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Basics

Protocol of Boosting

@ Maintain a distribution d* on the examples
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Basics

Protocol of Boosting

@ Maintain a distribution d* on the examples
o Atiterationt=1,..., T:

@ Receive a "weak” hypothesis h;
@ Update d?f to di™!, put more weights on “hard” examples
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Basics

Protocol of Boosting

@ Maintain a distribution d* on the examples
o Atiterationt=1,..., T:

@ Receive a "weak” hypothesis h;
@ Update d?f to di™!, put more weights on “hard” examples

@ Output a convex combination of the weak hypotheses

T
fa(x) = E atht(x)
t=1
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Basics

Boosting: 1st Iteration

First hypothesis:
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Basics

Update Distribution

Misclassified examples
= Increased weights
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Basics

Update Distribution

Misclassified examples
= Increased weights

leicht

- = After update:
« 4 - ' @ Error rate:
P E(ht7dt+1) — %
; g ‘ o Edge:

h dt+1 —
‘I‘i ‘i' 7( tH ) O
&g

nicht rot sehr rot

schwer

M.K.Warmuth et.al. (UCSC) Totally Corrective Boosting Algorithms that N Last update: March 2, 2007 6 /62



Basics

Ada-Boost as Entropy Projection

Minimize relative entropy to last distribution subject to constraint

min A(d, dY)

N
s.t. Z dnyYnhe(x,) =0
n=1

depV

where
o A(d,d") =N  d,In% and

e PN is the N dimensional probability simplex
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Basics

Before 2nd lteration
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Basics

Boosting: 2nd Hypothesis

AdaBoost assumption:
Edge v > v
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Basics

Update Distribution

Edge v =0

4 2 AdaBoost update
sets edge of last
hypothesis to 0
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Basics

Which constraints?

: Single constraint

min  A(d,d")
depV

N
s.t. Z dnynhi(x,) =0
n=1
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Basics

Which constraints?

: Single constraint

min  A(d,d")
depV

N
s.t. Z dnynhi(x,) =0
n=1

: One constraint per past weak hypothesis

min  A(d,d")
depN

N
s.t. Z dnynhq(x,) =0 forg=1,...,t
n=1
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Basics

Boosting: 3nd Hypothesis
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Basics

Boosting: 4th Hypothesis
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Basics

All Hypotheses

M.K.Warmuth et.al. (UCSC) Totally Corrective Boosting Algorithms that N Last update: March 2, 2007 14 / 62



Basics

Decision: f,(x) = .71 achy(x) > 0 ?
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Large margins
Large margins in addition to correct classification
e Margin of the combined hypothesis f,, for example (x,, y,)
pn(e) = Yafa(Xn)

,
= Yo _ath(x,) (e PT)
t=1

Margin of set of examples is
minimum over examples

pla) := min py(ev)
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Large margins

Large Margin and Linear Separation

Input space X Feature space F

A +|—

o | & N,

D @ ®

%B¢ © o
o ©

Linear separation in F is
nonlinear separation in X

M.K.Warmuth et.al. (UCSC) Totally Corrective Boosting Algorithms that N Last update: March 2, 2007 18 / 62



Large margins

Margin vs. edge

@ Measure for “confidence” in prediction for a hypothesis weighting
@ Margin of example n for current hypothesis weighting o

Y
pr(@) = Yofa(Xn) =¥n Y _aehi(x,) a€PT
t=1
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Large margins

Margin vs. edge

Margin
@ Measure for “confidence” in prediction for a hypothesis weighting

@ Margin of example n for current hypothesis weighting o

Y
pr(@) = Yofa(Xn) =¥n Y _aehi(x,) a€PT
t=1

Edge
@ Measurement of “goodness” of a hypothesis w.r.t. a distribution

@ Edge of a hypothesis h for a distribution d on the examples

N
’\/h(d) = Z dn }/nh(xn) de PN
n=1
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Large margins

Margin vs. edge

Margin
@ Measure for “confidence” in prediction for a hypothesis weighting

@ Margin of example n for current hypothesis weighting o

Y
pr(@) = Yofa(Xn) =¥n Y _aehi(x,) a€PT
t=1

Edge
@ Measurement of “goodness” of a hypothesis w.r.t. a distribution

@ Edge of a hypothesis h for a distribution d on the examples

N
’\/h(d) = Z dn }/nh(xn) de PN
n=1

What is the connection?
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Large margins

von Neumann’'s Minimax-Theorem

Set of examples S = {(x1, y1), ..., (Xn, yn)}
and hypotheses set H* = {hy,..., h;},
edge of h
. . . . A
minimum edge: =min max vh(d)
edge of H!

