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Abstract

We present an on-line investment algorithm
which achieves almost the same wealth as the
best constant-rebalanced portfolio determined in
hindsight from the actual market outcomes. The
algorithm employs a multiplicative update rule
derived using a framework introduced by Kivi-
nen and Warmuth. Our algorithm is very simple
to implement and requires only constant storage
and computing time per stock in each trading pe-
riod. We tested the performance of our algorithm
on real stock data from the New York Stock Ex-
change accumulated during a 22-year period. On
this data, our algorithm clearly outperforms the
best single stock aswell as Cover’s universal port-
folio selection algorithm. We also present results
for the situation in which the investor has access
to additional “side information.”

1 INTRODUCTION
We present an on-line investment algorithmwhich achieves
almost the samewealth as the best constant-rebalanced port-
folio investment strategy. The algorithm employs a multi-
plicative update rule derived using a framework introduced
by Kivinen and Warmuth [17]. Our algorithm is very sim-
ple to implement and its time and storage requirements
grow linearly in the number of stocks. Experiments on real
New York Stock Exchange data indicate that our algorithm
outperforms Cover’s [8] universal portfolio algorithm.

The following simple example demonstrates the power
of constant-rebalanced portfolio strategies. Assume that
two investments are available. The first is a risk-free, no-
growth investment stock whose value never changes. The
second investment is a hypothetical highly volatile stock.
On even days, the value of this stock doubles and on odd
days its value is halved. The relative returns of the first
stock can be described by the sequence 1 1 1 and of the
second by the sequence 1

2 2
1
2 2 . Neither investment

alone can increase in value by more than a factor of 2,
but a strategy combining the two investments can grow

exponentially. One such strategy splits the investor’s total
wealth evenly between the two investments, and maintains
this even split at the end of each day. On odd days the
relative wealth decreases by a factor of 12 1 1

2
1
2

3
4 . However, on even days the relative wealth grows by
1
2 1 1

2 2 3
2 . Thus, after two consecutive trading

days the investor’s wealth grows by a factor of 34
3
2

9
8 . It

takes only six days to double the wealth and over 2 trading
days the wealth grows by a factor of 9

8 .
Investment strategies which maintain a fixed fraction of

the total wealth in each of the underlying investments, like
the one described above, are called constant-rebalanced
portfolio strategies. Previously, Cover [8] described a
portfolio-selection algorithm that provably performs “al-
most as well” as the best constant-rebalanced portfolio.
In this paper, we describe a new algorithm with similar
properties. Like the results for Cover’s algorithm, this per-
formance property is proven without making any statistical
assumptions on the nature of the stock market.

The theoretical bound we prove on the performance of
our algorithm relative to the best constant-rebalanced port-
folio is not as strong as the bound proved by Cover and
Ordentlich [10]. However, the time and space required for
our algorithm is linear in the number of stocks whereas
Cover’s algorithm is exponential in the number of stocks.
Moreover, we tested our algorithm experimentally on his-
torical data from the New York Stock Exchange (NYSE)
accumulated over a 22-year period, and found that our al-
gorithm clearly outperforms the algorithm of Cover and
Ordentlich.

Following Cover and Ordentlich [10], we also present
results for the situation inwhich the investor has some finite
“side information,” such as the current interest rate. Side
information may provide hints to the investor that one or
a set of stocks are likely to outperform the other stocks
in the portfolio. Moreover, the side information may be
dependent on the past and future behavior of the market.
At the beginning of each trading day, the side information
is presented to the investor as a single scalar representing
the “state” of the finite side information; the significance of
this information must be learned by the investor.



