
Membership for
Growing Context Sensitive Grammars

is Polynomialt

Elias Dahlhaus
Technische Universit~it Berlin

Fachbereich Mathematik
Strasse des 17. Juni 135
1000 Berlin - West 12

Germany

Manfred K. Warmuth
Department of Computer and Information Sciences

237 Applied Sciences
University of California
Santa Cruz, CA 95064

U.S.A.

t. Abstract: The membership problem for fixed context-sensitive languages is polynomial if the
right hand side of every production is strictly longer than the left hand side.

2. Introduction.
Context-sensitive grammars (csgs) are one of the classical grammar families of for-

mal language theory. They were introduced in [Ch59] and have been studied extensively since
then (see []3073, Ha78] for an overview). Context-sensitive grammars are defined as rewriting
systems, where the length of the right hand side of every production is at least as large as the
length of the left hand side. This restriction on the productions is responsible for the fact that
memberships for context-sensitive languages (csls) is equivalent to the problem of acceptance
for nondeterministic linear bounded automaton [Ku64]. Therefore membership for csls is
PSPACE complete [Ka72] and this is true even for certain fixed grammars. In this paper we
show that if we restrict ourselves to "growing" productions, i.e. the right hand side of every pro-
duction is strictly longer than the left hand side, then membership for fixed csls is polynomial.

This may appear surprising in view of the results obtained in []3o78]. The growing
csls are a subclass of LINEARcs as defined in [G164, Bo71]. Languages of LINEARcs are
given by an arbitrary csg which has the property that every word w in the language has a
derivation of length at most c I w 1 tt, for some overall constant c which only depends on the
grammar. In [13078] it was shown that there are NP-complete languages in LINEARcs. Thus
our result that the family of growing csls is in P deserves an explanation.

Observe that in LINEARcs "complex derivations" are allowed using non-growing
productions; then the final word may be padded such that the length of the overall derivation is

~'This research was done while the authors were visiting the Hebrew University of Jerusalem. The first al.~thor was supported by th~ Minerva Foun-
dation and the second author by the United States-Israel Binational Foundation, grant no. 2439-82.

~" ! w I denotes the length of w.

86

linear in the length of the final word. In fact, for every language in P there is a polynomially
padded version of this language which is in LINEARcs [Bo78].

An arbitrary csg may be converted into a growing csg by adding a dummy symbol to
the right hand side of every non-growing production. The grammar needs to be changed
slightly so that the dummy symbols are "ignored," But now padding increases the length of the
word exponentially. Each time a "signal" runs from one end of a sentential form to the other,
the length increases by a constant factor.

Note that the question of emptiness for csls is undecidable [BPS61]. By padding a
csg with dummy symbols a related growing csg is constructed. Clearly, emptiness for the
corresponding growing csls is also undecidable. For the question of emptiness, the "exponential
padding" is redundant.

The paper is outlined as follows. In Section 3 the basic notations are developed.
Given a word w, we want to decide membership for a language defined by some fixed growing
csg. A planar directed acyclic graph is associated with every derivation of w. In Section 4 we
show that since all productions are growing there is a path of length O (log ([w [) to some sink
from each vertex in the graph. The sinks of the graph are labeled with the word w to be tested
for membership. These short paths are then used in Section 5 in a polynomial cut-and-paste
algorithm for deciding membership for a growing csl.

In the cut-and-paste algorithm each "piece" of a derivation graph is characterized by a
tuple (called a frame) which contains all the essential information about the piece. Because of
the short paths there is only a polynornial number of different frames which need to be con-
sidered. Frames were used extensively in [GS85, GW85a, GW85b] for studying polynomial
cases of k-parallel rewriting.

In Section 6 the polynomiality of the membership problem for fixed, growing csls is
contrasted with the fact that there are NP-complete languages defined by fixed, growing scat-
tered grammars. In scattered grammars (scgs) [GH68, GW85c] the symbols to be rewritten in
parallel are not required to be adjacent. In every production each symbol on the left hand side is
rewritten into a string of length at least one. In growing scgs each symbol must be rewritten
into a string of length strictly bigger than one. It is easy to see that in the derivation trees of
growing scgs each node has an O (log (I w [)) path to a leaf where w is the word to be parsed.
But since for scattered grammars the rewritten symbols don't need to be adjacent, we cannot cut
and paste the derivation trees along the short paths.

The parallel complexity and the space complexity of the membership problem for
fixed growing csls is discussed in the conclusion section. The main open problem is to deter-
mine the complexity of membership for "variable" growing csls, i.e. not only the word to be
tested but also the growing csg is a variable of the input. The question is whether this problem
can be solved in polynomial time or whether it is NP-complete.

