OPTIMAL STRATEGIES FROM RANDOM WALKS

JACOB ABERNETHY (UC BERKELEY)

MANFRED WARMUTH JOEL YELLIN (UC SANTA CRUZ)

1

THE GOAL

Wanted:	Optimal Hedge Algorithm
Result:	A bit more than expected

THE GAME: GAMBLER VS CASINO

On each day:

- I. Casino runs N events with binary outcomes
- II. Gambler has \$1 to bet
- III. After bets are placed, Gambler loses all money on lost events

IV. Game stops once all events have more than K losses

THIS IS THE HEDGE SETTING

Hedge Algorithm:

$$w_i^{t+1} = w_i^t \cdot \beta^{\ell_i^t}.$$

$$\mathbf{p}^t = \frac{\mathbf{w}^t}{\sum_{i=1}^N w_i^t}.$$

Freund and Schapire in 1997:

$$L_{Hedge} \le k + \sqrt{2k \ln N} + \ln N$$

SOME NOTATION	
S	state vector
l	loss vector
$V(\mathbf{s})$	value of the game at a state
$\mathbf{w}(\mathbf{s})$	bet distribution at a state

THE ADVERSARIAL CASINO

THE MINIMAX VALUE

$V(\mathbf{s}) = \min_{\mathbf{w} \in \Delta_N} \max_{\boldsymbol{\ell} \in \{0,1\}^N} \mathbf{w} \cdot \boldsymbol{\ell} + V(\mathbf{s} + \boldsymbol{\ell})$

 $V(\langle k+1,\ldots,k+1\rangle):=0$

Computable...?

$au(\mathbf{s})$ $\hat{p}_i(\mathbf{s})$

Expected number of rounds required until all events are **dead**

Probability that the ith event is the last to **die**, the ith Survival Probability

Brainteaser:

• Gambler's cumulative expected loss is always the same no matter how he bets, and that is:

 $\frac{\tau(\mathbf{s})}{\mathbf{s}}$

CENTRAL RESULTS: $V(\mathbf{s}) = \frac{\tau(\mathbf{s})}{N}$ $\mathbf{w}^*(\mathbf{s}) = \hat{\mathbf{p}}(\mathbf{s})$

The Adversarial Casino is no worse than the Random Casino!

The Gambler's optimal betting strategy is to play "Guess The Survivor"!

INTERPRETATIONS

$$V(\mathbf{s}) = \frac{\tau(\mathbf{s})}{N}$$

$$\mathbf{w}^*(\mathbf{s}) = \hat{\mathbf{p}}(\mathbf{s})$$

Worst Case Loss:

Generalized Coupon Collector's Problem

Expected number of times you inflict loss on an already dead event/expert

MAIN LEMMA:
$$\forall \mathbf{s}, i \ \tau(\mathbf{s}) - \tau(\mathbf{s} + \mathbf{e}_i) = N \cdot \hat{\mathbf{p}}_i(\mathbf{s})$$

PROOF: Let S_t be the random state from **s** after t rounds

$$\tau(\mathbf{s}) = \mathbb{E} \left[\sum_{t=0}^{\infty} \mathbf{1}[S_t \text{ not dead}] \right]$$

$$\tau(\mathbf{s}) - \tau(\mathbf{s} + \mathbf{e}_i) = \mathbb{E} \left[\sum_{t=0}^{\infty} \mathbf{1}[S_t \text{ not dead}] - \mathbf{1}[S_t + \mathbf{e}_i \text{ not dead}] \right]$$

$$= \mathbb{E} \left[\sum_{t=0}^{\infty} \mathbf{1}[S_t \text{ is } i\text{th almost-dead state}] \right]$$

 $= \hat{\mathbf{p}}_i(\mathbf{s}) \cdot N$

WAITING LEMMA:

 $\widehat{p}_i(\mathbf{s}) < \widehat{p}_i(\mathbf{s} + \mathbf{e}_i)$

Which implies Best strategy for the Casino is to inflict ONE loss on each round

PROOF BY INTUITION:

If another event suffers a loss, unchanged event has higher survival probability

$$V(\mathbf{s}) = \frac{\tau(\mathbf{s})}{N}$$

PROOF:

Assume we are at state s Assume Gambler always bets according to $\hat{p}_i(s)$ If Casino plays ANY unit loss sequence: $\ell = \mathbf{e}_{i_1}, \mathbf{e}_{i_2}, \mathbf{e}_{i_3}, \dots$ Gambler loses: $\hat{p}_{i_1}(\mathbf{s}) + \hat{p}_{i_2}(\mathbf{s} + \mathbf{e}_{i_1}) + \hat{p}_{i_3}(\mathbf{s} + \mathbf{e}_{i_1} + \mathbf{e}_{i_2}), \dots$ $=\frac{\tau(\mathbf{s})-\tau(\mathbf{s}+\mathbf{e}_{i_1})}{N}+\frac{\tau(\mathbf{s}+\mathbf{e}_{i+1})-\tau(\mathbf{s}+\mathbf{e}_{i_1}+\mathbf{e}_{i_2})}{N}+\dots$ $=\frac{\tau(\mathbf{s})}{N}$

CONCLUSION

Randomness is a Gambler's worst Adversary