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Abstract

We consider the AdaBoost procedure for boosting
weak learners. In AdaBoost, a key step is choosing
a new distribution on the training examples based
on the old distribution and the mistakes made by
the present weak hypothesis. We show how Ada-
Boost’s choice of the new distribution can be seen
as an approximate solution to the following prob-
lem: Find a new distribution that is closest to the
old distribution subject to the constraint that the
new distribution is orthogonal to the vector of mis-
takes of the current weak hypothesis. The distance
(or divergence) between distributions is measured
by the relative entropy. Alternatively, we could say
that AdaBoost approximately projects the distribu-
tion vector onto a hyperplane de£ned by the mis-
take vector. We show that this new view of Ada-
Boost as an entropy projection is dual to the usual
view of AdaBoost as minimizing the normaliza-
tion factors of the updated distributions.

1 Introduction

Boosting, originally suggested by Schapire [Sch90], is a par-
ticular method for improving the performance of a (super-
vised) learning algorithm by applying it several times on
slightly modi£ed training data and then combining the re-
sults in a suitable manner. Currently the most popular vari-
ants of boosting are based on Freund and Schapire’s Ada-
Boost [FS97b]. The details of the boosting framework of
our paper are mainly taken from Schapire and Singer’s work
on con£dence-rated boosting [SS98].

Let us review the basic idea of boosting on a very rough
level. We take as our starting point an arbitrary learning al-
gorithm, which in this context is called the weak learner (as
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opposed to the master algorithm that implements the whole
boosting procedure). We also have a £xed training set of
examples. Following Freund [Fre95], we choose some prob-
ability distribution over the training set as the initial training
distribution. We then repeat the following until some termi-
nation condition is met. We call the weak learner and draw
its training examples from the set of all training examples ac-
cording to the current training distribution. The weak learner
produces a weak hypothesis. We use the weak hypothesis to
update the old training distribution into a new one. The de-
tails of this update will be discussed shortly. We then set
the weak hypothesis aside and go to the next iteration with
the new training distribution. After the termination condition
for the iterations is met, the master algorithm outputs as its
hypothesis a suitable weighted combination of all the weak
hypotheses produced during this process.

The basic question we consider in this paper is how to
update the training distribution between the calls to the weak
learner. Assuming we have m examples in the training set,
we represent the training distribution for the tth call to the
weak learner as a distribution vector dt ∈ [0, 1]

m such that∑
i dt,i = 1. Lacking a reason to do otherwise we would

typically choose the initial distribution to be uniform, with
d1,i = 1/m for all i. Based on the training distribution
dt, the weak learner produces a weak hypothesis ht. We
describe the performance of the weak hypothesis ht on the
training set by the vectorut ∈ [−1, 1]

m, where ut,i indicated
the goodness of the algorithm on example number i. In the
most basic case we would choose ut,i = 1 if ht predicts cor-
rectly on the ith example and ut,i = −1 otherwise, but more
£ne-grained measures are also possible. The fundamental
idea of boosting is now to concentrate the new training dis-
tribution on those examples on which the current weak hy-
pothesis performs badly. In particular, in AdaBoost [FS97b]
the updated distribution has the following exponential form

dt+1,i =
1

Zt
dt,i exp(−αtut,i), (1.1)

where αt > 0 regulates the amount of change and Zt

is a normalization factor that gives
∑

i dt+1,i = 1. The
£nal hypothesis H of the master algorithm is given by

H(x) = sign
(∑T

t=1 αtht(x)
)

. Thus αt also acts as the

weight given to ht. Schapire and Singer [SS98] show in
an elegant proof that the training error of the £nal hypoth-
esis after T boosting iterations is bounded by the prod-



uct
∏T

t=1 Zt of the normalization factors. They show that
the choice of αt in the original AdaBoost [FS97b], namely
αt = ln((1 + dt · ut)/(1 − dt · ut))/2, minimizes Zt in
the discrete case (when ut,i ∈ {−1, 1 }). In the continuous-
valued case (when ut,i ∈ [−1, 1]) the same choice of αt only
minimizes a certain upper bound for Zt. As an alternative,
they suggest choosing αt in the continuous valued case so
that Zt is exactly minimized. Further, they show that mini-
mizing Zt exactly occurs at a unique value αt such that the
dot product dt+1 · ut =

∑
i dt+1,iut,i is zero. We call the

update (1.1), with αt such that dt+1 · ut = 0, the corrective
update.

Our central idea is to view the corrective update as a so-
lution to a relative entropy minimization problem and the
choice of αt used by AdaBoost as an approximate solution
to the same problem. De£ne the relative entropy between
distribution vectors d and d̃ by

∆(d, d̃) =

m∑

i=1

di ln
di

d̃i
. (1.2)

and consider the minimization problem

min
d∈Pm

∆(d,dt) subject to d · ut = 0 . (1.3)

Here Pm = {d ∈ R
m |

∑m
i=1 di = 1, di ≥ 0 } is the set of

m-dimensional distribution vectors, or the m−dimensional
probability simplex. We show that the corrective update is
the solution to the above constrained minimization problem:

dt+1 = argmin
d∈Pm

∆(d,dt) subject to d · ut = 0 . (1.4)

More speci£cally, employing the standard concepts and
tools from constrained convex optimization [Lue84, BSS93,
HUL91], we show that the constrained minimization prob-
lem (1.3) is the dual of the unconstrained problem of max-
imizing − lnZt as a function of αt. The variable αt of the
unconstrained problem is effectively the Lagrange multiplier
used to enforce the constraint d · ut = 0 in (1.4). Also the
value of the minimization and maximization problems are
the same, i.e.,

min
d∈Pm

d·ut=0

∆(d,dt) = max
α∈R

(− lnZt(α)) . (1.5)

The relative entropy is of course a very commonly used
tool in statistics and in computational learning theory. We
wish here to consider two different aspects of applying the
relative entropy in the context of on-line learning. First, we
can use the relative entropy to analyse the convergence and
other properties of existing on-line algorithms. Second, we
can use relative entropy to motivate new algorithms. The
purpose of the present paper is to bring out explicitly in the
context of boosting the connection between these two aspects
by means of the duality property (1.5). Thus, we see more
clearly the relationship between boosting as a minimizer for
Zt [SS98] and the analyses of boosting-style algorithms in
terms of the relative entropy [FS97a, FS97b].

