiated Gradient (EG) algorithm. This basic algorithm uses

weight vectors wt for which wt,, >0 for all i and ~fll wt,, =

1. After the basic EG algorithm we consider variants with-

out these restrictions, most importantly one which we call
EG*. The EG algorithm is closely related to the algorithm

of Littlestone et aL [LLW91]. The update rule of the EG
algorithm is given by

wt, te
-qtv~,,

W+l, z =
~~=1 wt,,e-~tvt, “

(5)

Thus, the ith component V~,, of the gradient defined in
(2) now appears in the exponent of the factor that mul-
tiplies wt,,, and the weights are normalized to sum to 1.

211

A typical start vector could be the uniform vector WI =
(l/N,..., l/N). Again, the learning rates qt shall be dis-
cussed in Section 5. A very basic setting would be qt =

2/(3Rt) where Rt = max, rt,: – rein, zt,, gives the range of
the components of the tth instance.

The components Win,, of the weight vector wm satisfy

in Win,, = in wl,, + ~&l
}

at~t,: — b, where the at are again

some real coefficient as or the GD algorithm and the value

b gives the proper norm-ahzation. Hence, the EG algorithm

is similar to applying the GD algorithm to the logarithms
of the weights and maintaining the normalization of the
weights. However even if we ignore the normalization, the

EG algorithm is not the same as gradient descent on the

logarithmically parameterized weights, since the predictions
are made using the weights and not their logarithms. An-

other comparison between the algorithms can be made by
observing that for the GD algorithm, the change caused
by the update in the differences between the weights can
be written as wt+l,, – wt+l,j = (wt,t - wt,~) - qt(vt,i –
Vt,J). For the EG algorithm, it is more useful to con-

sider the ratios of the weights and write wt+l,: /wt+l,J =

(wt,t/wt,j)e -W(vt, z-vt,j).

The EG algorithm maintains the normalization property

~~1 w,,, = I and, in addition, keeps all the weights wt,i

posltwe provided that they are positive initially. These con-

straints are of course inappropriate in many situations. To
allow the algorithm to use unnormalized weight vectors, one
can simply omit the normalization factor from the update
rule (5) and apply the update wt+l,, = wt, te ‘V’vt,’. This

leads to a quite reasonable algorithm, called EGU, that is
analyzed in the full version of the paper [KW94] and is
closely related to the algorithm Winnow of [Lit 88]. However,

even this unnormalized algorithm never changes the sign of
a weight. Therefore, we introduce an algorithm which we

call EG*. This algorithm is basically EG with a simple
standard transformation for the instances.

To understand the idea of EG*, consider a vector u E
RN with I Iul II ~ U for some given parameter U >0. For

;=1 ,. ... N, let UT = u, if u, >0 and u? = O otherwise,

and u: = —u, if w < 0 and u; = O otherwise. Define a

2N by setting u; = U~ + (U – llulll)/(2~)vector u’ E [0, U]

anduk+, = u:+(U–llul ll)/(2N) fori= 1,. ... N. We call
this u’ the norm U representation for u. If we now define
u“ = u’/U, we have u: ~ O for all z and Ilu’’lll = 1, so U“
is in the class of possible hypotheses for EG. Further, if for

ZN by ~: = Uxt and X’N+t =x c RN we define x’ E R –Ux,
fori= l,..., N,wehave u.x=u’’. forallxlx.

We now define EG* to be the algorithm that at trial t

1.

2.

3.

