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0 Bounds, derivation, calculus



@ Multiplicative updates - the genesis of this research



Multiplicative updates

A set of experts i learns something online

Maintain one weight w; per expert i

Multiplicative update

w; e " Li
wWj = ———————
normalization

Bayes rule is special case
whenn=1, L;:=—log(P(y|M;)), and w;=P(M;)

P(M;) P(y|M;)
normalization

P(Mily) :=

Motivated by using a relative entropy regularization

Weight vector is uncertainty vector over experts / models



Matrix version of multiplicative updates

Maintain density matrix W as a parameter

Multiplicative update

_exp(logW -7 L)

normalization

W :

Motivated by using a quantum relative entropy regularization

Density matrix is uncertainty over rank 1 subspaces

Capping the eigenvalues at %: uncertainty over rank k subspaces



Matrix version of multiplicative updates

Maintain density matrix W as a parameter

Multiplicative update

W oo exp(logW —n L)

normalization

Motivated by using a quantum relative entropy regularization

Density matrix is uncertainty over rank 1 subspaces

Capping the eigenvalues at %: uncertainty over rank k subspaces

Today: What corresponds to Bayes 777



Visualisations: ellipses

@ We illustrate symmetric matrices as ellipses
- affine transformations of the unit ball:

@ Ellipse = {Su : ||u]| =1}

@ Dotted lines connect point u on unit ball with point Su on ellipse






@ One eigenvalue one

@ All others zero



From vectors to matrices

Real vectors X=> Xi €,
~—
real coefficients
Symmetric matrices S=>,; of S;S;
~—

real coefficients dyads
i.e. linear combinations of unit vectors / dyads

10/85



From vectors to matrices

Real vectors X=> X €
~—
real coefficients
Symmetric matrices S=>,; of S;S;
S~~~ ~—~

real coefficients dyads

i.e. linear combinations of unit vectors / dyads

Probability vectors w=y wj e;
mixture coefficients
Density matrices W=>" wj wiw;
~—~ ——

mixture coefficients pure density matrices

i.e. mixtures of unit vectors / dyads
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From vectors to matrices

Real vectors X=> Xi €,
~—
real coefficients
Symmetric matrices S=>,; of S;S;
~—

real coefficients dyads
i.e. linear combinations of unit vectors / dyads

Probability vectors w=y wj e;
mixture coefficients T
Density matrices W=>" wj Wiw;
~—~ ——

mixture coefficients pure density matrices
i.e. mixtures of unit vectors / dyads

Matrices are generalized distributions
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© Conventional and Generalized Probability Distributions
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Conventional probability theory

@ Space is set A of n elementary events / points

{ala ar, as, d4, 35}

@ Event is subset

{32,33,35} = (07 17 1: Ov 1)T

@ Distribution is probability vector

(1,.2,.3,.1,.3)"

@ Probability of event 0-.1+1-24+1-3+0-.14+1-.3 = .8
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Conventional case in matrix notation

@ The n elementary events are matrices with a single one on diagonal

00000
00000 T
00000 | =eqe,
00010
00000

h {

e Event is diagonal matrix P with {0,1} entries

o

@ Distribution is diagonal matrix W
with probability distribution along the diagonal

39989
W=|00300
000.10
0000 .3

@ Probability of event P wrt distribution W is tr(WP) = W e P

[olelolele]

1888

T T T
0100 | =epe, + eze; +ese
0000 252 3%3 %5
0001

15/85



Elementary events = states in quantum physics

o Conventional: finitely many states

{eje] :1<i<n}
@ Generalized: continuously many states uu' called dyads

{uu” u e R, |jul] =1}

o Degenerate ellipses %

e uu' one-dimensional projection matrix onto direction u

T

@ Prefer to use the dyads uu' as our states

instead of the unit vectors u

16/85



Generalized probabilites over R”

Elementary events are the dyads uu’ /
@ Event is symmetric matrix P with {0, 1} eigenvalues

3989

P=U[{o00100 LIT:U2u2T—i—u3u3T—|—u5u5T
00000
00001

o U orthogonal eigensystem, u; columns/eigenvectors
o P projection matrix onto arbitrary subspace of R": P> = P