Of course, since we are basically considering two math-
ematically equivalent derivations for the single update rule
(1.1), most if not all of this is already implicit in earlier work.
In particular, a procedure more or less equivalent with the

corrective boosting algorithm, but in a context somewhat dif-
ferent from boosting weak learners, was analysed using a du-
ality relation similar to (1.5) by Della Pietra et al. [DDL97];
see Lafferty [Laf99] for connecting this work to boosting as
it is understood in computational learning theory.

Considering problems other than boosting, one should
notice work on on-line prediction algorithms using experts
[FSSW97, KW99] and linear regression [KW97]. In this
context, the relative entropy has been used in the same kind
of double role as here, both in deriving updates and then
proving (worst-case) performance bounds for them.

Outside the context of on-line learning theory, and its
worst-case bounds, relative entropy minimization with lin-
ear constraints is of course an important method of statistics
[KK92, Jum90]. Even more generally, the relative entropy is
a special case of a Bregman divergence [Bre67, Csi91]. It-
erative projection algorithms with respect to arbitrary Breg-
man divergences in the more general case of inequality con-
straints have been studied extensively in convex optimization
[Bre67, CL81, JB90]. In Appendix B we give some notes on
generalizing the boosting update (1.4) and the duality con-
nection (1.5) to arbitrary Bregman divergences (but at this
point we are unable to show that such updates actually boost
weak learners). Similar generalizations have been done in
parallel work by Lafferty [Laf99].

For solving the minimization problem (1.3), one can use
standard methods of constrained convex optimization; see
[HUL91] for an overview. Here we want to point out two ear-
lier papers that use the actual boosting update (1.1) to solve
(ostensibly) a different numerical problem. Littlestone, Long
and Warmuth [LLW92] suggest this update for solving iter-
atively a system of linear equations with a sparse solution.
Cesa-Bianchi, Krogh, and Warmuth [CBKW94] developed
the same algorithm in the context of £nding a maximum like-
lihood model from an exponential family. Both papers actu-
ally give a more general algorithm that corresponds to (1.4)
generalized to allow multiple linear constraints, but the algo-
rithms can naturally be specialized to the one-constraint case
(1.4). It turns out that in both cases a single iteration step of
the one-constraint algorithm is exactly the same as the up-
date step of the original AdaBoost. In particular, the choice
of αt is the same.

In the exponential form update (1.1), there is no obvious
reason why we need to have only a single real parameter
αt to adjust at update t. The update (1.1) can naturally be
generalized to

dt+1,i =
1

Z ′
t

dt,i exp

(
−

t∑

q=1

αt,quq,i

)
(1.6)

where again Z ′
t is the normalization factor and now a param-

eter αt,q is chosen for each of the past t weak hypotheses.
(The update (1.1) uses only a parameter αt for the most re-
cent hypothesis.) Again, the product of the normalization
factors Z ′

t bounds the training error of the £nal hypothe-
sis, and it is natural to choose a parameter vector αt such
that Z ′

t is minimized. Analogously with the corrective case,
the unconstrained problem of maximizing − lnZ ′

t as a func-
tion of αt ∈ R

t is dual to the following constrained prob-
lem: Minimize the relative entropy ∆(dt+1,dt) subject to
dt+1 · uq = 0 for all q ≤ t. Again the original variables



αt,q become Lagrange multipliers in the dual problem. Note
that the update (1.6) may be seen as an extended exponen-
tial form. We call this update, when αt is chosen such that
dt+1 · uq = 0 holds for 1 ≤ q ≤ t, the totally corrective
update.

As Schapire and Singer [SS98] observe, the property
dt+1 ·ut = 0 of the corrective update has the intuitive mean-
ing that the new distribution should be uncorrolated with
the mistakes made by the current weak hypothesis. Then it
seems that the new weak hypothesis, trained on the new dis-
tribution, should be more likely to give us information not
present in the current weak hypothesis. Given this intuitive
motivation, it would seem perhaps even better to have the
new distribution uncorrelated with all the previous weak hy-
potheses, leading us to the totally corrective algorithm.

First consider brie¤y implementing the corrective and
totally corrective algorithms. For the corrective algorithm,
there is only one parameter αt that can be determined by
a simple line search [SS98]. For the totally corrective al-
gorithm there are situations in which all the t constraints
dt+1 ·uq = 0 cannot be simultaneously satis£ed. Also, even
if a solution exists, £nding it is a t-dimensional numerical
problem that seems to be nontrivial. A simple method is to
repeatedly cycle over the past hypotheses updating one pa-
rameter at a time with an approximated corrective algorithm,
such as AdaBoost. We discuss these numerical issues brie¤y
in Appendix A. One could of course also use the minimiza-
tion procedures of [LLW92, CBKW94], or any other general
convex optimization algorithm for implementing the totally
corrective algorithm. However, the convergence bounds in
[LLW92, CBKW94] are given in terms of quantities that do
not have a natural interpretation in the boosting context.

Instead of getting too involved with the implementation
problems of the totally corrective algorithm, we prefer to ig-
nore them and keep the totally corrective algorithm mostly
as a conceptual tool for comparison with the corrective algo-
rithm. Actually, we feel that the totally corrective algorithm
may not always be the right approach. This is partly because
of the problems just mentioned, but we also expect that the
totally corrective update might lead boosting to over£t in cer-
tain circumstances. However, Della Pietra et al. [DDL97]
have succesfully used a method analogous to totally correc-
tive boosting also in practice.

As an alternative to the corrective update, equivalent with
(1.4), we suggest the update based on

dt+1 = argmin
d∈Pm

(∆(d,dt) + ηL(d · ut)) , (1.7)

where η is a positive parameter and L is some loss function.
We assume L(z) ≥ 0 with equality holding iff z = 0. In the
limit of η approaching in£nity, (1.7) reduces to minimizing
the relative entropy subject to L(d ·ut) = 0 (or equivalently
d · ut = 0) (1.4). However, by choosing different values
of η we can control the trade-off between the tendency to
be corrective and the tendency to be conservative, i.e., not
move too much in a single update. Thus η can be consid-
ered a learning rate parameter. The Exponentiated Gradient
algorithm for on-line linear regression has been derived by
Kivinen and Warmuth [KW97] as an approximate solution
to (1.7). A particularly intriguing connection is that (1.7)
with η = 1 and a certain entropic loss function L gives ex-

actly the AdaBoost update. It would be very interesting to
see what kind of boosting results could be proved for algo-
rithms based on other loss functions L and values of η.