Note

receives the tth instance xt and gives the vector x; =

~~~~~~1 “~~ ~~e%&”$%hmux’12N) a the tth,

gives as its tth prediction jt the tth prediction of the
EG algorithm (i.e. & = wt .x; , where wt is the current
weight vector of EG), and

receives the tth outcome yt and gives it as the tth out-
come to the EG algorithm which updates its current
weight vector wt.

that in addition to the start vector and learning rates
for the EG algorithm, there is the additional parameter U

that needs to be specified.

4 Motivating the algorithms

Both the rdgorithms GD and EG can be motivated using a

common framework. In making an update, the algorithm
must balance its need to be conservative, i.e., retain the in-
formation it has acquired in the preceding trials, and to be
corrective, i.e., to make cert tin that if the same instance

were observed again, the algorithm could make a more ac-

curate prediction, at least if the outcome is also the same.

Thus, with an old weight vector wt, it is a reasonable goal
for the algorithm to minimize

M(wt+l) = d(wt+l, wt) + Ttq?h, wt+l “ m) ,

where d(wt+l, wt ) is some measure of dist ante from the old

to the new weight vector, L is the loss function, and the
magnitude of the positive constant qt represents the impor-

tance of correctiveness compared to the importance of con-
servativeness. The minimization problem would be solved

by setting ~lf(wt+l )/~wt+l,, = O for all z or, equivalently,

by setting

()ad(wt+l, wt) + ~tzt,i aqyt, z)

hh+l,l az
= O (6)

z=wt+l.x~

for all i. Solving the equations (6) for wt+l,, may be difficult,
but it becomes simpler if we approximate the left-hand side
by evaluating the derivative of L(yt, z) at z = wt. xt instead
of at z =Wt+l .xt. Thus, we use the gradient evaluated at
the old weight vector wt, defined as Vt in (2), to replace the
gradient evaluated at the new, still unknown, weight vector
wt+l. For the squared Euclidean distance d(wt+l, wt) =

~llwt+l – wtll~, solving the approximated equation easily

gives the GD algorithm. The EG algorithm is obtained in a

straightforward manner by using for d(wt+ 1, w t ) the relative
entropy O?RE(wt+l, Wt ) defined in (1). The relative entropy

assumes that all the components wt,, and wt+l,, are positive

and satisfy xl wt+l:i = xi wt,, = 1. The positiveness of
the weights follows dmectly from the update we obtain. The

constraint ~, wt+l,, = 1 is observed in the usual way by

adding a term with a Lagrange multiplier to the function M

to be minimized.

Note that neither the squared Euclidean distance nor

the relative entropy is a metric. However, they do have the

properties d(w, w) = O and d(w, s) >0 for s # w.

For our work it is central that the distance measure is

used in two different ways: first, it motivates the update

rule, and second, it is applied as a tool in the analysis of
the algorithm thus obtained. Amari’s [Ama94, Ama95] ap-

proach in using the relative entropy for deriving neural net-
work learning algorithms is similar to the first use we have
here for the distance measure. The use of a distance mea-
sure for obtaining worst-case loss bounds was pioneered by
Littlestone’s [Lit89] analysis of Winnow, which also employs
a variant of the relative entropy. This idea is explained in
more detail in Section 5.

5 Worst-case loss bounds

5.1 The basic proof method

In the most basic case, to prove a worst case loss bound

for an on-line linear algorithm, we would define a potential
function V(w) for weight vectors. We call the potential dif-
ference V(wt) –V(wt+l ) the progress made by the algorithm
at trial t.We assume that the value V(w) is nonnegative and

bounded from above by some value VO. If we can then prove

212



that for all possible combinations of an old weight vector wt,

inst ante xt, and outcome yt, the updated weight vector Wt+l

of the algorithm A satisfies .L(yt, Wt .xt ) < V(wt ) – V(wt+l ),
we obtain LOSSL(A, S) S V(WI) – V(w~+I) < Vo. Thus, if
the total amount of progress is bounded and at each trial

the loss is bounded by the progress, we get a bound for the

total loss.
Of course, we cannot define a potential function V for

which the above holds in general, since the loss of the algo-
rithm is expected to depend on the loss of the best compar-
ison vector u E U. In the special case that LOSSL(u, S) = O
holds for some u E U, we could take V(w) = c d(u, w) where
c > 0 and d is some distance measure. Since we use the po-

tential function only for analyzing the algorithm, it does not

matter that the vector u is not known in advance. Consider
now the general case, when even the best comparison vector

incurs some loss over the trial sequence. Our basic idea is to

simultaneously consider V(w) = c d(u, w ) for all comparison

vectors u E U. We call d(u, wt) —d(u, wt+l ) the algorithm’s
progress towards u at trial t. Ideally, we would wish to

have for all comparison vectors u the algorithm’s additional
loss compared with u, given by L(yt, wt . xt) – L(yt, u. xt),