@ Distribution is density matrix W:

02600
W=U|lo00300 |U = E w,-u,-u,-T
000.10
00003 i
mixture of dyads

Eigenvalues w; form probability vector

Event probabilities become traces (later)
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Density matrices = mixtures of dyads

@ Many mixtures lead to same density matrix

02— + 0_3/ 05t = = = O‘ZN 0_7/

@ There always exists a decomposition into n dyads that correspond to
eigenvectors

0.35 0.15
0.15 0.65

Alternate defnitions of density matrices?
o Symmetric: W' =W
o Positive definite: u' Wu >0 VYu

@ Trace one: sum of diagonal elements is one
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Variance

@ View the symmetric positive definite matrix C as a covariance matrix
of some random cost vector ¢ € R”, i.e.

C=E((c - E(c))(c~E(c))")
o The variance along any vector u is
V(e u) = E((c"u- IE(cTu))2 )
~B(((c" ~E()u))
—u'E ((c ~E(c))(c — E(c))T) u

/

Cc

@ Variance as trace
u' Cu=tr(u'Cu)=tr(Cuu’)=Ceuu’ > 0
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Plotting the variance

Curve of the ellipse is plot of vector Cu , where u is unit vector
The outer figure eight is direction u times the variance u' Cu
For an eigenvector, this variance equals the eigenvalue

and touches the ellipse
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3 dimensional variance plots

21/85



Assignment of generalized probabilities

@ Density matrix W assigns generalized probability
u'Wu = tr(Wuu') to dyad uu’

@ Sum of probabilities over an orthornormal basis u; is 1

S
7

For any two orthogonal directions:
u; Wuy +uj Wup =1

at+b+c=1
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Sum of probabilities over an orthornormal basis

ZtrWuu WZuu ) =tr(WUU) = tr(W) =1
1

@ Uniform density matrix: %I

1 1 1
tr(=1 wu') == tr(uu') = =
r(n uu') nr(uu) p

e All dyads have generalized probability %
o Generalized probability of n orthogonal dyads

sums to 1

e TR TR TR Y o ez o« o8 o8

@ Classical: for any probability vector w
Ztr diag(w Zw, =1
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Total variance along orthogonal set of directions
A density matrix '

For any two orthogonal directions <

u; Aug + uy Auy =1

=

at+b+c=1
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Gleason's Theorem

Scalar function p(u) from unit vectors u in R” to R
is called generalized probability measure if:

e Vu, 0 < p(u) <1

@ If ug,...,u, form an orthonormal basis for R”,
then > p(u;) =1

Let n > 3. Then any generalized probability measure p on R" has the
form:

p(u) = tr(Wuu')

for a uniquely defined density matrix W
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Key generalization

@ Disjoint events now correspond to orthogonal events

@ When events have same eigensystem, then

tr

5338 5288

00000 |U" U oor00 |UT

00000 00000

00001 00000
orthogonal

I

o

=

=
HOOOH
OO HO

I

o

—
disjoint
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Probability of events

@ Generalized probability of event P is

probability vanance

tr(WP) = tr(z wi wiw, P) = Z Wi w; Pw;

i
4

-~

expected variance

@ Random variable is symmetric matrix S
Expectation of S is

probability
outcome

tr(WS) = tI‘(WZ U,'S,'S,—-r) = o S,TW S/
: -

1

expected outcome
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Quantum measurement

Quantum measurement for mixture state W = 5. w,-w,-w,-T
and observable S =), O','S,'S’TZ

o After measurement, state collapses into one of {sis{,...,s,s, }
@ Successor state is s,-s;r with probability s; T W s;

@ The expected state is again a density matrix
probability

T T ’?jA T
W — Zs,-s,-Ws,-s,- :Zs,-Ws,- S;S
i i

i

~~

expected state

T
1
Expected outcome tr(WS) =Y, 0; s/ Ws;

We use the trace computations but our density matrices are updated
differently

Successor state s;s; associated with outcome o;
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© Conventional and generalized Bayes rule
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Conventional setup

e Model M; is chosen with prior probability P(M;)
e Datum y is generated with probability P(y|M;)

