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Abstract. We design algorithms for two online variance minimization
problems. Specifically, in every trial t our algorithms get a covariance
matrix Ct and try to select a parameter vector wt such that the total
variance over a sequence of trials

�
t w�

t Ctwt is not much larger than the
total variance of the best parameter vector u chosen in hindsight. Two
parameter spaces are considered - the probability simplex and the unit
sphere. The first space is associated with the problem of minimizing risk
in stock portfolios and the second space leads to an online calculation
of the eigenvector with minimum eigenvalue. For the first parameter
space we apply the Exponentiated Gradient algorithm which is motivated
with a relative entropy. In the second case the algorithm maintains a
mixture of unit vectors which is represented as a density matrix. The
motivating divergence for density matrices is the quantum version of the
relative entropy and the resulting algorithm is a special case of the Matrix
Exponentiated Gradient algorithm. In each case we prove bounds on the
additional total variance incurred by the online algorithm over the best
offline parameter.

1 Introduction

In one of the simplest settings of learning with expert advice [FS97], the learner
has to commit to a probability vector w over the experts at the beginning of
each trial. It then receives a loss vector l and incurs loss w ·l =

∑
i wili. The goal

is to design online algorithms whose total loss over a sequence of trials is close
to loss of the best expert in all trials, i.e. the total loss of the online algorithm∑

t wt · lt should be close to the total loss of the best expert chosen in hindsight,
which is infi

∑
t lt,i, where t is the trial index.

In this paper we investigate online algorithms for minimizing the total vari-
ance over a sequence of trials. Instead of receiving a loss vector l in each trial, we
now receive a covariance matrix C of a random loss vector l, where C(i, j) is the
covariance between li and lj at the current trial. Intuitively the loss vector pro-
vides first-order information (means), whereas covariance matrices give second
order information. The variance/risk of the loss for probability vector w when
the covariance matrix is C can be expressed as w�Cw = Var(w · l). Our goal
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is to minimize the total variance over a sequence of trials:
∑

t w�
t Ctwt. More

precisely, we want algorithms whose total variance is close to the total variance
of the best probability vector u chosen in hindsight, i.e. the total variance of the
algorithm should be close to infu u�(

∑
t Ct)u (where the minimization is over

the probability simplex).
In a more general setting one actually might want to optimize trade-offs be-

tween first-order and second order terms: w · l + γw�Cw, where γ ≥ 0 is a
risk-aversion parameter. Such problems arise in Markowitz portfolio optimiza-
tion (See e.g. discussion in [BV04], Section 4.4). For the sake of simplicity, in
this paper we focus on minimizing the variance by itself.

We develop an algorithm for the above online variance minimization problem.
The parameter space is the probability simplex. We use the Exponentiated Gra-
dient algorithm for solving this problem since it maintains a probability vector.
The latter algorithm is motivated and analyzed using the relative entropy between
probability vectors [KW97]. The bounds we obtain are similar to the bounds of
the Exponentiated Gradient algorithm when applied to linear regression.

In the second part of the paper we focus on the same online variance mini-
mization problem, but now the parameter space that we compare against is the
unit sphere of direction vectors instead of the probability simplex and the total
loss of the algorithm is to be close to infu u�(

∑
t Ct)u, where the minimization

is over unit vectors. The solution of the offline problem is an eigenvector that
corresponds to a minimum eigenvalue of the total covariance

∑
t Ct.

Note that the variance u�Cu can be rewritten using the trace operator:
u�Cu = tr(u�Cu) = tr(uu�C). The outer product uu� for unit u is called
a dyad and the offline problem can be reformulated as minimizing trace of a
product of a dyad with the total covariance matrix: infu tr(uu�(

∑
t Ct)) (where

u is unit length).1

In the original experts setting, the offline problem involved a minimum over
experts. Now its a minimum over dyads and the best dyad corresponds to an
eigenvector with minimum eigenvalue. The algorithm for the original expert set-
ting maintains its uncertainty over which expert is best as a probability vector
w, i.e. wi is the current belief that expert i is best. This algorithm is the Contin-
uous Weighted Majority (WMC) [LW94] (which was reformulated as the Hedge

algorithm in [FS97]). It uses exponentially decaying weights wt,i =
e−η

�t−1
q=1 lq,i

Zt
,

where Zt is a normalization factor.
In the generalized setting we need to maintain uncertainty over dyads. The

natural parameter space is therefore mixtures of dyads which are called density
matrices in statistical physics (symmetric positive definite matrices of trace one).
Note that the vector of eigenvalues of such matrices is a probability vector. Using
the methodology of [TRW05, War05] we develop a matrix version of the Weighted
Majority algorithm for solving our second online variance minimization problem.