3. Preliminaries
A context-sensitive grammar (csg) G is a quadruple (V,Z~,P,S) where:

i) V is a finite set of symbols, E is the subset of V which are the terminal symbols, and S
is the startsymbol in V-]E.

ii) P is a finite set of productions ofthe forme~--) ~, s.t. og[3e V+and levi < 113t.
For two words u and v in V*, u derives v, denoted u => v, if there exist x,y,(~,~ ~ V* s.t.

u = x c~y, v = x 13y and c~ --~ 13 E P. Let =*> denote the reflexive and transitive closure of =>.
Using this notation we are ready to describe the context-sensitive language (csl) defined by the

csgG: L (G) = { w l S => w andw E ~*}.

87

Now the membership problem %r a csl L (G) is defined as follows:
Input: a word w e E*, where E is the terminal alphabet of G ;
Question: is w ~ L (G)?

Note that G is fixed, i.e. it is not a variable of the input. There are fixed csgs for
which this problem is PSPACE complete [Ku64, Ka72].

We restrict ourselves to a subclass of csgs for which the membership problem is in P
(Section 5). A csg G is growing if for all productions a -~ 13 of the grammar, { ~[< I ~ I.

Following [Lo70] each derivation is associated with a planar directed acyclic graph
called a (derivation) graph. The vertices in such a graph will be labeled with the corresponding
symbols and productions used in the derivation. Let o~(x) denote the label of vertex x, where oJ
is a function from the set of vertices of the derivation graph to V L) P . Vertices labeled with
symbols (respectively productions) are called symbol (respectively production) vertices. We
inductively define the derivation graph Dk=(Vk,Ek) which is associated with the derivation
051=> ~2 " ' " = > ~k:

Case k =1: Let cx 1 = a I a 2" ' "ap, where ai~ V. Then D I=(V 1,E 1) has the vertices
V l={X 1,x2 Xp} s.t. (o(xi) = a i and no edges, i.e. E 1 is empty.

Case k > l : Assume c q = > ~x 2 . . - => c~_ 1 corresponds to the graph
Dk-1 = (Vk-l,Ek-1) and c~k_ 1 = u av => u [~v = ¢~k- From Dk-1 and the production c~ ~ {3 the
graph Dk is constructed for a 1 => a2 => ' ' ' => ¢~k- From the word {5 = b lb 2" " ' bq create
the vertices VB = {Yi I 1 < i < q} and from the production c~ --~ ~ create an additional vertex y.
Choose the vertices s.t. Vk_I,V~ and {y} are distinct. The vertices of V~ are labeled with the
symbols of {5, i.e. ¢o(yi) = bi, and y is labeled with the production cc ~ 9. Let V~. be the sinks
(symbol vertices) of Dk-1 corresponding to ¢~. Now V k = V k _ l k . j V ~ k j { y } and
Ek =Ek-l k.j V a x {y) k.) {y} x VB.

An example is given in Figure 1. The planarity of the derivation graphs follows from
the fact that only sinks are connected to the new production vertex. The sources of the graph
Dk correspond to cq and the sinks to o~k. We say that Dk derives ak. Since the graph is planar
there is a natural left to right order amongst the sources: let I x l = a l a 2 . . . ap, then for
1<i <j<p the vertex corresponding to a i is to the left of the vertex of aj and the vertex of aj is
to the right of a i . Similarly, there is a natural left to right order amongst the sinks of a deriva-
tion graph, and amongst the predecessors and successor of every production vertex. Two
sources (sinks) are called adjacent if they are adjacent in the left to right order of the sources
(sinks).

In a derivation graph D a path rt is defined to be a sequence x bx2 Xe+l of ver-
tices of D . The path ~ starts at x 1, finishes Xe+l and has length e. Notice that a path which
contains one vertex has length zero. In this paper we assume that non-empty paths always end
at a sink o f D . The distance dx(y) o f y f romx is the length of the shortest paths which start at
x and finish at y . Note that dx (x) = O.

In the following lemma we wilt to show that there exists a shortest paths from each
vertex to some sink s.t. no pair of paths is "crossing." To construct such a set of paths we use
the following definition of consistency. Two paths are consistent if they have no common ver-
tices, or if starting from the first common vertex the paths are identical. A set of paths is con-
sistent if each pair is. Note that since derivation graphs are planar two consistent paths cannot
"cross."

Lemma 1. For any derivation graph there exists a set of shortest paths from all vertices to sinks
such that this set of paths is consistent.

88

Figure 1. The derivation graph corresponding to the derivation
AB_C => QRSC => QTuvw => xyzuvw
(the rewritten symbols are underlined).

Proof: Let vi, for l<i ~ be the vertices of a derivation graph D and let re i be a shortest path
starting at v i (and finishing at a sink of D) . We now inductively construct paths r~" i (for
1<i .<_m), where r(i starts at vi, s.t. {r(j I l< j <i} is a consistent set of shortest paths.