P(y) = ZP P(y|M;)

expected likelihood
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Conventional Bayes Rule

P(Mily) =

Prior Likelihood
o

0 o
12345 12345

0
12345

@ 4 updates with the same data likelihood
@ Update maintains uncertainty information about maximum likelihood
@ Soft max
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Conventional Bayes Rule

P(Mily) =

Prior Likelihood
o

12345 12345

fls Illll

12345

@ 4 updates with the same data likelihood
@ Update maintains uncertainty information about maximum likelihood
@ Soft max
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Conventional Bayes Rule

P(Mi) Py M;)

Prior Likelihood
o

12345 12345

Hmﬂﬂﬂ Hﬂﬂﬂﬂ )

@ 4 updates with the same data likelihood

@ Update maintains uncertainty information about maximum likelihood
@ Soft max
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Conventional Bayes Rule

P(Mily) =

Prior Likelihood
o

12345 12345

HHHHH Hﬂﬂﬂﬂ D (o0 .

o
12345

@ 4 updates with the same data likelihood
@ Update maintains uncertainty information about maximum likelihood
@ Soft max
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

08

@ 1 update with data
likelyhood matrix
D(y|M)

o Update maintains
uncertainty information
about maximum

0.6

041

0.2

-02

04 f

“San > »*

So - —_;-s....—
06 1 eigenvalue
o8y ] @ Soft max eigenvalue
Y 05 0 05 1 calculation
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

0.8
@ 2 updates with same

data likelyhood matrix
D(y|M)

o Update maintains
uncertainty information
about maximum

0.6

041

0.2

-02

04 f

06 1 eigenvalue
o8y ] @ Soft max eigenvalue
Y 05 0 05 1 calculation
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

0.8
@ 3 updates with same

data likelyhood matrix
D(y|M)

o Update maintains
uncertainty information
about maximum

0.6

041

0.2

-02

-04 1

06 1 eigenvalue
o8y ] @ Soft max eigenvalue
Y 05 0 05 1 calculation
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

0.8
@ 4 updates with same

data likelyhood matrix
D(y|M)

o Update maintains
uncertainty information
about maximum

0.6

041

0.2

-02

04 f

06 1 eigenvalue
o8y ] @ Soft max eigenvalue
Y 05 0 05 1 calculation
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

0.8
@ 10 updates with same

data likelyhood matrix
D(y|M)

o Update maintains
uncertainty information
about maximum

0.6

041

0.2

-02

04 f

06 1 eigenvalue
o8y ] @ Soft max eigenvalue
Y 05 0 05 1 calculation
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Bayes Rule for density matrices

D(Mly) = exp (log D(M) + log D(y/|M))
tr (above matrix)

0.8
@ 20 updates with same

data likelyhood matrix
D(y|M)

o Update maintains
uncertainty information
about maximum

0.6

041

0.2

-02

04 f

06 1 eigenvalue
o8y ] @ Soft max eigenvalue
Y 05 0 05 1 calculation
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Many iterations of conventional Bayes w. same data
likelihood

0 20 40 60 80 100 120

Plot of posterior probability as a function of the iteration number
(P(M;)) = (.29, .4,.3,.01) (P(y|M;)) = (.7,.84,.85,.9)

Initially .85 overtakes .84
Eventually .9 overtakes both
Largest likelihood: sigmoid ~ smallest likelihood: reverse sigmoid
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Many iterations of generalized Bayes Rule

.
o9t
08}
o7t
06|
05
04f
03
02t

01

Prior D(M) is diagonalized prior (P(M;)) of previous plot
Data likelihood D(y|M) = U diag((P(y|M;))UT,
where the eigensystem U is a random rotation matrix
Plot of projections of the posterior onto the four eigendirections u;
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Forward and backward

diagonal with rotation

B
o
g
o
05 05
04 04
03 03
02 02
01 o1
is0 100 50 g e 00 150 150 100 50 o e 100 150
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Conventional rule as special case

e If D(M) and D(y|M) have the same eigensystem, then generalized
Bayes rule specializes the the conventional case

P(M;ly) =
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Diagonal case in dimension 2