We continue by giving in Section 2 a brief review of
the boosting algorithms and the error bound of Schapire and
Singer [SS98]. Section 3 shows the details of the minimum
relative entropy interpretations of the corrective and totally
corrective boosting algorithms. We use the minimum rela-
tive entropy interpretation in Section 4 for developing some
geometric intuitions for the corrective update. The connec-
tion to on-line regression algorithms through (1.7) is pursued
further in Section 5. Appendix A considers brie¤y some it-
erative methods for approximately solving the corrective and
totally corrective updates. Appendix B discusses generaliza-
tions from relative entropy to other Bregman divergences.

2 The boosting algorithms
We take our framework for boosting from Schapire and
Singer’s work on con£dence-rated boosting [SS98]. We con-
sider classifying elements of an arbitrary set X into two
classes, which we denote by −1 and +1. Our training set
consists of a set of m examples (xi, yi) ∈ X ×{−1, 1 }, for
i = 1, . . . ,m. The interpretation of this input data is that
for each instance xi, the label yi gives the correct classi£ca-
tion of xi according to some unknown target classi£er. We
allow our weak hypotheses to be arbitrary con£dence-rated
classi£ers, i.e., mappings from X to [−1, 1]. Such a map-
ping h can be interpreted as predicting classi£cations for the
elements of X , with sign(h(x)) the predicted classi£cation
and |h(x)| a con£dence rating. The output of the master hy-
pothesis will still be a strict classi£er, i.e., a mapping from
X to {−1, 1 }. We assume that our weak learner receives a
distribution over the training set as its input. We represent
these distributions as vectors d from the simplex Pm.

In boosting, we run the weak learner with T different dis-
tributions dt, for some suitable number T of rounds, and then
combine the resulting weak hypotheses ht by a weighted
majority vote [Sch90, Fre95]. Figure 1 shows the details
of AdaBoost and the corrective boosting algorithm, which
differ only in the choice of the parameter αt regulating the
amount of change at update t. Otherwise they both share
the exponential form (1.1) of the updated distribution, and
also the weighted majority form (2.3) of the master algo-
rithm’s hypothesis. As a practical point, a value αt such that
dt+1 · ut = 0 can be found by a line search except for the
degenerate case in which all the components ut,i have the
same sign [SS98]. We give in Appendix A some very simple
bounds for this line search.

Schapire and Singer noticed that for both AdaBoost and
the corrective boosting algorithm the training error of the
master hypothesis can be bounded by the product of the nor-
malization factors as

1

m
| { i | H(xi) 6= yi } | ≤

T∏

t=1

Zt(αt) . (2.4)

Since Zt(α) is minimized when α is such that dt+1(α)·ut =
0, the corrective update is motivated as a minimizer of this
upper bound. For AdaBoost, Zt(α) is replaced by an upper
bound (which is exact in the discrete case ut,i ∈ {−1, 1 })
and then αt is chosen by minimizing this upper bound.



Input a set of m examples (xi, yi) ∈ X × {−1, 1 }, i =
1, . . . ,m.

Initialize d1,i = 1/m for i = 1, . . . ,m.

Repeat for t = 1, . . . , T :

• Call the weak learner with the distribution dt over
the examples (xi, yi); let the resulting hypothesis
be ht.

• Choose a parameter αt ∈ R as follows. De£ne
ut ∈ [−1, 1]

m by ut,i = yiht(xi). Depending on
the algorithm, use the following values.
AdaBoost: Choose

αt =
1

2
ln
1 + dt · ut

1− dt · ut
.

Corrective: Choose αt such that
m∑

i=1

ut,idt,i exp(−αtut,i) = 0 .

• Update the distribution by dt+1 = dt+1(αt) with

dt+1,i(α) =
1

Zt(α)
dt,i exp (−αut,i) (2.1)

and

Zt(α) =

m∑

i=1

dt,i exp (−αut,i) . (2.2)

Output the master hypothesis H de£ned by

H(x) = sign

(
T∑

t=1

αtht(x)

)
. (2.3)

Figure 1: AdaBoost and the corrective and totally corrective
boosting algorith

The requirement dt+1 ·ut = 0 can also be interpreted as
requiring that the new distribution makes the current weak
hypothesis totally uncorrelated with the training data. Intu-
itively, the weak learner is then forced to learn something
new for ht+1. Given this motivation, it could seem natural
to consider a more general algorithm that enforces the con-
straint dt+1 · uq not only for q = t but also for all q < t.
Satisfying all these constraints naturally requires more than
one free variable.

Hence, instead of having at update t just one coef£cient
αt for the tth weak hypothesis, we take t coef£cients αt,q ,
one for each past weak hypothesis hq , 1 ≤ q ≤ t. Using this
t-dimensional parameter vector αt we now write the update
as dt+1 = dt+1(αt) where

dt+1,i(α) =
1

Zt(α)
dt,i exp

(
−

t∑

q=1

αquq,i

)
(2.5)

and

Zt(α) =
m∑

i=1

dt,i exp

(
−

t∑

q=1

αquq,i

)
. (2.6)

We call the algorithm with the extended exponential form
(2.5), with αt chosen such that dt+1 · uq holds for all
1 ≤ q ≤ t, the totally corrective algorithm. In the def-
inition (2.3) of the master hypothesis we use the weights
αt =

∑T
q=1 αq,t.

Schapire and Singer’s proof of the error bound (2.4) gen-
eralizes easily to give

1

m
| { i | H(xi) 6= yi } | ≤

T∏

t=1

Zt(αt)

for the totally corrective algorithm. Analogously with the
corrective algorithm, the totally corrective algorithm chooses
at update t the parameter vector αt such that Zt(αt) is min-
imized. It is also easy to see that assuming the same set
of weak hypotheses for the corrective and totally corrective
algorithm, the bound

∏
t Zt(αt) for the totally corrective al-

gorithm is no larger than the bound
∏

t Zt(αt) for the cor-
rective algorithm. (But of course we would not expect to get
the same weak hypotheses with different distributions.)