2 PRELIMINARIES
Consider a portfolio containing stocks. Each trading
day,1 the performance of the stocks can be described by a
vector of price relatives, denoted by 1 2
where is the next day’s opening price of the th stock di-
videdby its openingprice on the current day. Thus the value
of an investment in stock increases (or falls) to times its
previous value from one morning to the next. A portfolio
is defined by a weight vector 1 2 such
that 0 and 1 1. The th entry of a portfo-
lio is the proportion of the total portfolio value invested
in the th stock. Given a portfolio and the price rela-
tives , investors using this portfolio increase (or decrease)
their wealth from one morning to the next by a factor of

1

2.1 ON-LINE PORTFOLIO SELECTION

In this paper, we are interested in on-line portfolio selection
strategies. At the start of each day , the portfolio selection
strategy gets the previous price relatives of the stock market
1 1. From this information, the strategy immedi-
ately selects its portfolio for the day. At the beginning
of the next day (day 1), the price relatives for day are
observed and the investor’s wealth increases by a factor of

.
Over time, a sequence of daily price relatives

1 2 is observed and a sequence of port-
folios 1 2 is selected. From the begin-
ning of day 1 through the beginning of day
1, the wealth will have increased by a factor of

def
1

Since in a typicalmarket thewealth grows exponentially
fast, the formal analysis of our algorithm will be presented
in terms of the normalized logarithmof thewealth achieved.
We denote this normalized logarithm of the wealth by

def 1
1 log

2.2 CONSTANT-REBALANCED PORTFOLIOS

With the benefit of hindsight, on each day one can invest all
of one’s wealth in the single best-performing stock for that
day. It is certainly absurd to hope to perform as well as a
prescient agent with this level of information about the fu-
ture. Instead, in this paper, we compete against a more
restricted class of investment strategies called constant-
rebalanced portfolios. As noted in the introduction, a
constant-rebalanced portfolio is rebalanced each day so
that a fixed fraction of the wealth is held in each of the
underlying investments. Therefore, a constant-rebalanced
portfolio strategy employs the same investment vector on

1The unit of time “day” was chosen arbitrarily; we could
equally well use minutes, hours, weeks, etc. as the time between
actions.

each trading day and the resulting wealth and normalized
logarithmic wealth after trading days are

def

1

def 1

1
log

Note that such a strategy might require vast amounts of
trading, since at the beginning of each day the invest-
ment proportions are rebalanced back to the vector . In
this paper we ignore commission costs (however, see the
discussion in Section 6).

Given a sequence of daily price relatives 1 2

we can define, in retrospect, the best rebalanced portfolio
vector which would have achieved the maximum wealth
, and hence also the maximum logarithmicwealth, .

We denote this portfolio by . That is,
def argmax argmax

where the maximum is taken over all possible portfolio
vectors (i.e., vectors in with non-negative components
that sum to one). Iterative methods for finding this vec-
tor using the entire sequence of price relatives 1

are discussed in our earlier paper [13] which gives several
updates for solving a general mixture estimation problem,
includingmultiplicative updates like those described in this
paper. We denote the wealth and the logarithmic wealth
achieved using the optimal constant-rebalanced portfolio

by and , respectively. Whenever it is
clear from the context, we will omit the dependency on the
price relatives and simply denote the above by and .
Clearly, depends on the entire sequence of price rela-
tives and may be dramatically different for different
market behaviors.

Obviously, the optimal vector can only be computed
after after the entire sequence of price relatives is known
(at which point, it is no longer of value). However, the
algorithm described in this paper (as well as Cover’s [8]
algorithm) performs almost as well as while using only
the previously observed history of price relatives to make
each day’s investment decision.

2.3 UNIVERSAL PORTFOLIOS

Cover [8] introduced the notion of universal portfolio. An
on-line portfolio selection algorithm that results in the se-
quence is said to be universal (relative to the set of
all constant-rebalanced portfolios) if

lim max 0

That is, a universal portfolio selection algorithm exhibits
the same asymptotic growth rate in normalized logarithmic
wealth as the best rebalanced portfolio for any sequence of
price relatives .
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In Section 3 we adapt a framework developed for super-
vised learning and give a simple update rule that selects a
new portfolio vector from the previous one. We prove that
this algorithm is universal in Section 5.