bounded from above by its progress towards u. This turns
out to be not quite possible, but we can prove for all u the

bound

a-L(yt, wt . Xt) – bL(yt, U . Xt) < ~(%wt) – ~(%wt+l) (7)

where a and lJ are suitably chosen constants with O < a < b.

Hence, at trial t the algorithm makes progress towards u if
u predicted at that trial notably better than the algorithm

did. On the other hand, on any given trial some vectors u

make a larger loss than the algorithm, and the algorithm
can make even negative progress towards those u.

To control the parameters a and b in (7) itturns out to
be convenient to introduce a new parameter c and functions
~ and g such that for b = g(c), the condition (7) holds for all

u if and only if a s ~(c). Proving (7) for the optimal values
a = f(c) and b = g(c) is the main technical problem in the

analysis. When this has been achieved, adding the bounds

(7) fort= l,..., t with a = ~(c) and b = g(c) yields

‘(c)LOSSL (U, S) +LOSSL(A, S) < —
d(u, WI) – (f(u, Wl+l)

f(c) f(c)

d(u, Wl)
!@ LossL(u, S) + f(c)

5 f(c)
(8)

for all u c U. The bound for the algorithm compared to
u is then obtained by choosing the value c for which the

right-hand side of (8) is minimized. Since everything holds
for an arbitrary u c U from the comparison class, the final

upper bound is obtained by taking an infimum over u E U.

5.2 Upper bounds for G D

In the full paper we show that the earlier results of Cesa-
Bianchi et al. [CBLW93] for the GD algorithm fit well into

our general framework for proving loss bounds. We cite here
their main result for comparison with our results on the new

algorithm EG*.

Theorem 1 For a trial sequence S = ((x,, yl),...,

(x?, w)), let X be an upper bound such that llxtl12 < ~
holds for all t. If the GD algorithm uses an arbitrary start
uector wl and learning rates given by qt = l/(411xtll~), rue
have for any vector u the bound

Further, let K and U be arbitrary constants and define
a comparison class by U = { u E RN : Loss(u, S) ~ K and

IIu – WI 112< U}. Now for the learning rate

Ux

‘t= Ilx:ll; 2JR+2UX “
(lo)

the GD algorithm has for any u E U the loss bound

Loss(GD, S) ~ fIOSS(U,5’)+2tiUX+llU-WIll;X2 . (11)

The bound (11) is a strong worst-case upper bound.
The ratio Loss(GD, S)/ infueu Loss(u, S) approaches 1 as
infu~u Loss(u, S) approaches co, assuming the parameter

h’ is infu~u Loss(u, S) (or somewhat higher). Further, we
get good upper bounds for the two leading coefficients in the

additional loss Loss(GD, S) - infu~u Loss(u, S). Our lower
bound in Theorem 5 implies that these constants are, in

fact, optimal. The less refined bound (9) is obtained with-

out prior knowledge of h’ or U.

5.3 Upper bounds for EG

The full papers contains many loss bounds for the algorithm
EG and its variants. The main result is the following upper

bound for the EG* algorithm.

Theorem 2 Let S = ((xl, yl),..., (XZ, yl)) be a trial se-

quence and X a bound such that llxtll~ < X holds for all t.

Let u E RN be an arbitrary weight vector with IIuIII < U.

If the algorithm EG* uses the uniform start vector and the

learning rates given by qt = l/(3U211x~l&), we have

Loss(EG*, S) <3 (Loss(u, S) + U’X2 in 2N) . (12)

Further, let K and U be ar-bitrar constants and define a
#comparison class by U = { u E R : Loss(u, S) ~ K and

IIuIII < U}. Now for the learning rate

wiim—.
‘t= IIxjl% Um+ 2u2x/izim “

(13)

the EG* algorithm has for any u c U the loss bound

Loss(EG*, S) ~ fJOSS(U,S) + 2Ux/~

+ 2U2X21n 2N . (14)

Bounds similar to (12), but with worse constants, were
already proved by Littlestone et al. [LLW91] for their algo-

rithm. Here we have also the stronger bound (14), in which
the ratio Loss(EG*, S)/ infueu Loss (u, S) approaches 1 as

infucu Loss(u, S) approaches co. Notice that as with the

GD algorithm, making full use of the tighter bound (14)

requires good values for the parameters K and U.
There are tighter and more complicated formulations of

the bounds (12) and (14) that use the actual relative en-

tropy dRE (u’/U, s) where s G R2N is the start vector of

the EG algorithm simulated by EG* and u’ c R2N the
norm U representation of u. The appearance of the fac-

tor2~ 2N in the bounds is due to our use of the bound

~,=1 (~J/U) ln((~l/U)/s,) Sin 2N for the relative entropy
for the uniform start vector s = (1/2 N,. . . . l/2 N).

The following lemma is the main step that leads to The-
orem 2.

Loss(GD, S) ~ 2 (LOSS(U, S) + 111.1– w,l@2) . (9)

213



Lemma 3 Let w, be the weight vector of EG before trial t
in a trial sequence S = ((xI, w),. ... (XZ, YZ)), and let u ~

[0, l]N be a vector with ~, u, = 1. Consider an arbitrarg
trial t, and let R = max, Xt,i — rein, Zt}i. For any constants
a and b such that O < a 5 2b/(2 + R b), and the iearn~ng
rate qt = 2b/(2 + R* b), we have

a(yt – wt . xt)2 – b(yt – u. xt)2

< tiRE(u, wt)-dRE(u, wt+l) . (15)

proof we have Wt+l,, = zvt,t/3~’”/ ~j wt,j~f”i where P, =

eZ71~(Yi-fJ{),We can then write

dRE(U, Wt) – dm(U, Wt+l)
N N

x ‘W+I, I
= utln —=

Wt, i x