It should be noted that there may not exist any αt such
that dt+1 · uq holds for all 1 ≤ q ≤ t, and in any case £nd-
ing such a vector αt would be an t-dimensional optimiza-
tion problem. We consider this issue brie¤y in Appendix A.
However, we are not claiming that the totally corrective al-
gorithm would necessarily be a practical learning algorithm.
We introduce it here mainly as a theoretical comparison point
for the corrective algorithm.

3 Boosting as relative entropy minimization
We saw in Section 2 various boosting algorithms whose up-
dated distribution has exponential form can be seen as min-
imizing the factors Zt(αt) that appear in the bound (2.4).
This minimization problem explains the choice of the values
αt. The use of the exponential form (2.1) is essential. In par-
ticular, the proof of (2.4) uses the property that e−αyh(x) ≤ 1
if and only if sign(h(x)) 6= sign(y). Thus the exponential
gives a nice approximation to the discrete loss [SS98]. (See
[FHT98] for more discussion).

We now suggest an alternative view, in which the cor-
rective and totally corrective updates appear as solutions to
constrained relative entropy minimization problems. The ex-
ponential form of the update is an immediate consequence
of using the relative entropy as a measure of divergence be-
tween distributions. If the relative entropy was replaced by
a different Bregman divergence, then the update would have
another form. The values of the parameters αt are the La-
grange multiplier for enforcing the constraints. For simplic-
ity, we show the details only for the corrective algorithm and
then explain brie¤y how the results generalize to the totally
corrective algorithm.

We view the corrective update as pursuing two con¤ict-
ing goals. First, the updated distribution should be uncorro-
lated with the mistakes made by the previous weak hypoth-
esis, i.e. dt+1 · ut = 0. Otherwise the updated distribu-
tion should stay closest to the last distribution so as to retain



changes made in previous updates and also resist overreact-
ing to noise. The distance is measured by the relative entropy
∆(dt+1,dt) de£ned in (1.2).

The following theorem is basically an application of stan-
dard duality techniques from convex optimization [Lue84].
Intuitively, a constrained minimization problem for∆(d,dt)
turns out to be equivalent to an unconstrained maximization
problem for − lnZt(α). A similar result, but with more em-
phasis on the special properties of the relative entropy, is
given by Della Pietra et al. [DDL97]. The free variable α
of the unconstrained problem becomes a Lagrange multiplier
in the constrained problem. Although the theorem is rather
basic, we give the proof in complete detail for clarity.

Theorem 1 De£ne dt+1(α) and Zt(α) as in (2.1) and (2.2),
and assume that dt+1(α) · ut = 0 for some α ∈ R. Then

min
d∈Pm

d·ut=0

∆(d,dt) = max
α∈R

(− lnZt(α)) . (3.1)

Further,

argmin
d∈Pm

d·ut=0

∆(d,dt) = dt+1(αt) (3.2)

where

αt = argmax
α∈R

(− lnZt(α)) .

Recall that the corrective update is given by

dt+1 = dt+1(αt) where αt = argmaxα∈R
(− lnZt(α)).

Equivalently αt is such that dt+1(αt) · ut = 0. Hence, The-
orem 1 gives a relative entropy interpretation both for the
corrective update and the normalization factor Zt(αt) in the
error bound (2.4).

Proof of Theorem 1 As discussed earlier, the assumption
that dt+1(α) · ut = 0 for some α implies that this α is actu-
ally the unique minimum point for Zt(α). Hence, in partic-
ular, the maximum on the right-hand side of (3.1) is attained
at α = αt where dt+1(αt) · ut = 0.

Consider now the constrained minimization on the left-
hand side of (3.1). De£ne the Lagrangian

Ft(d, α) = ∆(d,dt) + αd · ut .

The key step of the proof of (3.1) is the minimax equation

min
d∈Pm

max
α∈R

Ft(d, α) = max
α∈R

min
d∈Pm

Ft(d, α) . (3.3)

Before going into the proof of (3.3), let us see how it gives
the main equality (3.1).

First, it is clear that maxα∈R Ft(d, α) is ∆(d,dt) if d ·
ut = 0 and∞ otherwise. Therefore, we have

min
d∈Pm

d·ut=0

∆(d,dt) = min
d∈Pm

max
α∈R

Ft(d, α) . (3.4)

Now (3.3) gives us

min
d∈Pm

d·ut=0

∆(d,dt) = max
α∈R

min
d∈Pm

Ft(d, α) .

To £nish the proof of (3.1), it is now suf£cient to show

min
d∈Pm

Ft(d, α) = − lnZt(α) (3.5)

for all α ∈ R. This last claim follows by direct substitution
from the more speci£c result that the value Ft(d, α) for £xed
α is minimized when d = dt+1(α):

argmin
d∈Pm

Ft(d, α) = dt+1(α) . (3.6)

Equation (3.6) is obtained by a straightforward differen-
tiation with an additional Lagrange coef£cient to enforce∑

i di = 1. Since ∆(w,wt) is convex in w, the zero of
the derivatives is the minimum point.

Thus, the proof of (3.3) remains. First, we have

max
α∈R

min
d∈Pm

Ft(d, α) = min
d∈Pm

Ft(d, αt)

≤ min
d∈Pm

max
α∈R

Ft(d, α) ,

where we used the fact shown above that the maximum of
mind∈Pm

Ft(d, α) occurs at α = αt. On the other hand, by
applying (3.5) and the fact dt+1(αt) · ut = 0 we get

max
α∈R

min
d∈Pm

Ft(d, α) = Ft(dt+1(αt), αt)

≥ min
d∈Pm

Ft(d, αt) .

