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Abstract We extend Valiant's learnability model to 
learning classes of concepts defined by regions in 
Euclidean space E". Our methods lead to a unified 
treatment of some of Valiant's results, along with pre- 
vious results of Pearl and Devroye and Wagner on 
distribution-free convergence of certain pattern recog- 
nition algorithms. We show that the essential condition 
for distribution-free learnability is finiteness of the 
Vapnik-Chervonenkis dimension, a simple combina- 
torial parameter of the class of concepts to be learned. 
Using this parameter, we analyze the complexity and 
closure properties of learnable classes. 
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1. Introduction 
Valiant has recently introduced a new 

complexity-based model of learning from examples 
and illustrated this model by exhibiting and analyzing 
several learning algorithms for classes of Boolean 
functions [V84,V85]. In this paper we extend Valiant's 
model to learning concepts defined by regions in 
Euclidean space E r. Our methods lead to a unified 
treatment of some of Valiant's results, along with pre- 
vious results of Pearl [P78,P79] and Devroye and 
Wagner [DW76]. 

In learning a class C of concepts from examples, a 
single concept is selected from C and we are given a 
finite set of points that are in the concept (positive 
examples) and a finite set of points that are outside the 
concept (negative examples). This entire set is called a 
labeled sample. A learning algorithm for C is a func- 
tion that, given a labeled sample of a concept in C, 
returns a region in E r that is its hypothesis as to which 
concept the sample represents. 

As in [V84], we let P be a fixed probability distri- 
bution on E r and assume that samples are created by 
drawing points at random based on this distribution. 
After drawing m points, the algorithm forms a 
hypothesis. The error of this hypothesis is taken to be 
the probability that it disagrees with the real concept on 
the next point drawn, i.e. the error is just the probabil- 
ity of the region that represents the symmetric differ- 
ence between the hypothesis and the real concept. 
What we want in a learning algorithm is the following: 

(1) For large enough m we should get arbitrarily 
small error with arbitrarily high probability, no matter 
which concept from C we are trying to learn. The 
bounds on m should be independent of the underlying 
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distribution P .  
(2) In addition, the bounds on m should be poly- 

nomial in the inverse of the error probabilities, and the 
computation of the hypothesis should be polynomial in 
the length of the sample. 

A class of concepts that fulfills (1) is called learn- 
able. If (2) holds as well then the class is polynomially 
learnable. Condition (1) is formalized by demanding 
error greater than e with probability at most 5 for small 
e and 5, uniformly for all concepts in C. Condition (2) 
implies that the number of required samples is a func- 
tion m (e,5) that grows polynomially in lie and 1/5. 

Our main result gives necessary and sufficient 
conditions on a class of concepts C for the existence of 
a learning algorithm satisfying (1). Our criterion is a 
simple combinatorial one, based on the work of Vapnik 
and Chervonenkis on uniform approximation by empir- 
ical distributions [VC71]. This approach was 
pioneered in [DW76] [P78]. We define a parameter 
called the Vapnik-Chervonenkis dimension of the 

class C of concepts 1 and show that there is a learning 
algorithm satisfying (1) if and only if this dimension is 
finite. Moreover, if C does have finite dimension d 
then there is a learning algorithm for C, uniformly 
achieving error no more than e with probability at least 
1 - ~, using ~sample size m (e,5) = 

max/[~,og~,.~_log.~_-j. Hence the polynomial restric- 

tion on the growth of m (e,5) is automatic in this case. 
In fact any function from labeled samples into the class 
C that gives hypotheses consistent with the sample is a 
learning algorithm for C using this many samples. As a 
corollary, we obtain significantly better distribution- 
free bounds on the convergence of many well-known 
pattern recognition algorithms including the classic 

perceptron learning algorithm and its successors. 2 
In relating the Vapnik-Chervonenkis dimension to 

learnability, we use the concept of an z-net for C with 
respect to a fixed distribution P .  This is a finite set of 
points N such that every concept in C of probability 
greater than e contains a point in N. This generalizes 
the z-net idea from [HW85], which lead to improved 
time bounds for half-space range queries in all 
Euclidean spaces with dimension greater than one. The 
key to both the query and the learning results is to 
prove bounds on the frequency of occurrence of small 
e-nets for classes of concepts (ranges) with finite 
Vapnik-Chervonenkis dimension. We are confident that 

i This number is one less than the number V(C) defined in [D78]. 

a 1 .L_L I Previous bounds were O (max(~Iog e' e2z°s'g)) [DW761, 

obtained using the results of [VC71 ] directly. 

this will have other applications in computational 
geometry besides those given in [HW851. 

Finally we deal with the case of polynomial lear- 
nability. Following Pearl [P78] and Valiant [V84], we 
introduce the idea of the complexity, n,  of a concept 
and consider the learning problem for a sequence of 
concept classes {Cn}n a z, where C,, represents the set 
of concepts of complexity at most n.  We show that if 
the Vapnik-Chervonenkis dimension of C,, grows fas- 
ter than polynomial in n then this sequence of concepts 
classes is not learnable in the sense of Valiant. On the 
other hand, we identify certain general strategies 
related to the principle of preferring the simpler 
hypothesis (Occam's Razor) that in many cases give 
learning algorithms that satisfy conditions (1) and (2). 
(Condition (2) is modified to include polynomial 
dependence on the complexity n.) These results are 
illustrated with several learning algorithms for various 
concept classes. Our analysis also leads to a host of 
open problems, some of which are outlined in the final 
section. 
N o t a t i o n :  SAT  denotes the symmetric difference of 
sets S and T. For S c X ,  Is denotes the indicator 
function for S o n X ,  I s ( x ) =  1 i fx  ~ S , I s ( x ) =  0 oth- 
erwise. X "  denotes the m-fold Cartesian product ofX.  
Elements of X = will be denoted by barred variables, 
e.g. ~ or y.  We assume ~ denotes (x 1,...,x,,) where 
xi ¢ X, 1 _< i _< m, when m is clear from the context, 
and similarly for other barred variables. If P is a pro- 
bability measure on X then P m denotes the m-fold pro- 
duct probability measure on X =. Natural logarithms 
are written "In", all other logarithms are base 2. 