1 In this paper we upper bound the total variance of our algorithm, whereas the
generalized Bayes rule of [War05, WK06] is an algorithm for which the sum of the
negative logs of the variances is upper bounded.
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Now the density matrix parameter has the form Wt =
exp(−η

∑t−1
q=1 Cq)

Zt
, where

exp is the matrix exponential and Zt normalizes the trace of the parameter ma-
trix to one. When the covariance matrices Cq are the diagonal matrices diag(lq)
then the matrix update becomes the original expert update. In other words the
original update may be seen as a special case of the new matrix update when
the eigenvectors are fixed to the standard basis vectors and are not updated.

The original weighted majority type update may be seen as a softmin calcu-
lation, because as η → ∞, the parameter vector wt puts all of its weight on
argmini

∑t−1
q=1 lq,i. Similarly, the generalized update is a soft eigenvector calcu-

lation for the eigenvectors with the minimum eigenvalue.
What replaces the loss w · l of the algorithm in the more general context? The

dot product for matrices is a trace and we use the generalized loss tr(W C). If
the eigendecomposition of the parameter matrix W consists of the eigenvectors
wi and associated eigenvalues ωi then this loss can be rewritten as

tr(W C) = tr((
∑

ωiwiw
�
i )C) =

∑

i

ωi w�
i Cwi

In other words it may be seen as an expected variance along the eigenvectors
wi that is weighted by the eigenvalues ωi. Curiously enough, this trace is also
a quantum measurement, where W represents a mixture state of a particle and
C the instrument (See [War05, WK06] for additional discussion). Again the dot
product w · l is the special case when the eigenvectors are the standard basis
vectors, i.e.

tr(diag(w) diag(l)) = tr((
∑

wieie
�
i ) diag(l)) =

∑

i

wi e�
i diag(l)ei =

∑

i

wili.

The new update is motivated and analyzed using the quantum relative en-
tropy (due to Umegaki, see e.g. [NC00]) instead of the standard relative entropy
(also called Kullback-Leibler divergence). The analysis is a fancier version of the
original online loss bound for WMC that uses the Golden-Thompson inequality
and some lemmas developed in [TRW05].

2 Variance Minimization over the Probability Simplex

2.1 Definitions

In this paper we only consider symmetric matrices. Such matrices always have
an eigendecomposition of the form W = WωW�, where W is an orthogonal
matrix of eigenvectors and ω is a diagonal matrix of the corresponding eigenval-
ues. Alternatively, the decomposition can be written as W =

∑
i ωiwiw

�
i , with

the ωi being the eigenvalues and the wi the eigenvectors. Note that the dyads
wiw

�
i are square matrices of rank one.

Matrix M is called positive semidefinite if for all vectors w we have w�Mw ≥
0. This is also written as a generalized inequality M � 0. In eigenvalue terms this
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Fig. 1. An ellipse C in R
2: The eigenvectors are the directions of the axes and the

eigenvalues their lengths from the origin. Ellipses are weighted combinations of the
one-dimensional degenerate ellipses (dyads) corresponding to the axes. (For unit w,
the dyad ww� is a degenerate one-dimensional ellipse which is a line between −w and
w). The solid curve of the ellipse is a plot of direction vector Cw and the outer dashed
figure eight is direction w times the variance w�Cw. At the eigenvectors, this variance
equals the eigenvalues and the figure eight touches the ellipse.

means that all eigenvalues of matrix are ≥ 0. A matrix is strictly positive definite
if all eigenvalues are > 0. In what follows we will drop the semi- prefix and call
any matrix M � 0 simply positive definite.