From (3.4) we now see that

max
α∈R

min
d∈Pm

Ft(d, α) ≥ min
d∈Pm

max
α∈R

Ft(d, α) ,

and (3.3) follows.
The proof of (3.3) implies that actually

Ft(dt+1(αt), αt) = min
d∈Pm

Ft(d, αt) ,

so ∆(dt+1(αt),dt) = mind∈Pm
∆(d,dt). Since ∆(d,dt)

is convex in d and thus has a unique minimum, (3.2) follows.
2

Consider now the totally corrective algorithm. The only
difference to the corrective one is that now for dt+1 we have
t constraints instead of just one. Thus, let

C = {d ∈ Pm | d · uq = 0 for 1 ≤ q ≤ t } .

An argument similar to the proof of Theorem 1 shows that

min
d∈C

(∆(dt+1,dt)) = max
α∈Rt

(− lnZt(α)) ,

and further αt = argmax
α
(− lnZt(α)) and

dt+1(αt) = argmin
d∈C

∆(d,dt) .

4 Geometric interpretations for boosting

We next show some properties of the corrective update
that follow naturally when we interpret (3.2) in a geomet-
ric fashion: the new distribution dt+1 is obtained by pro-
jecting the old distribution dt onto the hyperplane Ut =
{d | d · ut = 0 }. Here the projection of the point dt to the
plane Ut is de£ned as the point d on the plane that is clos-
est to the starting point dt. The relative entropy ∆(d,dt)
is used as our measure of distance. Although geometric



metaphors are very illuminating here, it must be remembered
that the relative entropy is not a metric and we have to be
careful when we use our intuitions about distance. The ideas
sketched here can be applied directly to the totally corrective
update by replacing the hyperplane Ut by the intersection of
t hyperplanes Uq , 1 ≤ q ≤ t.

Assume now that there is at least one α ∈ R such that the
distribution dt+1(α) in the exponential form (2.1) satis£es
dt+1(α) · ut = 0. As discussed earlier, this is a reasonable
assumption in the boosting setting, and then actually there is
a unique value αt such that dt+1(α) · ut = 0 holds if and
only if α = αt. Now it is easy to show that all distributions
dt+1(α) in exponential form (2.1) project to the same point
dt+1 on the hyperplane Ut, i.e., for any α ∈ R we have

argmin
d∈Pm∩Ut

∆(d,dt) = argmin
d∈Pm∩Ut

∆(d,dt+1(α)) = dt+1 .

Thus, for any distribution d on the curve
{dt+1(α) | α ∈ R }, the projection of d on the hyper-
plane Ut is the unique point where the curve intersects the
hyperplane.

Another interesting property is analogous to the
Pythagorean Theorem. Consider dt and its projection dt+1

onto the hyperplane Ut. Then for any d∗ on the plane Ut,

∆(d∗,dt) = ∆(d∗,dt+1) + ∆(dt+1,dt) . (4.1)

It is easy to check this using the properties noted in Sec-
tion 3. If we replace in (4.1) the relative entropy ∆(d,d′)
by the squared Euclidean distance ||d − d′||22 and dt+1 by
the usual Euclidean projection of dt onto Ut, then (4.1) be-
comes the familiar Pythagorean Theorem. This property of
minimum distance projections onto sets de£ned by linear
constraints holds even more generally for all Bregman diver-
gences [Bre67]. For applications in on-line learning theory,
see [HW98].

5 Boosting in a regression framework

It has been pointed out [ROM98] that on highly noisy train-
ing sets, AdaBoost may tend to over£t. Considering this, the
strict constraint dt+1 · ut = 0 of the corrective algorithm,
and the even tighter constraint of the totally corrective al-
gorithm, seems a little uncautious. As a possible means of
avoiding this problem, we suggest replacing the constrained
minimization problem (1.4) by

dt+1 = argmin
d∈Pm

(∆(d,dt) + ηtL(d · ut)) , (5.1)

where L is some loss function such that L(z) is minimized
for z = 0 and ηt > 0 is a parameter controlling the trade-off
between minimizing the loss and staying close to the previ-
ous distribution. The corrective update is obtained from (5.1)
in the limit when ηt approaches in£nity.

This framework for deriving parameter updates was in-
troduced by Kivinen and Warmuth [KW97] in the context of
on-line linear regression. The solution to (5.1) satis£es

dt+1,i =
1

Nt
dt,i exp (−ηtL

′(dt+1 · ut)ut,i) , (5.2)

where L′ is the derivative of L and Nt a normalization fac-
tor. For general L, (5.2) cannot be solved in closed form be-
cause of how dt+1 appears on the right-hand side. Therefore,

Kivinen and Warmuth suggest approximating the derivative
L′(dt+1 · ut) on the right-hand side by its old value L′(dt ·
ut), which is a reasonable approximation at least for small
values of ηt. This results in the Exponentiated Gradient up-
date [KW97]

dt+1,i =
1

Mt
dt,i exp (−ηtL

′(dt · ut)ut,i) , (5.3)

where again Mt is a normalization factor. The trade-off pa-
rameter ηt can be interpreted as a learning rate. This ap-
proach can be generalized by replacing the relative entropy
in (5.1) by any Bregman divergence.

It is here particularly interesting to apply (5.1) with
L(z) = Lent(z, 0), where Lent(z, ẑ) for z, ẑ ∈ [−1, 1] is
the is the usual entropic loss

Lent(z, ẑ) =
1− z

2
ln
1− z

1− ẑ
+
1 + z

2
ln
1 + z

1 + ẑ
.

Then L′(z) = 1
2 ln((1 + z)/(1 − z)). By comparing (5.3)

with (1.1) and recalling the value αt = ln((1+dt ·ut)/(1−
dt · ut))/2 used by AdaBoost, we see that AdaBoost can be
interpreted as Exponentiated Gradient with the entropic loss
function and learning rate ηt = 1.

6 Conclusions

We have considered the update step of the standard boosting
algorithms as a constrained relative entropy minimizer, or al-
ternatively as projection with respect to the relative entropy
distance measure. We hope that our simple observations will
be useful in designing better boosting algorithms. Many of
the basic properties of the relative entropy are shared more
generally by all Bregman divergences [Bre67]. It would be
interesting to see whether some other divergences might lead
to useful boosting procedures. Some updates motivated by
different Bregman divergences are brie¤y discussed in Ap-
pendix B, but without any results on the training error of the
resulting boosting procedure. Perhaps the GeoLev procedure
[DH99] could be related to projections with respect to the
squared Euclidean distances. Note that the relative entropy
is a special divergence in that it is de£ned on the simplex Pm

and this is the natural domain for boosting. For other diver-
gence, an additional projection onto Pm would be needed,
but this is not necessarily a problem. See [HW98] for ex-
amples of using projections onto arbitrary convex sets in a
regression setting.