margin of (Xn, ¥n)

maximum margin: p. =maxmin  y,fo(x,)
acPt n

~
margin of S

Duality:
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Large margins

von Neumann’'s Minimax-Theorem

Set of examples S = {(x1,y1), ..., (Xn, yn)}
and hypotheses set H* = {hy,..., h:},

edge of hqg
minimum edge: =min max E dnynhg
dePN q=1
edge of H!
margin of (Xn, ¥n)
maximum margin: /. =max min y, E arhg(x,)
acePt n —
margin of S
Duality:
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Games

Two-player Zero Sum Game

Rock, Paper, Scissors game

column player
R P S

o o« .
172 08 Row player minimizes

I Rod 0 1 -1 Column player maximizes
row player P d 1 0 1 play
> & :.n m_:tr' 0 payoff = d"Ma
| IX
& = > diMijq;

Single row is pure strategy of
row player and d is mixed strategy

Single column is pure strategy of
column player and « is mixed strategy
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Games

Optimum Strategy

R P S
Q1 Gy O3
.33 .33 .33

R d .33 0 1 -1
P d .33 -1 0 1
S d; .33 1 -1 0

@ Min-max theorem:

minmax d’ Ma = minmaxd’ Me;
d a d

= maxmin d" Ma = maxmin e Ma
[e d i

@ 1

= value of the game ( 0 in example )

A A

A T, e A
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Games

Connection to Boosting?

@ Rows are the examples

@ Columns the weak hypothesis

o Mi; = hj(x;)yi

@ Row sum: margin of example

@ Column sum: edge of weak hypothesis

@ Value of game: v* = p*
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New column added

R d .22

P d .33

S ds 44
edge

Games

. boosting

R P
(051 [6%)
40

0 1
10

1 -1
11 -22

S

Q3 (g margin
22 .33

-1 A1

1 A1
0 A1
A1 11

Value of game increases from 0 to .11
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Games

Row added: on-line learning

R P

(651 [6%)

33 44

R o 0 0 1
P d 22 -1 0
S dy .44 1 -1

dy, .33

edge -11 -11

Qs
22

[

-.11

margin

.22
=11
-11
-11

Value of game decreases from 0 to -.11
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Games

Boosting: maximize margin incrementally

a7
d11 0
a1
a1
iteration 1

2 a2
d12 0 -1
2 1 0
d32 -1 1
iteration 2

dy
d3
d3

o} ol al
0 -1 1
1 0 -1
-1 1 0
iteration 3

@ In each iteration solve optimization problem to update d
@ Column player adds new column - weak hypothesis
@ Some assumptions will be needed on the edge of the added

hypothesis
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Games

Value non-decreasing

v*, p*: edge/margin for all hypotheses

Value

L I I L I
0 5 10 15 20 25 30 35 40 45 50

Number of Selected Hypotheses

Totally Corrective Boosting Algorithms that N Last update: March 2, 2007
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Duality gap

For any non-optimal d € PN and a € P?,

(d) > = o = pla)

Value

p(a)

0 5 10 1‘5 2 2 3‘0 3 40
Number of Selected Hypotheses
Totally Corrective Boosting Algorithms that N Last update: March 2, 2007

45 50
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Games

How Large is the Maximal Margin?

Assumptions on Weak learner

For any distribution d on the examples, the weak learner returns a
hypothesis h with edge v,(d) at least g.
Best case: g = p* ="
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Games

How Large is the Maximal Margin?

Assumptions on Weak learner

For any distribution d on the examples, the weak learner returns a
hypothesis h with edge v,(d) at least g.
Best case: g = p* ="

Implication from Minimax Theorem

There exists a € PN, such that p(a) > g
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Games

How Large is the Maximal Margin?

Assumptions on Weak learner

For any distribution d on the examples, the weak learner returns a
hypothesis h with edge ~,(d) at least g.
Best case: g = p* ="

Implication from Minimax Theorem

There exists a € PV, such that p(a) > g

Idea to iteratively solve LP

Add “best” hypothesis h = argmax y,(d*) to H* and resolve
dt+1

= argmin max y,(d)
depN hen!
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Games

Convergence?

