
Learning of Depth Two Neural Networks with

Constant Fan-in at the Hidden Nodes

(extended abstract)

Peter Auer’ and Stephen Kwekt and Wolfgang Maass$ and Manfred K. Warmuth$

Abstract

We present algorithms for learning

neural networks where the hidden

depth two

nodes are

threshold gates with constant fan-in. The

transfer function of the output node might be

more general: we have results for the cases

when the threshold function, the logistic func-

tion or the identity function is used as the

transfer function at the output node. We give

batch and on-line learning algorithms for these

classes of neural networks and prove bounds on

the performance of our algorithms, The batch

algorithms work for real valued inputs whereas

the on-line algorithms assume that the inputs

are discretized.

The hypotheses of our algorithms are essen-

tially also neural networks of depth two. How-

ever, their number of hidden nodes might be

much larger than the number of hidden nodes

of the neural network that haa to be learned.

Our algorithms can handle such a large num-

ber of hidden nodes since they rely on mul-

tiplicative weight updates at the output node,

and the performance of these algorithms scales

only logarithmically with the number of hid-

den nodes used.

*Address: Department of Computer Science, Univer-
sity of California, Santa Cruz, CA 95064. E-mail:
pauer@cse.ucsc.edu

‘Address: Department of Computer Science, University
of Illinois, Urbana, IL 61801. E-mail: kwek@cs.uiuc.edu.

i Address: Institute of Theoretical Computer Science,
Technische Universitat Graz, Klosterwiesgasse 32/2, A-8olo
Graz, Austria. E-mail: maass@igi.tu-graz. ac.at

SAddress: Department of Computer Science, Univer-
sity of California, Santa Cruz, CA 95064. E-mail:
manfred@cis.ucsc .edu.

Permission to make dlgitallhard copies of all or part of tids material for
peraoml or classroom use is granted without fee provided that the copies
are not made or dk%ributed for profit or commercial advantage, the. copy-
right notice, the title of the publication and its date appear, and notice IS
given tha} copyright is by permission of the.ACM, Inc. To co~>yotherwise,
to repubhsh, to post on servers or to distribute to Ms, requires specitic
permission and/or fee.
COLT’96, Desenzano del Garda, Italy
@1996 ACM 0-89791-8 1143/9fj/ofj ..$3 .5t)

1 Introduction

In this paper we elaborate on a technique to expand

learning algorithms for single neurons to learning algo-

rithms for depth two neural net works. This technique

works for on-line learning algorithms for single neurons

whose total loss bounds scale only logarithmically with

the input dimension. Quite a number of such algorithms

were found recently [Lit88, CBLW95, KW94, HKW96].

All of them rely on a multiplicative update scheme of

the weights and these update schemes are motivated

[KW94] by the minimum relative entropy principle of

Kullback [KK92, Jum90].

The way we get a depth two neural network from a single

neuron is the following. We expand a single neuron

by replacing the input nodes of the neuron by hidden

nodes which compute linear threshold functions of the

inputs (see Figure 1). We only require that the fan-in of

the hidden nodes is some constant d. Thus the neural

networks we are considering have N inputs, k hidden

nodes which calculate linear threshold functions of d of

the N inputs, and an output node with some transfer

function @.

We will consider two types of learning models: an on-

line model and a batch model. In the on-line model,

[Lit88, Ang88] learning proceeds in trials. In each trial

t an input pattern Xt is presented to the learner and the

learner has to produce an output yt. Then the learner

receives the desired output yt and incurs a loss L(yi, yf)

for some loss functionl L : R x R + [0, m). The per-

formance of the on-line learner is measured by the total

loss over all trials, compared with the total loss of the

neural network which best fits the (xt, yt) pairs of all

trials.

In the batch model [H LW94] the learner is given a train-

ing sequence of examples S = ((xl, yl), (x~, yin))

which are drawn independently at random from some

fixed but unknown distribution. Based on this train-

ing sequence the learner has to produce a hypothesis,

1Examples of loss functions are the discrete loss L(y, j) =
1 if # # y and L(y, j) = O if j = y, the square loss .L(g, j) =

(y–j)’, and the entropic loss L(y, j) = yln $+(1–y)ln ~.

333

output $(w. h) @(w*h)

output gate

weights

inputs

+

f

AWI w ‘A

.

k inputs

d

N inputs

transferfuncton 6

outputsof Iuddennodes

k thresholdgates

fsn-in d

(a) (b)

Figure 1: (a) The single neuron. (b) The neuron expended into a depth two neural network.

and the performance of the learner is measured by the

expectedz loss of its hypothesis on an unseen example,

compared with the expected loss of the neural network

which performs best with respect to the fixed but un-

known distribution.

We note here that our batch as well as our on-line

leaning algorithms are agnostic learning algorithms

[Hau92, KSS92], in the sense that they make no assump-

tions whatsoever about the target concept to be learned.

Instead, we compare their performance with the perfor-

mance of the best hypothesis for this unknown target

from a comparison or “touchstone” class. In our case

these touchstone classes are classes of depth two neural

networks.

Now we describe our technique to transform a learning

algorithm for a single neuron into a learning algorithm

for depth two neural networks of the type described

above. Assume we have an on-line learning algorithm A

for a single neuron with k inputs and transfer function

~ (see Figure la). When learning the depth two neural

network we would like to use this algorithm A to learn

the weights from the hidden nodes to the output node,

This leaves us with the problem of obtaining the out-

puts of the hidden nodes which are determined by their

weights. The main idea of our technique is to increase

the number of hidden nodes such that each possible lin-

ear threshold function of the inputs is calculated by one

of the hidden nodes. (Observe that each node has to

calculate a threshold function of only d out of the N

inputs.) Then the weights to the (now very many) hid-

den nodes can be fixed and only the weights from the

hidden nodes to the output node have to learned, which

can be done using algorithm A.