Assume the set {nj" l l<j<~ < m} = H" is consistent. If r~r~+l is consistent with H"
we set r(~+1-- '~+1 and there is nothing to show. Otherwise, let x be the first common vertex of
rc~+ 1 with some path r(of IY . Since both r(and 7t~+ 1 are shortest paths, the suffixes of ~f and

~r~+l which start with x have the same length. Let rCr~+l" be the path which agrees with rc~+ 1
up until x and then follows rf to the sink. Clearly, ~t~+ I" has the same length as zc~-+1 and is
consistent with I-l ' . This completes the description of the inductive construction. []

4. Short paths in derivation graphs
Consider derivation graphs for a growing csg which derive a word w. In this section

we show that in such graphs there is a path of length O (tog (t w I)) from each vertex to a sink.
We prove this by assigning weights to the vertices, s.t. big weights will correspond to short
paths.

Let us first discuss why there don' t always exist short paths for derivation graphs of
grammars which define languages in LINEARcs. In [G164] it was shown that L =

{ucuRcu: u ~ {a ,b}*} is not in UNEARcs .1 Since growing csls are a subclass of LINEARcs

1The word g R denvtes the ~verse of the word u .

89

[Bo73] the language L is not a growing csl. Intuitively, only O (log (]w])) bits can be
transmitted across paths of length O (log (I w I)). But in L, O (l w l) bits need to be transmitted
to synchronize the production of the words u, u g and u in w =ucuRcu.

It is crucial that in the definition of L the word u is over a two symbol alphabet. Just
producing three blocks of equal size as in the language L" = {anbncn: n >_ 1} is much easier.
One can show that L" is a growing csl. In L" only O (log (t w t)) bits need to be transmitted. It
is easy to see that/~ = {a2"b2"c2": n > O} is a growing csl. We let a special symbol scan the
word. During each complete scan the number of symbols a , b, and c is doubled. From this it
is easy to see that L" is also a growing csl. To produce the word anbncn , [lognJ+l scans are
used. Each scan corresponds to a bit in the bit representation of n. Again we double the
number of symbols in each scan, but we also add an additional symbol if the corresponding bit
is one.

We mentioned already in the introduction that for every language in P there is a pad-
ded version [13071] which is in LINEARcs. Thus even though {ucuRcu: u ~ {a ,b}*} is not in
LINEARcs , the language { ucu e cud (l u I):: u ~ { a ,b } * } is.

We proceed to prove the existence of short paths in derivation graphs of a growing
csg. Let D be such a derivation graph deriving the word w. Each vertex x of D is associated
with a subgraph of D. Let D x be the subgraph induced by all vertices reachable from x.

The length of the paths will depend on the growth ratios of the productions in the

grammar. The growth ratio of a production ~ [3 is the ratio -] ~ The minimum growth ratio
tecl '

of all productions of a grammar is the growth ratio of the grammar. Throughout the paper this
minimum is denoted by g. Note that g > 1 for growing csgs.

The growth ratio of a production vertex is the ratio between the number of immediate
successors over the number of immediate predecessors. Thus g is a lower bound on the growth
ratios of the production vertices of D . Since each production vertex of Dx has at least as many
immediate predecessors and the same number of immediate successors in D as in Dx, the
growth ratios of the production vertices of Dx are also bounded by g.

We now assign weights to the vertices of Dx according to the following scheme:
i) tx(X) = 1.
ii) For a production vertex p , the weight t x (p) is the sum of all the weights of the immedi-

ate predecessors o fp .
iii) If p is a production vertex with k immediate successors, then each of these receives a

weight of ~ - ~ .

Note that ~] tx(S) = 1. Since D x has at most I w I sinks, there is a sink in
s is sin-~ of D~

Dx of weight at least w-~l"

The following lemma shows that big weights correspond to short paths.

Lemma 2: Let y be a symbol vertex of D x and let d be a non-negative integer. If t x (y) >_ g-d
then dx (Y) < 2d.

Proof We prove this by an induction on d. The base case of d = 0 is trivial. Assume the
lemma holds for all d" < d and let y be a symbol vertex of D x s.t. 1 > tx (y) > g - a Let p be
the production vertex which precedes y. Assume p has a immediate predecessors and b
immediate successors. Since tx(p)--b, tx(y), p must have an immediate predecessor y" with

weight at least b t x (y). By the above remarks tx(y")>g'tx(y)>--g 1-d Applying the inductive

90

hypothesis it follows that d x (y") < 2d-2 and dx (Y) < 2d. []

1
Since there is a sink of weight at least ~ in Dx, the lemma implies the existence

/ -

a path of length at most 2 Ilogg(tW l) / from x to a sink. For fixed growing csgs of this bound is
/ /

O (log([w I)) since g > 1 andFsince g onlty depends on the grammar. Paths are called bounded if
they are of length at most 2 [logg([w [) 1" A derivation graph is bounded if there is a consistent

set of bounded paths from all vertices to sinks. Combining the above remarks with I.emma 1,
we get the basis for the polynomial algorithm:

Theorem 1: Every derivation graph of a growing csl which derives the word w is bounded.

