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Abstract 
We describe a unifying method for proving relative loss bounds for on­
line linear threshold classification algorithms, such as the Perceptron and 
the Winnow algorithms. For classification problems the discrete loss is 
used, i.e., the total number of prediction mistakes. We introduce a con­
tinuous loss function, called the "linear hinge loss", that can be employed 
to derive the updates of the algorithms. We first prove bounds w.r.t. the 
linear hinge loss and then convert them to the discrete loss. We intro­
duce a notion of "average margin" of a set of examples . We show how 
relative loss bounds based on the linear hinge loss can be converted to 
relative loss bounds i.t.o. the discrete loss using the average margin. 

1 Introduction 
Consider the classical Perceptron algorithm. The hypothesis of this algorithm at trial t 
is a linear threshold function determined by a weight vector Wt E Rn. For an instance 
Xt ERn the linear activation at = Wt . Xt is passed through a threshold function (7 r 

which is -Ion arguments less than the threshold rand + 1 otherwise. Thus the prediction 
of the algorithm is binary and -1 , + 1 denote the two classes. The Perceptron algorithm 
is aimed at learning a classification problem where the examples have the form (X t , Yt ) E 
R n x {-I , +1} . 

After seeing T examples (Xt,Yt)1<t<T, the algorithm predicts with YT+1 = (7r(WT+1 . 

xT+ d on the next instance XT+1. Tfthe algorithm's prediction YT+l agrees with the label 
YT+ 1 on the instance xT +1, then its loss is zero. If the prediction and the label disagree, 
then the loss is one. We call this loss the discrete loss. 

The convergence of the Perceptron algonthm is established in the Perceptron convergence 
theorem. There is a second by now classical algorithm for learning with linear threshold 
functions : the Winnow algorithm of Nick Littlestone [Lit88] . This algorithm also maintains 
a weight vector and predicts with the same linear threshold function defined by the current 
weight vector Wt . However, the update of the weight vector W t = (Wt.l , . . . , Wt ,n ) 
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performed by the two algorithms is radically different: 

Perceptron: Wt+l := Wt - 1] 6t Xt 

Winnow: In Wt+! ,i := In Wt,i - 1] 6t Xt ,i 

The Perceptron algorithm performs a simple additive update. The parameter 1] is a positive 
learning rate and 6t equals (fit - Yt) /2, which lies in {-1, 0, + 1 }. When 6t = 0 the pre­
diction of the algorithm is correct and no update occurs. Both the Perceptron algorithm and 
Winnow update conservatively, i.e., they update only when the prediction of the algorithm 
is wrong. If fit = + 1 and Yt = -1 then the algorithm overshot and 6t = + 1. This causes 
the Perceptron to subtract 1] Xt from the current weight Wt. Similarly if fit = -1 and 
Yt = +1 then the algorithm undershot and 6t = -1. Now the Perceptron adds 1] Xt to the 
current weight Wt. We will later interpret 6t Xt as a gradient of a loss function. Winnow 
uses the same gradient but the update is done through the componentwise logarithm of the 
weight vector. One can also rewrite Winnow's update as 

Wt+l ,i := Wt ,i exp (-1] 6tXt,i), i = 1, ... , n , 

so that the gradient appears in the exponents of factors that multiply the old weights. The 
factors are now used to correct the weights in the right direction when the algorithm under 
or overshot. 

The algorithms are good for different purposes and, generally speaking, incomparable (see 
[KWA97] for a discussion). In [KW97] a framework was introduced for deriving simple 
on-line learning updates. This framework has been applied to a variety of different learning 
algorithms and differentiable loss functions [HKW95, KW98]. The updates are always 
derived by approximately solving the following minimization problem 

Wt+! := argminwU(w), where U(w) = d(w , Wt) + 1]loss(Yt, C1r (w · Xt )) . (1) 

Here loss denotes the chosen loss function. In our setting this would be the discrete loss. 
What is different now is that the prediction of the algorithm Yt = C1r (Wt . xd and the 
discrete loss are discontinuous in the weight vector Wt. We will return to this point later 
after discussing the other parts of the above minimization problem. The parameter TJ is the 
learning rate mentioned above and, most importantly, d(w , Wt) is a divergence measuring 
how far W is from Wt. The divergence function has two purposes. It motivates the update 
and it becomes the potential function in the amortized analysis used to prove loss bounds 
for the corresponding algorithm. 

