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Multiplicative updates

A set of experts i learns something online

Maintain one weight wi per expert i

Multiplicative update

wi :=
wi e−η Li

normalization

Bayes rule is special case
when η = 1, Li := − log(P(y |Mi )), and wi = P(Mi )

P(Mi |y) :=
P(Mi ) P(y |Mi )

normalization

Motivated by using a relative entropy regularization

Weight vector is uncertainty vector over experts / models
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Matrix version of multiplicative updates

Maintain density matrix W as a parameter

Multiplicative update

W :=
exp(logW − η L)

normalization

Motivated by using a quantum relative entropy regularization

Density matrix is uncertainty over rank 1 subspaces

Capping the eigenvalues at 1
k : uncertainty over rank k subspaces

Today: What corresponds to Bayes ???
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Visualisations: ellipses

We illustrate symmetric matrices as ellipses
- affine transformations of the unit ball:

Ellipse = {Su : ‖u‖2 = 1}
Dotted lines connect point u on unit ball with point Su on ellipse
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Ellipses cont.

For symmetric matrices, the eigenvectors form the axes of the ellipse
and eigenvalues their lengths

Su = σu, u is an eigenvector, σ is an eigenvalue
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Dyads

One eigenvalue one

All others zero
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From vectors to matrices

Real vectors x =
∑

i xi︸︷︷︸
real coefficients

ei

Symmetric matrices S =
∑

i σi︸︷︷︸
real coefficients

sis
>
i︸︷︷︸

dyads

i.e. linear combinations of unit vectors / dyads

Probability vectors ω =
∑

i ωi︸︷︷︸
mixture coefficients

ei

Density matrices W =
∑

i ωi︸︷︷︸
mixture coefficients

wiw
>
i︸ ︷︷ ︸

pure density matrices

i.e. mixtures of unit vectors / dyads

Matrices are generalized distributions
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Conventional probability theory

Space is set A of n elementary events / points

{a1, a2, a3, a4, a5}

Event is subset

{a2, a3, a5} = (0, 1, 1, 0, 1)>

Distribution is probability vector

(.1, .2, .3, .1, .3)>

Probability of event 0 · .1 + 1 · .2 + 1 · .3 + 0 · .1 + 1 · .3 = .8
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Conventional case in matrix notation

The n elementary events are matrices with a single one on diagonal(
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

)
= e4e

>
4

Event is diagonal matrix P with {0, 1} entries

P =

(
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

)
= e2e

>
2 + e3e

>
3 + e5e

>
5

Distribution is diagonal matrix W
with probability distribution along the diagonal

W =

(
.1 0 0 0 0
0 .2 0 0 0
0 0 .3 0 0
0 0 0 .1 0
0 0 0 0 .3

)
Probability of event P wrt distribution W is tr(WP) = W • P
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Elementary events = states in quantum physics

Conventional: finitely many states

{eie>i : 1 ≤ i ≤ n}

Generalized: continuously many states uu> called dyads

{uu> : u ∈ Rn, ||u||2 = 1}

Degenerate ellipses
uu> one-dimensional projection matrix onto direction u

Prefer to use the dyads uu> as our states
instead of the unit vectors u
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Generalized probabilites over Rn

Elementary events are the dyads uu>

Event is symmetric matrix P with {0, 1} eigenvalues

P = U
(

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

)
U> = u2u

>
2 + u3u

>
3 + u5u

>
5

U orthogonal eigensystem, ui columns/eigenvectors
P projection matrix onto arbitrary subspace of Rn: P2 = P

Distribution is density matrix W:

W = U
(
.1 0 0 0 0
0 .2 0 0 0
0 0 .3 0 0
0 0 0 .1 0
0 0 0 0 .3

)
U> =

∑
i

ωi uiu
>
i︸ ︷︷ ︸

mixture of dyads

Eigenvalues ωi form probability vector

Event probabilities become traces (later)
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Density matrices = mixtures of dyads

Many mixtures lead to same density matrix

There always exists a decomposition into n dyads that correspond to
eigenvectors

Alternate defnitions of density matrices?

Symmetric: W> = W

Positive definite: u>Wu ≥ 0 ∀u
Trace one: sum of diagonal elements is one
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Variance

View the symmetric positive definite matrix C as a covariance matrix
of some random cost vector c ∈ Rn, i.e.