5. Membership of growing csl is polynomial
In the last section we showed there are short paths from all vertices to sinks in deriva-

tion graphs. We now use these paths to "cut" derivation graphs into "pieces." Each piece is bor-
dered by on the left and on the right by a path of length O (tog (I w I))- There is an exponential
number of derivation graphs and pieces. We therefore gather the essential information about a
piece in a frame. Part of this information will be a description of the left and the right path.
There will be only a polynomial number of valid frames, which are all found by the algorithm.
The information gathered in the frames will be sufficient to decide membership. The same
technique was used extensively in [GS85, GW85a, GW85b] to show that membership for vari-
ous problems of k-parallel rewriting are polynomial. Also the classic Younger algorithm
[Yo67] for context-free language membership can be described using a simple notion of frames:
A frame parametrizes a possible derivation subtree by the label of the root and the boundaries of
the subword that appears at the leaves of the tree.

For the algorithm we need to be able to describe paths in derivation graphs. One way
of doing this is given in Figure 2. The productions are the labels of the production vertices on
the path and the numbers specify which successors and predecessors are on the path. These
numbers are necessary because for a given production o~[3 in the grammar some symbols
might have multiple occurrences in o~ or [3. We could present the algorithm using the notation of
Figure 2 which would be more efficient. But for the sake of simplicity of the presentation we
assume that the grammar is in a special form.

A grammar is called a one-grammar if for each production c~--*~ in the granunar
each symbol of the alphabet occurs at most once in c~ and at most once in [3. Using standard
methods of Formal Language Theory, it is easy to construct an equivalent one-grammar for a
given grammar by increasing the size of the alphabet and by adding chain productions. For
chain productions l cxl = [91 =1 must hold.

In the following we outline the construction of an equivalent one-grammar. Details
are left to the reader. Assume there is a production cx--->[3 in which some symbol A (terminal or
non-terminal) appears twice in c~. In this case the two occurrences of A in the production are
replaced by two new non-terminals A 1 and A 2. Furthermore two new productions are added to
the grammar: A I-->A and A 2-~A. By repeatedly applying the above, double ocurances of sym-
bols in the left hand side of productions are eliminated. With a similar construction we can
eliminate double occurrences from the right hand side of productions.

Since for the membership problem we assume that the grammar is fixed, the size of
the equivalent one-grammar will also be independent of the input. Observe that the original
grammar and the equivalent one-grammar define the same language. Furthermore derivation

91

graphs for the original grammar translate into derivation graphs for the corresponding one-
grammar and vice versa. A path in the derivation graph of the one-grammar is at most three
times as long as the corresponding path in the "equivalenf' derivation of the original grammar.

This motivates the following assumptions for the rest of this section. The fixed grow-
ing csg of the membership problem is given by its equivalent one-gran~ar. Paths ~ derivation
graphsr of then latter grammar are bounded i f they are of length 6 Ilogg(tw l) | i n s t ead of

2 tlogg(Iw t)[- Theorem 1 also holds for equivalent one-grammars with the new bound (Recall
/ !

that g is the growth-ratio of the original growing csg.).

A AaAA

A

'--> A w,,w,,

A ., w,.e w,,1
2/AA --->AAAA / (4,3)/AAA ~QRAA / (2,2)/QR --->Aw low 11/3

Figure 2. The description of a path (in boldface).

The input word w which is to be tested for membership is denoted as
w lW 2" ' "w I wl. To get a simple description of the algorithm we add dummy symbols to the
beginning and end of w. Let [and] denote two symbols which are not in the alphabet of the
grammar. Set wo=[and w lw 1+1=] •

To describe a path x=x 1,x2, • - - ,x e in a derivation graph of a one-grammar, it is now
sufficient to use the sequence o~(x 1)/o~(x2)/. • •/m(Xe) which is called the labeling sequence of
rc and is denoted by ~(~).

r- Similarly1 to paths, a labeling sequence is bounded if it is of length at most
6 Ilogg(tw 1) I. A f rame is a tuple (t,)~,p,I,r) s.t. t E V 2 u V , L and p are bounded labeling

sequences and 0<_1 <-r <- l w 1+1.

Intuitively, the above frame specifies a "piece" of a planar derivation graph which
might appear in the cut-and-paste process. This piece is bordered on the left (resp. right) by a
path labeled with ~, (resp. p). The piece derives wl,wl+b " " " ,wr, i.e.)~ ends at a sink labeled
with wt, p ends at a sink labeled with Wr and the sinks in between are labeled accordingly. The
word t specifies how the "piece" starts. If the left and right path start at the same vertex then t is
the label of that vertex. In the case where the paths start at different vertices, t consists of the
labels of both vertices. See Figure 3 for examples. The polynomial running time of the

92

membership algorithm for fixed growing csls heavily relies on the fact that the number of
frames is polynomial in l w l . Note tha~. there is o~ly a polynomial number of labeling
sequences of bounded paths (length up to 6 llogg (l w [)[)since g is a positive constant.

Not every frame corresponds to a piece of a derivation graph, only valid frames do. A
frame is valid if and only if it is a valid frame w.r.t, a bounded derivation graph D and a con-
sistent set of bounded paths II={~y J ~y starts with the symbol vertex y of D} from each symbol

vertex of D to a sink. 2

C 5
" - - ' - - -~ ' - - - ~ ' , z .