2 .  L e a r n a b i f i t y  

We will use the following notions of learning 
algorithms and learnability. 
Definition. A concept class is a set C ~ 2 x of con- 
cepts. In this paper it is assumed that X is a fixed set, 
usually finite, countable, or E" (Euclidean r-  
dimensional space) for some r _> 1. In the latter case, 
we assume that each c e C is a Borel set. Elements of 
X m will be called m-samples (or just samples). A 
labeled m-sample  is an m -tuple 
(<xl ,al  > . . . . .  < xm,a,,,>), where ai E {0,1}, 
1 _< i _< m,  and ai = aj i f  xi = xj .  For 
x '=  (xl,...,xm)~ X m, the labeled m-sample of  c ~ C 
generated by ~- is given by 
samc(x~ = (<x b/c(X 1) > . . . . .  < XmJc(Xm)>). The 
sample space of C, denoted Sc, is the set of all labeled 
m-samples over all c e C and all ~ e X m for all 
m>_l.  

A denotes the set of all functions A : Sc ~ H,  
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where H is a set of Borel sets on X. (In fact, we would 
like the range of A to be C, but we may gain some 
power by allowing A to approximate concepts in C.) 
Elements in H are called hypotheses. A e A is con- 
sistent if its hypothesis always agrees with the sample, 
i.e. whenever h -- A ( < x l,a I > " '"  < Xm,am > ) then 
for all i ,  1 _< i _< m ,  ai -- Ih(Xi). For anyA ~ A, proba- 
bility measure P on X ,  c ~ C,  and ~ ~ X m, the error 
of A for concept c on sample ~ (w.r.t. P ) is given by 
errorA,c,p(X~ = P (c AA (same(T))). Thus A's  error is 
measured as the probability of the region that forms the 
symmetric difference between the real concept and A's  
hypothesized concept, which is just the probability that 
A 's  hypothesis will be inconsistent with the real con- 
cept on a randomly drawn point (w.r.t. P ). 

Let m (e,5) be an integer-valued function of e and 
5 for 0 < e, 5 < 1 and P be a probability measure on X. 
A e A is a learning algorithm f o r  C (w.r.t. P )  with 
sample size m (e,5) if for all 0 < e,5 < 1 and for all 
c E C,  Pm(~,~)(errorA,c,e(Y) > e) _< & where 
~ e  Xm(e,S). Thus we insist that using a randomly 
drawn sample of size m (e,5), any concept in C can be 
learned with error no more than e with probability at 
least 1 - &  If A is defined in such a way that 
Z = {Y  ~ X m(~,s) : errorA,c,e(x~ > e} is not measur- 
able for some c e C, then we require that there exist a 
measurable Z" such that Z c Z" and Pm(e,8)(Z') <_& 
We say A ~ A is a learning algorithm for  C with sam- 
ple size m (e,5) only when A is a learning algorithm for 
C w.r.t. P with sample size m (e,~5) for all probability 
measures P on X. If such an A exists, we say C is 
learnable. 

Example. Consider the problem of learning concepts 
such as the concept of "medium build", defined (for 
men) as having weight between 150 and 185 pounds 
and height between 5' 4 "  and 6' 0" .  By looking at a 
finite database of randomly chosen men that gives their 
weight, height and classification (medium build or not), 
we want to form a rule that approximates the true con- 
cept of medium build, and we want our approximation 
to be accurate independently of the underlying distribu- 
tion on height-weight pairs (height and weight values 
are not assumed to be independent). This type of 
learning problem is formalized and solved as follows. 

Let X be E 2, C be the set of all orthogonal closed 
rectangles, (i.e. products of closed intervals on the x-  
axis with closed intervals on the y-axis) and P be any 
arbitrary probability distribution on E 2. A simple algo- 
rithm to learn a concept c e C is the following. Keep 
track of the minimum and maximum x and y coordi- 
nates of any positive sample point. Let  l ' ,  r ' ,  b ' ,  t" 
denote these four coordinates. After drawing a number 
of  sample points, predict that the concept is 

[1 ,r ]x[b ,t ]. If no positive samples are drawn, 
let h = ~ .  Call this algorithmA. 
Theorem 1. A is a learning algorithm for C with sam- 

4 4 ple size .vln (-~ ). 

