
Linear Hinge Loss and Average Margin

Claudio Gentile
DSI, Universita' di Milano,

Via Comelico 39,
20135 Milano. Italy

gentile@dsi.unimi.it

Manfred K. Warmuth·
Computer Science Department,

University of California,
95064 Santa Cruz, USA

manfred@cse.ucsc.edu

Abstract
We describe a unifying method for proving relative loss bounds for on­
line linear threshold classification algorithms, such as the Perceptron and
the Winnow algorithms. For classification problems the discrete loss is
used, i.e., the total number of prediction mistakes. We introduce a con­
tinuous loss function, called the "linear hinge loss", that can be employed
to derive the updates of the algorithms. We first prove bounds w.r.t. the
linear hinge loss and then convert them to the discrete loss. We intro­
duce a notion of "average margin" of a set of examples . We show how
relative loss bounds based on the linear hinge loss can be converted to
relative loss bounds i.t.o. the discrete loss using the average margin.

1 Introduction
Consider the classical Perceptron algorithm. The hypothesis of this algorithm at trial t
is a linear threshold function determined by a weight vector Wt E Rn. For an instance
Xt ERn the linear activation at = Wt . Xt is passed through a threshold function (7 r

which is -Ion arguments less than the threshold rand + 1 otherwise. Thus the prediction
of the algorithm is binary and -1 , + 1 denote the two classes. The Perceptron algorithm
is aimed at learning a classification problem where the examples have the form (X t , Yt) E
R n x {-I , +1} .

After seeing T examples (Xt,Yt)1<t<T, the algorithm predicts with YT+1 = (7r(WT+1 .

xT+ d on the next instance XT+1. Tfthe algorithm's prediction YT+l agrees with the label
YT+ 1 on the instance xT +1, then its loss is zero. If the prediction and the label disagree,
then the loss is one. We call this loss the discrete loss.

The convergence of the Perceptron algonthm is established in the Perceptron convergence
theorem. There is a second by now classical algorithm for learning with linear threshold
functions : the Winnow algorithm of Nick Littlestone [Lit88] . This algorithm also maintains
a weight vector and predicts with the same linear threshold function defined by the current
weight vector Wt . However, the update of the weight vector W t = (Wt.l , . . . , Wt ,n)

• Supported by NSF grant CCR-970020 1.

226 C. Gentile and M. K. Warmuth

performed by the two algorithms is radically different:

Perceptron: Wt+l := Wt - 1] 6t Xt

Winnow: In Wt+! ,i := In Wt,i - 1] 6t Xt ,i

The Perceptron algorithm performs a simple additive update. The parameter 1] is a positive
learning rate and 6t equals (fit - Yt) /2, which lies in {-1, 0, + 1 }. When 6t = 0 the pre­
diction of the algorithm is correct and no update occurs. Both the Perceptron algorithm and
Winnow update conservatively, i.e., they update only when the prediction of the algorithm
is wrong. If fit = + 1 and Yt = -1 then the algorithm overshot and 6t = + 1. This causes
the Perceptron to subtract 1] Xt from the current weight Wt. Similarly if fit = -1 and
Yt = +1 then the algorithm undershot and 6t = -1. Now the Perceptron adds 1] Xt to the
current weight Wt. We will later interpret 6t Xt as a gradient of a loss function. Winnow
uses the same gradient but the update is done through the componentwise logarithm of the
weight vector. One can also rewrite Winnow's update as

Wt+l ,i := Wt ,i exp (-1] 6tXt,i), i = 1, ... , n ,

so that the gradient appears in the exponents of factors that multiply the old weights. The
factors are now used to correct the weights in the right direction when the algorithm under
or overshot.

The algorithms are good for different purposes and, generally speaking, incomparable (see
[KWA97] for a discussion). In [KW97] a framework was introduced for deriving simple
on-line learning updates. This framework has been applied to a variety of different learning
algorithms and differentiable loss functions [HKW95, KW98]. The updates are always
derived by approximately solving the following minimization problem

Wt+! := argminwU(w), where U(w) = d(w , Wt) + 1]loss(Yt, C1r (w · Xt)) . (1)

Here loss denotes the chosen loss function. In our setting this would be the discrete loss.
What is different now is that the prediction of the algorithm Yt = C1r (Wt . xd and the
discrete loss are discontinuous in the weight vector Wt. We will return to this point later
after discussing the other parts of the above minimization problem. The parameter TJ is the
learning rate mentioned above and, most importantly, d(w , Wt) is a divergence measuring
how far W is from Wt. The divergence function has two purposes. It motivates the update
and it becomes the potential function in the amortized analysis used to prove loss bounds
for the corresponding algorithm.