! \

| \ \

', / /

I 1

\ ;
! l

O. (w3w4, w3, w4,3 ,4)
1. (D,D/CDE--->TwTw8w9/wT, D/CDE-->TWTW8Wg/wT, 7, 7)
2. (S], S/S--->ABCDE/E/CDE-..->Tw7wsw9/wT,], 7, 10)
"I . (PC, P /OP-->w 2MN /N /MNT--->w 3w 4w 5w r/w s,

C/CDE-->TWTWSW9/WT, 5, 7)

Figure 3. Some valid frames with respect to a derivation graph
and a set of bounded consistent paths (in boldface);

the symbols of the first component of each frame are encircled.

Definition: The valid frames of (/9 ,U) are given as follows:
1. The frame (o~(v),~(Ttv),~(Tr.v),1,1) is valid if

i) v is a symbol vertex of D ;
ii) rc v ends at a sink labeled with w I.

2. The frame (co(u)fo(v),~(~tu),~2(Tr.v),l ,r) is valid if
i) u and v are symbol vertices of D s.t. adding the edge (u,v) to D does not

violate the planarity of D ;
ii) the edge (v ,w) does not leave the planar circle which encloses all edges of D

~!qote that D does not necessarily derive the whole word w, but in the case where w and the word derived by D have no subword in common then ~o
then no valid fram.~s belong to D.

93

and is defined by the edges between adjacent sources, the edge between the right-
most source and the rightmost sink, the edges between adjacent sinks, and the
edge between the leftmost sink and the leftmost source (See dotted circle of Fig-
ure 3.).

iii) there is no path from u to v and vice versa;
iv) r~,, ends at some sink s ;
v) the r - l + l sinks starting from s going to the right are labeled with

Wl, Wl+I, ..., Wr;
vi) the (r - l + l) st such sink is the one at which r~v ends.

There are many valid frames belonging to (D ,II). For a particular frame we want to specify the
subgraphs of derivation graphs which correspond to that frame. Let F=(t,~,p,l,r) be a valid
frame of some tuple (D ,I-l). If t has one letter then p=~. and the path of vertices in D which
corresponds to ~. is an instance of F . In the case where t has two letters then the subgraph 1
induced by the vertices v of D for which the following conditions hold is called an instance of
the frame F:
i) v has a predecessor amongst the two vertices corresponding to t;
ii) rcv ends at a sink corresponding to wm where l.~n <r;
iii) if v is not on the path corresponding to ;~ but ~ and ~ have some vertex x as their first

common vertex, then the predecessor of x on 7~ is to the left of the predecessor of x on

iv) if v is not on the path p but ~ and p have some vertex x as their first common vertex,
then the predecessor of x on p is to the right of the predecessor of x on ~ .

Intuitively I consists of all vertices of D "below" T, to the "right" of 2~ and to the
"left" of p. Applying the above definition of valid frames gives the following equivalence.

Theorem 2: S * > w if and only if there are two valid frames ([S,[,g,O,m) and
(S],g,],m, l w I+1).

Proof. Assume S =*> w. Theorem 1 implies the existence of a bounded derivation graph for

S --*> w. By adding two vertices corresponding to the dummy symbols [and] one gets a

bounded derivation graph D for [S] --*> [w]. Let II be some bounded set of consistent paths of
D as defined above. Furthermore let v be the source of D which is labeled with S and assume
r~ ends at the mth symbol of w. From the above Definition it follows that ([S,[,f~(~),0,m)
and (S],~(r~),],m, I w I+1) are valid frames of (D ,II).

To prove the reverse let I be an instance of ([S,[,g,0,m) and J be an instance of
(S],g,],m, t w I+1). Assume that I and J have distinct sets of vertices. By identifying the ver-
tices on the rightmost path of I with the vertices on the leftmost path of J one can build a

derivation graph for IS] --*> [w]. Finally removing the two nodes labeled with the dummy sym-

bols [and] leads to a derivation graph for S => w. []

Theorem 3: The algorithm finds exactly all valid frames and can be implemented in polynomial
t i m e .

Proof." The first part of the theorem is proved in two inductions. In Induction 1 we show that all
flames in the set VAL of the algorithm are valid according to the above Definition. Induction 2

94

Algorithm:

(* Constructs the set VAL of all valid frames. *):

(* We assume that [w 1 >3. *)

0. Initialize VAL to {(wi,wi,wi, i ,i) : O<i < t w I +1} t,,)

{(WiWi+l ,W i , w i + l , i , i +1) : 0<i <[w [}

Repeat

2.1.

2.2.

2.3.

Add the frame (Ai, Ai/e/~., Ai/P/~., l , l) to VAL if

P = A 1A2 • • "Ak --->B 1B2 • • .B k. and (Bj,~,,~,,l,l) is in VAL.

