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To Winnow
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How I do it
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A formal definition

To winnow:

to remove (chaff from grain)
by a current of air

to get rid of (something undesirable or unwanted)

From Anglo-Saxon “windwian”
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The original Winnow algorithm [L]

Online alg. for learning disjunctions

Mistake bound logarithmic in number of features
winnows a large number of features

Will morph into algorithm for winnowing subspaces
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Disjunctions as linear threshold functions

2 out of 5 literal monotone disjunction v1 ∨ v3

Represented as d = (1, 0, 1, 0, 0)>

Label for instance x = (0, 1, 1, 0, 0)>{
+1 if d · x ≥ 1

2
−1 otherwise

Alg. receives sequence of examples online

(x1 ,
ŷ1

y1) (x2 ,
ŷ2

y2), . . . , (xT ,
ŷT

yT )

instances [0, 1]n, labels and predictions are ±1
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Original Winnow algorithm

Initialize w1 = w0 (1, 1, . . . 1)>

for t = 1 to T do
Receive instance xt ∈ [0, 1]n

Predict with

ŷt =

{
+1 if wt · xt ≥ θ
−1 otherwise

Receive label yt ∈ {+1,−1}
Update

wt+1,i =

{
wt,i if no mistake
wt,i e η ytxt,i if mistake

end for

Like perceptron alg., except multiplicative update
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Its merits??

Thm If examples consistent with k out of n literal monotone
disjunction, then properly tuned Winnow make at most O(k ln n)
mistakes

Mistake bound logarithmic in dimension n

Perceptron alg. can make Ω(n k) mistakes
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Morphing into the matrix case?

What variables?

What dot product?

What corresponds to disjunctions?

What happens to the exponential form of weights - soft max?
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Lifting it to the matrix setting

states mixture states

original
(

0
1
0

)
w =

(
0.1
0.3
0.6

)
new uu> W = U

(
0.1 0 0
0 0.3 0
0 0 0.6

)
U>

MW () Winnowing Subspaces 10 / 24



Visualization of symmetric matrices

As ellipses - affine transformations of the unit ball

Ellipse = {Wu : ‖u‖2 = 1}
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Ellipses cont.

Eigenvectors form the axes
and eigenvalues their lengths
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Dyads

Degenerate ellipses

One eigenvalue one

All others zero
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Linear combinations and mixtures of dyads

Symmetric matrices are linear combinations of dyads

U︸︷︷︸
orthogonal mat.
of eigenvectors

λ︸︷︷︸
diagonal mat. of
real eigenvalues

U> =
∑

i

λi︸︷︷︸
real eigenvalues

uiu
>
i︸ ︷︷ ︸

dyads

Positive definite matrices
Eigenvalues are non-negative

Density matrices are mixtures of dyads
Eigenvalues form probability vector
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Mixtures of dyads

Many mixtures lead to same density matrix

There always exists a decomposition into n dyads that correspond to
eigenvectors

Uncertainty about dyad expressed as density matrix

We have a Bayes rule for density matrices
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Variance

View the symmetric positive definite matrix W as a covariance matrix
of some random cost vector c ∈ Rn

W = E
(
(c− E(c))(c− E(c))>

)
The variance along any vector u is

V(c>u) = E(
(
c>u− E(c>u)

)2
)

= u> E
(
(c− E(c))(c− E(c))>

)
︸ ︷︷ ︸

W

u

Variance as trace

u>Wu = tr(u>Wu) = tr(W uu>) ≥ 0
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Plotting the variance

Curve of the ellipse is plot of vector Wu , where u is unit vector
The outer figure eight is direction u times the variance u>Wu
For an eigenvector, this variance equals the eigenvalue
and touches the ellipse
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3 dimensional variance plots
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What dot product?

tr(W X) = tr(
∑

i

ωiwiw
>
i X)

=
∑

i

ωi tr(wiw
>
i X)

=
∑

i

ωi w>i Xwi︸ ︷︷ ︸
variance along eigendirs

Measurement in quantum physics

Dyad uu> is state

Density matrix W is mixture state

Instance matrix X is instrument

tr(W X) is expected outcome
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So far

states mixture states dot product

original
(

0
1
0

)
w =

(
0.1
0.3
0.6

)
w · x

new uu> W = U
(

0.1 0 0
0 0.3 0
0 0 0.6

)
U> tr(WX)
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What corresponds to disjunctions

Disjunctions

(1, 0, 1, 0, 0)> · (x1, x2, x3, x4, x5)
> = x1 + x3

Sum k components of x

Projections matrices P =
∑k

i=1 uiu
>
i

tr(PX) =
k∑

i=1

u>i Xui

Sum variance along k directions

(X1 ,
ŷ1

y1), (X2 ,
ŷ2

y2), . . . , (XT ,
ŷT

yT )

Label yt is +1 if trace is at least 1
2 and −1 otherwise
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Thresholding the trace for xx> instances
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Symmetric Matrix Winnow

Initialize W1 = w0 I
n×n

for t = 1 to T do
Receive instance Xt

n×n
with eigenvalues in [0, 1]

Predict with

ŷt =

{
+1 if tr(WtXt) ≥ θ
−1 otherwise

Receive label yt

Update

Wt+1 =

{
Wt if no mistake
exp(logWt + η ytXt) if mistake

end for

exp and log are spectral functions
In normalized version, trace normalized to one
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What else?

Same O(k ln n) mistake bound if examples consistent with
k-dimensional subspace

Dubbed free matrix lunch

Generalizes to arbitrary matrices
- use mixtures of uv> and SVD

Key tool in analysis is quantum relative entropy [TRW]

∆(W,V) = tr(W(log W − log V))
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