The use of an amortized analysis in the context of learning essentially goes back to [Lit89]
and the method for deriving updates based on the divergence was introduced in [KW97].
The divergence may be seen as a regularization term and may also serve as a barrier func­
tion in the optimization problem (1) for the purpose of keeping the weights in a particular
region. The additive algorithms, such as gradient descent and the Perceptron algorithm, use
d(w, wd = Ilw - Wt W /2 as the divergence. This can be used as a potential function for
the proof of the Perceptron convergence theorem. Multiplicative update algorithms such as
Winnow and various exponentiated gradient algorithms use entropy-based divergences as
potential functions [HKW95, KW98]. The function U in (1) is minimized by differentiat­
ing w.r.t. w. This works very well when the loss function is convex and differentiable. For
example for linear regression, when the loss function is the square loss (Wt . Xt - Yt)2/2 ,

then minimizing U(w) with the divergence Ilw - Wt 112/2 gives the Widrow-Hoff update :

Wt+! := W t -1](Wt+l . Xt - Yt)X t ~ Wt -1](Wt . Xt - Yt)Xt.

Various exponentiated gradient algorithms [KW97] can be derived in the same way when
entropic divergences are used instead. However, in our case we cannot differentiate the
discrete loss since it is discontinuous.

We asked ourselves which loss function motivates the Perceptron and Winnow algorithms
in this framework. We will see that the loss function that achieves this is continuous and

Linear Hinge Loss and Average Margin 227

its gradient w.r.t. Wt is Otxt. where Ot E {-I, 0, + I}. We call this loss the (linear) hinge
loss (HL) and we believe this is the key tool for understanding linear threshold algorithms
such as the Perceptron and Winnow. However, in the process of changing the discrete
loss to the HL we also changed our learning problem from a classification to a regression
problem. There are now two versions of each algorithm, a classification version and a
regression version. The classification version predicts with a binary label using its linearly
thresholded prediction. The loss function is the discrete loss. The regression version, on
the other hand. predicts on the next instance Xt with its linear activation at = Wt ·Xt. In the
classification problem the labels Yt of the examples are -1 and + 1, while in the regression
problem the labels at are -00 and +00. We will see that both versions of each algorithm
use the same rule to update the weight vector Wt.

Another strong hint that the HL is related to Perceptron and Winnow comes from the fact
that this loss may be seen as a limiting case of the entropic loss used in logistic regression.
In logistic regression the threshold function Ur is replaced by the smooth tanh function.
There is a technical way of associating a "matching loss function" with a given increasing
transfer function [HKW95]. The matching loss for the tanh transfer function is the en­
tropic loss. We will show that by making this transfer function steeper and by taking the
right viewpoint of the matching loss, the entropic loss converges to the HL. In the limiting
case the slope ofthe transferfunction is infinite, i.e., it becomes the threshold function U r •

The question is whether this introduction of the HL buys us anything. We believe so.
We can prove a unifying meta-theorem for the whole class of general additive algorithms
[GLS97, KW98], when defined w.r.t. the HL. The bounds for the regression versions of the
Perceptron and Winnow are simple special cases. These loss bounds can then be converted
to loss bounds for the corresponding classification problems w.r.t. the discrete loss. This
conversion is carried out through working with the "average margin" of a set of examples
relative to a linear threshold classifier. The conversion of the HL described in this paper
can then be considered a principled way of deriving average margin-based mistake bounds.
The average margin reveals the inner structure of mistake bound results that have been
proven thus far for conservative on-line algorithms. Previously used definitions, such as
the deviation [FS98] and the attribute error [Lit91], can easily be related to the average
margin or reinterpreted in terms of the HL and the average margin.

2 Preliminaries and the linear hinge loss
We define two subsets of n n: the weight domain Wand the instance domain X. The
weights W maintained by the algorithms always lie in the weight domain and the instances
x of the examples always lie in the instance domain. We require W be convex.

A general additive algorithm and a divergence are defined in terms of a link function f.
Such a function is a vector valued function from the interior int W of the weight domain
W onto nn. with the property that its Jacobian is strictly positive definite everywhere in
int W. A link function f has a unique inverse f-1 : nn -+ int W. We assume that f
is the gradient of a (potential) function Pr from int W to n, i.e., f(w) = \7Pr (w) for
W E int W. It is easy to extend the domain of Pr such that it includes the boundary of W.

For any link function f, a (Bregman) divergence function dr : W x int W -+ [0, (0) is
defined as [Bre67]:

dr(u,w) = Pr(u) - Pr(w) - (u - w)· f(w). (2)

Thus dr(u, w) is the difference between Pr{ u) and its first order Taylor expansion around
w. Since f has a strictly positive definite Jacobian everywhere in int W, the potential Pr is
strictly convex over W. Thus dr(u, w) ~ 0 with equality holding iff u = w.