The problem with this approach is that the performance

of the learning algorithm for the single neuron might

2The expectation is taken over the random draw of the

unseen example as well as over the m independent random
draws that produced training sequence.

degrade dramatically when the number of inputs is en-

larged by too much. Thus our technique will work only

for learning algorithms whose performance scales very

moderately with the input dimension. We will make

use of three algorithms for single neurons for which this

is the case. All these algorithms use a multiplicative

weight update and their performance scales logarith-

mically in the number of inputs. Our technique gives

us learning algorithms for depth two neural networks

with very reasonable performance bounds and polyno-

mial run-time (with the fixed fan-in d in the exponent).

Whereas the application of the above technique is quite

straightforward for the batch model there are additional

difficulties for the on-line model. In order to keep the

run-time reasonable it is not possible to deal with all

the candidate hidden nodes individually. Instead they

have to be collected into groups such that all nodes in

a group “behave alike”. Then one has to deal only with

a relatively small number of groups which gives the re-

quired speedup. This grouping technique was developed

by Maass and Warmuth [MW95] who called it “virtual

weights”. For its application the exact number of nodes

in a group has to be known. Since in our case this num-

ber seems to be computationally expensive to calculate

we had to extend the ‘(virtual weights” technique by

using an approximation for the number of nodes in a

group. This approximation can be calculated from the

volume of a polytope which is associated with the group

under considerate ion.

1.1 Related result

There are a number of previous related results for learn-

ing depth two neural networks in the PAC model which

is a model closely related to the batch model consid-

ered here [H LW94], As in our paper the resources

of the algorithms scale exponentially in the fan-in of

the hidden nodes. Bshouty et al. [BGM+ 96] gave

a noise-tolerant PAC algorithm for learning arbitrary

boolean functions of s halfspaces of fixed fan-in d. Sim-

334

ilarly, Koiran [Koi94] gave a PAC learning algorithm

for neural networks of depth two of the form consid-

ered here (Figure lb) with the identity transfer func-

tion. Maass [Maa93] gives a PAC learning algorithm

for the case when the transfer function is a threshold

function. Maass’ algorithm also works for fixed depth

neural networks with piecewise polynomial activation

functions and a constant number of analog inputs.

In contrast we have results for the batch as well as for

the on-line model and our results are quite general in the

sense that we give a reduction from learning algorithms

for single neurons to learning algorithms for depth two

neural networks.

1,2 Organization of the paper

In Section 2 we describe the basic ideas we will use to

transform algorithms for single neurons into algorithms

for depth two neural networks. The main questions are

which hidden nodes should be generated and how can

they be maintained efficiently. The first part of Sec-

tion 3 gives general considerations about the proofs for

our transformed on-line algorithms, Section 3.1 states

the results, Section 3.2 describes the actual transforma-

tion of an on-line learning algorithm for a single neuron,

and Section 3.3 contains the analysis of the transformed

algorithm. Sections 3.4 and 3.5 sketch the transforma-

tion of two other on-line learning algorithms for sin-

gle neurons. Section 4 contains our results and proof

sketches for the batch model.

2 The hidden nodes

In this section we describe which hidden nodes are main-

tained by the learning algorithm. We disregard the

weights from the hidden nodes to the output node but

concentrate on the hidden nodes which are represented

by the weights from the inputs to the hidden nodes.

Since we restrict the fan-in of the hidden nodes to be at

most d, each hidden node computes a linear threshold

function of the inputs where besides the bias at most

d of the weights are non-zero. It is also worthwhile to

mention that the correct classification of the input pat-

terns will be of no concern for the construction of the

hidden nodes.

Our goal is to have one hidden node for each thresh-

old function. But observe that there is no need to dis-

tinguish between threshold functions which coincide on

all input patterns seen so far. There is simply no evi-

dence which could tell the learner to prefer one over the

other threshold function when they behave identically

on the seen input patterns. Therefore we have to con-

struct only one hidden node for each class of threshold

functions which calculate the same values for the input

patterns seen so far.

For the batch model the situation is particularly sim-

ple since all training examples (xl, VI), (xm, lh) are

given in advance. To calculate the representatives for

each class of threshold functions we have to consider the

possible classifications of the input patterns which can

be realized by a hidden node. Since the fan-in is at most

d the function calculated by a hidden node can be de-

composed into a projection p : RN ~ R~ and a linear

threshold function h : R~ ~ {O, 1} defined as follows:

h(zl, . .
{

1 ifcO+~~=lc~.zi>O
.,~d)=

O otherwise

where c = (c., cd) c Rd+l. Now observe that for

some fixed z = (ZI, z~) the weights which corre-

spond to a threshold function with h(z) = 1 are given

by the halfspace {c c Rd+l : c.(l, z) ~ O} of the (d+l)-

dimensional weight space. Thus, for a fixed projection

p, the hyperplanes {c c Rd+l : c . (I, p(x.)) > O},

T=l ,. ... m, divide the weight space into polyhedra

such that these polyhedra represent all possible lin-

ear threshold functions on the points p(xl), p(x~).

A lemma from computational geometry [Ede87] states

that the number of ~olvhedra in which Rd+l is dis-

sected by m hyperpl&e; is at most ~f~~ (~) < md+l

and that these polyhedra can be computed efficiently.

Since for each of the (~) projections p : RN -+ Rd the

corresponding (d + 1)-dimensional weight space is di-

vided by the corresponding hyperplanes the number of

necessary hidden nodes is upper bounded by (~) md+l.

The weights of the hidden nodes are given by any choice

of points from the corresponding polyhedra.

Even though the loss bounds of our algorithms scale

logarithmically with the number of hidden nodes, the

time bounds of the algorithms are proportional to the

number of hidden nodes and thus exponential in the

fan-in d. Therefore we assume throughout this paper

that d is constant (and small), and for d = 2 or d = 3

our algorithm might actually be practical. The expo-

nential growth in d is not surprising, since if the time

bounds were polynomial in d then one of our algorithms

would lead to a polynomial, agnostic PAC learning algo-

rithm for DNF formulas, using hypotheses more general

than DNF formulas. The problem of finding a poly-

nomial PAC learning algorithm for DNF formulas has

been open for a long time now, even if the algorithm

is allowed to ask membership queries in addition to re-

ceiving random examples (and we would write a very

different paper if we could solve it).

