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Batch PCA and why do we want to do it on-line

Step 1 of batch PCA
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Batch PCA and why do we want to do it on-line

Step 2: summarize data
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Batch PCA and why do we want to do it on-line

Final step: dimensionality reduction

project onto subspace
N
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Batch PCA and why do we want to do it on-line

Objective of batch PCA

inf inf E ||th—c) — (x¢—c) |5
center ¢ k-dim. proj. matrix P N——
compressed uncompressed
Solution:
¢’ = average point
P* = subspace spanned by k longest axes
of covariance matrix E (x¢ — ) (x; — )"
t
X¢t, C nx1
nXxXn
covariance matrix nXn
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Batch PCA and why do we want to do it on-line

Why on-line?

@ Data points produced on-line
@ Data changes over time

@ Want to exploit the sequential nature of the data
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Batch PCA and why do we want to do it on-line

How do we do it?

o Lift methods from expert setting of on-line learning to matrix setting
@ Before: probability vector expresses uncertainty over best expert

@ Now: density matrix expresses uncertainty over best subspace
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Batch PCA and why do we want to do it on-line

What do we gain?

On-line algorithms for PCA that work provably well when data shifts
with time

@ Version of the algorithms that exploit shifts back to previously used
subspaces

New generalization of softmin/max

The same bounds - matrix case comes for free

Algorithms are expensive 777
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Expert setting

Expert setting

Learning on-line
@ Pick expert i based on probability vector wy
@ Receive loss vector A; € [0, 1]"
@ Incur loss A;; and expected loss w; - A;
°

Update w;

Goal
loss,ig = E Wi A~ losspest = inf g At
1
t t

M. Warmuth, D. Kuzmin (UCSC) On-line PCA



Expert setting

Example

Example:

o wy = (1/3,1/3,1/3)" - distribution on experts
Pick an expert according to wy, say i = 2
Recieve losses for all experts A; = (1,0,1)7

Incur loss A1 = 0, expected loss is wi - Ay = 2/3

Update w; to wo
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Expert setting

Follow the leader

FL alg
@ Maintain vector of total losses A.; of all experts

@ At trial t choose minimum component of A

Adversary can force
losspL > n losspest
Its strategy for picking loss vectors
@ Chosen expert (leader) incurs one unit of loss
@ Rest incur no loss

@ After T trials, losspi. = T and losspest = L%J
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Expert setting

Softmin with exponential weights

@ WMR: Choose expert based on probability vector

softmin
——
wlyie_nk<t,i the 77>\tl
Wt,j = Wt41,i =
! Z, A Z]
@ Motivation
A(wth)
. Wi
wer1 = arginf Zw,-ln + nw- At
Ziwle i t,l’
@ Bound N A ) A( )
VA + V,Witr1) — v, Wt
wt'At S n ) + )

1—e?
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Expert setting

Total loss bound

@ Summing over trials

lossy,
—
lossaig T ) <logn
— T Zv ‘At + A(v,wri1) — A(v,wr)
=1
Zwt “Ar < L —
ot 1—e
@ Tuning 7

lossalg < losspest + 1/ 210SSpest log n + logn
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Expert setting

Expert algorithms

@ Deterministic FL alg
losspL > n losspest

o WMR with softmin weights

wt,l‘ ~ e_n A<t‘,i
e As 7 — oo all weight placed on min. loss expert - hard min
losswmr < losspest + lower order term

@ Follow the perturbed leader (FPL) [KV]

o Add random perturbation to total loss A.;
o Choose expert with minimum perturbed loss
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Expert setting

Overview

comparator H batch on-line
best single expert min softmin
w. exponential weights
or FPT
best direction min eigenvalue softmin eigenvalue
PCAw. k=n—-1 w. matrix exponentials
PCAw. k<n-1 bottom segment softmin eigenvalue
of n — k eigenvalues | w. matrix exponentials
and projections
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Variance minimization on the unit sphere
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Variance minimization on the unit sphere

Finding direction of largest variance on-line

Kuzmin



Variance minimization on the unit sphere

What set of experts and loss?

set of experts

summary of losses

so far

new

n experts
loss of expert i

n dimensional vector A\
Ai

unit ball in n dimensions symmetric positive definite matrix C

loss/cost of direction u

u’Cu
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Variance minimization on the unit sphere

Variance interpretation

@ Interpret C as covariance matrix of some random vector x € R”

C=E ((x CE(x)(x — E(x))T)
o The variance along any vector u is
V(x"u) = E( (xTu - IE:(xTu))2 )
— K ((xT _E(x")

=E(u(x —E(x) (x" —E(x"))u)
—u'E ((x _E

~—
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N———
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Variance minimization on the unit sphere