2.4 SIDE INFORMATION

In reality, the investor might have more information than
just the price relatives observed so far. Side information
such as prevailing interest rates or consumer-confidence
figures can indicate which stocks are likely to outperform
the other stocks in the portfolio. Following Cover and Or-
dentlich [10], we denote the side information by an integer
from a finite set 1 2 . Thus, the behavior of the

market including the side information is now denoted by
the sequence .

Following Cover and Ordentlich [10], we allow the
constant-rebalanced portfolio to exploit the side informa-
tion by expanding the single portfolio into a set of portfo-
lios, one for each possible value of the side information.
Thus, a constant-rebalanced portfolio with side informa-
tion consists of the vectors 1 2 and uses
portfoliovector on day . The wealth and normalized
logarithmic wealth resulting from using a set of constant-
rebalanced portfolios based on side information are,

def

1

def 1

1
log

Just like the definition of the best constant-rebalanced port-
folio, we define the best side information dependent portfo-
lio set as the maximizer of . Note
that the dimensionof a side informationdependent portfolio
selection problem is times larger than the single portfolio
selection problem.

The sequence of side information could be mean-
ingless random noise, neither a function of the past market
nor a predictor of future markets. On the other hand, it
might be a perfect indicator of the best investment. Ex-
tending the two-investment example given in Section 1, we
might have side information 1 on odd days (when the
volatile stock loses half its value) and 2 on even days
(when the volatile stock doubles). This side information
can be exploited by the constant-rebalanced portfolio set
1 1 0 and 2 0 1 to double its wealth ev-

ery other trading day. However, the only side information
communicated to the investor (at the beginning of day ) is
the single value with no further “explanations,” and the
sequence may or may not contain any useful informa-
tion. Hence, the importance of each side information value
must be learned from the performance of the market during
previous trading days.

An on-line investment algorithm in this setting has ac-
cess on day both to the past history of price relatives

(as before) and to the past and current side information
values 1 . The goal of the algorithm now is to in-
vest in a manner competitive with , the
wealth of the best constant-rebalanced portfolio with side
information. One can easily define a notion of universality
analogous to the definition given in Section 2.3.

As noticed by Cover and Ordentlich [10], the investor
can partition the trading days based on the side informa-
tion, and treat each partition separately. Exploiting the side
information is therefore no more difficult than running
copies of our algorithm, one for each possible value of the
side information. Since the logarithm of the wealth is ad-
ditive, the logarithm of the wealth on the entire sequence
with side information is just the sum of the logarithms of
the wealths generated by the copies of the algorithm.

2.5 RELATEDWORK

Distributional methods are probably the most common ap-
proach to adaptive investment strategies for rebalanced port-
folios. Kelly [16] assumed the existence of an underlying
distribution of the price relatives and used Bayes decision
theory to specify the next portfolio vector. Under various
conditions, it was demonstrated (e.g. [5, 7, 6, 4, 2]) that
with probability one the Bayes decision approach achieves
the same growth rate of the wealth as the best rebalanced
portfolio. In this approach, the price relative sequences can
be drawn from one of a known set of possible distributions.
This approach was used by Algoet [1] who considered the
set of all ergodic and stationary distributions on infinite se-
quences, and estimated the underlying distribution in order
to choose the next portfolio vector. Cover and Gluss [9]
considered the restricted case where the set of price rela-
tives is finite and gave an investment scheme with universal
properties.

The most closely related previous results are by
Cover [8] and Cover and Ordentlich [10]. They prove that
certain investment strategies are universal without making
any (or almost any) statistical assumptions on the nature of
the stock market. Cover [8] proved that the wealth achieved
by his universal portfolio algorithm is “almost as large”
as the best constant-rebalanced portfolio. His analysis de-
pends on a sensitivitymatrix that characterizes the behavior
of the market and he assumes that there is an upper bound
on the price relatives and that they are bounded away from
zero. Cover and Ordentlich [10] introduced the notion of
side information and generalized Cover’s universal portfo-
lio algorithm by using the Dirichlet(1 2 1 2) and the
Dirichlet(1 1) priors over the set of all possible portfo-
lio vectors.