Add the frame (AiAi+ 1, Ai /P /~., Ai+I/P /~,,1 ,l) to VAL if

P = A 1A 2 ' " ' Ak ---> B 1B 2 ' ' ' B k" and (By,~.,~,l , l) is in VAL.

Add the frame (XA 1,~.,A 1/P/pj, l , r j) to VAL if

P = A1A 2 " " An ---> B tB 2 " " B k . and (XB l ,~,pl , l ,r l) as well as

(BiBi+l,Pi,Pi+l,ri,ri+l), for i < i ~ j , are in VAL.

Add the frame (AkY,Ak/P/~, j , p , l j , r) to VAL if

P = A 1 A 2 " - A k - - > B 1 B 2 . . ' B I : , and (BiBi+l,~i,~.i+l,ti,li+l), for

j < i (k ' , as well as (By Y,)~y ,p,ly ,r) are in VAL.

Until no new frame can be added to VAL.

shows that all valid frames are in the set VAL created by the algorithm. Notice that the above
Definition and the Algorithm are outlined in the same way. A schematic description of the algo-
rithm is given in Figure 4.

Induction 1: Let F be the first frame added to VAL by the algorithm which is not
valid according to the above Definition. Let R be the set of frames of VAL which caused the
algorithm to add F to VAL. Clearly the frames of R are valid. By combining instances for the
frames of R one can build an instance for F (see proof of Theorem 2) and get a contradiction.
For a complete proof we need to distinguish in which step F was added to VAL and reason in
each case that F is valid. We only show this for Step 2.3. The remaining cases are similar.

Let li, for j < i < k ' , be an instance of the frame (BiBi+l,~i,~i+l,li,li+l) (see Step 2.3)
and 1 k, be an instance of (B k, Y'~'k" 'P'lk" ,r). Since these frames are valid the instances exist.

Assume that the the vertex sets of the instances are disjoint. Let a ,y and p be three new vertices
s.t. o~(a)=Ak, o)(y)=Y and o)(p) = A 1 ' " "Ak "-~ B 1B 2" ' "Bk' . To build the instance for F we

combine the instances by identifying the vertices on the rightmost path o f t i with the vertices on
the leftmost path of Ii+1, for j<i ~ k ' . Furthermore, we add the edges (a ,p), (y ,p) and the edges
(t7 ,vi), for j< i <_k', where vi is the vertex corresponding to B i . Since there is an instance for F

95

this frame must be valid and we get a contradiction.
Similarly one can prove in a second induction that all valid frames are in the set VAL

created by the algorithm. Assume F = (t) . ,o, l ,v) is a valid frame of (D,IT) (see the above
Definition) which is not in VAL. Let T be the vertices of D which correspond to t. We choose
F so that the number of vertices which have a predecessor in T is minimum. In Step 0 all valid
frames are added to VAL for which the length of both k and p is 0. Thus in the frame F either
or p is of positive length. We distinguish the following cases.
1. I T I =1, k=p and)~ has positive length;
2.I. t T t =2, the vertices of T have a common successor;
2.2. I T I=2, the vertices o f T don't have a common successor, p has positive length;
2.3. 1T [=2, the vertices of T don't have a common successor,)~ has positive length.
We still need to show that in each case F is added to VAL by the algorithm which is a contrad-
iction. We only show this for Case 2.2. The remaining cases are similar.

Let T={u,v}, co(u)=X, co(v)=A1, let the successor of v be labeled with
P = A 1A 2" " " An ---> B 1/32" " ' B/: , and let vi be the vertex of D corresponding to Bi. Because

of the minimality o f f the set VAL contains the frame (XB 1,f2(rcu),f2(rr~i),l,rl) and the frames

(BiBi+l,f2(rcvi),f2(Tr.vi+l),ri,ri+l), for l<i<k", where Wri corresponds to the sink at which 7zi
ends, for l<i<_k'. We conclude that F would have been added to VAL in Step 2.2 which is a
contradiction.

The polynomiality of the algorithm follows from the fact that the number of different
frames is polynomial and from the fact that only a constant number of different frames need to
be considered to create a new valid frame. []

Combining Theorem 2 and Theorem 3 gives us the main result of this paper.

Theorem 4: The membership problem for fixed growing csgs is polynomial. []
In the conclusion section we discuss parallel algorithms for this problem.

6. NP-complete growing scattered languages
We will exhibit a fixed growing scattered language which is NP-complete. A scat-

tered grammar (scg) G is a quadruple (V,Z,P ,S) where the components have the same meaning
as for a csg except that the productions of P are defined differently [GH68]. The productions
have the form (A 1,A 2 Ak) --~ (al,~2 O~k), s.t. A i E V-Z,, o~ i ~ V* and [c~ i [>__ 1. In a
growing scg the last condition is replaced by I ~xi [> 1.