C = E
(

(c− E(c))(c− E(c))>
)

The variance along any vector u is

V(c>u) = E(
(
c>u− E(c>u)

)2
)

= E(
(

(c> − E(c>)) u
)2

)

= u> E
(

(c− E(c))(c− E(c))>
)

︸ ︷︷ ︸
C

u

Variance as trace

u>Cu = tr(u>Cu) = tr(C uu>) = C • uu> ≥ 0
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Plotting the variance

Curve of the ellipse is plot of vector Cu , where u is unit vector
The outer figure eight is direction u times the variance u>Cu
For an eigenvector, this variance equals the eigenvalue
and touches the ellipse
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3 dimensional variance plots
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Assignment of generalized probabilities

Density matrix W assigns generalized probability
u>Wu = tr(Wuu>) to dyad uu>

Sum of probabilities over an orthornormal basis ui is 1

For any two orthogonal directions:
u>1 Wu1 + u>2 Wu2 = 1

a + b + c = 1
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Sum of probabilities over an orthornormal basis

∑
i

tr(Wuiu
>
i ) = tr(W

∑
i

uiu
>
i ) = tr(WUU>︸ ︷︷ ︸

I

) = tr(W) = 1

Uniform density matrix: 1
n I

tr(
1

n
I uu>) =

1

n
tr(uu>) =

1

n

All dyads have generalized probability 1
n

Generalized probability of n orthogonal dyads
sums to 1

Classical: for any probability vector ω∑
i

tr(diag(ω) eie
>
i ) =

∑
i

ωi = 1
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Total variance along orthogonal set of directions

A density matrix
For any two orthogonal directions

u>1 Au1 + u>2 Au2 = 1

a + b + c = 1
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Gleason’s Theorem

Definition

Scalar function µ(u) from unit vectors u in Rn to R
is called generalized probability measure if:

∀u, 0 ≤ µ(u) ≤ 1

If u1, . . . ,un form an orthonormal basis for Rn,
then

∑
µ(ui ) = 1

Theorem

Let n ≥ 3. Then any generalized probability measure µ on Rn has the
form:

µ(u) = tr(Wuu>)

for a uniquely defined density matrix W
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Key generalization

Disjoint events now correspond to orthogonal events

When events have same eigensystem, then

tr

U
(

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

)
U> U

(
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

)
U>︸ ︷︷ ︸

orthogonal

 = 0 iff

(
1
0
0
0
1

)
·

(
0
1
1
0
0

)
︸ ︷︷ ︸

disjoint

= 0
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Probability of events

Generalized probability of event P is

tr(WP) = tr(
∑
i

ωi wiw
>
i P) =

∑
i

probability︷︸︸︷
ωi

variance︷ ︸︸ ︷
w>i Pwi︸ ︷︷ ︸

expected variance

Random variable is symmetric matrix S
Expectation of S is

tr(WS) = tr(W
∑
i

σisis
>
i ) =

∑
i

outcome︷︸︸︷
σi

probability︷ ︸︸ ︷
s>i W si︸ ︷︷ ︸

expected outcome
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Quantum measurement

Quantum measurement for mixture state W =
∑

i ωiwiw
>
i

and observable S =
∑

i σisis
>
i :

After measurement, state collapses into one of {s1s>1 , . . . , sns
>
n }

Successor state is sis
>
i with probability si

>W si

The expected state is again a density matrix

W −→
∑
i

sis
>
i W sis

>
i =

∑
i

probability︷ ︸︸ ︷
s>i W si sis

>
i︸ ︷︷ ︸

expected state

Successor state sis
>
i associated with outcome σi

Expected outcome tr(WS) =
∑

i σi s
>
i W si

We use the trace computations but our density matrices are updated
differently
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Conventional setup

Model Mi is chosen with prior probability P(Mi )

Datum y is generated with probability P(y |Mi )

P(y) =
∑
i

P(Mi )P(y |Mi )︸ ︷︷ ︸
expected likelihood
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Conventional Bayes Rule

P(Mi |y) =
P(Mi )P(y |Mi )

P(y)

4 updates with the same data likelihood

Update maintains uncertainty information about maximum likelihood

Soft max
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Bayes Rule for density matrices

D(M|y) =
exp (logD(M) + logD(y|M))

tr (above matrix)

1 update with data
likelyhood matrix
D(y|M)

Update maintains
uncertainty information
about maximum
eigenvalue

Soft max eigenvalue
calculation
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Bayes Rule for density matrices

D(M|y) =
exp (logD(M) + logD(y|M))

tr (above matrix)

10 updates with same
data likelyhood matrix
D(y|M)