thzt,tlnPt -lnfw,tP7° .

,=1 ,=1 i=l

Hence, (15) can be written F(wt, xt, Wt “Xt,yt,U“xt,~t)<0
where

N

~N(W,x, ~, g, r$~) = in ~ W,fi=’ – rln /3

,=1

+ a(y - j)2 – Z@ – r)2 (16)

and ~t = e2nt(vi-ot).
Let now B be such that B < zt,i S B + R holds for

I s i s N. We then have O S (~t,i – B)/R < 1 for 1 S
z s N. The bound & < 1 — z(1 — a) holds for a z O and
O ~ z ~ 1, and is tight for x = O and r = 1. By applying

thw with a = ~~ we obtain

(P“ = F (F)(’’-BR’Rs PB 1- ~ (1 -?R)) .

Let now ~~1 Wi = 1 and w . x = j. Using the above gives
us

N

in ~ Wt,iP
(

‘t,’<Bin/?+ln l-~(1-/3R)) .

,=1

G(j, y, T,~) (= Bln,B+ln l– ~ (1 -pR))

–rln/3+ a(y-j)2-b(y-r)2 .

Note that the inequality is tight if, for instance, N = 2 and
xt = (B, B + R).

To obtain (15), it is now sufficient to show that

G(j, y, r,@ g O holds for all values of j, u, and r, when

/3 = e2~(~-~) with q = ~~ = 2b/(2 + .R2b). Since the second

derivative t32G(~, y, r, ~)/6’r2 = –2b is negative, the value
G(j, y, T, /3) is maximized when r is such that
?lG(j, y, r, B)/6’T = O. Solving this gives r = y–in/3/(2b). In

particular, for P = e2q(’-*), we see that proving
G(j, y, r, e2~(Y-0)) < 0 for T = ~ + ~(j – ~)/b implies

G(j, g, T, e2q(v-0)) <0 for fl values r. For T = y+q(~-y)/b
ZV(Y-J)) = ~(j, y) wherewe have G(j, g, r, e

H(j, y) = 2@(?/ – j)

(
+ln l-~~B— (1 - e2”q”-o)))

It remains to show that lf(j, y) s O. We apply the bound
ln(l – q(l - ep)) < pg + P2 /8, which can be shown to hold
for all real values p and q. We get If(j, y) < S(j, y) where

~–B
S(j, Y) = 2TWY – j) + 2@(?/ – ~)~

+ + (27m(Y – j))2

()
–2TIY(v-i)+ a+$ (V–i)2

= (Y - ?32
~ ((2+ R2b)q2 - 4bq + 2ab) .

Therefore, we must show Q(q) ~ O where Q(q) = (2 +

R2b)V2 – 4bq + 2ab. We easily see that Q(q) is minimized
for q = 2b/(2 + R2b), and that for this value of q we have
Q(q) <0 if and only if a < 2b/(2 + R.2b). ❑

We now combine the bounds for the individual trials to

give a bound for the total loss for EG. We introduce a new
parameter c and later show how it can be suitably chosen

to minimize the bound.

Lemma 4 Let S = ((xl, Y1),..., (XI, VI)) be an arbitrary

trial sequence. For t = 1,. ..,1, let R$ = max:zt,, –
mini Xt,,, and let R be an upper bound such that Rt < R

holds for all t. Let c be an arbitrary positive constant, and
let qt’= 2c/(Rz(2 + c)) for all t. Then for any start

SCRN and comparison vector u c RN, we have

Loss(EG, S) ~ (1+ ~) Loss(U, S)

()
+ ;+; R2dRE (U, S)

vector

(17)

for the EG algorithm with the start vector s and learning

rates q$.

Proof Fort =l,..., I?, let bt = c/R~ and at = 2bt/(2 +
R; bt) = 2c/(R~ (2 + c)). Let w~ be the tth weight vector of

EG on the trial sequence S with qt = at. Then Lemma 3

gives us

at(yt – w, . xt)2 – bt(yt – U. Jb)2

< dRE(U, Wt) – drm(% Vvt+l) (18)

and hence

&(Yt – Wt . X,)2 – C(yt – u . Xt)z

< R: (dRE(U, W,) – dRE(U, Wt+l))

< R2 (dRE(U, Wt) - dRE(U, W$+l)) . (19)

By adding the bounds (19) for t= 1,...,1 we get

~Loss(EG, S) – CLOSS(U, S)

~ R2 (dRE(U, S) – dm(U, W4+1)) < R2dm(w s) ,

which is equivalent with (17). ❑

We now proceed to the proof of Theorem 2. In the Proof

we first reduce the desired bound
algorithm and then get the bound

parameter c in Lemma 4 suitably.

to a bound for th~
for EG by choosing

EG
the

214



Proof of Theorem 2 We define a new trial sequence S’ =

(($;;:;> . . . , (xi, y?)) by setting x; = (Uzt,I,.. ., Uz,,~,

–Uz~,~). The algorithm EG* has been defined

in such a “w~y that the predictions produced by EG* on the

trial sequence S are the same as those produced by EG on
the trial sequence S’ with the given start vectors and learn-

ing rates. In particular, Loss(EG *, S) = Loss(EG, S’). We

further note that for any u c RN with I Iul II s U and the

norm U representation u’ of u, we have Loss(u’/U, S’) =
Loss(u, S), and that max, z{,, – rein, z;,, = 2Ullxtll~.

We now apply Lemma 4 to the trial sequence S’ and
comparison vector u’/U with Rt = 2UI ]xt I I~. For the uni-
form vector s’ we have dRE (u’/U, s’) ~ in 2N, so the bound

(17) now yields

Loss(EG*, S) s
()

1 + ~ Loss(u, S)

+(2+ ~) U2X21n2N . (20)

The bound (12) follows from (2o) by choosin ~ c =:, which

corresponds to the learning rates qt = l/(3U IIxtl I~).
To get the bound (14), assume further that Loss(u, S) s

K holds. Then (2o) implies

Loss(EG*, S) ~ Loss(u, S) + 2U2X2 in 2N

+ ~ + 4U2X21n2N

2
. (21)

c

Assume first h’ > 0. The right-hand side of (21) is mini-

mized for c = 2UX ~~, and we get (14). Accord-

ing to Lemma 4, the value of c corresponds to the learning
rate given in (13). The result for the special case h’ = O
follows by a straightforward limit argument. ❑

5.4 An application to a probabilistic setting

We wish to illustrate our upper bounds by considering them

in a simple probabilistic setting. Assume that xt is a random
variable such that I Ixt I I~ < X with probability y 1 for some

known bound X. Let u E RN be an unknown vector such
that I IuI II ~ U holds for some known bound U. Assume