Proof. Assume the concept c to be learned is the pro- 
duct of the intervals [l ,r] on the x axis and [b ,t] on the 
y axis. Since A ' s  hypothesis h is always contained in 
c,  i f P ( c )  < e then errora,~,v of any labeled sample of 
c is always less than e. Otherwise we define four 
minimal side rectangles within c that each cover an 
area of probability at least ¼: 

left := m/n ({[l,x ]x[b ,t] : P  ([l,x ]x[b ,t ])_>~}) 

and right, bottom, and top are defined similarly. If the 
sample size is m, the probability that a particular side 
rectangle contains no sample point is at most 
( 1 - e / 4 )  m. The probability that some side rectangle 
contains no sample point is bounded by 4 times this 
quantity. This latter quantity is smaller than 4e-m~4, so 
ff the sample size is at least 4 4 -~-ln (~),  then with proba- 

bility at least 1-5 we will draw a sample point in each 
of these four rectangles. If this occurs, then the proba- 
bility of the region given by the symmetric difference 
o fA ' s  hypothesis and c will be less than e, thus bound- 
ing the error of the hypothesis. Since m is independent 
of the particular distribution P ,  the result follows. [ ]  

This proof readily generalizes to r-dimensional 
2r 2r rectangles for r > 2, with a bound of -~-ln(-~-), on the 

sample size. However, it is not clear how to generalize 
it even in 2 dimensions to other types of concepts, e.g. 
circles, half-planes or rectangles of arbitrary orienta- 
tion. To show that these classes are also learnable, we 
use a concept first introduced in [VC71]. 
Def in i t i on .  Given a concept class C and finite S c X, 
Hc(S)  denotes the set of all subsets of S that can be 
obtained by intersecting S with a concept in C, i.e. 
T I c ( S ) f { S n c : c e C } .  If TIc(S)ffi2 s, then we 
say that S is shattered by C.  The Vapnik- 
Chervonenlkis dimension of C (or simply the dimen- 
sion of C) is the smallest integer d such that no S c X 
of cardinality d + 1 is shattered by C. If no such d 
exists, the dimension of C is infinite. 

[VC71], [D78], [WDS1], [A83] and [HW85] give 
numerous examples of concept classes of finite dimen- 

sion. 3 For example, the dimension of the set of all 

~When C is of finite dimension, Dudley calls C a Vapnik- 
Chervonenkis Class (VCC~ [D78], [WD81]. The Vapnik- 
Chervonenkis number of this class, denoted V(C), corresponds to the 
dimension of C plus one. 
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orthogonal rectangles in E r as defined above is 2r ,  and 
the dimension of half-spaces and balls of E ,  is r + 1. 
Restricting ourselves to the real line, the set of all half- 
lines open to the left has dimension 1, the set of all 
intervals has dimension 2 and in general, the set of all 
sets of at most k intervals has dimension 2k. In gen- 
eral, whenever C is of finite dimension, then Ck, the 
set of all Boolean combinations formed from at most k 
concepts in C, is also of finite dimension [D78]. Thus 
for example, since the set Ck of k -gons in E" for fixed 
k > r is formed by k-fold intersections of half-spaces, 
Ck is of finite dimension for any finite k. Wenocur and 
Dudley [WD81] also prove more general results that 
imply e.g. that the concept class formed by set of all 
half-spaces bounded by polynomial curves of fixed 
degree also has finite dimension. On the other hand, 
the set of all finite sets of intervals, like the set of all 
open sets or all Borel sets, obviously has infinite 
dimension. 
Definition. A concept class C is trivial if C is one 
concept, or two disjoint concepts. 

It is clear that a sample size of one is the most that 
is required to learn C when C is trivial. 

We can now state our main result. 
Theorem 2. The following are equivalent for all non- 

trivial, well-behaved 4 concept classes C: 
(i) The dimension of C is finite. 
(ii) C is learnable. 
(iii) If d is the dimension of C, 

(a) for sa~nple size greatel~ than 
4 2 8d 8d max L-~iog~,-rlog~ j , 

any consistent function A : Sc ---> H is a 
learning algorithm for C and 

for e < ½ and sample size less than 

(b) max [ ~ l o g ~ , d ( 1 - 2 ( e ( 1 - 5 ) + 6 ) )  t 

no function A : Sc ~ H,  where C c_ H is a 
learning algorithm for C. 

The proof will be given in a series of lemrnas and 
theorems. We begin by showing that (i) implies (iii(a)). 
The critical property of finite dimensional concept 
classes we use is the following: 

Definition. For all d _>0 and m _> 1, ~d(m) = ~ {tin" 1 

i fm >_ d, ~Pd(m ) = 2 m otherwise. 
Proposition 3. (a) If the dimension of C is d then 
I Ylc (S) I -< ~d(m) for all S ~ X of cardinality m. 
(b) ¢bd(m)_<md+l for all d_>0 and m ~ l .  
~Pd(m)_<mdforalld _>2 and m ~2 .  

A short proof of part (a) above can be found in 

4 S ~  Appendix. 

[HW85] or (along with its history of independent 
discoveries) in [A83]. Part (b) is easily verified. 

To characterize learnable concept classes, we use 
the following, which generalizes the corresponding 
notion in [HW85]. 
Definition. For any concept class C, probability meas- 
ure P on X, and e > 0 ,  C p e = { c  e C : P ( c ) > e } .  
S c X is an z-net for C (w.r.t. P ) if S contains a point 
in every c e Cp,~. 
Examples. I fX  is the interval [0,1], P is the uniform 
distribution and C is the set of closed intervals in X, 
then the set of all points ek, 0 < k < 1 is an z-net for 

C for any e > 0. In fact C has a net of this size for any 
distribution P on X. On the other hand, if C is all 
open sets, then clearly there are no finite z-nets for C 
w.r.t, the uniform distribution. 

For the next two lemrnas and the following 
theorem, let C be a fixed well-behaved concept class 
and P be a fixed probability measure on X. The proofs 
of these lemmas are analogous to those of Lernma and 
Theorem 2 of [VC71]. These results generalize Lem- 
mas 3.5 and 3.6 and Theorem 3.7 of [HW85]. 
Definition. For any m _> 1 and e > 0, Q ~ denotes the 
set of all ~- e X = such that the set of distinct elements 
of £- do not form an z-net for C w.r.t. P ,  i.e. such that 
there exists c e Cp,~ with ~ n c = 0 .  j~m denotes the 
set of all ~ e X ~ ,  where ~-,y e X " ,  such that there 
exists c e Ct,,~, where T n c = O and I {i : Yi e c, 
1 _< i _< m } I -> --~, i.e. no element of c occurs in the 

first half of the sequence, but elements of c occur with 
frequency at least -~- in the second half. 