The use of an amortized analysis in the context of learning essentially goes back to [Lit89] 
and the method for deriving updates based on the divergence was introduced in [KW97]. 
The divergence may be seen as a regularization term and may also serve as a barrier func­
tion in the optimization problem (1) for the purpose of keeping the weights in a particular 
region. The additive algorithms, such as gradient descent and the Perceptron algorithm, use 
d( w, wd = Ilw - Wt W /2 as the divergence. This can be used as a potential function for 
the proof of the Perceptron convergence theorem. Multiplicative update algorithms such as 
Winnow and various exponentiated gradient algorithms use entropy-based divergences as 
potential functions [HKW95, KW98]. The function U in (1) is minimized by differentiat­
ing w.r.t. w. This works very well when the loss function is convex and differentiable. For 
example for linear regression, when the loss function is the square loss (Wt . Xt - Yt)2/2 , 

then minimizing U( w ) with the divergence Ilw - Wt 112/2 gives the Widrow-Hoff update : 

Wt+! := W t -1](Wt+l . Xt - Yt )X t ~ Wt -1](Wt . Xt - Yt)Xt. 

Various exponentiated gradient algorithms [KW97] can be derived in the same way when 
entropic divergences are used instead. However, in our case we cannot differentiate the 
discrete loss since it is discontinuous. 

We asked ourselves which loss function motivates the Perceptron and Winnow algorithms 
in this framework. We will see that the loss function that achieves this is continuous and 
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its gradient w.r.t. Wt is Otxt. where Ot E {-I, 0, + I}. We call this loss the (linear) hinge 
loss (HL) and we believe this is the key tool for understanding linear threshold algorithms 
such as the Perceptron and Winnow. However, in the process of changing the discrete 
loss to the HL we also changed our learning problem from a classification to a regression 
problem. There are now two versions of each algorithm, a classification version and a 
regression version. The classification version predicts with a binary label using its linearly 
thresholded prediction. The loss function is the discrete loss. The regression version, on 
the other hand. predicts on the next instance Xt with its linear activation at = Wt ·Xt. In the 
classification problem the labels Yt of the examples are -1 and + 1, while in the regression 
problem the labels at are -00 and +00. We will see that both versions of each algorithm 
use the same rule to update the weight vector Wt. 

Another strong hint that the HL is related to Perceptron and Winnow comes from the fact 
that this loss may be seen as a limiting case of the entropic loss used in logistic regression. 
In logistic regression the threshold function Ur is replaced by the smooth tanh function. 
There is a technical way of associating a "matching loss function" with a given increasing 
transfer function [HKW95]. The matching loss for the tanh transfer function is the en­
tropic loss. We will show that by making this transfer function steeper and by taking the 
right viewpoint of the matching loss, the entropic loss converges to the HL. In the limiting 
case the slope ofthe transferfunction is infinite, i.e., it becomes the threshold function U r • 

The question is whether this introduction of the HL buys us anything. We believe so. 
We can prove a unifying meta-theorem for the whole class of general additive algorithms 
[GLS97, KW98], when defined w.r.t. the HL. The bounds for the regression versions of the 
Perceptron and Winnow are simple special cases. These loss bounds can then be converted 
to loss bounds for the corresponding classification problems w.r.t. the discrete loss. This 
conversion is carried out through working with the "average margin" of a set of examples 
relative to a linear threshold classifier. The conversion of the HL described in this paper 
can then be considered a principled way of deriving average margin-based mistake bounds. 
The average margin reveals the inner structure of mistake bound results that have been 
proven thus far for conservative on-line algorithms. Previously used definitions, such as 
the deviation [FS98] and the attribute error [Lit91], can easily be related to the average 
margin or reinterpreted in terms of the HL and the average margin. 

2 Preliminaries and the linear hinge loss 
We define two subsets of n n: the weight domain Wand the instance domain X. The 
weights W maintained by the algorithms always lie in the weight domain and the instances 
x of the examples always lie in the instance domain. We require W be convex. 