that the outcome g~ is given by yt = u. xt + et, where et,
t=l ,...,1, are independent random variables with mean

O and variance U2. The proof of Theorem 2 can easily be
modified to yield the bound

E [Loss(EG*, s)] s .&rz + 2UXa~ + 2UX in 2N

for the expected loss of the EG* algorithm when the trial

sequence S = ((xl, yl), . . . , (z1, g?)) is drawn according to

this distribution. An analogous result obviously holds for
the GD algorithm.

5.5 Lower bounds

The following lower bound applied with p = q = 2 shows
that the upper bound (11) is tight. This special case was

already noted by Cesa-Bianchi et al. [CBLW93].

Theorem 5 Let p,g E R+ U {co} with l/p+ l/q = 1. Let

A be an arbitrary on-line prediction algorithm, and let K,
U, and X be arbitrary positive reals. Then for all positive

integers N there are an instance xt c RN with Ilxllq = X,

an outcome y E R, and a comparison vector u c RN with

0 .
. .

GD.C” X2
●...

target norms: instance norms:

GD’s target norm EG’s instance norm

is smaller is smaller

Figure 1: Schematic representation of the main factors af-

fecting the loss bounds of the GD and EG* algorithms.

llu]lP = U, such that for the l-trial sequence S = ((x, y)) we
have Loss(u, S) = K and

Loss(A, S) z K + 2UX& + (UX)2 . (22)

Proof We define two potential target vectors u+ =

(UN-llP, . . . . UN-llP) and u_ = —u+, and an instance

vector x = (XN-l Jq, . . . ,XN-ltg). Then Ilu+llp =

Ilu-llp = U, 11x11, = X, and U.X = UX. Let j be the pre-
diction of the algorithm A, when it sees the inst ante x at

the first trial. We further choose y = UX + @ if j ~ O and

y = –UX - @ otherwise. Then either Loss(u+, S) = K or
Loss(u_, S) = K. Since Loss(A, S) z yz, we get the stated

bound. ❑

For the case (p, q) = (1, co), the constants in the upper

bound (14) do not match the constants in the lower bound

(22). It is an open problem to find the optimal constants for

the case (p, q) = (1, co), or to find any upper bounds close
to the lower bound (22) for the case when (p, g) is neither

(2, 2) nor (1, co). The fact that Theorem 5 holds when Lp
and L~ are dual norms is due to the basic property that if
the norms are dual, the bound Iw . xl s Ilwllpllxllq holds
[Roy63].

6 Comparison of the algorithms

6.1 Comparison of the worst-case bounds

We now show that the different pairs of dual norms in the

upper bounds for the GD and the EG* algorithms result in
certain sit uations in radically different behavior for large N.

For simplicity, we consider the case in which there is a per-
fect linear relation between the instances and outcomes, and

therefore some comparison vector u satisfies Loss(u, S) = O.
We can then take K = O in the bounds (11) and (14). As-
sume that all the other parameters are also set optimally,
and write Xp = maxt llxtllP for p = 2 and p = m. Then

the bound (11) simplifies to Loss(GD, S) < I Iul l~X~ and the
bound (14) to Loss(EG*, S) s 211ull~X& in 2N.

Figure 1 illustrates the trade-offs between the different
norms in the bounds. Recall that always llwll~ < IIwI12 <

215



IIw[ II, and how tight these inequalities are depends on the
vector w. Hence, the EG* algorithm has the advantage over
the GD algorithm on the instance side of the figure, since
its loss bound includes the factor X~ that is less than (or
in special cases equal to) the factor X2 in the loss bound
for GD. Similarly, GD has the advantage on the target

side, since the factor Uz in the bound for GD never exceeds

the factor UI in the bound for EG*. The additional factor

2 in 2N in the bound for EG* further favors GD. As the

products X2 Uz and X~ U1 are incomparable, the total effect

can favor either GD or EG*.

For clarity, we consider two extreme cases. First, assume

that u has exactly k components with value 1 and the rest
N – k components have value O. Thus, only k input vari-

ables are relevant for the prediction task. Assume that the

instances xt are from the set { —1, 1 } N of vertices of an N-

dimensional cube. Then IIuI12 = W, IIuII1 = k, Xz = W,
and XM = 1. The bounds become Loss(GD, S) S kN and

Loss(EG*, S) < 2k2 in 2N, so for N > k, the EG* algo-

rithm has clearly the better bound. On the other hand,

let u = (l,..., 1), and let the inst antes be rows of the

N x N unit matrix. Then [Iu[lz = fi, Ilulll = N, and
X2 = Xw = 1. The bounds become Loss(GD, S) ~ N and

Loss(EG*, S) ~ N2 in 2N, so the GD algorithm has clearly
the better bound. Thus, the bounds for GD and EG* are in-
comparable, and for large N the difference can be arbitrarily
large in either direction.

The simplified scenario given above can be generalized.
If only few of the input variables are relevant for predict-
ing the outcomes, but all the input variables take values of

roughly equal magnitudes, then the EG* algorithm has the
better bound. The GD algorithm has the better bound if all

the input variables are almost equally relevant for predicting

and the Lz norms of the instances are not much larger than

the L~ norms. This happens if most of the total weight in