As in a derivation step for csgs, the left hand side of a production is replaced by the
right hand side, but in the case of scgs the symbols Ai need not be adjacent. For two words u
and v of V*, u => v if U =UlAlU2"' 'AkUk+l, v =VlO~iv2"" -~kVk+l and
(A 1 Ak) ~ (cq ak) in P. The (growing) scattered language defined by the (grow-

ing) scg G is the set L (G) = {w I S ---*> w and w ~ E*}.
The main open problem concerning scattered languages (scls) is the question whether

every csl is also a scl. This is rather unlikely, but it holds if productions of the type
(A 1 Ak) ~ (CXl c~k), s.t. 1~1 "o. c~k[~ k are allowed [GW85c].

It is easy to see that L = {ucuRcu: u ~ {a ,b}*} (see introduction of Section 4) is a
growing scl. Since the symbols to be rewritten are not required to be adjacent, the derivations
in different parts of the word can be synchronized.

In a growing scg it takes at most [w I steps to derive a word w. Thus the growing

96

A~

3,

oj

\
23)

xj

w L

A~ --_.Y
!
P

, D

Figure 4: Schematic description of the cases 1-2.3 of the algorithm;
labeled paths are indicated in boldface and the symbols of the first

component of each frame are encircled.

scls are a subclass of NP. We wiIl present a polynomial reduction of 3-partition to a growing
scg.

3-Partition:
Instance: 3k numbers n i and a bound B.
Question: Can the numbers be partitioned with k 3-element subsets each of which sums to B.

97

3-Partition was the first problem to be shown strongly NP-complete ,i.e. it remains
NP-complete even if the ni are encoded in unary [GJ78]. The language C for which we will
provide a growing scg has the property that <n 1 n 3/,,B > is an instance of 3-Partition if
and only if the word xa n lxa n 2 x . . . xa n 3k . . . (yb I3)k is in C.
Note that the word describes the corresponding instance and that its length is polynomial in the
length of the unary encoding of the instance of 3-Partition. Thus the above equivalence implies
that C is NP-complete.

Theorem 5: There are fixed, growing scls 3 which are NP-complete.

Proof: We will construct a growing scl C = L (G) which fulfills the above equivalence. To sim-
plify the construction, we assume that the numbers n i are all at least three and n > 1.

G = ({a ,b ,x,y ,X ,X ,Y ,Y y } , { a ,b ,x ,y} ~ ,S), where
^ ^ ^ ^

P = { (S) - + (X Y Y Y) , (Y) -+ (YYYY)

(X ,Y) -~ (xaX,ybY), (X ,Y) --~ (xaX,bY),

(X ,Y) --~ (aX ,bY),(aaX ,bb),(aa ,bb)}.

To show the above equivalence observe that the grammar produces a sequence of blocks of a ' s
followed by a sequence of blocks of b 's. The sizes of the blocks of a ' s correspond to the
numbers ni. While X is deriving xa n*X either some Y derives yb n, or some I '¢ derives b hi.
There is a block of b's for each n i but the b-blocks are permuted and grouped in threes. We
leave the details to the reader. []

7. Conclusions
We can express the membership problem for fixed growing csls as a membership

problem for a variable context-free language. Given input word w and a fixed growing csg G,
then we construct a context-free grammer Gw" from the frames (Section 5) of w and G. The
frames form the non-terminals of Gw" • Note that the number of non-terminals is polynomial in
w. The derivations of Gw" are defined using the recursions of steps 1-2.3. of the Algorithm of
Section 5. The initial frames of Step 0 all derive the empty word ~. We still need to add a spe-
ciat start symbol S " which derives all combinations of two frames ([S,[,g,0,m) and
(S],g,],m, I w I+1) (See also Theorem 2.).

It is easy to see that w e L (G) iff ~ e L (Gw"). Also the derivation trees for ~ in Gw"
have only O (I w I) nodes since the original grammar G is growing. We now sketch that grow-
ing csls are in the LOG (CFL), the family of languages that are log-tape reducible to context-
free languages [Su78]. LOG (CFL) is exactly the family of languages recognized by a non-
deterministic log (n) tape bounded auxiliary pushdown automata within polynomial time
[Su78]. n denotes the length of the input. To see that L (G) is accepted by the latter type of
automata, we simulate derivations of Gw" with a pushdown automata. The additional log (t w I)
tape is needed to store the nonterminals (frames) involved in the current production. Note that a
frame requires at most log (I w 1) space.

It was further shown in [Ru80] that LOG (CFL) are those languages accepted by an
Alternating Turing Machine in tog (n) space and polynomial tree size. The space complexity

theorem also hold~ for the c a r were the language is ~ , t o r d e r e d [Sa73] in addition to being growing and scattered.NcXe that the grammar used in
the reduction is a growing unorde~red scattered granular.

98

and parallel time complexity of LOG (CFL) has been studied. Every language of LOG (CFL)
can be recognized in (log (n)) 2 space by a deterministic Turing machine [Co70]. Thus growing
csls can be recognized within the same space complexity as the lowest space complexity found
for context-free languages [LSH65].