Let l be a random vector, then C = E
(
(l − E(l))(l − E(l))�

)
is its covariance

matrix. It is symmetric and positive definite. For any other vector w we can
compute the variance of the dot product l�w as follows:

Var(l�w) =E
(
(l�w − E(l�w))2

)

=E
(
((l� − E(l�))w)�((l� − E(l�))w)

)

=E
(
w�(l − E(l))(l − E(l))�)w

)

=w�Cw.

A covariance matrix can be depicted as an ellipse {Cw : ‖w‖2 = 1} centered
at the origin. The eigenvectors of C form the axes of the ellipse and eigenvalues
are the lengths of the axes from the origin (See Figure 1 taken from [War05]).

For two probability vectors u and w (e.g. vectors whose entries are nonneg-
ative and sum to one) their relative entropy (or Kullback-Leibler divergence) is
given by:

d(u, w) =
n∑

i=1

ui log
ui

wi
.

We call this a divergence (and not a distance) since its not symmetric and does
not satisfy the triangle inequality. It is however nonnegative and convex in both
arguments.

2.2 Risk Minimization

The problem of minimizing the variance when the direction w lies in the proba-
bility simplex is connected to risk minimization in stock portfolios. In Markowitz
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portfolio theory, vector p denotes the relative price change of all assets in a given
trading period. Let w be a probability vector that specifies the proportion of
our capital invested into each asset (assuming short positions are not allowed).
Then the relative capital change after a trading period is the dot product w · p.
If p is a random vector with known or estimated covariance matrix C, then the
variance of the capital change for our portfolio is w�Cw. This variance is clearly
associated with the risk of our investment. Our problem is then to “track” the
performance of minimum risk portfolio over a sequence of trading periods.

2.3 Algorithm and Motivation

Let us reiterate the setup and the goal for our algorithm. On every trial t it
must produce a probability vector wt. It then gets a covariance matrix Ct and
incurs a loss equal to the variance w�

t Ctwt. Thus for a sequence of T trials
the total loss of the algorithm will be Lalg =

∑T
t=1 w�

t Ctwt. We want this loss
to be comparable to the total variance of the best probability vector u chosen
in hindsight, i.e. Lu = minu u�

(∑T
t=1 Ct

)
u, where u lies in the probability

simplex. This offline problem is a quadratic optimization problem with non-
negativity constraints which does not have a closed form solution. However we
can still prove bounds for the online algorithm.

The natural choice for an online algorithm for this problem is the Exponenti-
ated Gradient algorithm of [KW97] since it maintains a probability vector as its
parameter. Recall that for a general loss function Lt(wt), the probability vector
of Exponentiated Gradient algorithm is updated as

wt+1,i =
wt,ie

−η(∇Lt(wt))i

∑
i wt,ie−η(∇Lt(wt))i

.

This update is motivated by considering the tradeoff between the relative entropy
divergence to the old probability vector and the current loss, where η > 0 is the
tradeoff parameter:

wt+1 ≈ arg min
w prob.vec.

d(w, wt) + ηLt(w),

where ≈ comes from the fact that the gradient at wt+1 that should appear in
the exponent is approximated by the gradient at wt (See [KW97] for more dis-
cussion). In our application, Lt(wt) = 1

2w�
t Ctwt and ∇Lt(wt) = Ctwt, leading

to the following update:

wt+1,i =
wt,ie

−η(Ctwt)i

∑n
i=1 wt,ie−η(Ctwt)i

.

2.4 Proof of Relative Loss Bounds

We now use the divergence d(u, w) that motivated the update as a measure of
progress in the analysis.
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Lemma 1. Let wt be the weight vector of the algorithm before trial t and let
u be an arbitrary comparison probability vector. Also, let r be the bound on the
range of elements in covariance matrix Ct, specifically let maxi,j |Ct(i, j)| ≤ r

2 .
For any constants a and b such that 0 < a ≤ b

1+rb and a learning rate η = 2b
1+rb

we have:
a w�

t Ctwt − b u�Ctu ≤ d(u, wt) − d(u, wt+1).