A general additive algorithm and a divergence are defined in terms of a link function f. 
Such a function is a vector valued function from the interior int W of the weight domain 
W onto nn. with the property that its Jacobian is strictly positive definite everywhere in 
int W. A link function f has a unique inverse f-1 : nn -+ int W. We assume that f 
is the gradient of a (potential) function Pr from int W to n, i.e., f(w) = \7Pr (w) for 
W E int W. It is easy to extend the domain of Pr such that it includes the boundary of W. 

For any link function f, a (Bregman) divergence function dr : W x int W -+ [0, (0) is 
defined as [Bre67]: 

dr(u,w) = Pr(u) - Pr(w) - (u - w)· f(w). (2) 

Thus dr( u, w) is the difference between Pr{ u) and its first order Taylor expansion around 
w. Since f has a strictly positive definite Jacobian everywhere in int W, the potential Pr is 
strictly convex over W. Thus dr(u, w) ~ 0 with equality holding iff u = w. 

The Perceptron algorithm is motivated by the identity link f (w) = w, with weight domain 
W = nn. The corresponding divergence is dr(u, w) = Ilu - wW /2. For Winnow the 
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Ora 0 r 

Ur(a) = -1 Ur(a) = +1 

Figure 1: HL( a, a) as a function of a for the two 
cases ur{a) = -1, +1. 
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ii=u(a) 

Figure 2: The matching loss 
MLu-l (y, f). 

weight domain is W = [O,oo)n. The link function is the componentwise logarithm. The 
divergence related to this link function is the un-normalized relative entropy dr( U, w) = 
2:~=1 Ui In ~ + Wi - Ui. Note that now U E W, but w must lie in int W. 

The following key property immediately follows from the definition of the divergence dr. 

Lemma! [KW98JForanyu E Wandwl,w2 E intW: 

In this paper we focus on a single neuron using a hard threshold as the transfer function (see 
beginning of the introduction). We will view such a neuron in two ways. In the standard 
view the neuron is used for binary classification. It outputs f) = U r (a) trying to predict the 
desired label y using a threshold r. In the new view the neuron is a regressor. It outputs the 
linear activation a E 'R, and is trying to predict a E 'R,. 

For classification we use the discrete loss DL(y,f) = ~Ifj - yl E {0,1}. For regression 
we use the linear hinge loss (HL) parameterized by a threshold r: 

For any a, a E R: HLr{a, a) := ~(Ur(a) - CTr(a»(a - r) = DL(y, fj)la - rl· 

Note that the arguments in the two losses DL and HLr are switched. This is intentional and 
will be discussed later on. 

It can be easily shown that HLr{w . x, a) is convex in wand that the gradient of this 
loss w.r.t. w is 'VwHLr(w, x, a) = ~(ur{a) - ur(a» X. Note that 6 = (ur(a) -
ur (a»/2 can only take the three values 0, -1, and +1 mentioned in the introduction. 
Strictly speaking, this gradient is not defined when w . x equals the threshold r. But we 
will show in the subsequent sections that even in that case 6 x has the properties we need. 
Figure 1 provides a graphical representation of HLr . The threshold function CTr "transfers" 
the linear activation a = w . x to a prediction f) which is a hard classification in {-1, +1}. 
(For the remaining discussion of this section we can assume with no loss of generality that 
the threshold r is 0.) Smooth transfer functions such as the tanh are commonly used 
in neural networks, e.g., fj = tanh(a), and relative loss bounds have been proven when 
the comparison class consists of single neurons with any increasing differentiable transfer 
function CT [HKW95, KW98]. However, for this to work a loss function that "matches" the 
transfer function has to be used. This loss is defined] as follows [HKW95] (see Figure 2): 

MLu-l (y, fj) := f:~ll(~; u(z) - y dz = dU-1 (y, f). 

The matching loss for u(z) = z is the square loss (linear regression) and the matching 
loss for u(z) = tanh(z) is the entropic loss (logistic regression), which is defined as: 

lIn [HKW95] the notation Lu(Y, y) is used for the matching loss MLu-l (y, y). We use here the 
subscript a -1 instead of a to stress a connection between the matching loss and the divergence that 
is discussed at the end of this section. 
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MLO'-l (y , y) = ~(1 - y) In !=~ + t(1 + y) In !!~ . The entropic loss is finite when y E 
[-1, +1] and y = tanh(a) E (-1 , +1). These are the ranges for y and Y needed for 
logistic regression. We now want to use this type of loss for classification with linear 
threshold functions, i.e., when y, y E {-I, + I} and the slope s of the tanh function is 
increased until in the limit it becomes the hard threshold (10 . Obviously, (1-1 ( -1) = - 00 

and (1-1 (+ 1) = +00 for any slope s. Thus the matching loss is infinite for all slopes. 
Also, the known relative loss bounds based on the above notion of matching loss grow with 
the slope of the transfer function. Thus it seems to be impossible to use the matching loss 
when the transfer function is the hard threshold 170. However, we can still make sense of 
the matching loss by viewing the neuron as a regressor. The matching loss is now rewritten 
as another Bregman divergence: 