In the on-line model the hidden nodes are maintained

similarly but there are two additional difficulties. First,

the examples are not known in advance but are given

to the learner one by one. Thus the number of hidden

nodes could not be fixed in advance but would have to

be increased during the learning process. Second, it is

generally harder to learn in the on-line model than it

is in the batch model. Consider for example the con-

cept class of initial intervals of [0, 1]. This class can be

realized by neural networks of the type considered in

this paper with just a single hidden node of fan-in one.

Whereas initial intervals can be easily learned in the

batch model, an unbounded loss can be forced for any

335

on-line learner since the on-line learner has to exactly

identify the (real-valued) boundary of the initial inter-

val. The problem of perfect precision in threshold gates

is usually circumvented by making additional assump-

tions about the weights of the threshold functions to be

learned and the input patterns. These assumptions boil

down to assuming that using the “correct” weights the

values computed by the threshold gates do not change

when the inputs are slightly perturbed. Since this is

equivalent to assuming discretized inputs we require

that for the on-line model the inputs are integers from

zp={–P,..., P}.

The assumption of only discretized inputs solves the sec-

ond problem mentioned above and it also helps to solve

the first problem. It is known that for inputs from Zp

there are at most (~) , (d~)”f~) linear threshold func-

tions with fan-in d [MT92]. Thus we could fix the num-

ber of hidden nodes by maintaining that many hidden

nodes. Unfortunately, for large P, this would result in

a very unreasonable run time of the algorithm. Instead

we use “virtual weights” [MW95], which means that we

group hidden nodes into blocks when they compute the

same values for all input patterns seen so far. We are

able to do this because the weights from the hidden

nodes to the output node are the same for all hidden

nodes in such a block, Thus the weighted sum of the

hidden nodes ~j Wj hj can be replaced by the weighted

sum over the blocks XB wB , Ill I . hB where wB denotes

the common weight of all the nodes in block B, IB I de-

notes the number of nodes in B, and hB denotes the

output computed by all the nodes in B. Thus, instead

of summing over all linear threshold functions and up-

dating all weights, the algorithm has to sum only over

a relatively small number of blocks and updates only

one weight per block. Since different blocks correspond

to linear threshold functions which give different values

for the input patterns seen so far, the blocks are given

by the polyhedra in which the weight space is dissected

by the hyperplanes corresponding to the input patterns

seen so far. Thus, after t trials (input patterns) the

number of blocks is at most (~) td+l.

Note, that in contrast to the algorithm for the batch

model where each polyhedron corresponded to a single

hidden node, in the on-line model a polyhedron corre-

sponds to a block of hidden nodes. Thus a new example

does not increase the number of hidden nodes but only

the number of blocks into which the hidden nodes are

grouped. This is quite essential because the algorithms

which learn the weights from the hidden nodes to the

output node cannot deal with a growing number of hid-

den nodes.

Finally, there is still a difficulty in the algorithm for

the on-line algorithm which is the calculation of Il?l,

the number of threshold functions or hidden nodes in

a block. In general it seems to be very complicated to

calculate this number exactly. Therefore we replace the

exact number of nodes in a block by the volume of the

polyhedron which corresponds to this block, This means

that we only approximate the original weighted sum of

the hidden nodes which has to be taken into account

when calculating the loss bounds.

3 Algorithms for the on-line model

In this section, we present our on-line algorithms for

learning depth two neural networks which are based on

the ideas described in the previous section. We will

start with three learning algorithms for single neurons

and transform them into learning algorithms for depth

two neural networks, For an overview of the results see

Section 3.1. For an example of the transformation from

a learning algorithm for single neurons to a learning al-

gorithm for depth two neural networks see Section 3.2.

In the remaining of this section we give some more mo-

tivation and a more abstract description of this trans-

formation.

All the learning algorithms for single neurons we con-

sider here maintain a weight vector wt which after train-

ing is supposed to approximate the optimal weight vec-

tor u. In each trial t the weight vector Wt is used to

compute the output yt of the learning algorithm for the

input pattern Xt = (xt,l, Zt, k). After receiving the

desired output yt the weights are updated multiplica-

tively, i.e. they are multiplied with some positive factors

which depend on yt, xt, and wt. Since the multiplica-

tive update does not change the sign of a weight the

learning algorithms have to maintain pairs of weights

w~i, Wt–i >0 where w~i represents a positive weight for

the i-th input coordinate and Wt;i represents a negative

weight. Then the predictions of the learning algorithms

are given by yt = ~ (~~=1 (W$i — w;;) xt,t
)

and the

output of the neuron with optimal weight vector u can

()
be written as y; = q+ ~~=l(u~ – u;) . x~,~ .

The analysis of the learning algorithms for single neu-

rons relies on inequalities of the type

D(u, wt)– D(u, wt+l) ~ a. L(yt, yt)–b. L(y,, y;). (1)

Here D is a distance function measuring the distance

of the current weight vector from the optimal weight

vector u, and a and b are appropriately chosen positive

constants. For multiplicative updates entropy based dis-

tance functions D are used [KW94, Lit91]. The left

hand side of the above inequality might be seen as the

progress towards the optimal weight vector u: if the

loss of the algorithm is large compared to the loss of the

optimal neuron then the progress of the weight vector

towards u is large. For a sequence S of 2’ trials the

above equality is added over all trials, giving

ll(u, Wl) – ll(u, w~+l) ~ a ~LA(S) – b ~LU(S). (2)

Here LA(S) denotes the total loss of algorithm A on

sequence S and LU(S) denotes the loss of the neuron

with optimal weight vector u. Solving for LA(S) gives

an upper bound for the total loss of the algorithm.

In the modified algorithms for learning depth two neu-

ral networks we have in each trial a set of blocks L?t

336

with volumes volt = (volt (B))Be~t and weights Wt =

(wt(B))Bc~,. After receiving input pattern Xt some of

the blocks might have to be split accordingly to which

values the functions in these blocks give for input pat-

tern Xt. This is done by dissecting blocks with the hy-

perplane in the weight space corresponding to input pat-

tern Xt. We denote the new set of blocks by l?t+l, the

new volumes by Volt+l and the corresponding weights3

by Wt, After receiving the desired output yt the weights

are updated to Wt+l.