Proof. The proof given in Appendix A follows the same outline as Lemma 5.8
of [KW97] which gives an inequality for the Exponentiated Gradient algorithm
when applied to linear regression. 
�

Lemma 2. Let maxi,j |Ct(i, j)| ≤ r
2 as before. Then for arbitrary positive c and

learning rate η = 2c
r(c+1) , the following bound holds:

Lalg ≤ (1 + c)Lu +
(

1 +
1
c

)

r d(u, w1).

Proof. Let b = c
r , then for a = b

rb+1 = c
r(c+1) and η = 2a = 2c

r(c+1) , we can use
the inequality of Lemma 1 and obtain:

c

c + 1
w�

t Ctwt − cu�Ctu ≤ r(d(u, wt) − d(u, wt+1)).

Summing over the trials t results in:

c

c + 1
Lalg − cLu ≤ r(d(u, w1) − d(u, wt+1)) ≤ r d(u, w1).

Now the statement of the lemma immediately follows. 
�

The following theorem describes how to choose the learning rate for the purpose
of minimizing the upper bound:

Theorem 1. Let C1, . . . , CT be an arbitrary sequence of covariance matrices
such that maxi,j |Ct(i, j)| ≤ r

2 and assume that u� ∑T
t=1 Ctu ≤ L. Then running

our algorithm with uniform start vector w1 = ( 1
n , . . . , 1

n ) and learning rate η =
2
√

L log n

r
√

log n+
√

rL
leads to the following bound:

Lalg ≤ Lu + 2
√

rL log n + r log n.

Proof. By Lemma 2 and since d(u, w1) ≤ log n:

Lalg ≤ Lu + cL +
r log n

c
+ r log n.

By differentiating we see that c =
√

r log n
L minimizes the r.h.s. and substituting

this choice of c gives the bound of the theorem. 
�
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3 Variance Minimization over the Unit Sphere

3.1 Definitions

The trace tr(A) of a square matrix A is the sum of its diagonal elements. It
is invariant under a change of basis transformation and thus it is also equal
to the sum of eigenvalues of the matrix. The trace generalizes the normal dot
product between vectors to the space of matrices, i.e. tr(AB) = tr(BA) =∑

i,j A(i, j)B(i, j). The trace is also a linear operator, that is tr(aA + bB) =
a tr(A)+b tr(B). Another useful property of the trace is its cycling invariance, i.e.
tr(ABC) = tr(BCA) = tr(CAB). A particular instance of this is the following
manipulation: u�Au = tr(u�Au) = tr(Auu�).

Dyads have trace one because tr(uu�) = u�u = 1. We generalize mixtures or
probability vectors to density matrices. Such matrices are mixtures of any num-
ber of dyads, i.e. W =

∑
i αiuiu

�
i where αj ≥ 0 and

∑
i αi = 1. Equivalently,

density matrices are arbitrary symmetric positive definite matrices of trace one.
Any density matrix W can be decomposed into a sum of exactly n dyads cor-
responding to the orthogonal set of its eigenvectors wi, i.e. W =

∑n
i=1 ωiwiw

�
i

where the vector ω of the n eigenvalues must be a probability vector. In quantum
physics density matrices over the field of complex numbers represent the mixed
state of a physical system.

We also need the matrix generalizations of the exponential and logarithm
operations. Given the decomposition of a symmetric matrix A =

∑
i αi aia

�
i ,

the matrix exponential and logarithm denoted as exp and log are computed as
follows:

exp(A) =
∑

i

eαi aia
�
i , log(A) =

∑

i

log αi aia
�
i

In other words, the exponential and the logarithm are applied to the eigenval-
ues and the eigenvectors remain unchanged. Obviously, the matrix logarithm
is only defined when the matrix is strictly positive definite. In analogy with
the exponential for numbers, one would expect the following equality to hold:
exp(A + B) = exp(A) exp(B). However this is only true when the symmetric
matrices A and B commute, i.e. AB = BA, which occurs iff both matrices share
the same eigensystem. On the other hand, the following trace inequality, called
the Golden-Thompson inequality, holds for arbitrary symmetric matrices:

tr(exp(A + B)) ≤ tr(exp(A) exp(B)).

The following quantum relative entropy is a generalization of the classical relative
entropy to density matrices due to Umegaki (see e.g. [NC00]):

Δ(U , W) = tr(U(log U − log W)).