LPBoost?
@ No iteration bounds known

e May “oscillate”

@ Does not find maximizing a (counter examples)
@ But there some guarantees:

o p(at) > 0 after 2In N/g? iterations
o p(at) > g/2 in the limit

A\
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Games

How to maximize the margin?

Modify AdaBoost for maximizing margin

@ Arc-GV asymptotically maximizes the margin
e quite slow, no convergence rates
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Games

How to maximize the margin?

Modify AdaBoost for maximizing margin

@ Arc-GV asymptotically maximizes the margin
e quite slow, no convergence rates
@ LPBoost uses a Linear Programming solver
o Often very fast in practice, but no converge rates
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Games

How to maximize the margin?

Modify AdaBoost for maximizing margin

@ Arc-GV asymptotically maximizes the margin
o quite slow, no convergence rates
@ LPBoost uses a Linear Programming solver

o Often very fast in practice, but no converge rates

@ AdaBoost? requires 2loe(N) terations to get pt € [p* — v, p]

2
e Slow in practice, i.e. not faster than theory predicts
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Games

How to maximize the margin?

Modify AdaBoost for maximizing margin

@ Arc-GV asymptotically maximizes the margin
o quite slow, no convergence rates
@ LPBoost uses a Linear Programming solver

o Often very fast in practice, but no converge rates
@ AdaBoost? requires 2'%2(’\’) iterations to get p* € [p* — v, p*]
e Slow in practice, i.e. not faster than theory predicts

@ TotalBoost, requires 2'%2“\') iterations to get p* € [p* — v, p]
e Fast in practice

o Combination of benefits
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Convergence

Want margin > g — v

02 T T T T
" N
015+ -
3
[
2 g_\,g
A
o1 iy 1
P
oo S S S S S S S
30 32 34 36 38 40 42 a4 46 48

Number of Ilterations
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Convergence

Want margin > g — v

02 - - T T T T
) A
P f!
0151 A ]
=
&
2 g0
04t p*:wq 1
t 't
005 . . . 1 . . . . .
30 32 34 36 38 40 a2 44 46 48

Number of Iterations

@ Assumption: v; > g
o Estimate of target: 5 = (min;_; 7) — v
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Convergence

|dea: Projections to #; instead of 0

: Single constraint

min  A(d,d") AdaBoost?

dePN

N
s.t. Z dnynht(xn) S /\;/t
n=1

: One constraint per past weak hypothesis

min  A(d,d") TotalBoost,
depN

N
st Y diyahg(xa) <4 forq=1,...t
n=1
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Convergence

TotalBoost,

Q Input: S = ((x1,%1),...,(Xn,¥n)) , desired accuracy v
Q Initialize: d} =1/Nforalln=1...N
© Dofort=1,...
@ Train classifier on {S,d*} and obtain hypothesis
hy : x — [—1,1] and let uf = y;ih(x;)
@ Calculate the edge v; of h;: v = d' - u'
© Set7y, = (Tjrl] vq) — v and solve
ditl = argmin A(d,db)
{dePN | d-ui<7;, for 1<q<t}=C;
@ If above infeasible or d*! contains a zero
then T = t and break

@ Output: f,(x) = 32/, arhi(x), where the coefficients o,

maximize margin over hypotheses set {hy,..., hr}.
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Convergence

TotalBoost,

Q Input: S = ((x1,%1),...,(Xn,¥n)) , desired accuracy v
Q Initialize: d} =1/Nforalln=1...N

© Dofort=1,...
(1]
uf = yihe(x;)
2 ve=d" - uf

t
© Set7, = (miriwq) — v and solve
q:

ditl = argmin A(d,db)
{dePN | d-ui<7;, for 1<q<t}=C;

T ..

@ Output: f,(x) = > ,_; athi(x), where the coefficients o
maximize margin over hypotheses set {hy,..., hr}.
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Convergence

TotalBoost,

Q Input: S = ((x1,%1),...,(Xn,¥n)) , desired accuracy v
Q Initialize: d} =1/Nforalln=1...N

© Dofort=1,...
o
uf = yihe(x;)
2 ve=d" - uf

t
© Set7, = (miriwq) — v and solve
q:

Optimization Problem

d*! = argmin A(d,d")
dec:

with Co={dePV|d-u <7, for 1 < g<t}

@ Output: f,(x) = 32, arhe(x), where the coefficients o,

maximize margin over hypotheses set {hy,..., hr}.
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Convergence

Effect of entropy regularization

@ High weight given to hard examples

4t~ exp(— yafari(xa) )
—_—

margin of ex. n

@ Softmin of margins

@ 41 are current coefficients of hypotheses
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Convergence