Sequence of 2-dim ellipses for diagonal case
1 1 1

1 1
0.5 0.5 0.5 0.5 0.5
0 @ 0 0 0 0
0.5 0.5 0.5 0.5 0.5
-1 -1 -1 -1 -1
-1 0 1A 0 1A 0 1A 0 1A 0 1
1 - 1 1 1 ~
05 ,r'/ \\ 05 M 0.5 05 [ 1\
| ‘ M - | \
0 [ 0 } : 1 0 1N 0 )( |
\ / \ |/ k; J \ |
-0.5 \/ -0.5 4 -0.5 -0.5 \ //
-1 -1 -1 -1
-1 0 -1 0 -1 0 -1 0
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General case in dimension 2

1 1 1 1 1
0.5 0.5 0.5 0.5 0.5
0 0 0 0 0
0.5 -0.5 -0.5 0.5 -0.5
-1 -1 -1 -1 -1
-1 0 11 0 11 0 11 0 1 -1 0 1
1 1 1 1
| \
0.5 //J\ \ 0.5 /P \ 0.5 0.5 ,/\\\
[ ] ) [\
0 —— 0 — 0 0 L/\/‘
\ | | \ | | \ \
\ |/ \ | \
0.5 [/ -0.5 \ 0.5 -0.5 \ /
-1 -1 -1 -1
-1 0 1 0 1 0 1 0 1
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What's the upshot

o Nifty generalization of Bayes rule
@ Lots of evidence that it is the right generalization

@ We don't have an application yet where the calculus is needed for the
analysis
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Properties

tr (above matrix)
D(M)

@ symmetric positive definite

@ eigenvalues sum to one
D(y|M)

@ symmetric positive definite

o all eigenvalues in range [0..1]

Later we discuss where these matrices come from

4885



Non-commutative Bayes Rule?

@ The product of two symmetric positive matrices can be neither
symmetric nor positive definite

sym.pos.def

sym. sym.

sym.pos.def sym.pos.deF
—— P——
exp(log D(M) 4+ log D(y/M) )

D(Mly) = ()

49 /85



Intersection properties of Bayes

Conventional Bayes:

@ Computes intersection of two sets

50 /85



Intersection properties on new Bayes Rule

exp(log A + log B)

@ Result lies in intersection of both spans:
here a degenerate ellipse of dimension one
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Same eigensystem, then trace dot product of eigenvectors

@ W and S have the same eigensystem

tI‘(WS) = Z wio;

The wj can track the high o;
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Rotated matrices are “invisible”

W: S:: < S,: | Y

@ W is any matrix with eigensystem |

@ S1,S, are any matrices with rotated eigensystem and
tr(S1) = tr(Sz), then

tr(WSl) = tr(WSQ)

@ So W cannot distinguish S; and S»
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Hadamard matrices

@ Columns orthogonal

e
=

n—1 n—1
> Hn = <:n—1 _I-'|_|n—1)

(WY
Il

=

° ﬁH orthonormal - here called rotated eigensystem

@ Dyads hh' formed by any column h of ﬁH has % along diagonal

1 1-1 1-1
(1 1-1 1)

1-1 1-1
n\_1 1-1 1

e Diagonal of hh' consists of all ones
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Rotated versus unrotated in n dimensions

o If W has eigensystem |
and S has rotated eigensystem:

1
tr() wieie] ) o hhT wiojtr(eje hih|) = ~tr(W)tx(S)
2 Z i Z j

1

w S

@ A density matrix W with unit eigen system does not see much detail
about matrices in the rotated system
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Avoiding logs of zeros

Rewrite
exp(log A 4+ logB) as lim (AY/"BY/m)n

n—oo

Lie-Trotter Formula

Limit always exists and well behaved
@ Short hand for new product

AGB = lim (AY/"BY/mn

n—o0

Generalized Bayes Rule becomes

_ D(M)oD(y|M)
DMly) = S mDeD v )
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(® - commutative matrix product

Plain matrix product is non-commutative and can violate symmetry and
positive definiteness. ® does not have these drawbacks.