Update maintains
uncertainty information
about maximum
eigenvalue

Soft max eigenvalue
calculation
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Bayes Rule for density matrices

D(M|y) =
exp (logD(M) + logD(y|M))

tr (above matrix)

20 updates with same
data likelyhood matrix
D(y|M)

Update maintains
uncertainty information
about maximum
eigenvalue

Soft max eigenvalue
calculation
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Many iterations of conventional Bayes w. same data
likelihood

Plot of posterior probability as a function of the iteration number

(P(Mi )) = (.29, .4, .3, .01) (P(y |Mi )) = (.7, .84, .85, .9)

Initially .85 overtakes .84
Eventually .9 overtakes both
Largest likelihood: sigmoid smallest likelihood: reverse sigmoid
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Many iterations of generalized Bayes Rule

Prior D(M) is diagonalized prior (P(Mi )) of previous plot
Data likelihood D(y |M) = U diag((P(y |Mi ))UT ,

where the eigensystem U is a random rotation matrix
Plot of projections of the posterior onto the four eigendirections ui
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Forward and backward

diagonal with rotation
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Conventional rule as special case

If D(M) and D(y|M) have the same eigensystem, then generalized
Bayes rule specializes the the conventional case


. . . 0

P(Mi |y)

0
. . .

 =


. . . 0

P(Mi )

0
. . .




. . . 0
P(y |Mi )

0
. . .


tr( · · · )
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Diagonal case in dimension 2

Sequence of 2-dim ellipses for diagonal case
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General case in dimension 2
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What’s the upshot

Nifty generalization of Bayes rule

Lots of evidence that it is the right generalization

We don’t have an application yet where the calculus is needed for the
analysis
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Properties D(M) and D(y|M)

D(M|y) =
exp (logD(M) + logD(y|M))

tr (above matrix)

D(M)

symmetric positive definite

eigenvalues sum to one

D(y|M)

symmetric positive definite

all eigenvalues in range [0..1]

Later we discuss where these matrices come from
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Non-commutative Bayes Rule?

The product of two symmetric positive matrices can be neither
symmetric nor positive definite

D(M|y) =

sym.pos.def︷ ︸︸ ︷
exp
(

sym.︷ ︸︸ ︷
log

sym.pos.def︷ ︸︸ ︷
D(M) +

sym.︷ ︸︸ ︷
log

sym.pos.def︷ ︸︸ ︷
D(y|M)

)
tr (· · · )
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Intersection properties of Bayes

Conventional Bayes:

P(Mi ) P(y |Mi ) P(Mi |y)

0 0 0
a 0 0
0 b 0

a b ab
P(y)

Computes intersection of two sets
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Intersection properties on new Bayes Rule

exp(log A + log B)︸ ︷︷ ︸

Result lies in intersection of both spans:
here a degenerate ellipse of dimension one

51 / 85



Same eigensystem, then trace dot product of eigenvectors

W and S have the same eigensystem

tr(WS) =
∑
i

ωiσi

The ωi can track the high σi
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Rotated matrices are “invisible”

W: S1 : S2 :

W is any matrix with eigensystem I

S1,S2 are any matrices with rotated eigensystem and
tr(S1) = tr(S2), then

tr(WS1) = tr(WS2)

So W cannot distinguish S1 and S2
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Hadamard matrices

(
1 1
1 −1

) ( 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

)
Hn =

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
Columns orthogonal

1√
n
H orthonormal - here called rotated eigensystem

Dyads hh> formed by any column h of 1√
n
H has 1

n along diagonal

1

n

( 1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

)

Diagonal of hh> consists of all ones
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Rotated versus unrotated in n dimensions

If W has eigensystem I
and S has rotated eigensystem:

W: S :

tr(
∑
i

ωieie
>
i︸ ︷︷ ︸

W

∑
j

σj
1

n
hjh
>
j︸ ︷︷ ︸

S

) =
1

n

∑
i ,j

ωiσj tr(eie
>
i hjh

>
j )︸ ︷︷ ︸

1

=
1

n
tr(W)tr(S)

A density matrix W with unit eigen system does not see much detail
about matrices in the rotated system
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Avoiding logs of zeros

Rewrite
exp(log A + log B) as lim

n→∞
(A1/nB1/n)n

Lie-Trotter Formula

Limit always exists and well behaved

Short hand for new product

A�B := lim
n→∞

(A1/nB1/n)n

Generalized Bayes Rule becomes

D(M|y) =
D(M)�D(y|M)

tr(D(M)�D(y|M))
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� - commutative matrix product