Cover and Ordentlich’s investment strategies use an av-
eraging method to pick their portfolio vectors. The port-
folio vector used on day is the weighted average over all
feasible portfolio vectors (all dimensional vectors with
non-negative components that sum to 1), where the weight
of each possible portfolio vector is determined by its per-
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formance in the past. That is,

1

1

where is one of the Dirichlet distributions mentioned
above. Note that the portfolio vectors are weighted ac-
cording to their past performance, 1 , as well as the
prior . Discrete approximation [8] or recursive series
expansion [10] are used to evaluate the above integrals. In
both cases, however, the time and space required forfinding
the new portfolio vector appears to grow exponentially in
the number of stocks. While the bounds achieved by the
generalized universal portfolio algorithm of Cover and Or-
dentlich are stronger than ours, we show that on historical
stock data our algorithm performs better while requiring
time and space linear in the number of stocks.

3 MULTIPLICATIVE PORTFOLIO
SELECTION ALGORITHMS

Our framework for updating a portfolio vector is analogous
to the framework developed by Kivinen and Warmuth [17]
for on-line regression. In this on-line framework the port-
folio vector itself encapsulates the necessary information
from the previous price relatives. Thus, at the start of day
, the algorithm computes its new portfolio vector 1

as a function of and the just observed price relatives
. In the linear regression setting analyzed by Kivinen

and Warmuth, they show that good performance can be
achieved by choosing a vector 1 that is “close” to .
We adapt their method and find a new vector 1 that
(approximately) maximizes the following function:

1 log 1 1 (1)

where 0 is some parameter called the learning rate and
is a distance measure that serves as a penalty term. This

penalty term, 1 , tends to keep 1 close to
. The purpose of the first term is to maximize the log-

arithmic wealth if the current price relative is repeated.
The learning rate controls the relative importance be-
tween the two terms. Intuitively, if is far from the best
constant-rebalanced portfolio then a small learning rate
means that 1 will move only slowly toward . On the
other hand, if is already close to then a large learn-
ing rate may cause the algorithm to be misled by day-to-day
fluctuations.

Different distance functions lead to different update
rules. One of the main contributions of this line of work
is the use of the relative entropy as a distance function for
motivating updates:

D v def

1
log

Many other on-line algorithms with multiplicative weight
updates [18, 3, 17, 12] are also motivated by this distance

function and are thus rooted in theminimumrelative entropy
principle of Kullbach [15, 11].

We also use a second-order Taylor approximation (at
v) of the relative entropy called the 2-distance, since

it leads to updates that are computationally cheaper:

D 2 v def 1
2

1

2

Note that both distance functions are non-negative and zero
if and only if v.

It is hard to maximize since both terms depend non-
linearly on 1. Instead, we replace the first term with
its first-order Taylor polynomial around 1 . We
also use a Lagrange multiplier to handle the constraint that
the components of 1 must sum to one. This leads us to
maximize ˆ instead of :

ˆ 1 log
1

1

1

1 1

This is done by setting the partial derivatives to zero (for
1 ):

ˆ 1

1

1

1 0 (2)

If the relative entropy is used as the distance function then
Equation (2) becomes

log
1

1 0

or
1 exp 1

Enforcing the additional constraint 1
1 1 gives a

portfolio update which we call the exponentiated gradient
(EG ) update:

1 exp

1 exp
3

A similar update for the case of linear regression was first
given by Kivinen and Warmuth [17]. If we use the 2-
distance measure in place of the relative entropy then Equa-
tion (2) becomes

1
1 0

or
1 1
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Now we sum the latter equalities and use the constraints
that 1 1 and 1

1 1 plus the fact that

1 1. This gives and we obtain the
update

1 1 1 4

We call Equation (4) the 2 -update. The 2 -update
can be viewed as a first order approximation of the EG -
update and the approximation is accurate when the expo-
nents 1 are small. The advantage of the 2 -
update is that it is computationally cheaper as it avoids
the exponentiation. However, the EG -update is easier
to analyze. Our experiments with stock data indicate that
these two update rules tend to approximate each other well
yielding about the same wealth. In the next section we
compare the performance of the EG -update and 2 -
update with other on-line portfolio selection algorithms for
different settings. The analysis of the updates is presented
later in Section 5.