Whereas in the case of a single neuron the weight vector

wt was directly related to the optimal weight vector u

this relation is more complicated for depth two neural

networks. Since the weight wt(B) denotes the weights

of the threshold functions in block B and vol(ll) ap-

proximates the number of functions in block B, the to-

tal weight of block B is given by wt(B) ~V01(13). The

corresponding optimal weight u(B) of block B can be

calculated from the weights in the optimal depth two

neural network. The optimal weight vector u for the

connections between hidden nodes and output node as-

signs some weight to all the linear threshold functions

represented by a hidden node and weight O to all the

other linear threshold functions. This weight assign-

ment can be extended to blocks: the weight u(B) of a

block B is just the sum of the weights of the functions

in B.4

With these notations we can apply inequality (1) from

the update of the single neuron. Let w x vol = (w(B) ~

VO1(B))BEB denote the vector of the total weights of the

blocks in t3. Since in the update step of the modified

algorithm the blocks are not changed we get

D(u, fit x volt+,) – D(u, w,+, x volt+,) (3)

2a”L(yt,yt)–~~(YtlY~) (4)

where the distance function D is applied to the total

weights of the blocks in Ii++l, yt is the desired output,

jt is the prediction of the learning algorithm, and y; is

the output of the optimal depth two neural network. In

order to replace D(u1 w~ x volt+l) by D(u, wt x volt)

in (3) we assume that there is a function ~D such that

D(u1 w~ x volt) – D(u> w~ X VOlt+I)

> f~(u, volt) – j-~(u, Volt+ l). (5)

This additional inequality is required to capture the ef-

fect on the distance function when blocks are split. Ob-

serve that inequality (5) is the only new part in the anal-

ysis of the modified algorithms. The other parts can be

taken from the analvsis of the learning algorithms for

single neurons. Com~ining (3) and (5) ‘we ~et

D(u, W~ X volt) – D(u, W~+I X vol~+I)

~ f~(u, volt) – f~(u, Volt+l)

+a ._L(yt, jt) – b o~(Yt,Y~).

3The weights are not changed but only duplicated

a block is split.
when

4One function might be represented in more then one
block. Then the weight of the function has to be distributed

equally among all represent ations of this function,

Summing over all trials we get

D(u, WI X VOII) – D(U, WT+I X VOIT+~)

> fD(u, vOII) – fD(u, VOIT+l)

+(I . ~A(~) – b “ -&pt(s) (6)

where LA (S) is the loss of the learning algorithm on the

trial sequence S and LOPt (S) is the loss of the optimal

depth two neural network. Solving for LA(~) gives a

mistake bound for the algorithm.

Note again that an essential step in the analysis of our

on-line algorithms for depth two neural networks is the

introduction of the function fD which allows us a very

general and elegant treatment of the splitting of blocks.

For specific algorithms with specific distance functions

D the only remaining step is to find such a function

~D which satisfies inequality (5) and gives a good loss

bound by inequality (6).

3.1 Results

Definition 3.1 Let N(N, d, U, ~) be the class of neu-

ral networks for input patterns x E R.N of the follow-

ing type: the hidden nodes compute a linear threshold

function of at most d of the inputs, the output node

computes the transfer function + of the weighted sum of

the outcomes at the hidden nodes, and the L1-norm5 of

the weights from the hidden nodes to the output node is

bounded by U.

If ~ is a threshold function such that @(z) = 1 for z z 1

and #(z) = O forz < 1,then the class of neural networks

~(N, d, U, d, 6) with separation O <6<1 contains al!

neural networks of the above type which–in addition sat-

isfy Iu . y - II > 6 for any binary vector y where u is

the vector of the weights from the hidden nodes to the

output node.

For any loss funct~on L and any sequence of examples

S let LOPt(S, N, d, U, ~) denote the minimal loss on S

among all neurai networks in N(N, d, U, ~).

The loss of an on-kne algorithm A on a sequence of

ezamples S is denoted by LA (S].

Theorem 3.2 The following results hold for an arbi-

trary sequence S of examples (xt, yt) where the input

patterns xt are from Z; and the desired output yt lies

in the range of the considered transfer function g5.

(a) For the logistic transfer function ~(z) = ~ and

the entropic loss there IS an on-line learning algo-

rithm A such that

LA (S) ~ $. LOpt(S, N, d, U, q!J)

+3 c d2 . U2 . ln(16dNP).

(d)
The run time in trial t is O (N)td+l

‘The L-norm of a weight vector u c Rk is /IT-I]II =

E;=, l~al.

337

(b) For the Ldentaty functzon ~(z) = z and the square

loss there M an on-l~ne learning algortthm A such

that

LA(s) < ; Lopt(S,~> d> u>4)

+12 ~dz . U2 ~ln(16dIVP).

(d)The run time in trtal t w O (N)td+l

(c) For the threshold function @(z) = 1 for z >1 and

~(z) = O for z <1, for separation O <6 s 1 and

with the duscrete loss, there M an on-line learnzng

algorithm A such that

LA(S) < y Lopt(s, N, d, u, (J5,6)

64d2U
— ~ln(16dlVP).+ 62

‘he‘Un “me‘n ‘ria’t‘sOW’@)‘here‘t
M the number of mtstakes made up to trtal t.

Recall that the VC dimension of a class is always a lower

bound on the discrete 10SS obtainable by any on-line al-

gorithm [Lit88, Ang90]. The class of k-term monotone

DNF with at most d literals per term has VC dimension

kd(lnz IV – ln2 ln2 iV), when k = N and d = in IV (by

Lemma 6 of [Lit88]). Hence, any on-line algorithm for

learning this class of formulas must have discrete loss

Ll(kd ln2 iV). The class of neural networks considered

here contains this class of DNF formulas and the dis-

crete loss bound of our on-line algorithm is 0(kd2 ln2 iV)

(Apply part (c) of Theorem 3.2 with 6 = 1). Thus, for

this class of DNF formulas, our loss bound is reason-

ably good. We believe there are cases where the other

bounds of Theorem 3.2 are more or less tight as well.