Lemma 4. For any e > 0 and m > 8 ---~-, 
p m ( a  g,) _< 2p 2m(j 2m). 

Lemma 5. If C is of finite dimension d,  
--O'~t 

P2m(Je2=) _< ~d(2m)2 - y -  for all m >_ 1. 

Proof. For each j ,  1 _< j _< (2m)[ let roy be a dis- 
tinct permutation of the indices 1 ..... 2m. It is clear that 

for all permutations rcj. Hence 

1 ( 

Thus it suffices to show that 

1 (/~_! --e,. ~ .  I j~(nj  (xD) _< 't'd(2m )2 - r -  

for a l l ~ e  X ~ .  

Consider a fixed £- e X 2m. Let S be the set of dis- 
tinct elements of X that appear in ~. Since IS I -< 2m 
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and C is of dimension d,  there are at most Oa(2m) dis- 
tinct subsets of S induced by intersections with 
c ~ Cp,e (by Proposition 3 part (a)). Each such subset 
T of S is a witness to the fact that certain permutations 
of ~- are in j~,n. Specifically, whenever all 
occurrences of members of T appear in the second half 
of ~j(T) and there are at least - ~  such occurrences, 

then ~j(X~ E jam, otherwise ~j(~')~j~,n. However, 
for a given T this can occur in only a small fraction of 
all permutations of ~. In particular, if there are l 
occurrences of members of T in ~, then T is a witness 
for at most 

m(m-1)...(ra-l+l) <2-z < 2 T  
= 2m(2m-l)...(2m-t+l) 

of all permutations of ~. It follows that 

I (2n~O! _ < - -on 
j _-~ I.l ~ rc J ( X~ - dP a ( 2m ) 2--T-. 

[] 

Directly from the above two lernrnas we get 
Theorem 6. If C has finite dimension d and m > 8 - -  g 

--gin 

then P ~(Q ~) _< 2Od(2m)2 -~-.  
Since the negative exponential term dominates the 

polynomial ~d(2m), this shows that the probability of 
not getting an e-net for C in an m-sample goes very 
rapidly to zero for large m. The m required for this 
probability to be less than 8 is estimated in the follow- 
ing, 

m _> max log , log then 2Oa(2m)2 T _< 8. 

Theorem 8. If C is well-behaved and has finite dimen- 
sion d then for any .d~istributi°n P o~ X and any 

0 < e,8 _< 1, if m _> max:[-~loge "~2 ,--~log--~-e ej'-I points in X 

are drawn at random according to P then the probabil- 
ity that these points do not form an z-net for C w.r.t. P 
is at most 8. 
Proof. Follows directly from Lemma 7 and Theorem 
6 . [ ]  
To complete the proof that (i) implies (iii(a)), we need 
the following. 
Lemma 9. For any z ~ X, the dimension of C equals 
the dimension of C ~ ,  where Ct~ = {cAz : c ~ C}.  
Proof. This follows from the result in [W86] that the 
dimension of C is unchanged if for any x ~ X, each 
c ~ C is replaced b y c u { x } i f x ~ c  a n d c - { x } i f  
X E C . ~  
Proof that (i) implies (ill(a)). Let A : Sc ~ C be a 
consistent function in A, P be a distribution on X and 

c be a fixed concept in C to be learned. If the dimen- 
sion of C is d,  then the dimension of Ca~ is d by the 
above lemrna, where C ~  = {cAc ' :  c ' e  C}. Hence 
by Thegrem 8, if w~ draw a sample of size 

> K[4 2 8d 8d] 
m _ m a x  . ~ - l o g ~ , - ~ - l o g -  E -  , w e  get an e-net for C ~  

w.r.t P with probability at least 1 - 6 for any distribu- 
tion P .  If we get an e -ne t  for C ~ then for any c" e C 
produced by A on the corresponding labeled sample we 
must have P (c Ac').ge, otherwise the hypothesis would 
be contradicted by a sample point. Hence the error of 
A is at most e with probability at least 1 - 8. [ ]  
Proof that 0ii(a)) implies (ii). We can simply well- 
order the concepts in C and for each labeled sample 
choose the first concept that is consistent with this sam- 
ple. (Note that we are not concerned with the computa- 
bility of A here.) [ ]  

It remains to show that (i) implies (iii(b)) and (ii) 
implies (i). 
Lemma 10. (i) implies (iii(b)): Let C be a non-trivial 
concept class of finite dimension d and e < 3" Then 

any learning a~gorithm for C must use sample of size at 

least m _> max [~,og~r, a (1-2(~1-  s) + 8))]. 

Proof. We begin with the first term of the lower 
bound, considering two cases for the non-trivial con- 
cept C. The first is that C contains two distinct con- 
cepts c 1 and c 2 that have a non-empty intersection. The 
second case is that all concepts in C are pairwise dis- 
joint, and there are at least three concepts in C. We 
give the proof only for the first case, the other argu- 
rnent being similar. 

Let A be a learning algorithm for C and let a e X 
be a point in c t n c 2  and b ~ X  be a point in 
(c 1 u c 2) - (c 1 n c 2). Without loss of generality, 
assume that b E c 2. Let P be the probability distribu- 
tion such that P (b) = e, P (a) = 1 - e and P (x) = 0 for 
any other point x e X. With respect to this distribu- 
tion, we can effectively replace X with the set {a,b } 
and H with the four subsets of {a,b }, modifying A 
accordingly. 