We will also use generalized inequalities for the cone of positive definite matrices:
A � B if B − A positive definite.
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Fig. 2. The figure depicts a sequence of updates for the density matrix algorithm when
the dimension is 2. All 2-by-2 matrices are represented as ellipses. The top row shows
the density matrices W t chosen by the algorithm. The middle row shows the covariance

matrix Ct received in that trial. Finally, the bottom row is the average C≤t =
�t

q=1 Ct

t

of all covariance matrices so far. By the update (1), W t+1 =
exp(−ηtC≤t)

Zt
, where Zt

is a normalization. Therefore, C≤t in the third row has the same eigensystem as the
density matrix W t+1 in the next column of the first row. Note the tendency of the
algorithm to try to place more weight on the minimal eigenvalue of the covariance
average. Since the algorithm is not sure about the future, it does not place the full
weight onto that eigenvalue but hedges its bets instead and places some weight onto
the other eigenvalues as well.

3.2 Applications

We develop online algorithms that perform as well as the eigenvector associated
with a minimum (or maximum) eigenvalue. It seems that online versions of
principal component analysis and other spectral methods can also be developed
using the methodology of this paper. For instance, spectral clustering methods
of [CSTK01] use a similar form of loss.

3.3 Algorithm and Motivation

As before we briefly review our setup. On each trial t our algorithm chooses
a density matrix Wt described as a mixture

∑
i ωt,i wt,iw

�
t,i. It then receives

a covariance matrix Ct and incurs a loss equal to the expected variance of its
mixture:

tr(WtCt) = tr((
∑

i

ωt,i wt,iw
�
t,i)Ct) =

∑

i

ωt,i w�
t,iCtwt,i.

On a sequence of T trials the total loss of the algorithm will be
Lalg =

∑T
t=1 tr(WtCt). We want this loss to be not too much larger than the
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total variance of best unit vector u chosen in hindsight, i.e. Lu = tr(uu� ∑
t Ct)

= u�(
∑

t Ct)u. The set of dyads is not a convex set. We therefore close it by
using convex combinations of dyads (i.e. density matrices) as our parameter
space. The best offline parameter is still a single dyad:

min
U dens.mat.

tr(UC) = min
u : ‖u‖2=1

u�Cu

Curiously enough our, loss tr(WC) has interpretation in quantum mechanics
as the expected outcome of measuring a physical system in mixture state W
with instrument C. Let C be decomposed as

∑
i γicic

�
i . The eigenvalues γi are

the possible numerical outcomes of measurement. When measuring a pure state
specified by unit vector u, the probability of obtaining outcome γi is given as
(u · ci)2 and the expected outcome is tr(uu�C) =

∑
i(u · ci)2γi. For a mixed

state W we have the following double expectation:

tr(WC) = tr

⎛

⎝(
∑

i

ωi wiw
�
i )(

∑

j

γj cjc
�
j )

⎞

⎠ =
∑

i,j

(wi · cj)2 γiωj ,

where the matrix of measurement probabilities (wi · cj)2 is a doubly stochastic
matrix. Note also, that for the measurement interpretation the matrix C does
not have to be positive definite, but only symmetric. The algorithm and the
proof of bounds in fact work fine for this case, but the meaning of the algorithm
when C is not a covariance matrix is less clear, since despite all these connections
our algorithm does not seem to have the obvious quantum-mechanical interpre-
tation. Our update clearly is not a unitary evolution of the mixture state and
a measurement does not cause a collapse of the state as is the case in quantum
physics. The question of whether this type of algorithm is still doing something
quantum-mechanically meaningful remains intriguing. See also [War05, WK06]
for additional discussion.

To derive our algorithm we use the trace expression for expected variance
as our loss and replace the relative entropy with its matrix generalization. The
following optimization problem produces the update:

Wt+1 = argmin
W dens.mat.