the instance vectors is concentrated on the largest compo-

nents. The conclusions remain similar also when no com-
parison vector u achieves Loss (u, S) = O, which is the case
if there is noise in the instances or outcomes. However, the
differences between the total losses of the algorithms become

less pronounced in these less pure situation.

6.2 Experimental comparisons

We first consider a situation in which the worst-case upper

bounds suggest EG* should outperform GD. We generated

the instances uniformly at random from the set { –1, 1 }100
of vertices of the 10O-dimensional cube. We chose a com-
parison vector u = (–1, 1, –1, 0,..., O) with three nonzero
and 97 zero components. We added roughly 10% noise to
the outcomes by generating for each t a variable rt uni-
formly at random from the interval [0.8, 1.2] and then set-
ting yt = Ttu. xt. Figure 3 shows how the cumulative losses

~~l(!h - ilt)z for the algorithms GD and EG* increased
as a function of the number m of trials in a typical trial
sequence. The GD algorithm used a zero start vector. The
EG* algorithm used a uniform start vector, which due to

the reduction used in EG* leads to predictions being ini-
tially zero and thus corresponds to using a zero start vector.
The learning rates were chosen according to (10) and (13)
using the comparison vector u. We feel that this gives a fair

comparison between the algorithms, since our other experi-
ments show that this setting leads to almost optimal learning

rates. The figure also shows as horizontal lines the worst-
case upper bounds for the losses. These bounds are based
on slightly sharper versions of Theorems 1 and 2 [K W94].

I
m -

4~ 250-
$

GD —
~ 20Q-
.3 EG+-

150-

100-

50-

oro 50 100 150 2W 250 200
lrlab

Figure 2: Cumulative losses of GD (solid line) and EG*

(dotted line), with their upper bounds, for instances xt c

{-1,1} 100 and target u = (–1,1,–1,0,...,0), and 10~0
noise.

From Figure 2 we see that the worst-case upper bounds
are quite tight for the random data we consider. They be-
come even tighter if we do not add noise to the outcomes.
Obviously, the difference between the algorithms can be
made arbitrarily large by increasing the number of dimen-

sions. On the other hand, we can make ex eriments in which
1the GD algorithm outperforms the EG algorithm, again

by an arbitrary amount of loss depending on the number
of dimension. This is the case for inst ante if the compari-

son vector u is chosen from { —1, 1 } N and the inst antes are

from the N-dimensional Euclidean sphere. For these and

other experiments, see the full paper [KW94].
We feel that the situation that favors the EG* algo-

rithm is much more natural and likely to arise in practice.
Since linear predictors are very restricted, a natural exten-
sion would be to expand the instance xt by including as new

input variables the values ~~(xt ) for some suitable chosen

basis functions $,. Then a linear prediction algorithm could
actually use a linear combination of the basis functions as its

predictor. As an example, we might include all the 0(N9)
products of up to g originrd input variables [BGV92]. After
such an expansion, one would expect relatively few of the
new variables to be relevant for prediction. Assuming that

the input variables are in the range [–1, 1], this does not
increae.e the L= norms of the instances. If the outcomes

are actually given by some degree k polynomial of the input
variables, the loss of the EG* algorithm after the expan-

sion of the inst antes would be O(q in N). However, the GD
algorithm would suffer from the fact that the expansion in-
creases the Lz norms of the instances, and could have a loss
0(N9). Note that if the original N input variables contain r

irrelevant random input variables, these are expanded into
O(rk ) irrelevant pseudorandom variables, and our experi-

ments show that such variables do increase the loss of the
GD algorithm.

Figure 3 shows the cumulative losses ~~1 (yt – ~t )2 as a

function of the number m of trials for the algorithms GD and
EG* in a typical experiment with expanded instances. We
have taken q = N = 8. As we see, the loss curve of EG* flat-

tens earlier, indicating that EG* learns faster. The total loss
is also smaller for EG*. The original instances have been
chosen uniformly from { —1, 1 }s, and an expanded instance

216



800[

700
t

7 Conclusion

The following are the key methods used in this paper.

&“
o 50 100 150 2CKI 250 200

inals

Figure 3: Cumulative losses of GD and EG ●, with their
upper bounds, for sparse target and expanded inst antes.

consist of the products of the components of the original in-
stance. Since the components xt,, are from { –1, 1 }, we do
not cousider products that include the same variable more
than once. Hence, there are 256 products. We have chosen

the target polynomial ~Z~.3~l +~2~2z3z6+ zlz2z3z4z6~7~8,
with three terms, which for the encoding we use gives the

target coefficient vector u with u59 = U9S = u251 = 1 and