Another interesting subject for further study is noncor-
rective updates motivated analogously to regression algo-
rithms as in Section 5. Hopefully, they will provide a means
for making the boosting algorithms less prone to over£tting.
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A Finding the corrective parameter values

A.1 The corrective algorithm

As Schapire and Singer [SS98] have observed, there is a
unique value αt such that dt+1(αt)·ut = 0 for the corrective



algorithm, unless all the components ut,i have the same sign.
Such value can be found by a simple line search. However,
if the absolute values |ut,i| can be arbitrarily small, then the
value αt can be arbitrarily large. We now give a crude esti-
mate of the range we need to search.

Thus, consider an updated distribution dt+1(α) as in
(2.1). We are looking for some upper and lower bounds
for the value αt such that dt+1(αt) · ut = 0. Assume
that dt · ut > 0. (If dt · ut < 0, replace ut with −ut.
If dt · ut = 0, then the solution is αt = 0.) We try to
£nd a value β > 0 such that dt+1(β) · ut < 0, so 0 <
αt < β. Let k be such that ut,k = min {ut,i | dt,i 6= 0 }.
De£ne P = { i | ut,i > 0, dt,i 6= 0 }, and let j be such that
ut,j = mini∈P ut,i. We are assuming P 6= ∅ and ut,i < 0.
Consider any α such that α ≥ 1/ut,j . The function fα given
by fα(x) = xe−αx has f ′α(x) < 0 when x > 1/α. Hence,
in particular, we have fα(ut,j) ≥ fα(ut,i) for all i ∈ P . We
can therefore write

Zt(α)dt+1(α) · ut

= dt,kut,ke
−αut,k +

∑

i6=k

dt,ifα(ut,i)

≤ dt,kut,ke
−αut,k +

∑

i∈P

dt,ifα(ut,i)

≤ dt,kut,ke
−αut,k + fα(ut,j)

∑

i∈P

dt,i

= e−αut,k ·(
dt,kut,k + ut,je

−α(ut,j−ut,k)
∑

i∈P

dt,i

)
,

from which we see that dt+1(α) · ut ≤ 0 holds for α ≥ α∗

where

α∗ =
1

ut,j − ut,k
ln

ut,j
∑

i∈P dt,i

−dt,kut,k
.

Hence, we can take β = max { 1/ut,j , α
∗ }.

We now can do a binary search for αt in the interval
(0, β). Alternatively we can start a search for a point γ s.t.
dt+1(γ) · ut < 0 by starting with γ = 1 and then doubling
γ iteratively. This iterative procedure will terminate quickly
because γ can never be much larger than β. Once we found
a γ with the property we want we can start the binary serach
for αt in a small region.

A.2 The totally corrective algorithm

As we have seen, the problem of £nding the values for the pa-
rameters α for the corrective and totally corrective algorithm
is a relative entropy minimization problem. Obviously, there
are a large number of general optimization algorithms than
could be used to solve such problems. We present here an
analysis of an iterative algorithm that is speci£cally tailored
to the boosting case. The analysis is very close the bound
given in [LLW92] on the number of iterations required for
£nding an approximate solution to a system of equations.

Of course, we need to assume that there is at least one
distribution d that satis£es all the constraints d · ut =
0. This may not be the case. Consider for example
u1 = (−1/3, 1/2, 0, 0), u2 = (0, 0, 1/2,−1/3), and u3 =

(0, 1/2, 0, 1/3). Then it is easy to see that there are vectors
w that satisfy the three constraints w · ut = 0, but any such
vector has both positive and negative components and cannot
therefore be normalized into a distribution.

Our approach is quite similar to so-called row-action op-
timization methods [Bre67, CL81]. We wish to £nd a dis-
tribution dt+1 ∈ Pm that minimizes the relative entropy
∆(dt+1,dt) subject to t constraints dt+1 · uq = 0 for 1 ≤
q ≤ t. We de£ne a sequence d̂j , j = 1, 2, . . . , as follows.
We start with d̂1 = dt. Then at step j pick one constraint
that is not satis£ed with the current distribution d̂j , and de-
£ne d̂j+1 be the projection of d̂j onto the hyperplane de£ned
by that constraint. The limit point to which the sequence d̂j
converges must then satisfy all the constraints. Further, be-
cause of our choice of starting point and because of proper-
ties of projections such as discussed in Section 4, this limit
point also minimized the relative entropy from dt.

As a minor change to the above outline, we do not here
do the projections exactly but are satis£ed with the AdaBoost
update step that does an approximate projection, as discussed
earlier. Also notice that in the totally corrective algorithm the
correct distribution dt has been obtained from the initial dis-
tribution d1 by (perhaps approximate) entropy projections
with respect to constraints dt · uq = 0, q < t. Therefore, by
the properties of projections in Section 4, the constrained rel-
ative entropy minimization problem does not really change
if we take d1 instead of dt as the starting point. Thus, we
have an iterative procedure that starts with d̂1 = d1 and then
for j = 1, 2, . . . repeats the following:

1. Let qj be such that |d̂j · uqj
| is maximized.

2. Let α̂j = ln((1 + d̂j · uqj
)/(1− d̂j · uqj

))/2.

3. De£ne d̂j+1 by

d̂j+1,i =
1

Ẑj

d̂j,i exp
(
−α̂juqj ,i

)

where Ẑj is the normalization factor.

Then Ẑj ≤ (1 − (d̂j · uqj
)2)1/2, as shown by the usual

analysis of AdaBoost [FS97b]. Fix a distribution vector d∗ ∈
Pm. It follows straight from the de£nitions that

∆(d∗, d̂j)−∆(d∗, d̂j+1) = −α̂jd∗ · uqj
− ln Ẑj .