The Perceptron algorithm is motivated by the identity link f (w) = w, with weight domain
W = nn. The corresponding divergence is dr(u, w) = Ilu - wW /2. For Winnow the

228

Ora 0 r

Ur(a) = -1 Ur(a) = +1

Figure 1: HL(a, a) as a function of a for the two
cases ur{a) = -1, +1.

C. Gentile and M. K. Warmuth

ii=u(a)

Figure 2: The matching loss
MLu-l (y, f).

weight domain is W = [O,oo)n. The link function is the componentwise logarithm. The
divergence related to this link function is the un-normalized relative entropy dr(U, w) =
2:~=1 Ui In ~ + Wi - Ui. Note that now U E W, but w must lie in int W.

The following key property immediately follows from the definition of the divergence dr.

Lemma! [KW98JForanyu E Wandwl,w2 E intW:

In this paper we focus on a single neuron using a hard threshold as the transfer function (see
beginning of the introduction). We will view such a neuron in two ways. In the standard
view the neuron is used for binary classification. It outputs f) = U r (a) trying to predict the
desired label y using a threshold r. In the new view the neuron is a regressor. It outputs the
linear activation a E 'R, and is trying to predict a E 'R,.

For classification we use the discrete loss DL(y,f) = ~Ifj - yl E {0,1}. For regression
we use the linear hinge loss (HL) parameterized by a threshold r:

For any a, a E R: HLr{a, a) := ~(Ur(a) - CTr(a»(a - r) = DL(y, fj)la - rl·

Note that the arguments in the two losses DL and HLr are switched. This is intentional and
will be discussed later on.

It can be easily shown that HLr{w . x, a) is convex in wand that the gradient of this
loss w.r.t. w is 'VwHLr(w, x, a) = ~(ur{a) - ur(a» X. Note that 6 = (ur(a) -
ur (a»/2 can only take the three values 0, -1, and +1 mentioned in the introduction.
Strictly speaking, this gradient is not defined when w . x equals the threshold r. But we
will show in the subsequent sections that even in that case 6 x has the properties we need.
Figure 1 provides a graphical representation of HLr . The threshold function CTr "transfers"
the linear activation a = w . x to a prediction f) which is a hard classification in {-1, +1}.
(For the remaining discussion of this section we can assume with no loss of generality that
the threshold r is 0.) Smooth transfer functions such as the tanh are commonly used
in neural networks, e.g., fj = tanh(a), and relative loss bounds have been proven when
the comparison class consists of single neurons with any increasing differentiable transfer
function CT [HKW95, KW98]. However, for this to work a loss function that "matches" the
transfer function has to be used. This loss is defined] as follows [HKW95] (see Figure 2):

MLu-l (y, fj) := f:~ll(~; u(z) - y dz = dU-1 (y, f).

The matching loss for u(z) = z is the square loss (linear regression) and the matching
loss for u(z) = tanh(z) is the entropic loss (logistic regression), which is defined as:

lIn [HKW95] the notation Lu(Y, y) is used for the matching loss MLu-l (y, y). We use here the
subscript a -1 instead of a to stress a connection between the matching loss and the divergence that
is discussed at the end of this section.

Linear Hinge Loss and Average Margin 229

MLO'-l (y , y) = ~(1 - y) In !=~ + t(1 + y) In !!~ . The entropic loss is finite when y E
[-1, +1] and y = tanh(a) E (-1 , +1). These are the ranges for y and Y needed for
logistic regression. We now want to use this type of loss for classification with linear
threshold functions, i.e., when y, y E {-I, + I} and the slope s of the tanh function is
increased until in the limit it becomes the hard threshold (10 . Obviously, (1-1 (-1) = - 00

and (1-1 (+ 1) = +00 for any slope s. Thus the matching loss is infinite for all slopes.
Also, the known relative loss bounds based on the above notion of matching loss grow with
the slope of the transfer function. Thus it seems to be impossible to use the matching loss
when the transfer function is the hard threshold 170. However, we can still make sense of
the matching loss by viewing the neuron as a regressor. The matching loss is now rewritten
as another Bregman divergence:

MLcr(a,a) = lil u(z) - a(a) dz = PO'(a) - PO'(a) - (a - a)a(a) = dcr((i , a), (3)

where PO' is any function such that P;(a) = (1(a) . We now increase the slope of the transfer
function tanh while keeping a and a fixed. In the limiting case (hard thr~old (70) the
above loss becomes twice the linear hinge loss with threshold zero, i.e., MLO'o (a, a) =
2 HLo(a, a) = ((1o(a) - (1o(a))(a - 0). Finally, observe that the two views of the neuron
are related to a duality property [AW98] of Bregman divergences:

(4)

3 The algorithms

In this paper we always associate two general additive algorithms with a given
link function: a classification algorithm and a regression algorithm. Such algo­
rithms, given in the next table, correspond to the two views of a linear thresh­
old neuron discussed in the last section. For brevity, we will call the two al­
gorithms "the classification algorithm" and "the regression algorithm", respectively.