As for the parallel complexity [RUB0], LOG (CFL) is contained in NC 2, the class of
problems solved by uniform circuits of depth O ((log (n) 2) using a polynomial number of
bounded fan-in gates. Explicit NC 2 circuits for the membership problem in a fixed context-free
language are described in lUG85] and these circuits also solve the question a e Gw'. Further-
more PRAM algorithms are given for the same problems lUG85]. These algorithm run in
0 ((log (I w I)2) parallel time and require a polynomial number of processors.

We showed that the membership problem for fixed growing csls can be solved in
polynomial time and has reasonable space complexity and parallel time complexity. The main
open problem is to determine the complexity of membership for "variable" growing csls, i.e.
not only the word to be tested but also the growing csg is a variable of the input. The question
is whether this problem can be solved in polynomial time or whether it is NP-complete.

Acknowledgements: We would like to thank Allen Goldberg and Habib Krit for helping to sim-
plify the presentation of the results. Furthermore we are thankful to an anonymous referee who
pointed out that growing csls are accepted by Alternating Turing Machines in log (n) space with
polynomial tree size and are thus contained in LOG (CFL) (See conclusion section.).

References:
[BPS61] Y.M. Bar-Hillel, M. Perles, and E. Shamir, "On Formal Properties of Simple Phase

Structure Grammars," Z. Phonetik Sprachwiss. Kommunikationsforschung, Vol. 14,
pp. 143-172 (1951).

[Bo71] R.V. Book, "Time Bounded Grammars and their Languages," Journal of Computer
and Systems Sciences, Vol, 5, pp. 397-429 (1971).

[]3o73] R.V. Book, "On the Structure of Context-Sensitive Grammar," International Journal
of Computer and Information Sciences, Vol. 2, No. 2, pp. 129-139 (1973).

[13078] R.V. Book, "On the Complexity of Formal Grammars," Acta Informatica, Vol. 9, pp.
171-182 (1978).

[Ch59] N. Chomsky, "A Note on Phase-Structure Grammars," Information and Control, Vol.
2, pp. 157-167 (1959).

[Co70] S.A. Cook, "Path Systems and Language Recognition," Proc. Second Annual ACM
Symposium on Theory of Computing, pp. 70-72 (1970).

[G164] A. Gladkii, "On the Complexity of Derivations in Phase-Structure Grammars," (in
Russian), Algebri i Logika, Sere. 3, Nr. 5-6, pp.29-44 (1964).

[GS85] J. Gonczarowski and E. Shamir, 'Tattern Selector Grammars and Several Parsing
Algorithms in the Context-Free Style," Journal of Computer and System Sciences,
Vol. 30, No. 3,pp. 249-273 (1985).

[GW85a] J. Gonczarowski and M. K. Warmuth, "Applications of Scheduling Theory to Formal
Language Theory," Fundamental Studies Issue of Theoretical Computer Science, Vol.
37, No. 2, pp. 217-243 (1985).

[GW85b] J. Gonczarowski and M. K. Warmuth, "Manipulating Derivation Forests by Schedul-
ing Techniques," Technical Report 85-3, Department of Computer Science, Hebrew
University of Jerusalem.

99

{GW85c] J. Gonczarowski and M. K. Warmuth, "On the Complexity of Scattered Grammars,"
in preparation.

[GH68] S. Greibach and J. Hopcraft, "Scattered Context Grammars," Journal of Computer
and Systems Sciences, Vot. 3, pp. 233-249 (I969).

[Ha78] M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading,
Mass. (1978).

[Ka72] R. M. Karp, "Reducibility among Combinatorial Problems," in: R. E. Miller and J. W.
Thatcher (eds.) Complexity of Computer Computations, Plenum Press, pp. 85-103,
New York (1972).

[Ku64] S. Y. Kuroda, "Classes of Languages and Linear Bounded Automata," Information
and Control, Vol. 7, pp. 207-223 (1964).

[Lo70] J. Loeckx, "The Parsing of General Phase-Structure Grammars," Information and
Control, Vol. 16, pp. 443-464 (1970).

[Ru80] W. L. Ruzzo, "Tree-Size Bounded Alternation," Journal of Computer and System Sci-
ences, Vol. 21, pp. 218-235 (1980).

[Sa73] A. Salomaa, Formal Languages, Academic Press, N.Y. (1973).
[LSH65] P. M. Lewis, R. E. Stearns and J. Hartmanis, "Memory Bounds for Recognition of

Context-Free and Context-Sensitive Languages," Proc. Sixth Annual IEEE Sympo-
sium Switching Circuit Theory and Logical Design, pp. 191-212 (1965).

[Su78] H. Sudborough, "On the Tape Complexity of Deterministic Context-Free Languages,"
Journal of the ACM, Vol. 25, pp. 405-414 (1978).

[UG85] J. D. Ullman and A. V. Gelder, "Parallel Complexity of Logical Query Programs,"
Technical Report, Department of Computer Science, Stanford University (I985).

[Yo67] D. H. Younger, "Recognition and Parsing of Context-Free Languages in Time n 3,,,
Information and Control, Vol. 10, pp. 189-208 (1967).