In addition to the updates, we also need to choose an
initial portfolio vector 1. When no prior information
is given, a reasonable choice would be to start with an
equal weight assigned to each of the stocks in the portfolio,
that is, 1 1 1 . When side information is
presented, we employ a set of portfolio vectors. We use the
EG or the 2 updates to change the portfolio vector
indexed by the side information. Hence, the problem of
portfolio selection with side information simply reduces to
a parallel selection of different portfolios. If the side
information is indeed informative, the set of portfolios will
achieve larger wealth than a sequence of portfolio vectors
resulting from the entire sequence. We demonstrate this in
the experimental section that follows.

4 EXPERIMENTS WITH NYSE DATA
We tested our update rules on historical stock market data
from theNewYork Stock Exchange accumulated over a 22-
year period. For each experiment we restricted our attention
to a subset of the stocks and compared the EG -update
and 2 -update with each selected stock and with the
best constant-rebalanced portfolio for the subset. We found
the best constant-rebalanced portfolio by applying a batch
maximum-likelihood mixture estimation procedure as de-
scribed in our earlier paper [13]. After determining the best
constant-rebalanced portfoliowe then computed its perfor-
mance on the price relative sequence. We also compared the
performance of our update rules to that of Cover’s universal
portfolioalgorithm. We compared the results for all subsets
of stocks considered by Cover [8] in his experiments.

Surprisingly, the wealth achieved by the univer-
sal portfolio strategy using the Dirichlet(1 1) prior
performed better than the Dirichlet(1 2 1 2) prior,
despite the better theoretical bounds proved for the
Dirichlet(1 2 1 2) prior [10]. Furthermore, thewealth

achieved by the EG -update and 2 -update was larger
than the wealth achieved by the universal portfolio algo-
rithm — again, despite the superior worst-case bounds
proved for the universal portfolioalgorithm. The difference
in performance was largest when the portfolio is composed
of volatile stocks.

The first example given by Cover is a portfolio based
on Iroquois Brands Ltd. and Kin Ark Corp., two NYSE
stocks chosen for their volatility. During the 22-year period
ending in 1985, Iroquois increased in price by a factor of
8.92, while Kin Ark increased in price by a factor of 4.13.
The best constant-rebalanced portfolio achieves a factor of
73.70 and the universal portfolio a wealth of 39.97. Using
the EG -update with 0 05 yields a factor of 70.85,
which is almost as good as the best constant-rebalanced
portfolio. The results of the wealth achieved over the 22
years are depicted for this subset of stocks, as well as other
subsets, in Figure 1. We got quantitatively similar results for
the different portfolios considered by Cover [8]: Commer-
cial Metals and Kin Ark, Commercial Metals and Meicco
Corp., and IBM and Coca-Cola. The results are summa-
rized in Table 1. However, when the stocks considered
are not volatile and show a lockstep performance, as in the
case of IBM and Coca-Cola, the wealth achieved by the
universal portfolios and the EG -update as well as the
best constant-rebalanced portfolio barely outperform the
individual stocks.

Following Cover [8], we also tested the case when we
can invest in stock when margin loans are allowed. This
case can be modeled by adding an additional “margin com-
ponent” for each stock to the vector of price relatives. We
assumed that all margin purchases were made 50% down
and with a 50% loan. Thus the margin price relative for a
stock on day is 2 1 where is the daily inter-
est rate (recall that is the price relative of stock ). We
tested this case with 0 000233which corresponds to an
annual interest rate of 6%. The results are given in Table 2.
It is clear from the table that the four-investment market
containing the same two stocks plus “buying on the mar-
gin” results in a greater wealth. The efficiency of our update
rules enables us to test our updates on more than two stocks.
Moreover, as shown by the analysis, the wealth “lost” by
our algorithms compared to the best constant-rebalanced
portfolio scales like , whereas for the bounds on
Cover’s universal portfolio algorithms the loss in wealth is
linear in the number of investment options . Thus our
algorithm is more likely to tolerate additional investment
options, such as buying on margin.