Δ(W , Wt) + η tr(WCt)

Using a Lagrangian that enforces the trace constraint [TRW05], it is easy to
solve this constrained minimization problem:

Wt+1 =
exp(logWt − ηCt)

tr(exp(logWt − ηCt))
=

exp(−η
∑t

q=1 Cq)

tr(exp(−η
∑t

q=1 Cq))
. (1)

Note that for the second equation we assumed that W1 = 1
nI. The update is a

special case of the Matrix Exponentiated Gradient update with the linear loss
tr(WCt).
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3.4 Proof Methodology

For the sake of clarity, we begin by recalling the proof of the worst-case loss bound
for the Continuous Weighted Majority (WMC)/Hedge algorithm in the expert
advice setting [LW94]. In doing so we clarify the dependence of the algorithm
on the range of the losses. The update of that algorithm is given by:

wt+1,i =
wt,ie

−ηlt,i

∑
i wt,ie−ηlt,i

(2)

The proof always starts by considering the progress made during the update to-
wards any comparison vector/parameter u in terms of the motivating divergence
for the algorithm, which in this case is the relative entropy:

d(u, wt) − d(u, wt+1) =
∑

i

ui log
wt+1,i

wt,i
= −η u · lt − log

∑

i

wt,ie
−ηlt,i .

We assume that lt,i ∈ [0, r], for r > 0, and use the inequality βx ≤ 1− (1−βr)x
r ,

for x ∈ [0, r], with β = e−η:

d(u, wt) − d(u, wt+1) ≥ −η u · lt − log(1 − wt · lt
r

(1 − e−ηr)),

We now apply log(1 − x) ≤ −x:

d(u, wt) − d(u, wt+1) ≥ −η u · lt +
wt · l

r
(1 − e−ηr),

and rewrite the above to

wt · lt ≤ r(d(u, wt) − d(u, wt+1)) + ηr u · lt
1 − e−ηr

Here wt · lt is the loss of the algorithm at trial t and u · lt is the loss of the
probability vector u which serves as a comparator.

So far we assumed that lt,i ∈ [0, r]. However, it suffices to assume that
maxi lt,i − mini lt,i ≤ r. In other words, the individual losses can be positive
or negative, as long as their range is bounded by r. For further discussion per-
taining to the issues with losses having different signs see [CBMS05]. As we shall
observe below, the requirement on the range of losses will become a requirement
on the range of eigenvalues of the covariance matrices.

Define l̃t,i := lt,i − mini lt,i. The update remains unchanged when the shifted
losses l̃t,i are used in place of the original losses lt,i and we immediately get the
inequality

wt · l̃t ≤ r(d(u, wt) − d(u, wt+1)) + ηr u · l̃t
1 − e−ηr

.

Summing over t and dropping the d(u, wt+1) ≥ 0 term results in a bound
that holds for any u and thus for the best u as well:

∑

t

wt · l̃t ≤ rd(u, wt) + ηr
∑

t u · l̃t
1 − e−ηr

.
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We can now tune the learning rate following [FS97]: if
∑

t u · l̃t ≤ L̃ and

d(u, w1) ≤ D ≤ ln n, then with η = log(1+
√

2D/L̃)
r we get the bound

∑

t

wt · l̃t ≤
∑

t

u · l̃t +
√

2rL̃D + rd(u, w1),

which is equivalent to
∑

t

wt · lt

︸ ︷︷ ︸
Lalg

≤
∑

t

u · lt

︸ ︷︷ ︸
Lu

+
√

2rL̃D + rd(u, w1).

Note that L̃ is defined wrt the tilde versions of the losses and the update as well
as the above bound is invariant under shifting the loss vectors lt by arbitrary
constants. If the loss vectors lt are replaced by gain vectors, then the minus sign
in the exponent of the update becomes a plus sign. In this case the inequality
above is reversed and the last two terms are subtracted instead of added.

3.5 Proof of Relative Loss Bounds

In addition to the Golden-Thompson inequality we will need lemmas 2.1 and 2.2
from [TRW05]:

Lemma 3. For any symmetric A, such that 0 � A � I and any ρ1, ρ2 ∈ R the
following holds:

exp(Aρ1 + (I − A)ρ2) � Aeρ1 + (I − A)eρ2 .

Lemma 4. For any positive semidefinite A and any symmetric B, C, B � C
implies tr(AB) ≤ tr(AC).