Fix now some parameter 0 < γ < 1, and let J be the largest
index such that |d̂j · uqj

| ≥ γ holds for all j ≤ J . Then for
j ≤ J we have

− ln Ẑj ≥ −(1/2) ln(1− (d̂j · uqj
)2)

≥ −(1/2) ln(1− γ2) ,

so in particular
∑J

j=1(− ln Ẑj) ≥ −(J/2) ln(1 − γ2). On
the other hand, assume now that d∗ can be chosen such that
d∗ · uq = 0 holds for all 1 ≤ q ≤ t. (That is, there is a



solution d∗ that satis£es the constraints.) Then

J∑

j=1

(− ln Ẑj) =

J∑

j=1

(
∆(d∗, d̂j)−∆(d∗, d̂j+1)

)

= ∆(d∗, d̂1)−∆(d∗, d̂J+1)

≤ lnm

if we in addition choose d1 = d̂1 to be the uniform start
vector. Hence, we have

J ≤
2 lnm

− ln(1− γ2)
≤
2 lnm

γ2
.

This is an upper bound for the number of iteration rounds be-
fore all the dot products d̂j ·uq get smaller than γ in absolute
value.

The above iterative method can also be used in the case
where there is just one constraint (i.e., the case of the cor-
rective update). Thus iterating AdaBoost on the last weak
hypothesis can be used to £nd the corrective update. This is
a simple alternate to the binary search method discussed in
the previous section.

B Other distance measures

As we have mentioned above, relative entropy is a special
case of Bregman divergences [Bre67], and much of the dis-
cussion about the boosting update and its motivation applies
directly to the case of general Bregman divergences. In this
section we explain the connection of the minimax results of
Theorem 1 to the general duality properties of constrained
convex optimization problems. Similar duality properties
have been analysed in parallel work by Lafferty [Laf99].
Notice that these ideas only generalize the motivation of
boosting as relative entropy minimization. The training error
bounds for boosting [FS97b, SS98] are based on the speci£c
way the exponential function appears in the update that min-
imizes relative entropy, and we know of no way of general-
izing this to updates minimizing other Bregman divergences.

The discussion here is on a general level, and we omit
regularity conditions such as having the optimal solution lie
in the interior of the feasible region. To obtain a rigorous
proof, such details would need to be considered, but it seems
easier to do this individually for each Bregman divergence
we wish to consider (like we did in Theorem 1 for the relative
entropy) rather than to try to obtain general necessary and
suf£cient conditions. For a more complete treatment of du-
ality in convex optimization, see standard textbooks such as
Luenberger [Lue84, pp. 396–401] or Bazaraa et al. [BSS93,
pp. 199–210].

Consider now a continuously differentiable strictly con-
vex function F from some convex set X ⊆ R

m to R. Hence,
the gradient ∇F = f is a one-to-one mapping from R

m to
R

m. We de£ne the Bregman divergence ∆F for vectors w
and w̃ by

∆F (w̃,w) = F (w̃)− F (w)− (w̃ −w) · f(w) . (B.1)

Thus ∆F (w̃,w) is the difference between F (w̃) and its ap-
proximation based on the £rst order Taylor polynomial of
F around w. Since F is strictly convex, this difference is
strictly positive for w̃ 6= w.

Let us now consider a generalized boosting update,
which we obtain by replacing the relative entropy by an ar-
bitrary Bregman divergence in (1.4):

wt+1 = argmin
w

∆F (w,wt) subject to w · ut = 0 .

(B.2)

Notice that we have omitted the constraint that the weights
must be in the probability simplex and, with this in mind,
use the symbol w instead of d. If one wants to keep the
weights as probability vectors, which of course is needed
in the standard boosting scenario, one can enforce the con-
straintw ∈ Pm by the usual method of Lagrange multipliers.
(This involves one multiplier for the constraint

∑
i di = 1

and m multipliers for the constraints di ≥ 0.) Another pos-
sibility would be to £rst obtain a solution w̃ to the mini-
mization problem ignoring the constraint w ∈ Pm and then
obtain the £nal solution w t+1 ∈ Pm as the projection of w̃
into Pm with respect to∆F . This method was used by Herb-
ster and Warmuth [HW98] in a regression setting. It is also
possible to entirely ignore the interpretation of the weights
as probabilities and apply the boosting framework simply as
a certain kind of a parameter £tting procedure. This is the
approach taken by Friedman et al. [FHT98], and also the
method suggested by Della Pietra et al. in an earlier work
[DDL97] (see Lafferty [Laf99] for later developments). Of
course, if the weights do not represent a probability distri-
bution, the weak learner must somehow be able to use the
weights directly instead of via sampling. Because of this va-
riety of possibilities, we concentrate here on properties of the
update (B.2) on a level that leaves our position with respect
to the constraint w ∈ Pm open.

To solve (B.2), introduce now the Lagrangian by

Ut(w, α) = ∆F (w,wt) + αw · ut . (B.3)

First we wish to solve for a £xed α the value

wt+1(α) = argmin
w

Ut(w, α) . (B.4)

By substituting the de£nition (B.1) into (B.3) and differenti-
ating with respect to w we see that

f(wt+1(α)) = f(wt)− αut . (B.5)

Notice that since f is one-to-one, this determines wt+1(α)
uniquely. Now, in particular, the solution to (B.2) is given
by wt+1 = wt+1(αt) where αt is such that the constraint
wt+1(α) · ut = 0 is satis£ed.

As we noticed, f is one-to-one; let g be the inverse of f ,
so we can write w = g(θ) for any θ = f(w). We can then
alternatively give the solution as an additive update in the θ
parameters: we have wt = g(θt) where θt+1 = θt+1(αt)
for

θt+1(α) = θt − αut . (B.6)

To see the connection to the original boosting update, con-
sider F (w) =

∑m
i=1(wi lnwi − wi), for which the gradient

is given by fi(w) = lnwi and the Bregman divergence is
the unnormalized relative entropy

∆F (w,wt) =
m∑

i=1

(
wi ln

wi

wt,i
− wi + wt,i

)
. (B.7)



The update correponding to this divergence satis£es

lnwt+1,i = lnwt,i − αtut,i ,

which differs from the boosting update

lnwt+1,i = lnwt,i − αtut,i − lnZt

only by the normalization. As we mentioned, the normaliza-
tion constraint

∑
i wi = 1 can be included into the problem

(B.2) via an additional Lagrange multiplier in (B.3). The
positivity constraints wi ≥ 0 turn out to hold automatically
for the special case of unnormalized relative entropy.