w = O for i @ {59,96,251 }. The outcomes have been cho-
sen to have yt = u.xt, with no noise.

6.3 Discussion

OurexDeriments show that alreadv onsimrde artificial ran-

dom d~ta, the actual losses of tie algorithms come close
to their worst-case upper bounds. This is true both with

and without noise in the outcomes. In particular, we have

observed that the GD algorithm does suffer when there is

a large number of irrelevant input variables. The number
of examples it needs before it obtains an accurate hypoth-

esis is roughly comparable to the number N of input vari-

ables, even if almost all of the input variables are irrelevant
for the prediction task. This is easily seen to be true in

the special case that the number of instances does not ex-
ceed N, and the instance vectors are orthogonal to each
other. Since the weight vector of the GD algorithm satisfies

Wm = WI +~.:;l -atxt for some scalars at, the prediction
& =w~.x~ win this case not at all affected by what the

algorithm hasseen attrialsl,...,l -l. This would also be
true if we at each trial solved a linear least squares problem

to find a weight vector that fits all the examples and has the

least Lz norm.

For the EG* algorithm, the dependence on the number
of irrelevant input variables is only logarithmic, so doubling

the number of irrelevant variables results in only a constant
increase in the total loss. It seems that the EG* algorithm
has a strong bias towards hypotheses with few relevant vari-
ables, so if only few variables are needed for prediction, then
EG* avoids the curse of dimensionality. The GD algorithm
and the linear least squares algorithm are biased towards hy-
potheses with small Lz norm, and even if only few variables
are relevant, they use all the dimensions in a futile search
for a good predictor with a small norm.

1.

2.

3.

We use worst-case bounds for the total loss for eval-

uating on-line learning algorithms. The bounds are

expressed as a function of the loss of the best fixed

linear predictor.

We introduce a common framework for deriving learn-

ing algorithms based on the trade-off between the dis-

tance traveled from the current weight vector and a

loss function. Different dist ante functions lead to rad-

ically different algorithms.

The distance function also serves in a second role as

a potential function in proving worst-case loss bounds

by amortized analysis. The bounds are first expressed

as a function of the learning rate and various norms of

the instances and target vectors, as well as the loss of

the target vector. Good loss bounds are then obtained

by carefully tuning the learning rate.

In this paper we are clearly championing the EG* algo-

rithm derived from the relative entropy distance measure.
It learns very well when the target is sparse and the compo-

nents of the instances are in a small range. Such situations
naturally arise if we predict nonlinearly by first expanding

the instances to include the values of some nonlinear ba-

sis functions and then predict using linear functions of the

expanded instances. Since the loss of the EG* algorithm
increases only logarithmically in the number of irrelevant

input variables, it is possible to have a good generalization
performance even if the number of basis functions, that is
the number of dimensions in the expanded instances, signif-
icantly exceeds the number of training examples.

Even for the linear single neuron we have been able to
prove worst-case loss bounds (in terms of the loss of the best

linear predictor) only for the square loss. Ideally we would
like to have loss bounds for other standard loss functions

such as the log loss. It would also be interesting to find new

distance measures that would lead to new algorithms, for

which the loss bounds depend on other pairs of dual norms

than the pairs (LI, J5~ ) and (L2, Lz), which correspond to
the algorithms EG* and GD, respectively. Our bounds for

GD are provably optimal, but we still need matching lower
bounds for the EG* algorithm.

Applying gradient descent in multilayer sigmoid
networks leads to the well-known back-propagation algo-

rithm. The exponentiated gradient algorithms can simi-
larly be generalized to obtain a new exponentiated back-

propagation algorithm. As a long-term research goal, we

suggest developing a whole family of algorithms derived us-

ing the relative entropy as a dist ante measure. Many of the

tradional neural network algorithms belong to the gradient

descent family of algorithms that in our framework can be
derived using the squared Euclidean distance. This fam-

ily includes the Perception algorithm for thresholded linear
functions, the GD algorithm for linear functions, the st an-
dard back-propagation algorithm for multilayer sigmoid net-
works, and the Linear Least Squares algorithm for fitting a
line to data points. The new family includes, respectively,
the Winnow algorithm [Lit88], the EG* algorithm, the ex-