NI

B
A
72
AGCB AB
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Behaviour of the limit for ®

e re

A (AI/ZBI/Z)2 (BI/ZAI/Z)Z A@B

e “Ears” indicating negative definiteness are smaller for (Al/2B1/2)2
compared to AB

@ Non-commuting part shrinks as well
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Operating on bunnies with ®

Commutative combination of linear transformations

\ . E Il (B1/2 1/2)
B sz
é ”2! g ”2 aé A1/zB1/2

B1/rAI/I’|)
(A\W/nBﬂ/n)
! @ (©Marc Alexa
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Commutative, associative, identity matrix as neutral elmt,
preserves symmetry and positive definiteness

A © B = AB iff A and B commute
range(A ©® B) = range(A) Nrange(B)

tr(A ® B) < tr(AB) with equality when A and B commute

© ©6 00

For any unit direction u € range(A),
uu' A = eu—r(logJr A yuT

det(A ® B) = det(A) det(B), as for the regular matrix product
Typicaly A©(B4+C)#AGB+AGC

© 0
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Conventional setup again

e Model M; is chosen with prior probability P(M;)
e Datum y is generated with probability P(y|M;)

P(y) =Y P(M,)P(y|M;)

! expected likelihood

@ Theorem of Total Probability

NN 61/85



Generalized setup

D(y) = tr(D(M)®D(y[M)) < tr(D(M)D(y|M))

probab|l|ty variance
,—’%
= § i (y|M)d;

expected variance

probability | icome
=~
:ZU,TD(M)U,' )\,’
i

expected measurement

where D(y|M) = 3. Ajuu]
@ Upper bounds similar to Theorem of Total Probability

@ Only decouples when D(M) and D(y|M) have same eigensystem

o < becomes =
o Probabilities = P(M;) and variance/outcome — P(y|M;)
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e Bounds, derivation, calculus
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Conventional bound ito MAP

@ Probability domain

P(y) = Z_ P(y|M;)P(M;) > P(y|M:)P(M;)

@ Log domain
—log P(y) = —log>» P(y|M;)P(M))

< miin(— log P(y|M;) — log P(M;))
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Generalized bound ito MAP

Only in the log domain
o —logm"Am < —m" log(A)m, for any unit vector m and symmetric
positive definite matrix A

—log D(y) =
= —logtr(D(y|M) ® D(M))
mniln(— logm " (D(y|M

)©D
mni1n(—mT log(D(y|M) ® D(M))m)

IN

(M))m)

IN

min(—m' log D(y|M)m — m" log D(M)m)
m
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Derivation of updates

inf  A(w,wp) + n Loss(w)
W N—— ~~

divergence to wg  learning rate

@ Can derive large variety of updates by varying divergence, loss
function and learning rate

@ Examples: Gradient descent update, exponentiated gradient update,
Ada-Boost (n — o)

@ Here we will derive Bayes rule with this framework
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Conventional Bayes Rule

Mixture coefficients w;
Prior P(M;)

Z,-igle Zw, log P ) Zw, log P(y|M;)

-

rel. entropy expected loss

1 = 0o: maximum likelihood

1n = 1: Bayes Rule
- Soft max

Special case of Exponentiated Gradient update
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Lagrangian:

L(w) = Zw, log 57~ Zw, log P(y|M;) + A((> w) 1)

i

ol(w) 1 wj .
o " n <Iog PV + 1) —log P(y|M;) + A

Setting partials zero:
w; = P(M;) exp(A — 1+ nlog P(y|M;))
Enforcing sum constraint:

e _PUM)PUIMY
TS PM)PGIM)

n = 1: Conventional Bayes rule
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Conventional Bayes again

1 1
Zimil ;Zw; logw; — Ezwi log P(M;) — Zwi log P(y|M;)

~~

neg.entropy initial data

@ Prior and data treated the same when =1

o Commutativity
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Bayes Rule for density matrices

Parameter is density matrix W
Prior is density matrix D(M)

1
inf — tr(W(log W — log D(M)) — tr(W log D(y|M
it 5, i(W(log W — log D(M)) — tr(W log D(y|M))
Quantum rel. entr. Fancier mixture loss

@ 1 = co: minimized when W is dyad uu' and u is the eigenvector
belonging to a minimum eigenvalue of — log D(y|M)