Consider now the dual problem. For the Lagrangian Ut

we de£ne the usual dual function Qt by

Qt(α) = min
w

Ut(w, α) . (B.8)

Basic duality results (see, e.g., [BSS93, Theorem 6.2.4])
now imply that the constrained problem of minimizing
∆F (w,wt) subject to w · ut = 0 is equivalent to the un-
constrained problem of maximizing Qt(α). To be more pre-
cise, notice £rst that ∆F (w,wt) is convex in w, and Qt(α)
can easily shown to be concave in α, so they have a unique
minimum and maximum point, respectively. These are now
known to give the same value, i.e.,

min
w·ut=0

∆F (w,wt) = max
α

Qt(α) . (B.9)

Further, the minimum and maximum points correspond to
each other [BSS93, Theorem 6.2.5] in the sense that

argmin
w·ut=0

∆F (w,wt) = wt+1(αt)

where wt+1(α) is as in (B.4) and

αt = argmax
α

Qt(α) . (B.10)

To make more use of this, let us write Qt(α) out in a
more explicit form. For this, it is useful to introduce the
convex conjugate of F [Roc70]. This is the function G that
satis£es

G(θ) + F (w) = θ ·w (B.11)

for θ = f(w). From the convexity of F , we know that G
is well-de£ned and convex. Further, by differentiating the
de£nition (B.11) we see directly the gradient g = ∇G is the
inverse of the gradient of F , i.e., g(θ) = w when f(w) = θ.
By substituting (B.11) into the de£nition (B.1) we see the
connection [Ama85, AW99]

∆G(θ, θ̃) = ∆F (w̃,w)

(notice the change in the order of variables). In particular,
from (B.6) we get

Qt(α) = ∆F (wt+1(α),wt) + αwt+1(α) · ut

= ∆G(θt,θt+1(α)) + αwt+1(α) · ut

= G(θt)−G(θt+1(α))

− (θt − θt+1(α)) ·wt+1(α)

+ αwt+1(α) · ut

= G(θt)−G(θt − αut) .

Hence, (B.9) becomes

min
w·ut=0

∆F (w,wt) = max
α
(G(θt)−G(θt − αut)) ,

and (B.10) gives

αt = argmax
α

(−G(θt − αut)) .

As a simple example, consider the unnormalized relative
entropy (B.7), which is the Bregman divergence for the con-
vex function F =

∑m
i=1(wi lnwi−wi) de£ned in X = R

m
+ .

The gradient f now is given by fi(w) = lnwi, so for its in-
verse g we get g(θ) = eθi . Clearly g = ∇G for G(θ) =∑m

i=1 e
θi , and indeed this combination of F and G satis£es

the condition (B.11). The update we get from this divergence
is then wt+1,i = wt,i exp(−αtut,i), and

min
w·ut=0

∆F (w,wt)

= ∆F (wt+1,wt)

= max
α
(G(θt)−G(θt − αut))

= max
α

(
m∑

i=1

wt,i(1− exp(−αut,i))

)
.

If we constrain the weights to satisfy
∑

i wi = 1, then
of course the unnormalized relative entropy becomes the
usual relative entropy, but the above derivation for the value
∆F (wt+1,wt) in terms of G becomes invalid. To see the al-
gorithm for the relative entropy, i.e., the corrective boosting
algorithm, in this light, £rst notice that the boosting update
(1.1) can be written as wt = g(θt) with θt+1 = θt+1(α)
when g is the softmax function

gi(θ) =
eθi

∑m
j=1 e

θj
.

Then g = ∇G for

G(θ) = ln

(
m∑

i=1

eθi

)
.

We then get for the relative entropy ∆(wt+1,wt) the value
G(θt) − G(θt+1) as expected. Unfortunately, G is not
strictly convex, and accordingly g is not one-to-one, so the
derivation given above is not valid without modi£cations.
The simplest way to resolve this is to represent the weights
w ∈ Pm by lower-dimensional weights w′ ∈ [0, 1]m−1 with
wi = w′

i for 1 ≤ i ≤ m − 1 and wm = 1 −
∑m−1

i=1 w′
i.

We omit the details of this reduction, but the result is that we
also get Theorem 1 for the usual relative entropy as a special
case of the derivation given here.

Another related divergence is the sum of binary relative
entropies used by Bylander [Byl97] to analyse on-line linear
regression. This divergence is de£ned for vectors in [0, 1]m,
with

∆F (w̃,w) =
m∑

i=1

(
w̃i ln

w̃i

wi
+ (1− w̃i) ln

1− w̃i

1− wi

)

for F (w) =
∑m

i=1(wi lnwi+(1−wi) ln(1−wi)). The gra-
dient is now given by fi(w) = ln(wi/(1−wi)), from which
we get gi(θ) = eθi/(1 + eθi). The update then becomes

wt+1,i =
wt,ie

−αtut,i

1− wt,i + wt,ie−αtut,i
.



We also get G(θ) =
∑m

i=1 ln(1 + eθi), so

min
w·ut=0

∆F (w,wt)

= ∆F (wt+1,wt)

= max
α

(
m∑

i=1

(ln(1 + eθt,i)− ln(1 + eθt,i−αut,i)

)

= max
α

(
m∑

i=1

− ln(1− wt,i + wt,ie
−αut,i)

)
.

Finally, if we take F (w) = ||w||2/2 =
∑m

i=1 w
2
i /2,

we get the squared Euclidean distance ∆F (w̃,w) = ||w̃ −
w||2/2. The gradient is the identity function, so wt+1 =
wt + αtut, and G = F , so

min
w·ut=0

∆F (w,wt)

= ∆F (wt+1,wt)

=
1

2
max
α

(
||wt||

2 − ||wt − αut||
)

=
(wt · ut)

2

||u||2
.

(In this special case we were thus able to solve the maxi-
mization in closed form.) Geometrically, wt+1 is the point
closest to wt on the hyperplane w · ut = 0.
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