We found that the wealths achieved by the EG -
update and the 2 -update were comparable. It turns
out that the performance is not too sensitive to particu-
lar choices of a learning rate . Learning rates from 0.01
to 0.15 all achieved great wealth, greater than the wealth
achieved by the universal portfolio algorithm and in many
cases comparable to the wealth achieved by the constant-
rebalanced portfolio. The wealth achieved for different
learning rates for the four-investment portfolio discussed
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Figure 1: Comparison of wealths achieved by the best constant-rebalanced portfolio, the EG -update, and the universal portfolio
algorithm in certain markets. The markets consist of: Iroquois Brands and Kin Ark (top left), Commercial Metals and Kin Ark (top
right), Commercial Metals andMeiccoCorp. (middle left), IBM and Coca-Cola (middle right), and the three stocksGulf, HP, and Schlum
(bottom left). In all of these cases the wealth achieved by the EG -update is close to the wealth of the best rebalanced portfolio and
exceeds that achieved by the universal portfolio algorithm. It is interesting to note that after 4000 trading days in the three stock set a
single stock (Schlum) achieves larger wealth than the best constant-rebalanced portfolio. However, the stock’s value plummets around
day 5000 and both the best constant-rebalancedportfolio and the EG -update outperform Shlum over the 22 year period. At the bottom
right we plot the fraction of the wealth invested in Iroquois by the strategies over time for the Iroquois/Kin Ark market.
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Best Const. Rebal. EG EG Universal Universal
Stocks Stock Port. (BCRP) ( 0 05) / BCRP Portfolio / BCRP
Iroquois & Kin Ark 8.92 73.70 70.85 0.96 39.97 0.54
Comm. Metals & Kin Ark 52.02 144.00 117.15 0.81 80.54 0.56
Comm. Metals & Meicco Corp. 52.02 102.96 97.93 0.95 74.08 0.72
IBM & Coca-Cola 13.36 15.07 14.90 0.99 14.24 0.94
Gulf & HP & Morris & Schlum 54.14 69.94 65.64 0.94 – –

Table 1: Comparisonof the wealth achievedby the EG -update and the universal portfolio algorithm. For all the portfolios considered,
we give the wealth achieved by the best constituent stock in the portfolio, the wealth achieved by the best constant-rebalanced portfolio
(BCRP) computed in hindsight from the entire price relatives sequence, the wealth achieved by the EG -update rule, and the wealth
achieved by the universal portfolio algorithm. We also give the proportion of the wealth achieved compared to the wealth of the BCRP.
In all cases, the wealth achieved by EG -update is larger than the wealth of the universal portfolio algorithm. Moreover, in several
cases the wealth of the EG -update is almost as good as the wealth of the best constant-rebalanced portfolio. We also tested portfolios
consisting of more than two stocks and in most portfolios tested, the wealth achieved by the EG -update was almost as good as the
wealth of the best constant-rebalanced portfolio.

W/O Loans Margin Loans
Commercial Metals 52 02 19 73
Kin Ark 4 13 0 00
BCRP 144 01 262 40
Universal portfolio 78 47 98 42
EG 0 05 110 76 121 98

Table 2: Comparison of the portfolio selection algorithms when
margin loans for each stock are available.

BCRP Universal
262.40 98.42

EG ( )
0 01 0 02 0 05 0 10 0 15 0 20
119.87 121.49 121.94 113.33 103.06 91.31

Table 3: Comparisonof thewealth achievedby the EG -update
and for various learning rates and the universal portfolio algorithm,
for the stocks considered in Table 2.

above (two stocks plus margin) are given in Table 3.
Finally, we tested the performance of our portfolio up-

date algorithm when side information is presented. There
are many possible forms of side information on which these
algorithms might be tested. In our experiments, we chose
to define the side information value to be the index of the
stock with the best growth of wealth on the last 100 trading
days — information that would certainly be available to a
investor in a real trading situation. Thus, the possible set of
values for the side information is 1 where .