It is easily verified that if the sample size m is less 
1 1 then the probability of drawing the t h a n  - ~ - l o g . . ~ - ,  

point a each time is greater than 8. Since e < 3 '  this 

1 1 Assume the concept to be holds for m < .~log~. 

learned is either {a } or {a,b }. We can divide the pos- 
sible learning algorithms for C into four types, depend- 
ing on how they respond to a labeled m-sample in 
which each point is a (the label will always be 1). If 
the algorithm responds by producing the hypothesis 
{a }, then for this sample it has error e ff the concept to 
be learned is {a ,b }. If it responds {a ,b }, {b } or 
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then it has error at least e if the concept to be learned is 
{a }. In any case, there is a concept in C such that the 
probability that A produces a hypothesis of error at 
least e with sample size m is greater than 8. By 
increasing the probability of a slightly and decreasing 
the probability of b by the same amount it follows that 
that the previous statement also holds for error strictly 
larger than e instead of error at least e. We conclude A 
cannot be a learning algorithm for C with sample size 

1 1 m < -~log-ff. 

For the second term in the lower bound, note that 
since C is non-trivial, the dimension d of C is at least 
I. There must exist a set Xd of d points in X that are 
shattered by C. Let the probability distribution P on X 
be uniform on these points and 0 everywhere else. With 
respect to this distribution, we may replace X with Xa 
and C with 2 xd. 

Suppose we draw an m-sample ~" of X and I dif- 
ferent points are observed in this sample. For each of 
the 2 t possible labelings of T, there are 2 a-t concepts 
consistent with this labeling. Whatever the hypothesis 
of the learning algorithm, for every point of X not 
observed in ~, it will be correct for exactly half these 
concepts. Thus, the average error of the learning algo- 
rithm on ~- over all concepts in C is at least 
d-t >_ ..~_. This implies that the average error of the 

learning algorithm over all ~- ~ X m and all concepts in 
C is at least -~-. Hence there must be a concept with 

average error at least -~. To make the frequency of 

m-samples in which the error on this concept is greater 
than e at most 5, the error can be greater than e (i.e. I) 
on at most 152 m of the m-samples, and must be at most 
e on the remainder. Hence the average error can be at 
most e(1 - 5) + 5, which gives the second part of the 
lower bound. [] 
Proof that (ii) implies (i) This follows from the second 
lower bound in the above lernma. This completes the 
proof of Theorem 2. [] 

The above theorem shows a significant gap in the 
complexity of geometric learning problems as meas- 
ured by the sample size needed: either the set of con- 
cepts is learnable with sample size O I 1 (Tlog-~) or it is 

not learnable at all. Furthermore, this result is easily 
extended to probabilistic learning algorithms (i.e. algo- 
rithms that for a given sample choose a hypothesis pro- 
babilistically) and to algorithms that use an oracle to 
query the values of particular points (as defined by 
Valiant [V84]). We need only observe that if the 
Vapnik-Chervonenkis dimension is not finite, then no 
matter how the ra points are drawn in the proof of 
Lemma 10 and no matter how the hypothesis is formed 

from the values on these points, the algorithm can do 
no better than random guessing on the points that it has 
not seen. 

Theorem 2 has immediate consequences for 
several well-known pattern recognition algorithms. For 
example, since the Vapnik-Chervonenkis dimension of 
positive half-spaces in E '  is r, the sample size required 
for the perceptron learning algorithm (see e.g. [YC74], 
pg. 120) to achieve error at mostle with probability at 

least 1 - 5  is m a x  i, independent of the 

underlying distribution governing the selection of sam- 
pies. Since 5 appears only in a log term, this implies 
that good linear separators can be found with very high 
probability from relatively small random samples. 
Furthermore, the same bound applies to any learning 
algorithm for half-spaces that eventually produces con- 
sistent hypotheses, e.g. the Ho-Kashyap algorithm 
[YC74] or Meggido's prune-and-search linear pro- 
gramming technique [M84]. The best previous 
distribution-free bound for these algorithms was 
-~-trm--~--16"" 16r + InS) [DW76], derived directly from the 

results given in [VC71]. 
In particular cases, such as the orthogonal rectan- 

gles example in Theorem 1, we can tighten and sim- 
plify the bounds on the sample size given in Theorem 
2. The same is true for certain linear separator algo- 
rithms in E 2 [L85]. 

3. Occam's Razor 

In this section we examine the computational 
feasibility of learning various concept classes of finite 
dimension and extend the learnability definitions of the 
previous sections by adding a parameter that defines 
the size or complexity of the concept to be learned 
[P78] [V84]. 
Definition. A concept class C is polynomially recog- 
nizable if there exists a polynomial time algorithm that, 
given any labeled m-sample, produces a concept 
c e C consistent with this sample, or returns false if no 
such concept exists. An algorithm of this type will be 
called a recognition algorithm. A concept class C is 
polynomially learnable if there exists an algorithm A 

I and { ,  such and a function m(~,5), polynomial in T 

that A is a learning algorithm for C using m (e,5) sam- 
ples and A runs in time polynomial in the length of the 
sample. 