Plain matrix product is non-commutative and can violate symmetry and
positive definiteness. � does not have these drawbacks.
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Behaviour of the limit for �

“Ears” indicating negative definiteness are smaller for (A1/2B1/2)2

compared to AB

Non-commuting part shrinks as well

58 / 85



Operating on bunnies with �

Commutative combination of linear transformations

c©Marc Alexa
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� Properties

1 Commutative, associative, identity matrix as neutral elmt,
preserves symmetry and positive definiteness

2 A� B = AB iff A and B commute

3 range(A� B) = range(A) ∩ range(B)

4 tr(A� B) ≤ tr(AB) with equality when A and B commute

5 For any unit direction u ∈ range(A),

uu> � A = eu
>(log+ A)u uu>

6 det(A� B) = det(A) det(B), as for the regular matrix product

7 Typically A� (B + C) 6= A� B + A� C
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Conventional setup again

Model Mi is chosen with prior probability P(Mi )
Datum y is generated with probability P(y |Mi )

P(y) =
∑
i

P(Mi )P(y |Mi )︸ ︷︷ ︸
expected likelihood

Theorem of Total Probability
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Generalized setup

D(y) = tr(D(M)�D(y|M)) ≤ tr(D(M)D(y|M))

=
∑
i

probability︷︸︸︷
δi

variance︷ ︸︸ ︷
d>i D(y|M)di︸ ︷︷ ︸

expected variance

=
∑
i

probability︷ ︸︸ ︷
u>i D(M)ui

outcome︷︸︸︷
λi︸ ︷︷ ︸

expected measurement

where D(y|M) =
∑

i λiuiu
>
i

Upper bounds similar to Theorem of Total Probability

Only decouples when D(M) and D(y|M) have same eigensystem

≤ becomes =
Probabilities → P(Mi ) and variance/outcome → P(y |Mi )
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Conventional bound ito MAP

Probability domain

P(y) =
∑
i

P(y |Mi )P(Mi ) ≥ P(y |Mi )P(Mi )

Log domain

− log P(y) = − log
∑
i

P(y |Mi )P(Mi )

≤ min
i

(− log P(y |Mi )− log P(Mi ))
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Generalized bound ito MAP

Only in the log domain

− logm>Am ≤ −m> log(A)m, for any unit vector m and symmetric
positive definite matrix A

− logD(y) =

= − log tr(D(y|M)�D(M))

≤ min
m

(− logm>(D(y|M)�D(M))m)

≤ min
m

(−m> log(D(y|M)�D(M))m)

= min
m

(−m> logD(y|M)m−m> logD(M)m)
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Derivation of updates [KW97]

inf
w

∆(w,w0)︸ ︷︷ ︸
divergence to w0

+ η︸︷︷︸
learning rate

Loss(w)

Can derive large variety of updates by varying divergence, loss
function and learning rate

Examples: Gradient descent update, exponentiated gradient update,
Ada-Boost (η →∞)

Here we will derive Bayes rule with this framework
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Conventional Bayes Rule

Mixture coefficients ωi

Prior P(Mi )

inf∑
i ωi=1

1

η

∑
i

ωi log
ωi

P(Mi )︸ ︷︷ ︸
rel.entropy

−
∑
i

ωi log P(y |Mi )︸ ︷︷ ︸
expected loss

η =∞: maximum likelihood

η = 1: Bayes Rule
- Soft max

Special case of Exponentiated Gradient update
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Minimization of ω

Lagrangian:

L(ω) =
1

η

∑
i

ωi log
ωi

P(Mi )
−
∑
i

ωi log P(y |Mi ) + λ((
∑
i

ω)− 1)

∂L(ω)

∂ωi
=

1

η

(
log

ωi

P(Mi )
+ 1

)
− log P(y |Mi ) + λ

Setting partials zero:

ω∗i = P(Mi ) exp(λ− 1 + η log P(y |Mi ))

Enforcing sum constraint:

ω∗i =
P(Mi )P(y |Mi )

η∑
j P(Mj)P(y |Mj)η

η = 1: Conventional Bayes rule
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Conventional Bayes again

inf∑
i ω=1

1

η

∑
i

ωi logωi︸ ︷︷ ︸
neg.entropy

− 1

η

∑
i

ωi log P(Mi )︸ ︷︷ ︸
initial data

−
∑
i

ωi log P(y |Mi )

Prior and data treated the same when η = 1

Commutativity
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Bayes Rule for density matrices

Parameter is density matrix W

Prior is density matrix D(M)

inf
tr(W)=1

1

η
tr(W(logW − logD(M))︸ ︷︷ ︸

Quantum rel. entr.