The results are summarized in Table 4. It is evident
from the examples given in the table that using the side
information (i.e., keeping portfolio vectors) results in a
significant improvement in the wealth achieved, even when
using such simple and readily available side information.
However, the gap between the best side information depen-

With Side Information
Stocks BCRP EG Univ.
Iroq. & Kin Ark 307.9 99.4 86.6
Com. & Kin Ark 451.3 257.2 115.7
Com. & Meicco 436.2 186.1 110.9
IBM & Coke 118.5 89.9 21.1

Table 4: Comparison of the wealth achieved by the best constant-
rebalanced portfolio (BCRP) and the EG -update when side
information about the best stock in the last 100 trading days is
presented. We have used the same learning rate ( 0 05) for
both cases. (Refer to Table 1 for a comparison to the wealth
achieved when no side information is presented.)

dent constant-rebalanced portfolio and the wealth achieved
by the EG -update with side information is now much
larger. One of the reasons is that we used the same learning
rate regardless of the side information value. Large learn-
ing rates cause the update algorithms to quickly approach
the best constant-rebalanced portfolio, but make it difficult
for the algorithm to reach this portfolio exactly. On the
other hand, small learning rates aid convergence to the best
constant-rebalanced portfolio, but may cause the algorithm
to spend a long time far away from this value. Therefore,
when the side information splits the number of trading days
unevenly, different learning rates for the different side in-
formation values may be required.

5 ANALYSIS
In this section, we analyze the logarithmic wealth obtained
by the EG portfolio update rule. We state worst-case
bounds on the update which imply that the EG update
is almost as good as the best constant-rebalanced portfolio
when certain assumptions hold on the relative volatility of
the stocks in the portfolio. We also present a variant of
EG which requires no such assumptions. All proofs
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have been omitted for lack of space.
Although the analysis is presented for a single portfolio

vector, it can be generalized to the multiple vectors kept
when side information is present by partitioning the trad-
ing days based on the side information and treating each
partition separately.

Since represents price relatives, we have that 0
for all and . Furthermore, we assume that max 1
for all . We can make this assumption without loss of
generality since multiplying the price relatives by a con-
stant simply adds log to the logarithmic wealth, leaving
the difference between the logarithmic wealth achieved by
the EG -update and the best achieved logarithmicwealth

unchanged. Put another way, the assumed lower bound
on used in Theorem 1 (below) can be viewed as a lower
bound on the ratio of the worst to best price relatives for
trading day .

The following theorem characterizes a general property
of the EG -update.

Theorem 1 Let u be a portfolio vector, and let
x1 x be a sequence of price relatives with 0
for all and max 1 for all . For 0 the
logarithmicwealth due to the portfolio vectors produced by
the EG -update is bounded from below as follows:

1
log w x

1
log u x D u w1

8 2

Furthermore, if w1 is chosen to be the uniform proportion
vector, and we set 2 2 log then we have

1
log w x

1
log u x

2 log
2

Since 1
1 log Theorem 1 im-

mediately gives ln 2 2 (under the
conditions of Theorem 1). Thus, for an appropriate choice
of , when the number of days becomes large, the differ-
ence between the logarithmic wealth achieved by EG is
guaranteed to converge to the logarithmicwealth of the best
constant-rebalanced portfolio. However, Theorem 1 is not
strong enough to show that EG is a universal portfolio
algorithm. This is because choosing the proper requires
knowledge of both the number of trading days and the ratio
in advance. We will deal with both of these difficulties,

starting with the dependence of on .
When no lower bound on is known, we can use

the following portfolio update algorithm which is parame-
terized by a real number 0 1 . Let

˜ 1
where is the all 1’s vector. As before, we maintain a
portfolio vector which is updated using ˜ rather than
:

1 exp ˜ ˜
exp ˜ ˜

Further, the portfolio vector that we invest with is also
slightlymodified. Specifically, the algorithm uses the port-
folio vector ˜ 1 and so the loga-
rithmic wealth achieved is log ˜ .