ponentiated back-propagation algorithm, and an algorithm
for fitting a line to data points so that the relative entropy
of the coefficient vector is minimized. The new family uses
a new bias, which favors sparse weight vectors. In the linear

case we have been able to verify that the new family indeed

LL i



performs better when the target is sparse. We expect to see
similar behavior also in more general settings.

Acknowledgments

We wish to thank Nicolb Cesa-Bianchi, David P. Helm-
bold, and Yoram Singer for their comments and Robert E.

Schapire for simplifying the proof of Lemma 3.

References

[Ama94]

[Ama95]

[BEHW89]

[BGV92]

[cBFH+95]

[CBLW93]

[DH73]

[Hay93]

[HKW94]

[HKW95]

[HSSW95]

S. Amari. Information geometry of the EM
and em algorithms for neural networks. Tech-

nical Report METR 94-4, University of Tokyo,
Tokyo, 1994.

S. Amari. The EM algorithm and information
geometry in neural network learning. Neural

Computation, 7(1):13-18, January 1995.

A. Blumer, A. Ehrenfeucht, D. Haussler, and

M. K. Warmuth. Learnabtity and the Vapnik-

Chervonenkis dimension. Journal of the ACM,
36(4):929-965, October 1989.

B. E. Boser, I. M. Guyon, and V. N. Vapnik.

A training algorithm for optimal margin classi-
fiers. In Proc. 5th Workshop on Computational

Learning Theory, pages 144–152. ACM Press,
New York, NY, 1992.

N. Cesa-Bianchi, Y. Freund, D. P. Helmbold,
D. Haussler, R. E. Schapire, and M. K. War-

muth. How to use expert advice. Technical

Report UCSC-CRL-95-19, Univ. of Calif. Com-

puter Research Lab, Santa Cruz, CA, 1995. An

extended abstract appeared in STOC ’93.

N. Cesa-Bianchi, P. Long, and M. Warmuth.
Worst-case quadratic loss bounds for on-line

prediction of linear functions by gradient de-
scent. Technical Report uCSC-CRL-93-36,
Univ. of Calif. Computer Research Lab, Santa
Cruz, CA, 1993. An extended abstract ap

peared in COLT ’93.

R. O. Duda and P. E. Hart. Pattern Classifi-

cation and Scene Analysis. Wiley, New York,
NY, 1973.

S. Haykin. Neural Networks: a Comprehensive
Foundation. Macmillan, New York, NY, 1993.

D. Haussler, J. Kivinen, and M. K. Warmuth.
Tight worst-case loss bounds for predicting

with expert advice. Technical Report UCSC-
CRL-94-36, Univ. of Calif. Computer Research
Lab, November 1994. Preliminary versions ap-
peared in EuroCOLT ’93 and EuroCOLT ’95.

D. P. Helmbold, J. Kivinen, and M. K. War-

muth. Worst-case loss bounds for sigmoided
linear neurons. Unpublished manuscript, 1995.

D. P. Helmbold, R. E. Schapire, Y. Singer, and
M. K. Warmuth. A comparison of new and old
algorithms for a mixture estimation problem.
Proc. 8th Workshop on Computational Learn-

ing Theory, July 1995 (To appear).

[KW94]

[KW95]

[Lit88]

[Lit89]

[LLW91]

[LW94]

[Ros58]

[Roy63]

[SW94]

[VC71]

[VC)Y90]

[WS85]

J. Kivinen and M. K. Warmuth, Exponenti-
ated gradient versus gradient descent for lin-

ear predictors. Technical Report UCSC-CRL-
94-16, Univ. of Calif. Computer Research Lab,
June 1994. Retrievable from ftp.cse.ucsc.edu as
/pub/tr/ucsc-crl-94-16 .ps.Z .

J. Kivinen and M. K. Warmuth. The Percep-

tion algorithm vs. Winnow: Linear vs. logarith-

mic mistake bounds when few input variables
are relevant. Proc. 8th Workshop on Computa-

tional Learning Theory, July 1995 (To appear).

N. Littlestone. Learning when irrelevant at-
tributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2(4):285–318, April

1988.

N. Lit tlestone. Mistake Bounds and Loga-

rithmic Linear-threshold Learning Algorithms.

PhD Thesis, Technical Report UCSC-CRL-89-

11, University of California Santa Cruz, 1989.

N. Littlestone, P. M. Long, and M. K. War-
muth. On-1ine learning of linear functions.

To appear in Journal of Computational Com-
plexit y. A preliminary version appeared in
Proc. ?Mrd Symposium on Theory of ComPut-
ing, pages 465–475. ACM Press, New York, NY,

1991.

N. Littlestone and M. K. Warmuth. The
weighted majority algorithm. lnjormation and

Computation, 108(2):212-261, February 1994.

F. Rosenblatt. The perception: A probabilistic

model for information storage and organization

in the brain. Psychological Review, 65:386–407,

1958. (Reprinted in Neurocomputing (MIT
Press, 1988).).

H. Royden. Real Analysis. Macmillan, New
York, NY, 1963.

R. E. Schapire and M. K. Warmuth. On the

worst-case analysis of temporal-difference lear-

ing algorithms. To appear in the special issue of

Machine Learning on reinforcement learning. A

preliminary version appeared in Proc. i 1 th In-
ternational Conference on Machine Learning,
pages 266–274, Morgan Kaufmann, San Fran-

cisco, CA, 1994.

V. N. Vapnik and A. Y. Chervonenkis. On the
uniform convergence of relative frequencies of

events to their probabilities. Theory of Proba-
bility and its Applications, 16(2):264-280, 1971.

V. Vovk. Aggregating strategies. In Proc. Srd
Workshop on Computational Learnina Theoru.

pages 371-383. Mo~gan Kaufmann, %& Mate~:
CA, 1990.

B. Widrow and S. Stearns. Adaptive Signal Pro-

cessing. Prentice-Hall, Englewood Cliffs, NJ,
1985.

218