If C is polynomially recognizable and has finite 
dimension, Theorem 2 shows that C is polynomially 
learnable. Since finding a consistent hypothesis can 
often be reduced to linear programming, Meggido's 
results [M84] show that many interesting concept 
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classes have linear recognition algorithms. For exam- 
pie, i fX = E 2 then the classes of circles, and in general 
concepts defined by curves of degree at most k (i.e. 
regions of the form p (x,y) <_ 0 for some k-degree poly- 
nomial p ,  fixed k) have linear recognition algorithms 
and hence are polynomially learnable by Theorem 2. 
Similar results hold for X -- E" for fixed r ,  however 
the time complexity of Meggido's technique grows 
doubly exponentially in the dimension of the linear 
programming problem [LP84]. 
Definition. {Cn}n a I will always denote a sequence of 
concept classes Cn with Cn ~ C,~+I, for all n >_ 1. 
{Cn },~ a 1 is polynomially learnable ff there exists an 
algorithm A and a function m (e,8,n), polynomial in 
I 1 and n,  such that for all n > 1, A is a learning T ' ~ '  

algorithm for C,, using m(e,8,n) samples andA runs in 
time polynomial in the length of the sample. If 
C = ,~1C,~, then C,, represents the set of all concepts 

of C of complexity at most n. We do not assume that 
a sample of a concept from Cn ~ C contains any 
specific information about the index n.  

If the dimension of C,, grows faster than polyno- 
mially in n then {Cn }nal is not polynomially learn- 
able, by Theorem 2. This shows for example that when 
X is a countably infinite dimensional real space and for 
every n _> 1, Ca is the set of all regions in the Boolean 
closure of at most n half-spaces in E '~, where for any 
point in c E C,,, only the first n coordinates are 
nonzero, then C, is not polynomially learnable. To see 
this, consider 2 n points at the comers of the n-cube. 
Any subset of these points can be defined as a Boolean 
combination of n-dimensional half-spaces whose 
defining hyperplanes are each normal to one of the ffirst 
n coordinate axes. Thus these points are shattered by 
Cn and hence the dimension of C,~ is at least 2 n. This 
also shows that if Cn is the set of all regions defined in 
a countably infinite dimensional discrete space by 
Boolean formulas of n variables, then {Cn}n ~ 1 is not 
learnable. 

On the other hand, ff the dimension of Cn grows 
polynomially in n and there is an algorithm that, given 
an m-sample of a concept in Cn, always produces a 
consistent hypothesis in C,~ and runs in time polyno- 
mial in the length of the sample, then Theorem 2 shows 
that {Cn}nal is polynomially learnable. For example, 
if C,, is the set of orthogonal rectangles in E n (which 
has dimension 2n), where, as above, for any point in 
c E Cn, only the first n coordinates are nonzero, then 
{C,,},,al is polynomially learnable using the algorithm 
of Theorem 1. To show polynomial learnability when 
C,~ is the set of n-dimensional half-spaces or balls, one 
must abandon Meggido's technique for finding 

consistent hypotheses in favor of a linear programming 
technique that is polynomial in both the number of con- 
straints and the (linear programming) dimension, e.g. 
Karmarker's technique [K84]. However, this polyno- 
mial bound depends on restricting the real numbers 
involved to a fixed finite precision, which runs contrary 
to the usual model adopted in computational geometry 
(which we have also implicitly adopted here). 

In a discrete space, Theorem 2 shows that when- 
ever the cardinality of the set of functions that define 
the regions in C,~ is O(~(n)) for some polynomial 
p(n), then any polynomial algorithm that produces 
consistent hypotheses in Cn for any sample from a con- 
cept in C,, is a polynomial learning algorithm for 
{Cn},~al. This is because when I Cnl -< 2e00, at most 
p(n) points can be shattered by Cn, and hence the 
dimension of C,, is at most p (n). This result applies, 
e.g., when Cn is the set of all functions of a particular 
type that can be described using at most p(n) bits 
[P78] [V84]. As another example, let Cn be the set of 
all regions defined in a countably infinite dimensional 
discrete space by k-CNF (DNF) Boolean formulas of at 
most n variables ([V84]). Since each clause in a k- 
CNF (DNF) involves at most k variables, 
I C,~l -< 2 ((2n~). This shows that for fixed k, any algo- 

rithm that produces a k-CNF (DNF) formula consistent 
with the sample in polynomial time (and in particular, 
the algorithm given by Valian0 is a polynomial learn- 
ing algorithm for {Cn }n~l. 

However there are simple examples where 
Theorem 2 does not apply directly. Let Cn be all 
unions of at most n (possibly overlapping) closed 
orthogonal rectangles in E 2. Lemma 13 (below) shows 
that the dimension of Cn is polynomial in n. However, 
given a set of points in E 2 labeled with O's and l 's, it is 
NP-hard to determine the smallest n such that the set of 
l-labeled points can be covered by n closed orthogonal 
rectangles, where none of these rectangles contains a 
0-labeled point [M78]. Hence given positive and nega- 
tive points from a concept in Cn for unknown n, it is 
NP-hard to determine the smallest n such that there 
exists a concept in C,~ consistent with the sample. Any 
learning algorithm that always gives a consistent 
hypothesis in C,, for any sample of a concept in Cn 
implicitly solves this optimization problem. 

The upshot of this is that to apply Theorem 2 
directly, we need to find an efficient learning algorithm 
that works according to the principle of always prefer- 
ring the simplest hypothesis that explains the data, usu- 
ally called Occam's Razor. Yet in many cases this is 
not possible. To address the cases when it is not feasi- 
ble to find the simplest hypotheses, we will show that it 
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suffices to settle for simpler rather than simplest 
hypotheses, i.e. it suffices to produce hypotheses that 
are significantly simpler than the sample data itself. 
Definition. An Occam algorithm for {Cn}nal is an 
algorithm that, given any m-sample of a concept 
c • Cn, produces in polynomial time a consistent 
hypothesis h • H,,,m, where Hn,~ is a concept class 
that includes Cn and has dimension at most f(n,m). 
f (n,m) is called the range dimension of the Occam 
algorithm. 