3.2 The transformation of the learning

algorithm for the logistic transfer function

and the entropic loss

In this section we give a quite detailed description of the

transformation from the learning algorithm for a sin-

gle neuron to a learning algorithm for depth two neural

networks where the transfer function is the logistic func-

tion and the performance of the algorithm is measured

by the entropic loss. The analysis of the modified algo-

rithm is given in Section 3.3. The transformation of the

algorithms for other transfer and loss functions is very

similar and is only sketched in Sections 3.4 and 3.5.

We start with an algorithm which learns single neurons

with the logistic transfer function q5(z) = ~ and

where the loss of the algorithm is measured by the en-

tropic loss function. In [HKW96] an algorithm A&~ (a

version of EG*) for learning such a neuron was devel-

oped (see Figure 2). In each trial each weight is updated

by a positive factor. Since such multiplicative updates

do not change the sign of a weight, two weights have to

be maintained for each input, one representing a possi-

bly positive value of the weight, the other representing

a possibly negative value of the weight. The total loss

of this algorithm is compared with the total loss of the

optimal neuron where the weights are restricted to have

.LI-norm at most U. Although the original algorithm

was more general it is sufficient for our purposes to con-

sider only inputs from [0, I]. The loss bound obtained

[HKW96] for algorithm A\~~ is

for any sequence S of examples where ,LU (S) denotes

the loss of the optimal neuron with weight vector u for

which Ilul[l < U.

Using the technique sketched in Section 2 the transfor-

mation of algorithm A$~ into a learning algorithm A&

for depth two neural networks is quite straight forward

(see Figure 3). The inputs to the original algorithm A\~~

are now provided by the hidden nodes, or more precisely

by blocks of hidden nodes. Each block contains weight

vectors of hidden nodes which have calculated the same

values in all previous trials. Such a block is given by

d out of IV input coordinates (i.e. a projection) and

a polyhedron of the corresponding weight space Rd+l.

The following variation of a lemma by Maass and Tur6n

shows that all linear threshold functions (over the dis-

crete domain) can be represented by a finite number of

points in this weight space.

Lemma 3.3 [MT92] Let h : Zg + {o, 1} be a lin-

ear threshold function. Then there are weights c =

(CO, cd) C Z~+l, where C = (8 Pd)3d, such that for

all y ● Z;:

h(y) =
{

1 2fco+~:=1c, .yt~+

O otherwise

Since each block represents a set of functions, its weight

has to be multiplied by the number of functions in the

block when a prediction has to be made. Since the exact

number of functions is hard to calculate it is approxi-

mated by the volume of the block. The loss bound we

can prove for algorithm Al ‘j: is given in Theorem 3.2(a).

3.3 Analysis of algorithm A[j~

For the analysis of algorithm A[~~ we rely on the orig-

inal analysis of A\~~. At first observe that for a given

weight-vector u c R~ with I Iu I I1 < U there is a nor-

malized expansion into two vectors u+ and u– in [O, 1]~

such that u = U . (u+ – u–) and Ilu+lll + I[u-lll =

1. In the proof of the loss bound for A[~~ the dis-

tance between an expansion of the optimal wei ht vec-
Etor u and the weight vectors w:, Wt– c (O, 1) of the

algorithm is measured by I)((u+, U–), (w+, W–)) =

338

Parameters:

The number of inputs k and an upper bound U such that I Iul II < U.

Notations:

The algorithm maintains normalized weights w~,, w;, >0, i = I, ... k, with ~~=1 [w/, + w;,] = I. Inten-

tionally the scaled difference U . (w:, – w:,) approximates the optimal weight w.
Initialization:

Setw~8= w<8=&fori= l,.,,, k and set the learning rate q = ~.

Prediction: In each trial t>1:
Receive input pattern x, E [0, 1]~.

(
Predict with & = 4 U . ~~=l(w~, – w;,) . z,,,

)
, where # is the logistic function.

Update:

Receive the feedback y, E (O, 1).

Foralli=l,... ,kset

~+_ +
t — ‘wt, a “ exp{~ . (y — j) . z~,,}, vL– = w;,” exp{–v” (9 – i)” Zt,t}

and
+ —

‘:+’”=x:=,(;++“;)’ ‘;l”=Z:=,(;++~j-)”

Figure 2: Algorithm A& for learning single neurons with the logistic transfer function and the entropic loss function.

X$SI [@in $ + u; in ~] with the convention that

Oin O = O. Note that the 2N weights of algorithm

A(l) are always normalized. The loss bound obtainedlog

[HKW96] for algorithm A\~~ is

~A(O (L$<: “ k(s)+ ~ “ [~(u, WI) – ~(% WT+l)] .
log

Note that this bound is equivalent to equation (2) with

b = 4/U2 and a = 3/U2.

Now we consider algorithm A~~~. Recall that

the weights of the optimal neur~ network can be

translated into optimal weights u(B) of the blocks

Bel?. Then the distance between the opti-

mal weights and the weights assigned by the algo-

rithm to the blocks in B is given by D(u, w, l?) =

[
~BGB U+(B) h *- + “-(B) ln .-&j($Jl(B)]o

To obtain a loss bound for algorithm A\j~ we have to

find a function ~ such that D(u, w, l?) – D(u, ~, @ >

f(u, 1?) – f(u, @ (see inequality (5)), where ~ results

from B by splitting some of the blocks in l?. Let

B. and B1 denote the blocks obtained by splitting a

block B E l?. Since these blocks inherit the weight

of B we have ti(Bo) = ti(lll) = w(B). Furthermore

u(B) = U(BO) + u(131). Thus

D(u, w, l?) – D(u, ti, B)

——
~ [U+(B)lnw+(;;(:~@)
BEE

+u-(B)ln
U–(B)

W-(B) . VO1(B)

U+(BO)
–U+(BO) in .+

w (Bo) . VO1(BI))

U+(B1)
–U+(B1) ln ~+(Bl) . VO1(B1)

U–(BO)
–u–(BO)ln _

W–(BO) . vo](Bo)

U–(B1)
–U-(B1) in

ti-(B1) . VO1(B1) 1
Z B~BIu+(Bo) lnvol(BO) + u+(Bl) In VO1(BI)

+U-(BO) lnvol(BO) + U-(B1) lnvol(lll)

–U+(B) lnvol(l?) – U-(B) lnvol(B)]

since (a+ b)ln(a+b) ~ alna+blnb for all a,b > 0.