We are now ready to generalize the WMC bound to matrices:

Theorem 2. For any sequence of covariance matrices C1, . . . , CT such that 0 �
Ct � rI and for any learning rate η, the following bound holds for arbitrary
density matrix U :

tr(WtCt) ≤ r(Δ(U , Wt) − Δ(U , Wt+1)) + ηr tr(UCt)
1 − e−rη

.

Proof. We start by analyzing the progress made towards the comparison matrix
U in terms of quantum relative entropy:

Δ(U , Wt) − Δ(U , Wt+1) = tr(U(log U − logWt)) − tr(U(log U − logWt+1))

= − tr
(

U
(

log Wt + log
exp(log Wt − ηCt)

tr(exp(logWt − ηCt))

))

= − η tr(UCt) − log(tr(exp(log Wt − ηCt))).
(3)
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We will now bound the log of trace term. First, the following holds via the
Golden-Thompson inequality:

tr(exp(logW t − ηCt)) ≤ tr(Wt exp(−ηCt)). (4)

Since 0 � Ct

r � I, we can use Lemma 3 with ρ1 = −ηr, ρ2 = 0:

exp(−ηCt) � I − Ct

r
(1 − e−ηr).

Now multiply both sides on the left with Wt and take a trace. The inequality
is preserved according to Lemma 4:

tr(Wt exp(−ηCt)) ≤
(

1 − tr(WtCt)
r

(1 − e−rη)
)

.

Taking logs of both sides we have:

log(tr(Wt exp(−ηCt))) ≤ log
(

1 − tr(WtCt)
r

(1 − e−ηr)
)

. (5)

To bound the log expression on the right we use inequality log(1 − x) ≤ −x:

log
(

1 − tr(WtCt)
r

(1 − e−rη)
)

≤ − tr(WtCt)
r

(1 − e−rη). (6)

By combining inequalities (4-6), we obtain the following bound on the log trace
term:

− log(tr(exp(log Wt − ηCt))) ≥ tr(W tCt)
r

(1 − e−rη).

Plugging this into equation (3) we obtain

r(Δ(U , Wt) − Δ(U , Wt+1)) + ηr tr(UCt) ≥ tr(W tCt)(1 − e−rη),

which is the inequality of the theorem. 
�

Note the our density matrix update (1) is invariant wrt the variable change
C̃t = Ct − λmin(Ct)I. Therefore by the above theorem, the following inequality
holds whenever λmax(Ct) − λmin(Ct) ≤ r:

tr(WtC̃t) ≤ r(Δ(U , Wt) − Δ(U , Wt+1)) + ηr tr(UC̃t)
1 − e−rη

.

We can now sum over trials and tune the learning rate as done at the end of

Section 3.4. If
∑

t tr(UC̃t) ≤ L̃ and Δ(U , W 1) ≤ D, with η =
log(1+

�
2D
L̃

)

r we
get the bound:

∑

t

tr(W tCt)

︸ ︷︷ ︸
Lalg

≤
∑

t

tr(UCt)

︸ ︷︷ ︸
LU

+
√

2rL̃D + rΔ(U , W 1).
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4 Conclusions

We presented two algorithms for online variance minimization problems. For the
first problem, the variance was measured along a probability vector. It would
be interesting to combine this work with the online algorithms considered in
[HSSW98, Cov91] that maximize the return of the portfolio. It should be possible
to design online algorithms that minimize a trade off between the return of the
portfolio (first order information) and the variance/risk. Note that it is easy to
extend the portfolio vector to maintain short positions: Simply keep two weights
w+

i and w−
i per component as is done in the EG± algorithm of [KW97].

In our second problem the variance was measured along an arbitrary direction.
We gave a natural generalization of the WMC/Hedge algorithm to the case when
the parameters are density matrices. Note that in this paper we upper bounded
the sum of the expected variances over trials, whereas in [War05, WK06] a Bayes
rule for density matrices was given for which a lower bound was provided on the
product of the expected variances over trials.2

Much work has been done on exponential weight updates for the experts. In
particular, algorithms have been developed for shifting experts by combining the
exponential updates with an additive “sharing update”[HW98]. In preliminary
work we showed that these techniques easily carry over to the density matrix
setting. This includes the more recent work on the “sharing to the past average”
update, which introduces a long-term memory [BW02].