Gen. add. classification algorithm: Gen. add. regression algorithm:
For t = 1,2, . . . For t = 1,2, .. .
Instance: Xt E R n Instance: Xt E R n

Prediction: Yt = ar(wt . Xt) Prediction: at = Wt . Xt
Label: Yt E {-I, +1} Label:2 at = Ytoo
Update: Update:

Wt+1 =f-1 (f(wt) - ¥{f)t - Yt)xt} wt+l=f-1 (f(wt) - ¥(ar(at) -ur(ad)xt)
Discrete loss: Linear hinge loss:

DL(yt. Yt) = tlYt - Ytl HLr(at , at) = t(ar(at) -ar(at))(at - r)

The classification algorithm receives a label Yt E {- I, + 1 }, while the regression algo­
rithm receives the infinite label at with the sign of Yt. This assures that Yt = a r (ad. The
classification algorithm predicts with Yt = ar(ad, and the regression algorithm with its
linear activation at. The loss for the classification algorithm is the discrete loss DL(Yt, Yt),
while for the regression algorithm we use HLr(at. at) . The updates of the two algorithms
are equivalent. The update of the regression algorithm is motivated by the minimization
problem:

Wt+1 := argminwU(w) where U(w) = dr (w, wd + 'T/ HLr(w . Xt. ad.
By setting the gradient of U(w) w.r.t. w to zero we get the follow-
ing equilibrium equation that holds at the minimum of U(w): Wt -"-1
f- 1 (f (wt) - ¥(ar(Wt+l . Xt) -o"r(at))xt} . We approximately solve this equation by re­

placing Wt+l ' Xt by at = Wt ' Xt, i.e., Wt+1 = f- 1 (f(wt) - ¥(ar(at}-ar (at)) xt) .

2This is a short-hand meaning at = ;-00 if Yt = ;-1 and at = - 00 if Yt = -1 .

230 C. Gentile and M. K. Warmuth

Both versions of the Perceptron and Winnow are obtained by using the link functions
f(w) = wand f(w) = (In(wd, ... , In(wn)). respectively.

4 Relative loss bounds

The following lemma relates the hinge loss of the regression algorithm to the hinge loss of
an arbitrary linear predictor u.

Lemma 2 For all U E W, W t E int W, Xt EX, at , r E Rand 1] > 0:

HLr(at,at) - HLr(u , xt,at) + HLr(u, xt,at)

= * (dr(u,wt) - dr(u,wt+1) + dr(wt,wt+1)) = !(Yt - Yt) (at - U· xt} (5)

Proof. We have dr(u, Wt) - dr(u, Wt+d + dr(wt , Wt+l) = (u - Wt) . (J(Wt+d -
j(wd) = (Wt - u) . ¥(O"r(at) - o"r(at)) Xt = ¥(O"r(at) - O"r(at)) (at - U . Xt) =
1] (HLr(at, at) - HLr(u . Xt, at) + HLr(u . Xt , ad) . The first equality follows Lemma 1
and the second follows from the update rule of the regression algorithm. The last equality
uses HLr(at, at) as a divergence drTr (at , at) (see (4)) and again Lemma 1. 0

By summing the first equality of (5) over all trials t we could relate the total HLr of the
regression algorithm to the total HLr of the regressor u. However, our goal is to obtain
bounds on the number of mistakes on the classification algorithm. It is therefore natural
to interpret u too as a linear threshold classifier. with the same threshold r used by the
classification algorithm. We use the second equality of (5) and sum up over all T trials:

L,;=I !(Yt - Yt) (a - u . Xt) = * (dr(u, wd - dr(u, wT+d + L,;=I dr(Wt, wt+d).

Note that the sums in the above equality are unaffected by trials in which no mistake occurs.
In such trials. Yt = Yt and Wt+1 = Wt . Thus the above is equivalent to the following. where
M is the set of trials in which a mistake occurs:

L,tEM !(Yt - Yt) (at - U· Xt) = ~ (dr(u, wd - dr (u , wT+d + L,tE.vt dr(wt, wt+d).