Lower Bounding the Progress

For dt,d®*! € PN and ut € [-1,1]V,
if A(d™, dY) finite and d** - u* # d* - u® then

dt+1 .ut —dt- ut)2
A t+1 gt (
(d,d") > 5

od-u' =1
° dt+1_ut§,{y\t§,.)/t_y
o Thus d* - uf —d**.ut > v and A(d*,d?) > 2

M.K.Warmuth et.al. (UCSC) Totally Corrective Boosting Algorithms that N Last update: March 2, 2007 39 / 62



Convergence

Generalized Pythagorean Theorem

Co={dePVd-uI<7,1<qg<t},C=PN C CCiy
dt is projection of d* onto C,_; at iteration t — 1

d' = argmin A(d, d')

dECt_l
t+1 t
> + A(d, dY)
d 1,
— N~ T
t+1
<C ( B)
S~ C e
— Dt T
—_— -t —
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Convergence

Sketch of Proof

1. A dY)—AdLd) > AdAdY) > 2
2 A(dPd)—A(dd) > AR > 2
B AT d)— A d) > AT > 2
T—2 AT 1 d)—Ad 2d) > AdT1d72?) > "—zj
T—1 A(dd)y—Ad d) > AddTY > 2

[Warmuth, Liao & G.R., 2006]
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Convergence

Cancellation

0
—
1. N(didl) - A(d',d')

> AddY) 5

2. Irdl) - Arddl) > A(d3,d?) ¥

t Ald=ld!) - Twid) > A(dTL,dY) ¥

T—2 Alo=ld)-Afa=2d) > AT 1,d"?) 2

T—1 Al d)—Aa=ld) > A@d7,d7! v

(I " )—ATd=Ld) > A( ) 5

Therefore, T < [2101]
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Convergence

Overview

[Long & Wu, 2002]

M.K.Warmuth et.al. (UCSC) Totally Corrective Boosting Algorithms that N Last update: March 2, 2007 43 / 62



Convergence

lteration Bounds for Other Variants

Using the same techniques, we can prove iteration bound for:

e TotalBoost, which optimizes the divergence A(d, d?) to the last
distribution d*

@ TotalBoost, which uses the binary relative entropy A,(d,d?) or
Ay(d, d") as the divergence

@ The variant of AdaBoost} which terminates when 7, < ~;
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Convergence

TotalBoost, which optimizes A(d, d?)

dt*! is projection of df onto C, at iteration t

d**! = argmin A(d, d")

deC:
A(d7,d?) > A(d7,d") +
///d?.h\

&C el ) )
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Convergence

Sketch of Proof

1. AdT,dY)—A@WdT,d?) > A(d2d) > 2
20 AT, ) -AWdT,d) > Add) > ¥
t: AT, dY) - AT, dY) > ATLd) > 2
T—2 Ad7,d7T?)-Ad7,d7T1) > A(dT1d?) > 2%
T—-1 A@d7,d7Y)—-A@d",d7) > A dTY) > 2
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Convergence

Cancellation

NIANSIY

~ N
>
\.51 \'si
o
. D .
\1 E\
- H
v AVAAYS
\ V
NS,

T—2 AdLd™7) - A(Td™T) > > 5
T—1. A4 —A@d’,dT) > > Z

Therefore, T < [2'V+N]
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Convergence

TotalBoost, which optimizes A(d, d?)
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© Basics

© Large margins
© Games

@ Convergence

© !llustrative Experiments

[Warmuth, Liao & G.R., 2006]
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Illustrative Experiments

[llustrative Experiments

Cox-1 dataset from Telik Inc.

o Relatively small drug-design data set
e 125 binary labeled examples
e 3888 binary features

@ Compare convergence of margin versus
number of iterations
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Illustrative Experiments

[llustrative Experiments

Cox-1 (¥ = 0.01)

013} \ p*

L
012} p=v :

0141 _X ______ 1 e AdaBoost}

011 q

01F 1

0.09r q

margin p

0.08F

oorr AdaBoosty,

006

0'0‘:'0’ 162 . 163_
number of iterations

M.K.Warmuth et.al. (UCSC) Totally Corrective Boosting Algorithms that N Last update: March 2, 2007 51 /62



Illustrative Experiments

[llustrative Experiments

Cox-1 (v =0.01)