Therefore we can choose f(u, ~) = – ~BeB(U+(~) +

u-(B)) ln(vol(B)) and the loss bound of algorithm A\~~,

as expressed in equation (6), with b = 4/U2 and a =

3/U2, becomes

<4_ ~.L.P,(S, N, d, U)

+% “ [D(u, Wl, ~l) – ~(%WT+l, &’+l)] (7)

+$ “ [~(% ~T+l) – ~(% &)l. (8)

Since D(u, w, B) ~ O for all sets of blocks and weights

maintained by the algorithm, (7) can be bounded by

D(U, Wl)l?I) – D(ll, WT+l, BT+I)

s q%wl, m)

339

Parameters:
The number of inputs N, the fan-in of the hidden nodes d, the discretization parameter P, and an upper

bound U on the L1-normof the weights from the hidden nodes to the output node.

Notations:
Let f?~ denote the set of blocks maintained by the algorithm in trial t, and let w: (B) and w; (B) denote the

weight pair of a block B in trial t.

Let hB (x) be the value for input pattern xt calculated by the functions represented in B. (Since blocks are

split when necessary this value is always well defined.)
The dissection of the blocks in f? by a hyperplane corresponding to an input pattern x is denoted by f? x x.

When a block is split then the weight of the original block is assigned to both resulting parts.

Initialization:

At the beginning I?l contains one block for each of the (~) projections p : Z& ~ Z$. The polyhedron

associated with each block is [–C – ~, C + ~]d+l with C = (8 Pd)3d.

The corresponding weights are set to ‘W~ (B) = w~(~) = ~(~)(2~+1)d+l .

The learning rate is set to q = &.

Prediction: In each trial t >1:
Receive input pattern x~ < Z#.
Set Bt+l = & x xt and let Z& denote the weights of the blocks in &+l.

Let q$denote the logistic function and predict with

jt=~

()

U ~ ~ (ti$(B) – ti; (B)) VO1(B) . hB(X,) .

BcQ+l

Update:

Receive the feedback y, c (O, 1).
For all B E f?ti+l set

V+(B) = w:(B) .exp{q (y– j) . h~(xt)}, V–(B) = w;(B) ~exp{–q . (y – j) . hB(X~)}

and

v+ (B)
d+l(w =

- ‘B) = ~B/6Bt+,

V–(B)

EB,Bt+,
[v+(BJ) + ~-(BJ)] vol(BJ) ‘ “+’ [v+ (~’) + v-(B)]. vol(~’) “

Figure 3: Algorithm A& for learning depth two neural networks with the logistic transfer function and the entropic

loss function.

= ~ [u+(l?)lnu+(l?) + U-(B) lnu-(l?)]

BEt31

+ ~ [U+(B) +

BEBI

(())

N
<ln2

d

(recall that the expanded

ized).

(())N
U-(B)] . In 2 d

weights u+, u- are normal-

To bound (8) observe that ~(u, l?~+l) is maximal when

each linear threshold function with non-zero weight is

contained in a block as small as possible. The following

lemma lower bounds the volume of such a block.

Lemma 3.4 Let A be a polyhedron bounded by hyper-

planes

where all yr c Z$. If A contazns a point with integer

coordinates then VOI(A) ~ ((d+ 1) . P)-(d+l).

