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To Winnow

MW () Winnowing Subspaces 2 /24



How | do it
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Winnowing Subspaces



A formal definition

To winnow:

@ to remove (chaff from grain)
by a current of air

@ to get rid of (something undesirable or unwanted)

@ From Anglo-Saxon “windwian”
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Winnow algorithm

@ Online alg. for learning disjunctions

@ Mistake bound logarithmic in number of features
winnows a large number of features

@ Will morph into algorithm for winnowing subspaces
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Disjunctions as linear threshold functions

@ 2 out of 5 literal monotone disjunction vy V v3

Represented as d = (1,0,1,0,0) "

Label for instance x = (0,1,1,0,0)"

+1 ifd-x>1
—1 otherwise

Alg. receives sequence of examples online

(X13Y1) (ngyz), ARE (XTA7 yT)
Y1 Y2 YT

instances [0, 1], labels and predictions are £1
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Original Winnow algorithm

Initialize wy = wp (1,1,...1)T
fort=1to T do
Receive instance x; € [0, 1]"
Predict with

~A +]. If W - X¢ Z 0
Yt= 1 21 otherwise

Receive label y; € {+1, -1}
Update
) o if no mistake
WetLi = we i eYeiif mistake

end for

Like perceptron alg., except multiplicative update
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Its merits??

@ Thm If examples consistent with k out of n literal monotone

disjunction, then properly tuned Winnow make at most O(k In n)
mistakes

o Mistake bound logarithmic in dimension n

@ Perceptron alg. can make Q(n k) mistakes
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Morphing into the matrix case?

@ What variables?

@ What dot product?

@ What corresponds to disjunctions?

@ What happens to the exponential form of weights - soft max?
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Lifting it to the matrix setting

states mixture states

.. 0 0.1
original (1) w = (0.3)
0 0.6

0.1 0 O
new uu' W:U<80030)UT
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Visualization of symmetric matrices

o Ellipse = {Wu : |jul]2 =1}




A




Degenerate ellipses

@ One eigenvalue one

@ All others zero
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Linear combinations and mixtures of dyads

@ Symmetric matrices are linear combinations of dyads

] A u'=>»" Ai uju;
~— ~~ - N
orthogonal mat. diagonal mat. of " real eigenvalues dyads

of eigenvectors real eigenvalues

o Positive definite matrices
Eigenvalues are non-negative

@ Density matrices are mixtures of dyads
Eigenvalues form probability vector
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Mixtures of dyads

@ Many mixtures lead to same density matrix

02— + 0.3/- 051 = = = 0.29\\-!- 0_7/

@ There always exists a decomposition into n dyads that correspond to
eigenvectors

0.35 0.15
0.15 0.65

@ Uncertainty about dyad expressed as density matrix

@ We have a Bayes rule for density matrices
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Variance

@ View the symmetric positive definite matrix W as a covariance matrix
of some random cost vector c € R”

W=E ((c ~ E(c))(c — E(c))T)
@ The variance along any vector u is
V(c'w) = E( (c"u—E(cw)) )

—u'E <(c ~E(c))(c — E(c))T) u

w

@ Variance as trace
u'Wu=tr(u Wu) =tr(Wuu') > 0
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Plotting the variance

>u

(w™wu)u |

Curve of the ellipse is plot of vector Wu , where u is unit vector
The outer figure eight is direction u times the variance u"Wu
For an eigenvector, this variance equals the eigenvalue

and touches the ellipse
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3 dimensional variance plots
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What dot product?

tr(W X) = tr(z wiw;w; X)
= Zw,- tl"(W,'W,—-r X)

== Zw; W,TXW,'
i iy

variance along eigendirs

Measurement in quantum physics
@ Dyad uu' is state
@ Density matrix W is mixture state
@ Instance matrix X is instrument

o tr(W X) is expected outcome
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states mixture states dot product

original

new
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What corresponds to disjunctions

@ Disjunctions
(1707 170a O)T : (X17X27X37X4ax5)—r =Xx1+ X3

Sum k components of x
T

i

o Projections matrices P = S, uu
k
tr(PX) =) " u/ Xu
i=1
Sum variance along k directions

(xlayl)a (X2A7.y2)7 EER) (XTA7 .yT)

n 2 yr

Label y; is +1 if trace is at least % and —1 otherwise
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Thresholding the trace for xx' instances
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Symmetric Matrix Winnow

Initialize W1 = wy |
nXxXn

fort=1to T do

Receive instance X; with eigenvalues in [0, 1]
nxn

Predict with

[ 41 (WX > 0
Y=\ —1 otherwise

Receive label y;
Update

W, if no mistake

Wi = { exp(logW; + n y:X;) if mistake

end for

exp and log are spectral functions
In normalized version, trace normalized to one
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What else?

e Same O(kIn n) mistake bound if examples consistent with
k-dimensional subspace

o Dubbed free matrix lunch

o Generalizes to arbitrary matrices
- use mixtures of uv' and SVD

@ Key tool in analysis is quantum relative entropy [TRW]

A(W,V) = tr(W(logW — log V))
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