Since t(Yt -Yt) = -Yt when t E J\It and dr(u , WT+1) :::: 0 we get the following theorem:

Theorem 3 Let M ~ {I, .. . ,T} be the set a/trials in which the classification algorithm
makes a mistake. Then/or every u E W we have

L,tEM Yt (u . Xt - at) ~ ~ (dr(u, wt} + L,tEM dr(wt, wt+d) . 0

Throughout the rest of this section the classification algorithm is compared to the perfor­
mance of a linear threshold classifier u with threshold r = O. We now apply Theorem 3 to
the Perceptron algorithm with WI = 0, giving a bound i.t.o. the average margin of a linear
threshold classifier u with threshold 0 on a trial sequence M:

i'u ,M := ILl L,tEM Yt U . Xt ·

Since Yt at ~ 0 for t E M . the I.h.s. of the inequality of Theorem 3 is at least

I I A " (),,!i. 2 !i. "'2 M "(U,M' By the update rule. L."tEM dr wt, Wt+1 = L."tEM 211xtl1 2 ~ 21 .Iv1IX2 '
where IIxI12 ~ X 2 for t E M . Since in Theorem 3 u is an arbitrary vector. we replace

u by A u therein, and set A = .x~ 1) • When we solve the resulting inequality for 1.1v11 the
I'U ,M

dependence on 1] cancels out. This gives us the following bound on the number of mistakes:

IMI ~ (1 1~ 1 12X)2
I'U.)vl

Linear Hinge Loss and Average Margin 231

Note that in the usual mistake bound for the Perceptron algorithm the average 'Yu,/vt is re­
placed by mintEM Ytu, Xt. 3 Also, observe that the predictions of the Perceptron algorithm
with r = 0 and WI = 0 are not affected by 1]. Hence the previous bound holds for any
1] > O.

Next, we apply Theorem 3 to a normalized version of Winnow. This version of Winnow
keeps weights in the probability simplex and is obtained by a slight modification of Win­
now's link function. We assume r = 0 and choose X = {x E nn : Ilxlloo ~ Xoo}.
Unlike the Perceptron algorithm, a Winnow-like algorithm heavily depends on the learning
rate, so a careful tuning is needed. One can show (details omitted due to space limitations)

that if 1] is such that 1] 'YU,M + 1] X 00 - In (e 2
'1

X2°o +1) > 0 then this normalized version of

Winnow achieves the bound

IMI < dr(u, WI)

-, X I (e 2'1Xoo +1) ,
1]'YU,M +1] 00 - n 2

where dr(u, wd is the relative entropy between the two probability vectors U and Wl.

Conclusions: In the full paper we study the case when there is no consistent threshold U

more carefully and give more involved bounds for the Winnow and normalized Winnow
algorithms as well as for the p-norm Perceptron algorithm [GLS97].

References

[AW98] K. Azoury and M. K. Warmuth", "Relative loss bounds and the exponential
family of distributions", "1998", Unpublished manuscript.

[Bre67] L.M. Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming.
USSR Computational Mathematics and Physics, 7 :200-217, 1967.

[FS98] y. Freund and R. Schapire. Large margin classification using the perceptron
algorithm. In 11th COLT, pp. 209-217, ACM, 1998.

[GLS97] A. J. Grove, N. Littlestone, and D. Schuurmans. General convergence results
for linear discriminant updates. In 10th COLT, pp. 171-183. ACM, 1997.

[HKW95] D. P. Helmbold, 1. Kivinen. and M. K. Warmuth . Worst-case loss bounds for
sigmoided linear neurons. In NIPS 1995, pp. 309-315. MIT Press, 1995.

[KW97] J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updates
for linear prediction. Inform. and Comput., 132(1): 1-64. 1997.

[KW98] 1. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional re­
gression problems. In NIPS 10, pp. 287-293 . MIT Press, 1998.

[KWA97] J. Kivinen, M. K. Warmuth, and P. Auer. The perceptron algorithm vs. winnow:
linear vs. logarithmic mistake bounds when few input variables are relevant.
Artijiciallntelligence, 97:325-343,1997.

[Lit88] N. Littlestone. Learning when irrelevant attributes abound: A new Iinear­
threshold algorithm. Machine Learning, 2:285-318, 1988.

[Lit89] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning
Algorithms. PhD thesis. Umversity of California Santa Cruz, 1989.

[Lit91 J N. Littlestone. Redundant noisy attributes, attribute errors, and linear threshold
learning using Winnow. In 4th COLT, pp. 147-156, Morgan Kaufmann, 1991.

3The average margin ~IU.M may be positive even though u is not consistent.