Proof. The distance of any integer point c 6 Z~+l to

any of the hyperplanes is at least

I(l>YT)” C-; I > 1

II(1) YT)I12 –2.dm

sine; (1, yr) . c is integer. Thus the sphere of radius

~~~- around the integer point in A lies completely

❑

Thus we get ~(u, BT+l) < (d + 1)ln[(d + 1).P] and

–f(u, BI) < (d+ 1) ln(2C + 1). Finally we obtain the

following loss bound for algorithm A\j~,

LAf:i(s) < : “ Lpt(S, N, d, U)

{

1
C:(l, y,). c=j

}
+

(d+ 1)U2

3
. In[(d+ 1) NP(2C’+ 1)] .

340



To obtain a bound on the run time of algorithm A$

we have to count the number of blocks which algorithm

A& has to maintain in trial t. The following lemma

bounds the number of polyhedra in which the weight

space Rd+ 1 is split by t hyperplanes.

Lemma 3.5 ([Ede87, Sei95]) The number ofpolyhe-

dra obtained by dtssecttng Rd with t hyperplanes as

bounded by (<d) < t ‘. If the dissection with t – 1 hyper-

planes is giv;n then the dissection with the t-th hyper-

plane can be constructed in O(td-l) time. The volumes

of these polyhedra can be calculated an O(td) time.

Thus there are at most (&)t‘+1 blocks in trial t,and

the dissection with the new hyperplane corresponding

to the new input pattern xi and the calculation of the

‘ew ‘“’umestakes 0 ((~)td+’) ‘ime ‘his bounds ‘he

run time of algorithm Af~~ for trial t.

3.4 An algorithm for the linear transfer

function and the square loss

For a single neuron with the linear transfer function

and the square loss an on-line learning algorithm A\~)

was presented in [KW94]. As the algorithm for the

logistic transfer function it maintains pairs of weights

Wi = (wj, w;) and the analysis makes use of the same

distance function D(u, w). The loss of algorithm Afi~)

is

LA(,) (s) < ; . Lu(s) + g ~(D(u, w,) - D(u, WT+,))
lm

where again U is an upper bound on the L1-norm of the

weight vector and u is the optimal weight vector with

L1-norm at most U. This algorithm can be transformed

into an algorithm A\i~) for learning depth two neural
(1)

networks analogously as Alog was transformed into Af~~.

The loss bound that can be obtained for Af~) is then

3
L~~f~ (S) s ~ ~.Lpt(S,~, d,V

3(d+ 1)U2
+2 .ln[(d+ 1) NP(2C+ l)] .

Finally the run time of algorithm A\~) is bounded in the

same way as the run time of algorithm A[~~.

3.5 An algorithm for the thresholded transfer

function and the discrete loss

In this section we consider thresholded neurons where

@(z) = 1 for z z 1 and ~(z) = O for z < 1. The

output of such a neuron is either O or 1 and the per-

formance is measured by the discrete loss. For learn-

ing such neurons algorithm WINNOW was developed

[Lit88, Lit91, AW95]. Its performance again depends

on an upper bound on the L1-norm of the weight vec-

tor, but also on the separation parameter O <6 ~ 1. To

achieve separation 6 the weight vector u must be chosen

such that /u x – 11 ~ 6 for any input pattern x. The

loss of WINNOW is bounded by

LWI~~OW(S) ~ ~ . LU(S)

+: [D(U1 WI) – D(u, WT+I)]

where u is the optimal weight vector with L1-

norm at most U and separation b, and where D

is the unnormalized entropic distance D(u, w) =

~:=1 [w;+ w,= - ‘1u~–u~+u~ln$+u~ln * ,

(Here the weight vectors (u+, u-) aid (w+, w:) are

non-negative but not normalized. ) This allows us to

still use the same function ~ as in Section 3.3 and we get

for the transformed algorithm WINNOW(2J for learning

depth two neural networks that

LWI~~OW(,) (S)

w
< ~ . LOPt(S, N, d, U, 6)

+8(d+ l)U.in [(d+ 1) NP(2c’+ 1)1 ~
62

Since WINNOW updates its weights only when it makes

a wrong prediction, the time complexity of WINNOW(2)

(
for trial t is O (j) rnf+l

)
where mt is the number of

mist akes made by WINNOW(2) until trial t.

4 Transformation for the batch model

At first we state our results.

Definition 4.1 For any ioss function L and any distri-

bution D on the space of examples let LOP, (D, N, d, U, $)

denote the minimal expected loss with respect to D

among all neural networks in N(N, d, U, #).

The expected loss with respect to dtstrtbutzon D of a

batch learning algorithm A, when given m training ex-

amples, M denoted by LA(D, m).

Theorem 4.2

(a) For the logistic transfer funct,on ~(z)= & and

the entropic loss there is a batch learning algorithm

A such that

LA(~,m) <
4
~ ~LOP,(D, N, d, U, q$)

+(d+ 1)~U2 ~ln(Nrn)

m

(b) For the identaty function @(z) = z and the square

loss there is a batch learning algorithm A such that

341



3. (d+ 1) . U2 . ln(IVrn)
+“

2m ‘ ‘“

(c) For the threshold function +(z) = 1 for z ~ 1 and

#(2) = O for z < 1, for separation O < 6 ~ 1
and with the discrete 10SS, there is a batch learning

algorithm A such that

L~(D, m) ~
4U
~ . Lopt,(V, N,d, U,q$, c$)

+8. (d+l)Uln(Nm)

62m

L )The run time of all algorithms is O (N) md+2 .

To obtain these results we have to construct

an algorithm which takes m input/output pairs

(X1, Y1),..., (x~, y~) and predicts the output for an

m+ l-st input pattern x~+l. To construct such an algo-

rithm we will use a conversion technique from a special

type of on-line algorithms into batch algorithms.

At first observe that we could use an on-line algorithm

to predict, one after the other, the outputs Y1, . . . . y~,

giving the desired output to the algorithm after each

prediction. Finally, the on-line algorithm could pre-

dict ym+I. Since all the input patterns xl, ..., x~+l

can be given to the on-line algorithm in advance, such

an on-line algorithm is called a Lookahead Prediction

algorithm [HW95]. The formal conversion of such an

algorithm into a batch algorithm is a little bit more

complicated and is sketched below,

A Lookahead Prediction algorithms A receives m+ 1 in-

put patterns and then successively produces an output

for each of them+ 1 patterns. Let LA(S) denote the loss

of algorithm A where ~ = ((x1, Y1), . . . . (xm+l, Y~+l))

is the sequence of examples. Then the corresponding

batch algorithm receives m random examples (pairs of

input patterns with desired outputs) which represent

the hypothesis of the batch algorithm. To predict the

output for a new input pattern the Lookahead Predic-

tion algorithm is used to successively predict the out-

puts of the first r stored examples, where r is chosen at

random in {O, . . . . m}. Finally it is used to produce an

output for the new pattern. A simple calculation shows

that the expected loss of the batch algorithm is at most

Es LA (S)/ (m+ 1),where the expectation is with respect

to the m + 1 draws that produced S and the random

choice of ~.

To obtain such an Lookahead Prediction algorithm for

depth two neural networks we note that the m + 1

input patterns dissect the weight space into at most