MLcr(a,a) = lil u(z ) - a(a) dz = PO'(a) - PO'(a) - (a - a)a(a) = dcr((i , a), (3) 

where PO' is any function such that P;(a) = (1(a) . We now increase the slope of the transfer 
function tanh while keeping a and a fixed. In the limiting case (hard thr~old (70) the 
above loss becomes twice the linear hinge loss with threshold zero, i.e., MLO'o (a, a) = 
2 HLo(a, a) = ((1o(a) - (1o(a))(a - 0). Finally, observe that the two views of the neuron 
are related to a duality property [AW98] of Bregman divergences: 

(4) 

3 The algorithms 

In this paper we always associate two general additive algorithms with a given 
link function: a classification algorithm and a regression algorithm. Such algo­
rithms, given in the next table, correspond to the two views of a linear thresh­
old neuron discussed in the last section. For brevity, we will call the two al­
gorithms "the classification algorithm" and "the regression algorithm", respectively. 

Gen. add. classification algorithm: Gen. add. regression algorithm: 
For t = 1,2, . . . For t = 1,2, .. . 
Instance: Xt E R n Instance: Xt E R n 

Prediction: Yt = ar(wt . Xt) Prediction: at = Wt . Xt 
Label: Yt E {-I, +1} Label:2 at = Ytoo 
Update: Update: 

Wt+1 =f-1 (f(wt) - ¥{f)t - Yt)xt} wt+l=f-1 (f(wt) - ¥(ar(at) -ur(ad)xt) 
Discrete loss: Linear hinge loss: 

DL(yt. Yt) = tlYt - Ytl HLr(at , at) = t(ar(at) -ar(at ))(at - r) 

The classification algorithm receives a label Yt E {- I, + 1 }, while the regression algo­
rithm receives the infinite label at with the sign of Yt. This assures that Yt = a r (ad. The 
classification algorithm predicts with Yt = ar(ad, and the regression algorithm with its 
linear activation at. The loss for the classification algorithm is the discrete loss DL(Yt, Yt), 
while for the regression algorithm we use HLr( at. at) . The updates of the two algorithms 
are equivalent. The update of the regression algorithm is motivated by the minimization 
problem: 

Wt+1 := argminwU(w) where U(w) = dr (w, wd + 'T/ HLr(w . Xt. ad. 
By setting the gradient of U(w ) w.r.t. w to zero we get the follow-
ing equilibrium equation that holds at the minimum of U(w): Wt -"-1 
f- 1 (f (wt ) - ¥(ar(Wt+l . Xt) -o"r(at))xt} . We approximately solve this equation by re­

placing Wt+l ' Xt by at = Wt ' Xt, i.e., Wt+1 = f- 1 (f(wt) - ¥(ar(at}-ar (at)) xt) . 

2This is a short-hand meaning at = ;-00 if Yt = ;-1 and at = - 00 if Yt = -1 . 
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Both versions of the Perceptron and Winnow are obtained by using the link functions 
f(w) = wand f(w) = (In(wd, ... , In(wn )). respectively. 

4 Relative loss bounds 

The following lemma relates the hinge loss of the regression algorithm to the hinge loss of 
an arbitrary linear predictor u. 