We call this modified algorithm EG .

Theorem 2 Let u be a portfolio vector, and let
x1 x be a sequence of price relatives with 0 for
all and max 1 for all . For 0 1 2 and

0, the logarithmic wealth due to the portfolio vectors
produced by the EG -update is bounded from below
as follows:

1

log w̃ x

1

log u x 2 D u w1
8 2

Furthermore, if w1 is chosen to be the uniform pro-
portion vector, 2 2 log , and we set

2 log 8 1 4 and 8 2 log 2 then
we have

1
log w̃ x

1
log u x 2 2 2 log 1 4 3 4

5

Dividing inequality (5) of Theorem 2 by the number of
trading days shows that the logarithmic wealth achieved
by the EG -update converges to that of the best
constant-rebalanced portfolio (for an appropriate choice of
dependent on ). However, we still have the issue that

the learning rate must be chosen in advance as a function
of . The following algorithm and corollary shows how a
doubling trick can be used to obtain a universal portfolio
algorithm.

The staged EG -update runs in stages which are
numbered from 0. The number of days in stage 0 is
2 2 log , and the number of days in each stage 0 is
2 2 log . Thus if 2 2 log is the total number of
days, the last stage entered is numbered log2 2 2 log .
At the start of each stage the portfoliovector is re-initialized
to the uniform proportion vector and and are set as in
Theorem 2 using the number of days in the stage as the
value for .

Corollary 3 The staged EG -update is a universal
portfolio selection algorithm.

In sum, the difference between the average daily loga-
rithmic increase in wealth of the EG -update and the
best constant-rebalanced portfolio drops to zero at the rate

2 log 1 4 for 2 2 log . When the ra-
tio between the best and worst stock on each day is bounded
and relatively small (as can often be expected in practice),

8



the EG -update can be used instead giving a convergence
rate to zero of log . In comparison, the bounds
proved by Cover and Ordentlich [10] for their algorithm
converge to zero at the rate log . In terms of
the number of trading days , their bounds are much supe-
rior, especially compared to our bound for EG . The
only case in which our bounds have an advantage is when
the number of stocks included in the portfolio is relatively
large and the market has bounded relative volatility so that
EG can be used. Despite the comparative inferiority of
our theoretical bounds, in our experiments, we found that
our algorithm did better, even though the number of trading
days was large (over 5,000) and the portfolios included
only a few stocks.

6 DISCUSSION AND FUTURE
RESEARCH

Although the experimental results presented in this paper
are encouraging, we have ignored one important aspect of
a real market — trading costs. Typically, there are two
types of commissions imposed in a real market. In the
first case, the investor needs to pay a percentage of the
transaction to a broker. In this case, we can still write
down a closed form expression for the wealth achieved at
each time step while taking the trading costs into account.
However, the wealth function we are trying to maximize
becomes highly non-linear and it is hard to derive an update
rule. The second type of commission is to pay a fixed
amount per transaction, that is, per purchase or sale of a
stock. Therefore, there might be days for which the wealth
will be larger if no trading is performed, especially if the
portfolio vector after the new trading day is close to the
desired portfolio vector. We can define a semi-constant-
rebalanced portfolio which is rebalanced only on a subset
of the possible trading days. Now, in addition to the best
constant-rebalanced portfolio, we need also to find the best
subset of the sequence that results in the maximal wealth.
We suspect that finding the best subset is computationally
hard. Still, it is not clear whether finding a competitive
approximation is hard as well.

This paper and most other work on investment strate-
gies employ a tacit assumption that the market is stationary
and seek a strategy that successfully competes against the
best single constant-rebalanced portfolio. However, this as-
sumption is far from being realistic. An interestingquestion
is whether the techniques developed for tracking a drifting
concept [3, 14] can be applied to the case of on-line portfo-
lio selection in a changing market. Clearly, using a scheme
that tracks a drifting portfolio vector might yield a more
powerful investment strategy, both theoretically and empir-
ically.
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