($)(rrz + 1)’+’ polyhedra, see the discussion in Sec-

tion 2. Recall that these polyhedra represent all linear

threshold functions on the m + 1 input patterns. Thus

the Lookahead Prediction algorithm has to keep only

one hidden node for each polyhedron and can use the

on-line algorithms for single neurons to make its predic-

tions and update the weights from the hidden nodes to

the output node. For example we get for the the logistic

transfer function and the entropic loss that

4
~ ~ ~LoP~(S) + (d + 1) U2 . ln(Nm)

where U is an upper bound on the L1-norm of the

weights from the hidden nodes to the output node and

L.Pt (S) is the loss of the neural network that best

fits the sequence S. Since EsLOPt (S) < (m -t 1) .

LOPt (D, N, d, U, c$) the conversion argument gives The-

orem 4.2(a). The other parts of the theorem follow

analogously. Finally, the run times of the algorithms

are O ((V) md+2) since the Lookahead Prediction algo-
. /

rithm performs at most m + 1 trials and each trial has

( )run time at most O (~) rnd+l .

5 Conclusion

We presented a technique for transforming learning al-

gorithms for single neurons to learning algorithms for

depth two neural networks in both the batch and the on-

line model. The main idea is to consider a dual space in

which the weight vectors of the hidden nodes are ~oints

and the examples are hyperplanes that partition this

space into polyhedra. Linear threshold functions be-

longing to the same polyhedron classify the examples in

the same manner and therefore the learning algorithms

have to maintain onIy a single weight for each of the

polyhedra. This is a quite sophisticated application of

the “virtual weights” technique of Maass and Warmuth

[MW95]. For example we had to show that the dis-

tance function methodology of the amortized analysis

for sinde neurons can be adat)ted to handle volume ar)-. .
proximations instead of exact counting. Our technique

can handle continuous as well as discrete transfer func-

tions at the outDut node and it is zeneralizable to anv. .
increasing differentiable transfer fun;tion and its match-

Zng loss [HKW96]. The identity function and the square

loss plus the logistic function and the entropic loss are

just commonly used special cases.

Recall that we require that the hidden nodes of the class

of neural networks we are learning have constant fan-

in d. The loss bounds are polynomial in this fan-in,

however the time bounds are exponential in d. This may

not be surprising for otherwise one of our algorithms

would lead to a polynomial-time noise tolerant on-line

algorithm for learning DNF formulas.

A reasonable next step would be to generalize our al-

gorithms to allow more general transfer functions at

the hidden nodes than step functions: interesting can-

didates are piecewise linear transfer functions or the lo-

gistic function.

342



Acknowledgment

Peter Auer gratefully acknowledges support by the

Fends zur Forderung der wissenschaftlichen Forschung,

Austria, through grant JO1O28-MAT.

References

[Ang88]

[Ang90]

[AW95]

[BGM+96]

[CBLW95]

[Ede87]

[Hau92]

[HKW96]

[HLW94]

[HW95]

[Jum90]

[KK92]

[Koi94]

D. Angluin. Queries and concept learn-

ing. Machine Learning, 2(4):319–342, April

1988.

D. Angluin. Negative Results for Equiv-

alence Queries. Machzne Learning, 2:121-

150, 1990.

P. Auer and M. K. Warmuth. Tracking the

best disjunction. In Proc. of the 36th Sym-

pos~um on the Foundations of Comp. SCZ.

IEEE Computer Society Press, Los Alami-

tos, CA, 1995.

Bshouty, Goldman, Mathias, Suri, and

Tamaki. Noise-tolerant distribution-free

learning of general geometric concepts. In

Proceedings of the ?8th Annual ACM Sym-

posium on Theory of Computing. 1996.

N. Cesa-Bianchi, P. Long, and M.K. War-

muth. Worst-case quadratic loss bounds for

on-line prediction of linear functions by gra-

dient descent. IEEE Transactions on Neu-

ral Networks, 1995. To appear. An extended

abstract appeared in COLT ’93.

H. Edelsbrunner. Algorithms an Combma-

tortal Geometry. Springer-Verlag, 1987.

D. Haussler. Decision theoretic generaliza-

tions of the PAC model for neural net and

other learning applications. Information

and Computation, 100(1):78-150, Septem-

ber 1992.

D. P. Helmbold, J. Kivinen, and M. K. War-

muth. Worst-case loss bounds for sigmoided

linear neurons. In Proc. 1996 Neural Infor-

mation Processing Conference, 1996. To ap-

pear.

D. Haussler, N. Littlestone, and M. K. War-

muth. Predicting {O, 1 } functions on ran-

domly drawn points. Information and Com-

putation, 115(2):284-293, 1994.

D. Helmbold and M. K. Warmuth. On weak

learning. Journal of Computer and System

Sczences, 50(3):551-573, June 1995.

G. Jumarie. Relattve information. Springer-

Verlag, 1990.

J. N. Kapur and H. K Kesavan. Entropy

Optimi.zatzon Prtnctples with Appltcataons.

Academic Press, Inc., 1992.

P. Koiran. Efficient learning of continu-

ous neural networks. In Proc. 7th .4nw.

[1{ SS92]

[KW94]

[Lit88]

[Lit91]

[Maa93]

[MT92]

[MW95]

[Sei95]

ACM Workshop on Comput. Learntng The-

ory, pages 348–355. ACM Press, New York,

NY, 1994.

hl. J. Kearns, R. E. Schapire, and L. M.

Sellie. Toward efficient agnostic learning.

In Proc. 5th Annu. Workshop on Com-

put. Learnang Theory, pages 341-352. ACM

Press, New York, NY, 1992.

J. Kivinen and M. K. Warmuth. Exponen-

tiated gradient versus gradient descent for

linear predictors. Technical Report UCSC-

CRL-94-16, University of California, Santa

Cruz, Computer Research Laboratory, June

1994. An extended abstract to appeared in

the STOC 95, pp. 209-218.

N. Littlestone. Learning when irrelevant

attributes abound: A new linear-threshold

algorithm. Machtne Learnzng, 2:285-318,

1988.

N. Littlestone. Redundant noisy attributes,

attribute errors, and linear threshold learn-

ing using Winnow. In Proc. kth Annu.

Workshop on Comput. Learnzng Theory,

pages 147–156, San Mateo, CA, 1991. Mor-

gan Kaufmann.

W. Maass. Bounds for the computational

power and learning complexity of analog

neural nets. In Proc. 2?5th Annu. .4CM Sym-

pos. Theory Comput., pages 335-344. AChl

Press, New York, NY, 1993.

W. Maass and G. Turzin. How fast can

a threshold gate learn? In Computa-

tional Learntng Theory and Natural Learn-

tng $ystems: Constraints and Prospects.

MIT Press, 1992. Previous versions ap-

peared in FOCS89 and FOCS90.

Wolfgang Maass and Manfred K. Warmuth.

Efficient learning with virtual threshold

gates. In Proc. 12th International Confer-

ence on Machine Learn~ng, pages 378–386.

Morgan Kaufmann, 1995.

R. Seidel. The volume of a polyhedron. Pri-

vate communication, 1995.

343