0141 _X _____ e AdaBoost}
013} \ ot o LPBoost

L3
0.12} \ p=v

011} LPBoost

(R

margin p

0.09r

0.08F

007}

AdaBoosty,

006}

0.05 . .
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Illustrative Experiments

LPBoost May Perform Much Worse Than TotalBoost

@ |dentified cases where LPBoost converges considerably slower
than TotalBoost,

@ Dataset is a series of artificial datasets of 1000 examples with
varying number of features created as follows:

o First generated Ny random =+1-valued features xi,...,xy, and
set the label of the examples as y = sign(xj + x2 + x3 + x4 + x5)

e Then duplicated each features N> times, perturbed the features
by Gaussian noise with o = 0.1, and clipped the feature values
so that they lie in the interval [-1,1]

o Considered different Ny, N>, the total number of features is
N2 X Nl
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Illustrative Experiments

LPBoost performs worse for high dimensional data
with many redundant features

margin p

LPBoost vs. TotalBoost, on two 100,000 dimensional datasets: [left]

dataset 3 (100x1000 features)

dataset 3 (1x100,000 features)

0.19
018F T J 7T T T T L
>A\\
o7 \ LPBoost
0.16 \
TotalBoost,,
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0.15 5
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©

0.14 £
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many redundant features (N; = 1,000, N> = 100) and [right] independent
features (N7 = 100,000, N, = 1). Show margin vs. number of iterations
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Illustrative Experiments

Bound Not True for LPBoost

A counter example:

Hypothesis No.

Examples

+: correct prediction -: incorrect prediction

TotalBoost averages hypothesis 1 and 6 (i.e. 2 iterations)

to achieve maximum margin 0
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Illustrative Experiments

Bound Not True for LPBoost

Distribuition of Examples
Hypothesis No. Iteration No.

1 2 3 4 5 6 1 3 4
+ - - - - -11/9
+ - - - - -11/9
+ - - - - -|1)9
+
+

N
-1 1)9
+|1/9

e I V)
+|1/9
+|1/9

O OO OO OO OoOIN
_ OO0 OO0 00O o ow

OO R OO OO oo
O OO0 OO oo

Selected Hypothesis No.
1 2 3 4 5

Simplex-based LPBoost uses 5 iterations ((N-+1)/2 iterations)
to achieve margin 0
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Illustrative Experiments

Regularized LPBoost

@ LPBoost makes edge constraints as tight as possible

@ Picking solutions at the corners can lead to slow convergence.
Interior points methods avoid corners

@ Regularized LPBoost: pick solution that minimizes relative
entropy to initial distribution. It is identical to TotalBoost, but
the latter algorithm uses a higher edge bound

@ Open problem: find an example where all versions of LPBoost
need O(N) iterations
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Illustrative Experiments

Algorithms for Feature Selection

We test for each algorithm:
@ Whether selected hypotheses are redundant
@ Size of final hypothesis
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Illustrative Experiments

Redundancy of Selected Hypotheses

@ Test which algorithm selects redundant hypotheses

@ Dataset: Dataset 2 was created by expanding Rudin’s dataset.
Dataset 2 has 100 blocks of features. Each block contains one
original feature and 99 mutations of this feature. Each mutation
feature inverts the feature value of one randomly chosen
example (with replacement). The mutation features are
considered redundant hypotheses.

@ A good algorithm would avoid repeatedly selecting hypotheses
from the same block.
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Illustrative Experiments

Experiment on Redundancy of Selected Hypotheses

dataset 2 (rudin)
% @ Show number of selected

| blocks v.s. number of
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w
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M.K.Warmuth et.al. (UCSC) Totally Corrective Boosting Algorithms that N Last update: March 2, 2007 59 / 62



Size of Final Hypothesis

Illustrative Experiments

dataset 2 (rudin)
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M.K.Warmuth et.al. (UCSC)

70

80

@ Show margins v.s. number
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@ TotalBoost, (¥=0.01) and
LPBoost use a small
number of hypotheses in
final hypothesis
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Illustrative Experiments

Summary

@ AdaBoost can be viewed as entropy projection

@ TotalBoost projects based on all previous hypotheses
@ Provably maximizes the margin

e Theory: as fast as AdaBoost},
o Practice: much faster (= LPBoost)

@ Versatile techniques for proving iteration bounds

@ Experiments corroborate our theory

o Good for feature selection
e LPBoost may have problems of maximizing the margin

@ Future: extension to the soft margin case
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Illustrative Experiments

lteration Bound for Variant of AdaBoost,
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