Appendix A

Proof of Lemma 1

Begin by analyzing the progress towards the comparison vector u:

d(u, wt) − d(u, wt+1) =
∑

ui log
ui

wt,i
−

∑
ui log

ui

wt+1,i

=
∑

ui log wt+1,i −
∑

ui log wt,i

=
∑

ui log
wt,ie

−η(Ctwt)i

∑
wt,ie−η(Ctwt)i

−
∑

ui log wt,i

=
∑

ui log wt,i − η
∑

ui(Ctwt)i −

− log
(∑

wt,ie
−η(Ctwt)i

)
−

∑
ui log wt,i

= − η
∑

ui(Ctwt)i − log
(∑

wt,ie
−η(Ctwt)i

)

Thus, our bound is equivalent to showing F ≤ 0 with F given as:

F = aw�
t Ctwt − bu�Cu + ηu�Cwt + log

(∑
wt,ie

−η(Ctwt)i

)

2 This amounts to an upper bound on the sum of the negative logarithms of the
expected variances.
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We proceed by bounding the log term. The assumption on the range of elements
of Ct and the fact that wt is a probability vector allows us to conclude that
maxi(Ctwt)i −mini(Ctwt)i ≤ r, since (Ctwt)i =

∑
j Ct(i, j)wt(j). Now, assume

that l is a lower bound for (Ctwt)i, then we have that l ≤ (Ctwt)i ≤ l + r, or
0 ≤ (Ctwt)i−l

r ≤ 1. This allows us to use the inequality ax ≤ 1 − x(1 − a) for
a ≥ 0 and 0 ≤ x ≤ 1. Let a = e−ηr:

e−η(Ctwt)i = e−ηl(e−ηr)
(Ctwt)i−l

r ≤ e−ηb

(

1 − (Ctwt)i − l

r
(1 − e−ηr)

)

Using this inequality we obtain:

log
(∑

wt,ie
−η(Ctwt)i

)
≤ −ηl + log

(

1 − w�
t Ctwt − l

r
(1 − e−ηr)

)

This gives us F ≤ G, with G given as:

G = aw�
t Ctwt − bu�Ctu + ηu�Cwt − ηl + log

(

1 − w�
t Ctwt − l

r
(1 − e−ηr)

)

It is sufficient to show that G ≤ 0. Let z =
√

Ctu. Then G(z) becomes:

G(z) = −bz�z + ηz�√
Ctwt + constant.

The function G(z) is concave quadratic and is maximized at:

∂G

∂z
= −2bz + η

√
Ctwt = 0, z =

η

2b

√
Ctwt

We substitute this value of z into G and get G ≤ H , where H is given by:

H = aw�
t Ctwt +

η2

4b
w�

t Ctwt − ηl + log
(

1 − w�
t Ctwt − l

r
(1 − e−ηr)

)

.

Since l ≤ (Ctwt)i ≤ l + r, then obviously so is w�
t Ctwt, since weighted average

stays within the bounds. Now we can use the inequality log(1 − p(1 − eq)) ≤
pq + q2

8 , for 0 ≤ p ≤ 1 and q ∈ R:

log
(

1 − w�
t Ctwt − l

r
(1 − e−ηr)

)

≤ −ηw�
t Ctwt + ηl +

η2r2

8
.

We get H ≤ S, where S is given as:

S = aw�
t Ctwt +

η2

4b
w�

t Ctwt − ηw�
t Ctwt +

η2r2

8

=
w�

t Ctwt

4b
(4ab + η2 − 4bη) +

η2r2

8
.

By our assumptions w�
t Ctwt ≤ r

2 , and therefore:

S ≤ Q = η2(
r2

8
+

r

8b
) − ηr

2
+

ar

2
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We want to make this expression as small as possible, so that it stays below zero.
To do so we minimize it over η:

2η(
r2

8
+

r

8b
) − r

2
= 0, η =

2b

rb + 1
Finally we substitute this value of η into Q and obtain conditions on a, so that
Q ≤ 0 holds:

a ≤ b

rb + 1
This concludes the proof. 
�
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