In this version of Occarn, the dimension of the 
hypothesis class C, is the measure of simplicity and the 
range dimension f (n ,m) tells how well the Razor is 
applied. If the dimension of Hn,m is equal to that of C,~ 
for all n and m then the Occam-algofithm implements 
the strictest form of Occam's Razor. An example of 
this occurs when H,~,,~ = C,,, as in Valiant's algorithm 
for learning k-CNF, or the algorithm given above for 
learning orthogonal rectangles in E n. In this case the 
range dimension does not depend on m. For faster 
growing range dimensions, especially those that depend 
on m, the Occam-algofithm can take advantage of the 
larger range of hypotheses to simplify its search for a 
consistent hypothesis. The following shows how fast 
the range dimension can grow, still maintaining poly- 
nomial learnability. 
Theorem 11. I fA is an Occam algorithm for {Cn},~ a 1 
with range dimension f (re,n) _< rn km a, for some 
k _> 1, 0 _< ct < 1 and r _> 2n ~ ,  then A is a polynomial 
learning algorithm for {C~}, z 1 with sample size 

[~ 2 8rn k . 8rnkl "1"~] 
m_>max l o g ~ , . ~ - , o g . ~ . l . . ~ 3 -  j j 

If f (re,n) is bounded by rn k(log re)t, then the second 
bound on m becomes 

2t+4rnt [l°g 8(21+2~'+lrnk ] 

In some ways Theorem 11 can be viewed as 
showing a relationship between learning and data 
compression. In the discrete case, i.e. for learning 
Boolean functions, let Hn,m be the set of all hypotheses 
that can be described with n km a bits, for some k _> 1 
and 0_< a < 1. Then Theorem 11 says that if, for any 
m-sample of a function that can be described in n bits, 
we can effectively find a hypothesis that "explains" the 
sample and uses O (n km ~) bits, then we can learn. For 
fixed n,  this amounts to a kind of data compression on 
the sample. Numerical bounds on the number of sam- 
pies needed for learning algorithms in this discrete case 
that are slightly better than those given in Theorem 11 
are derived in [BEHW85] using a simpler argument 

Theorem 11 can be used to show that many kinds 
of concept classes are learnable. In the remainder we 
will demonstrate how this is done when C,, is built by 
n-fold unions of concepts for a fixed class C 1 of finite 
dimension. Similar results for n-fold intersections fol- 
low by considering the class of n-fold unions of com- 
plements of concepts in C1. From Lenmia 9, the 
dimension of the complements of concepts in a class is 
the same as the dimension of the class itself. 
Lemma 12. If C is polynornially recognizable and the 
dimension of C is finite then for any finite set S ~ X 
the sets of Hc(S)  can be listed in time polynomial in 
the cardinality of S. 
Proof. Assume S ={ x l ,  x2 ..... xm}. The size of 
Hc(S) is polynomial in m by Proposition 3. To pro- 
duce a l istL of I Ic(S)  we proceed as follows. Initial- 
ize L to the one element list consisting of just the 
empty set. This corresponds to the case m = 0. Now 
by induction, assume that the list 
L = IIc({Xl, X2 ..... xi}) has been produced for some i, 
0 _< i < m. L is updated to the list 
1Hc({xl, x2 ..... x/+l}) as follows. For each element T 
of L,  test the sets T and T u {xi+1} for membership in 
Hc({xl ,  x2 ..... xi+l}). Since C is polynomially recog- 
nizable, this can be done in polynomial time by creat- 
ing the appropriate labeled samples and running the 
recognition algorithm on them. Now replace the ele- 
ment T in L with either one or both of these sets, 
according to the outcome of this test. (Note that it is 
possible that T e Hc({xl, x2 ..... xi}) but 
T¢Hc({Xl, x2 ..... xi+l}).) The time for each complete 
update is polynomial since by Proposition 3 the size of 
L remains polynomial in m. Hence the entire pro- 
cedure is polynomial. [ ]  
Lemma 13. If the dimension of C i is k and for all 
n >_ 1, C, is the set of all n-fold unions of concepts in 
C 1 then the dimension of C, is at most 2kn log(kn ). 
Proof. Follows from Lemma 4.5 of [HW85]. [ ]  

The following theorem shows for example that n - 
fold unions of orthogonal rectangles in E 2 are polyno- 
mially learnable even though finding the smallest set of 
orthogonal rectangles that explains the data is NP-hard 
[M78]. 
Theorem 14. Assume C 1 is polynomially recogniz- 
able and the dimension of C1 is finite. Let Cn be the 
set of all n-fold unions of concepts in C1. Then 
{C,~}n z 1 is polynomially learnable. 
Proof. Let S be the set of points in a labeled m-sample 
of a concept in C,,. Our strategy will be to find a 
hypothesis consistent with S that is formed from the 
union of relatively few concepts in C 1, i.e. not many 
more than n. This problem can be formulated as a set 

280 



cover problem. The set to be covered is the set of posi- 
tive points of S and the sets allowed in the cover are 
the elements of Hc,(S) that contain only positive 
points. To lind the smallest set cover is NP-hard 
[GJ78] and remains NP-hard for simple geometric ver- 
sions such as covenng with rectangles [M78]. For- 
tunately, there is a simple greedy algorithm [N69], 
[J74] that produces a cover using at most n In p sets, 
where n is the minimum number of sets needed for any 
cover and p is the size of the set to be covered: pick the 
set that covers the largest number of points; after this 
pick the set that covers the largest number of points 
which haven't been covered previously, and so forth. 