Lemma 2 For all U E W, W t E int W, Xt EX, at , r E Rand 1] > 0: 

HLr(at,at) - HLr(u , xt,at) + HLr(u, xt,at) 

= * (dr(u,wt) - dr(u,wt+1) + dr(wt,wt+1)) = !(Yt - Yt) (at - U· xt} (5) 

Proof. We have dr(u, Wt) - dr(u, Wt+d + dr(wt , Wt+l) = (u - Wt) . (J(Wt+d -
j(wd) = (Wt - u) . ¥(O"r(at) - o"r(at)) Xt = ¥(O"r(at) - O"r(at)) (at - U . Xt) = 
1] (HLr(at, at) - HLr(u . Xt, at) + HLr(u . Xt , ad) . The first equality follows Lemma 1 
and the second follows from the update rule of the regression algorithm. The last equality 
uses HLr(at, at) as a divergence drTr (at , at) (see (4)) and again Lemma 1. 0 

By summing the first equality of (5) over all trials t we could relate the total HLr of the 
regression algorithm to the total HLr of the regressor u. However, our goal is to obtain 
bounds on the number of mistakes on the classification algorithm. It is therefore natural 
to interpret u too as a linear threshold classifier. with the same threshold r used by the 
classification algorithm. We use the second equality of (5) and sum up over all T trials: 

L,;=I !(Yt - Yt) (a - u . Xt) = * (dr(u, wd - dr(u, wT+d + L,;=I dr(Wt, wt+d). 

Note that the sums in the above equality are unaffected by trials in which no mistake occurs. 
In such trials. Yt = Yt and Wt+1 = Wt . Thus the above is equivalent to the following. where 
M is the set of trials in which a mistake occurs: 

L,tEM !(Yt - Yt ) (at - U· Xt) = ~ (dr(u, wd - dr (u , wT+d + L,tE.vt dr(wt, wt+d). 

Since t(Yt -Yt) = -Yt when t E J\It and dr(u , WT+1) :::: 0 we get the following theorem: 

Theorem 3 Let M ~ {I, .. . ,T} be the set a/trials in which the classification algorithm 
makes a mistake. Then/or every u E W we have 

L,tEM Yt (u . Xt - at) ~ ~ (dr(u, wt} + L,tEM dr(wt, wt+d) . 0 

Throughout the rest of this section the classification algorithm is compared to the perfor­
mance of a linear threshold classifier u with threshold r = O. We now apply Theorem 3 to 
the Perceptron algorithm with WI = 0, giving a bound i.t.o. the average margin of a linear 
threshold classifier u with threshold 0 on a trial sequence M: 

i'u ,M := ILl L,tEM Yt U . Xt · 

Since Yt at ~ 0 for t E M . the I.h.s. of the inequality of Theorem 3 is at least 

I I A " ( ),,!i. 2 !i. "'2 M "(U,M' By the update rule. L."tEM dr wt, Wt+1 = L."tEM 211xtl1 2 ~ 21 .Iv1IX2 ' 
where IIxI12 ~ X 2 for t E M . Since in Theorem 3 u is an arbitrary vector. we replace 

u by A u therein, and set A = .x~ 1) • When we solve the resulting inequality for 1.1v11 the 
I'U ,M 

dependence on 1] cancels out. This gives us the following bound on the number of mistakes: 

IMI ~ ( 1 1~ 1 12X)2 
I'U. )vl 
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Note that in the usual mistake bound for the Perceptron algorithm the average 'Yu,/vt is re­
placed by mintEM Ytu, Xt. 3 Also, observe that the predictions of the Perceptron algorithm 
with r = 0 and WI = 0 are not affected by 1]. Hence the previous bound holds for any 
1] > O. 

Next, we apply Theorem 3 to a normalized version of Winnow. This version of Winnow 
keeps weights in the probability simplex and is obtained by a slight modification of Win­
now's link function. We assume r = 0 and choose X = {x E nn : Ilxlloo ~ Xoo}. 
Unlike the Perceptron algorithm, a Winnow-like algorithm heavily depends on the learning 
rate, so a careful tuning is needed. One can show (details omitted due to space limitations) 

that if 1] is such that 1] 'YU,M + 1] X 00 - In ( e 2
'1

X2°o +1) > 0 then this normalized version of 

Winnow achieves the bound 

IMI < dr(u, WI) 

-, X I (e 2'1Xoo +1) , 
1]'YU,M +1] 00 - n 2 

where dr( u, wd is the relative entropy between the two probability vectors U and Wl. 

Conclusions: In the full paper we study the case when there is no consistent threshold U 

more carefully and give more involved bounds for the Winnow and normalized Winnow 
algorithms as well as for the p-norm Perceptron algorithm [GLS97]. 
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