− tr(WlogD(y|M))︸ ︷︷ ︸
Fancier mixture loss

η =∞: minimized when W is dyad uu> and u is the eigenvector
belonging to a minimum eigenvalue of − logD(y|M)

η = 1: Generalized Bayes Rule
- Soft maximum eigenvalue calculation

Special case of Matrix Exponentiated Gradient update

70 / 85



Generalized Bayes Rule again

inf
tr(W)=1

1

η
tr(W(logW))︸ ︷︷ ︸
quantum entropy

− 1

η
tr(WlogD(M))︸ ︷︷ ︸

initial data

− tr(WlogD(y|M))

Von Neumann Entropy is just entropy of eigenvalues

Prior and all data treated the same when η = 1

Commutativity
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D(y|M)?

Where does data likelyhood matrix D(y|M) come from?

From a joint distribution on space (Y,M)
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Joint distributions

Conventional joints:

Two sets of elementary events - A and B

Joint space A× B

Elementary events are pairs (ai , bj)

Joint distribution is a probability vector over pairs

Generalized joints:

Two real vector spaces: A and B of dimension nA and nB

Joint space: tensor product A⊗ B - real space of dimension nAnB

Elementary events are dyads of joint space

Joint distribution is a density matrix over joint space
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Joint probability?

Given joint density matrix D(A,B)
a dyad aa> from space A
a dyad bb> from space B
What’s the joint probability of aa> and bb>?

D(a,b) =?
Recall D(a) = tr(D(A) aa>).
Thus D(a,b) = tr(D(A,B) ?)

Conventional: look up probability of jointly specified event (ai , bj) in joint
table

What is a jointly specified dyad?

We will use Kronecker product
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Kronecker Product

Kronecker product of n ×m matrix E and p × q matrix F is a np ×mq
matrix E⊗ F which in block form is given as:

E⊗ F =


e11F e12F . . . e1mF
e21F e22F . . . e2mF
. . . . . . . . . . . . . . . . . . . . . .
en1F en2F . . . enmF


Properties:

(E⊗ F)(G⊗H) = EG⊗ FH

tr(E⊗ F) = tr(E)tr(F)

If D(A) and D(B) are density matrices,
then so is D(A)⊗D(B)

(a⊗ b)(a⊗ b)> = aa> ⊗ bb>

is a dyad of space (A,B)
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Joint probability

Use aa> ⊗ bb> as jointly specified dyad

Joint probability: D(a,b) = tr(D(A,B)(aa> ⊗ bb>))

Not every dyad on the joint space can be written as aa> ⊗ bb>!!!

This issue in quantum physics is known as entanglement
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More!

Conditionals
Marginalization
Theorem of total probability

Need additional Kronecker product properties
Partial trace, etc

Goes beyond the scope of this talk

Many subtle quantum physics issues show up in the calculus
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Sample calculus rules

D(A) = trB(D(A,B))
D(A,b) = trB(D(A,B)(IA ⊗ bb>))
Marginalization

D(A|B) = D(A,B)� (IA ⊗D(B))−1

Conditional in terms of the joint
Introduced by Cerf and Adami

D(A) = trB(D(A|B)� (IA ⊗D(B)))
Theorem of total probability

D(M|y) = D(M)�D(y|M)
tr(D(M)�D(y|M))

Our Bayes rule

D(b|A) = D(b)D(A|b)� (D(A|B)� (IA ⊗D(B)))−1

Another Bayes rule
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Summary

We maintain uncertainty about direction of maximum variance with a
density matrix

Update generalizes conventional Bayes’s rule

Motivate the update based on a maxent principle

Probability calculus that retains conventional probabilities as a special
case
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Outlook

Calculus for other matrix classes

On-line update for PCA :-)

Applications that need the calculus

Connections to quantum computation
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Open problem 1

You can implement the conventional Bayes Rule in the tube
- in vitro selection with 1020 variable

Recall Generalized Bayes Rule?

D(M|y) =
exp (logD(M) + logD(y|M))

tr (above matrix)

Is there a physical realization?
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Open problem 2

The Generalized Bayes Rule retains the Conventional Bayes Rule as
the hardest case

Learning the eigensystem for free

Find other cases where there is a “free matrix lunch”
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