Ellipses

o We illustrate symmetric matrices as ellipses
- affine transformations of the unit sphere:

@ Ellipse = {Cu : |ul|, =1}
@ Dotted lines connect point u on unit sphere with point Cu on ellipse

M. Warmuth, D. Kuzmin (UCSC) On-line PCA



Variance minimization on the unit sphere

Variance of unit vectors

>u

(uTC u)u

The ellipse is plot of vector Cu for unit vector u

The outer figure eight is variance u' Cu times direction u

At eigenvectors variance touches ellipse

For uncentered PCA, C = xx". In this case u' xx" = (u - x)?
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Variance minimization on the unit sphere

3 dimensional variance plots
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Variance minimization on the unit sphere

Variance minimization problem

On-line learning problem
@ Pick a vector unit vector w;
@ Receive a covariance matrix C;

@ Loss is variance along vector wy

W;l—ctwt = tr(CtWtW:)

Goal: Achieve variance close to variance of shortest axis picked in hindsight

Lpest = il;l‘f u' ZCt u
t

= tr ZCt uu’
t
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Variance minimization on the unit sphere

Mixtures of directions/dyads = density matrix

ww ' for direction w is called a dyad /

@ Symmetric positive definite matrix of rank one

N=wiw=wlz=1

o Trace one: tr(ww')=w
@ Projection matrix onto direction w
@ Dyads as experts instead of directions
Algorithm maintains mixture of dyads

@ Pick a dyad w,-w,T with probability w;

(]
var.in.dir.w;
e T T
g wi w; Cw; = g witr(Cw;w; ) = tr(C E wi Wiw; )
i i i
———
expected variance density matrix W
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Variance minimization on the unit sphere

Density matrices

Convex combinations of dyads
Symmetric positive definite matrices of trace one

Eigenvalues form probability vector

Many mixtures lead to the same matrix:

02———— + 03 /+ 05 = [/)= 029 ~_+ 071

@ Can be written as convex combination (not unique) of n eigendyads

Diagonal case
-
° ) jwiee

o Fixed eigensystem - decomposition unique
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Variance minimization on the unit sphere

Variance minimization with density matrices

Setup
o Parameter: density matrix Wy = > we; wtj,-th,.
@ Pick direction w; ; with probability w; ;
@ Covariance matrix C; is obtained

@ Incur variance ththt and expected variance

Z Wt’i WIictwt,i = tr(WtCt)
i

o Update W,

Goal: Do as well as best density matrix
- single dyad corresponding to smallest eigenvalue of ), C;
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Variance minimization on the unit sphere

Expert setting retained as diagonal case

wt71 0 O O >\t,1 0 0 0
. 0 wep 0 O 0 X2 0O O
Wt')\t - tI‘( 0 0 w3 O 0 0 X3 O )
0 0 0 wea 0 0 0 Ats
diagonal W; diagonal C;

Previous setup
@ Pick expert i based on probability vector w;
@ Receive loss vector A;
@ Incur loss A;; and expected loss w; - A;
o Update w;

Expert i corresponds to dyad eje/

i

In matrix setting continuously many dyads ww "
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Variance minimization on the unit sphere

Deriving the algorithm

symmetric positive definite

softmin symmetric symmetric
— ~=
exp(logW; —n C: )
tr(exp(log W, — nC;))

- exp(logW; — nC_;) Wy —
tr(exp(log W1 — nC_.)) i

A(W,W;)
W, 1 = arginf tr(W(logW —logW,)) + 71 tr(WC;)
tr(W)=1 ~~ ~——
quantum relative entropy expected variance
log, exp are matrix versions of logarithm and exponential [TRW]
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Variance minimization on the unit sphere

Bound generalizes

ntr(UCt) + A(U, Wt+]_) — A(U, Wt)
1—em

tI'(WtCt) S

lossalg < losspest + 1/ 210SSpest log n + log n

Assumption: max. eigenvalue of C; <1
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On-line PCA
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On-line PCA

Recall batch Case

o Data sample xg,...,x,, from R”
@ Pick rank k projection matrix P and offset c

@ Minimize total quadradic approximation error:

inf inf g [|P(xt—¢c) — (xe—¢c) |3
center ¢ k-dim. proj. matrix P " —— N——
compressed uncompressed
¢’ = average point
P* = subspace spanned by k longest axes

of covariance matrix Z(xt —c")(x — )T
t
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On-line PCA

On-line PCA

@ On-line projection of data into low-dimensional subspace

@ Best subspace in hindsight: k top eigenvectors of data covariance
matrix
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On-line PCA