1 = 1: Generalized Bayes Rule
- Soft maximum eigenvalue calculation

Special case of Matrix Exponentiated Gradient update
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Generalized Bayes Rule again

1 1
inf —tr(W(logW)) — — tr(Wlog D(M)) — tr(W log D(y|M))
r(W)=1 1) e —r 1) ~ .
quantum entropy initial data

@ Von Neumann Entropy is just entropy of eigenvalues
@ Prior and all data treated the same when n =1

o Commutativity
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@ Where does data likelyhood matrix D(y|M) come from?

e From a joint distribution on space (Y, M)

72/85



Joint distributions

Conventional joints:
@ Two sets of elementary events - A and B
@ Joint space Ax B
@ Elementary events are pairs (a;, bj)
o

Joint distribution is a probability vector over pairs

Generalized joints:

@ Two real vector spaces: A and B of dimension ny and ng

@ Joint space: tensor product A ® B - real space of dimension nynp
@ Elementary events are dyads of joint space
°

Joint distribution is a density matrix over joint space
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Joint probability?

Given joint density matrix D(A, B)

a dyad aa' from space A

a dyad bb" from space B

What's the joint probability of aa' and bb'?
e D(a,b) =7
@ Recall D(a) = tr(D(A) aa").
e Thus D(a,b) = tr(D(A,B) ?)

Conventional: look up probability of jointly specified event (a;, b;) in joint
table

What is a jointly specified dyad?

We will use Kronecker product -



Kronecker Product

Kronecker product of n x m matrix E and p x g matrix F is a np x mqg
matrix E ® F which in block form is given as:

611F 612F Ce elmF
EoF — e1F exF ... e,F
emF epnF enmF

Properties:
o (E®F)(G®H)=EG®FH
o tr(E® F) = tr(E)tr(F)

o If D(A) and D(B) are density matrices,
then so is D(A) ® D(B)
o (a®b)a®b)T =aa’ @bb"
is a dyad of space (A,B)
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Joint probability

Use aa' @ bb' as jointly specified dyad
Joint probability: D(a,b) = tr(D(A,B)(aa’ ® bb"))
Not every dyad on the joint space can be written as aa' @ bb'!1!

This issue in quantum physics is known as entanglement
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Morel!

e Conditionals
Marginalization
Theorem of total probability

@ Need additional Kronecker product properties
Partial trace, etc

@ Goes beyond the scope of this talk

@ Many subtle quantum physics issues show up in the calculus
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Sample calculus rules

e D(A) = trg(D(A,B))
D(A,b) = trg(D(A,B)(Iy ® bb "))
Marginalization

e D(AB) = D(A,B) ® (I, ® D(B))~?
Conditional in terms of the joint
Introduced by Cerf and Adami

o D(A) = trs(D(A[B) © (I, ® D(B)))
Theorem of total probability

D(M)®D(y|M
o D(Mly) = olteniily

Our Bayes rule
o D(b|A) = D(b)D(A|b) ® (D(AB) ® (I, ® D(B))) ™
Another Bayes rule

78 /85



@ We maintain uncertainty about direction of maximum variance with a
density matrix

@ Update generalizes conventional Bayes's rule
@ Motivate the update based on a maxent principle

@ Probability calculus that retains conventional probabilities as a special
case
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Calculus for other matrix classes
On-line update for PCA :-)

Applications that need the calculus

Connections to quantum computation
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Open problem 1

@ You can implement the conventional Bayes Rule in the tube
- in vitro selection with 10%° variable
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Open problem 1

@ You can implement the conventional Bayes Rule in the tube
- in vitro selection with 10%° variable

@ Recall Generalized Bayes Rule?

D) = O e mar)
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Open problem 1

@ You can implement the conventional Bayes Rule in the tube
- in vitro selection with 10%° variable

@ Recall Generalized Bayes Rule?

D) = O e mar)

o Is there a physical realization?
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Open problem 2

@ The Generalized Bayes Rule retains the Conventional Bayes Rule as
the hardest case

@ Learning the eigensystem for free
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Open problem 2

@ The Generalized Bayes Rule retains the Conventional Bayes Rule as
the hardest case

@ Learning the eigensystem for free

e Find other cases where there is a “free matrix lunch”
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