Since the sets of Hc,(S) can be listed in polyno- 
mial time (Lernma 12), the largest set that contains 
only positive points can be found in polynomial time. 
Hence the above algorithm is polynomial in m and 
given any m-sample of a concept in Cn, produces a 
consistent hypothesis for this sample in Cn~(m). Since 
the dimension of C,, is at most 2kn log(kn ) by Lemma 
13, this gives an Occam-algorithm with range dimen- 
sion 0 (n log(m )(log n + loglog m)). Thus by 
Theorem 11, {C,,}n a x is polynomially learnable. [ ]  

The above result can also be used to show that 
concept classes not directly formed by n-fold unions of 
concepts from a fixed class are learnable. For example, 
let X = E 2 and let Cn be the set of all concepts created 
in the Boolean closure of n half-planes. These 
correspond to subsets of the set of cells formed by an 
arrangement of at most n lines. Since there are O (n 2) 
vertices in the arrangement, any subset of cells can be 
triangulated using O(n 2) triangles (some possibly 
unbounded), hence each concept in C,~ can be 
represented as a union of 0 (n 2) triangles. Let C',, be 
n-fold unions of triangles in E 2. It follows that 
C,~ ~ C'o(,~ ~. Since the class of triangles is polynomi- 
ally recognizable and has finite dimension (it is 7), 
{C'n},~l is polynomially learnable by Theorem 14. It 
follows that {Cn},al is polynomially learnable as well. 

4. Open Problems 
One major question of interest that remains is the 

polynomial learnability of {Cn}n~1 when Cn is built by 
n-fold unions of _< n-dimensional orthogonal rectan- 
gles. This is of particular interest because a special case 
of this is the learning problem for DNF formulas of at 
most n variables and n clauses [V84]. A more res- 
tricted problem is the case that C,, is built by n-fold 
unions of n-dimensional positive orthogonal half- 
spaces. The discrete version of this problem is the 
learning problem for monotone DNF formulas. Valiant 
proved that this class is learnable provided that we are 

given certain oracles [V84], but it is not clear whether 
these formulas can be learned without oracles. It is 
shown in [VP 86] that if the sample is from a monotone 
boolean function that is the sum of two monomials, 
then it is already NP-hard to produce two monomials 
whose sum is consistent with the sample. Thus we do 
not expect to find a polynomial time algorithm that 
finds a consistent monotone DNF with the minimal 
number of monomials. The techniques in the proof of 
Theorem 14 show that it would suffice to have a poly- 
nomial algorithm that finds the monomial that covers 
the largest number of positive samples. However, this 
is also NP-hard by a simple reduction from maximal 
independent set. 

The aim of this paper has not been to provide tight 
bounds on the number of samples and the computation 
time needed for various learning algorithms. Certainly 
there are interesting tradeoffs here, hence many open 
problems remain in this area. The question of incre- 
mental learning, in which individual sample points are 
processed one at a time and only the current hypothesis 
is maintained and updated, has also not been addressed 
here. This can be incorporated into the learning model 
by demanding that the space used by the hypothesis be 
bounded by some function of the complexity of the 
concept to be learned as in [H85]. How does this res- 
trict the classes of learnable concepts? 

Finally, using results from [GGM84] on poly- 
random collections, it can be shown that there are 
sequences of concept classes {C,,},,al with dimension 
increasing polynomially in n that are not polynomially 
learnable, given the existence of 1-1 one-way func- 
tions. Are there more natural examples of such 
sequences? n-clause, n-variable DNF could be one 
such example. Note that this latter example is polyno- 
mially learnable if P=NP (by Theorem 2). 

Appendix 
For Theorem 2 to apply, we require that the con- 

ccept class C have some additional properties related to 
measurability, beyond the assumption that all sets in C 
are Borel. 
Definition. C is well-behaved if the sets Q p and J ~  
defined before Lemma 4 above are measurable for all 
£ > 0, m _> 1 and distributions P on X. 

An example of a concept class C that is not well- 
behaved is the following. Let X be the closed interval 
[0,1] and let X be well-ordered such that all prefixes of 
the well-ordering are countable. 5 Let C consist of all 
suffixes of the well-ordenng. It is readily verified that 
the dimension of C is 1, yet Theorem 8 fails even for 

s'nais requires the Continuum Hypothesis. 

281 



the uniform distribution on X. In fact, in this case no 
finite set of points in X form an e-net for C for any 
e < 1, since there is always a suffix of the well-ordering 
that avoids the set, yet has measure 1. Theorem 1 of 
[VC71] also fails for this case. The problem is that je2,. 
is not measurable, even for m -~ 1. 

On the other hand, virtually any concept class that 
one might consider in the context of machine learning 
applications will be well-behaved. Proofs of good 
behavior for most common concept classes can be 
derived from the following lemma. 
Definition. A subset Co of C is a dense approximation 
of C if for every finite S ~ X and c e C, there exists 
c 0 e C 0  such that c 0 n S = c n S ,  i.e. ff 
1Fic,(S) = IIc(S) for all finite S. 

Lemma 15. If C has a countable dense approximation 
then C is well-behaved. 
Proof. It suffices to show that the sets Q~ and J~"  
are Borel sets. We show this for Q p, the argument for 
j2, ,  being similar. Q~ can be rewritten as 

__~')c. {~ : T n c = O}. Since each c ~ C is Borel, 

each term in the union is Borel. Since C has a count- 
able dense approximation, the union can be replaced by 
a countable union of sets defined using concepts in the 
approximation without affecting the result. Hence Q 
is Borel. []  

Classes of rectangles, half-spaces, etc. clearly 
have countable dense approximations. 
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