Rewrite quadratic loss as

Assume ¢ = 0 for now

| P_x—x|I3 = (P —1)x|[3
k
= x' (1 - P)*x
1-P pg.matr. tr((l o P) XXT)
C
n—k

Want to choose n — k dimensional subspace of minimum variance

Projection matrices are symmetric positive matrices
with eigenvalues in {0, 1}

P2=P, (I-P?=1-P
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On-line PCA

@ Variance of alg. close to variance of smallest axis chosen in hindsight

@ Minimizing variance along one direction equivalent to maximizing
variance along remaining n — 1 directions

@ For PCA: Maximize variance along k directions or minimize variance
along n — k directions

o ldea: Do it first in expert setting
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On-line PCA

Minimizing loss of m = n — k experts

o Pick set of m experts {i1,...,in} based on probability vector w;
@ Receive loss vector \;
@ Loss is total loss of the m experts A\, + ...+ A,
and expected loss m w; - A¢
o Update w;

Goal: Total (expected) loss of alg. close to total loss of best expert
lossalg = m Wi Ap ~ inf At
“ie zt: CNT fin) zt:zjj o

Minimizing loss A on m experts
equivalent to maximizing gain A on n — m experts
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On-line PCA

New trick: cap weights

Super predator algorithm

Preserves variety

(©Lion copyrights belong to Andy Warhol
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On-line PCA

Cap and rescale rest

expected loss of alg

n n
< loss of best m set + \/2Ioss of best m set mlog — + mlog —
m m
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On-line PCA

Why capping?

@ m sets encoded as probability vectors
(0,1,0,0,1,0,1) called m-corners

' 'm? ' m?
@ The convex hull of the m-corners = capped probability simplex

(,0,%) (0,%2,"%) (1/2,0,1/2,0)

(%2,2,0)

@ We can effectively decompose any capped probability vector w as
convex combination of n of the () m-corners

n
w = E ajrj
j=1

@ Choose m-corner r; with probability «o;
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On-line PCA

Mixture construction

Invariant: 0 < w; < %

02
o1t
01
B I
0 .
o 1 2 3 0 g g 7

In each iteration the boundary set {i : w; is 0 or %} increases

1/3 of total weight

1 2 3 4 5 6

@ Boundary set never looses a component

@ Either the smallest in the new corner
or the largest of the remaining is added
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On-line PCA

Alternates to capping

@ Follow the perturbed leader
o Cheap but inferior bounds
@ Dynamic programming
o One weight per m-corner

o More expensive to compute
o Weaker bounds so far
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On-line PCA

Lift sets of expert alg. to matrices

@ Pick n— k dimensional subspace based on capped density matrix W;
n—k
@ Choose complementary subspace P
~—

k
@ Receive instance x;
o Incur loss ||Px; — x¢[|3 = tr((1 — Pt) x:x{)
~——
n—k
and expected loss (n — k) tr(W; x;x/ )
e Update W,
—
n—k

o Exponential update
o Cap eigenvals to < L
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On-line PCA

Update and Winnow-like bound

_ log W, — : V
W _ _explog W, —nxix;) W,y = inf A(W,W,)

W dens.matrix

"7 tr(exp(log We — 1 x¢x] )

. 1
w.eigenvals < Py

@ Generalization of soft min to soft min n — k

expected loss of alg

n

n
klog —
k—i— ng

< loss of best k subspace + \/2 loss of best k subspace k log
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On-line PCA

Two families again

Regularize with [|[W — W |3 [C]
o W = lin. comb. of x;x,

@ Fast and kernelizable

Regularize with quantum relative entropy

; T
o W — exp(lin. cor;b. of x¢x, )

@ Predict with random projection matrix
@ Regret bounds instead of filtering loss

Key insight: Mixtures of experts generalize density matrices
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On-line PCA

Overview again

comparator H batch on-line
best single expert min softmin
w. exponential weights
or FPT
best direction min eigenvalue softmin eigenvalue
PCAw. k=n—-1 w. matrix exponentials
PCAw. k<n-1 bottom segment softmin eigenvalue
of n — k eigenvalues | w. matrix exponentials
and projections
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On-line PCA

Main techniques

@ Density matrices to express uncertainty over directions
@ Matrix Exponentiated Gradient Update
e Capping
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What's next?

What's next?

@ Generalize to centered case v
o Kernelize the algorithm v
@ Generalize to asymmetric subspaces P = le'(:l ujv, v
o Use SVD instead of eigendecomposition

@ Shifting methodology from expert setting carries over v
@ Serious experiments (V)
@ Work out probability calculus for density matrices v
@ Use soft min d as loss - generalization of logistic regression

@ Survey on “The Blessing and Curse of the Multiplicative Updates”

o Adapt quickly
o Loss of variety
e Connections to Biology
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What's next?

Loss of offline comparator
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What's next?

Additional loss of online algorithm
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