#### Game Theory and Boosting

#### Manfred K. Warmuth

University of California, Santa Cruz

#### Game Theory Class, UCSC, March 3, 2009

Joint work and help from Gunnar Rätsch, Vishy Vishwanathan, Karen Glocer





3 What is Boosting?



#### Outline



2 A Machine learning problem

3 What is Boosting?

4 LPBoost and entropy regularized version

Zero-sum games

# <u>R</u>ock, <u>P</u>aper, <u>S</u>cissors game

|            | column player |                       |            |            |            |  |  |
|------------|---------------|-----------------------|------------|------------|------------|--|--|
|            |               |                       | R          | Ρ          | S          |  |  |
|            |               |                       | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ |  |  |
|            | R             | $d_1$                 | 0          | 1          | -1         |  |  |
| row player | Ρ             | $d_2$                 | -1         | 0          | 1          |  |  |
|            | S             | <i>d</i> <sub>3</sub> | 1          | -1         | 0          |  |  |
|            |               | рау                   | off m      | atrix      |            |  |  |

payoff = 
$$\mathbf{d}^T M \boldsymbol{\alpha}$$
  
=  $\sum_{i,j} d_i M_{i,j} \alpha_j$ 

Zero-sum games

#### Two-player Zero Sum Game

- Gains of row player = losses of column player row player minimizes, column player maximizes
- Single row is pure strategy of row player and d is mixed strategy
- Single column is pure strategy of column player and *α* is mixed strategy

#### **Optimum Strategy**

|   |            |     | R                     | Ρ                     | S              |
|---|------------|-----|-----------------------|-----------------------|----------------|
|   |            |     | α <sub>1</sub><br>.33 | α <sub>2</sub><br>.33 | $lpha_{3}$ .33 |
| R | $d_1$      | .33 | 0                     | 1                     | -1             |
| Ρ | $d_2$      | .33 | -1                    | 0                     | 1              |
| S | <b>d</b> 3 | .33 | 1                     | -1                    | 0              |

• Min-max theorem:

[Van Neumann 1928]

 $\min_{\mathbf{d}} \max_{\alpha} \mathbf{d}^{\mathsf{T}} M \alpha = \max_{\alpha} \min_{\mathbf{d}} \mathbf{d}^{\mathsf{T}} M \alpha$ = value of the game (0 in example)

#### Pure strategies

- e<sub>i</sub> pure strategy of row player
  - e<sub>j</sub> pure strategies of column player
- Inner strategy can be pure

$$\min_{\mathbf{d}} \max_{\alpha} \mathbf{d}^{\mathsf{T}} M \alpha = \min_{\mathbf{d}} \max_{j} \mathbf{d}^{\mathsf{T}} M \mathbf{e}_{j}$$
$$\max_{\alpha} \min_{\mathbf{d}} \mathbf{d}^{\mathsf{T}} M \alpha = \max_{\alpha} \min_{j} \mathbf{e}_{j}^{\mathsf{T}} M \alpha$$

All equal value of game

Zero-sum games

#### New column added



Value of game increases from 0 to .11

#### Row added



Value of game decreases from 0 to -.11

M.K.Warmuth et.al. (UCSC)

Game Theory and Boosting

Game Theory Class, UCSC, March 3, 2009 / 45

#### Incremental games

Column adding game (Boosting)

- Column player has large pool of columns available
- In each iteration one is added

#### 

iteration 1 iteration 2 iteration 3

- $\bullet\,$  In each iteration solve optimization problem to update d
- Column player always picks column which has largest edge wrt the current **d**

[FS

Zero-sum games

#### Desired Properties of Algorithm

- Want an algorithm that makes the value increase as quickly as possible
- Final game matrix should have value not too much smaller than optimum
- Number of columns needs should be as small as possible

#### Outline



2 A Machine learning problem

#### 3 What is Boosting?

4 LPBoost and entropy regularized version



- 11 apples (examples)
- labeled +1 if natural and -1 if artificial
- want to classify the apples
- given weak hypotheses decision stumps along the two features
- examples = rows
- weak hypotheses = possible columns



- 11 apples (examples)
- labeled +1 if natural and -1 if artificial
- want to classify the apples
- given weak hypotheses decision stumps along the two features
- examples = rows
- weak hypotheses = possible columns



- 11 apples (examples)
- labeled +1 if natural and -1 if artificial
- want to classify the apples
- given weak hypotheses decision stumps along the two features
- examples = rows
- weak hypotheses = possible columns



- 11 apples (examples)
- labeled +1 if natural and -1 if artificial
- want to classify the apples
- given weak hypotheses decision stumps along the two features
- examples = rows
- weak hypotheses = possible columns



- 11 apples (examples)
- labeled +1 if natural and -1 if artificial
- want to classify the apples
- given weak hypotheses decision stumps along the two features
- examples = rows
- weak hypotheses = possible columns

#### Examples and Hypotheses

M.K.Warmuth

| Example       | s Labels | h <sup>1</sup> : redness |         |
|---------------|----------|--------------------------|---------|
| é             | -1       | -1                       |         |
| Ć.            | -1       | -1                       |         |
| é             | -1       | -1                       |         |
| é             | -1       | 1                        | mistake |
| ۲             | 1        | 1                        |         |
|               | 1        | 1                        |         |
| 9             | 1        | 1                        |         |
| ۲             | 1        | -1                       | mistake |
| et.al. (UCSC) | Game The | ory and Boosting         | / 45    |

#### Boosting: 1st Iteration



First hypothesis: • error rate<sub>t</sub> =  $\frac{2}{11}$ =  $\sum_{i=1}^{n} d_i^t \mathbf{I}(h^t(\mathbf{x}_i) \neq y_i)$ • edge<sub>t</sub> =  $\frac{9}{22}$ =  $\sum_{i=1}^{n} d_i^t y_i h^t(\mathbf{x}_i)$ =  $1 - 2\epsilon_t$ 

#### Boosting: 1st Iteration



First hypothesis: • error rate  $t = \frac{2}{11}$  $=\sum_{i=1}^{n} d_i^t \mathbf{I}(\bar{h}^{\bar{t}}(\mathbf{x}_i) \neq y_i)$ •  $edge_t = \frac{9}{22}$  $=\sum_{i=1}^{n} \bar{d}_{i}^{t} y_{i} h^{t}(\mathbf{x}_{i})$  $= 1 - 2\epsilon_t$ Edge 0.5 1 Error -0.5 Rate

#### Connection to column adding game?

- Rows are the examples (fixed)
- Columns the weak hypotheses



- Column sum: edge of weak hypothesis
- Row sum: margin of example
- Value of game as large as possible

#### Game Matrix M

| Example   | s Labels         | <i>h</i> <sup>1</sup> : redness | $M_{1,*}$             |                   |
|-----------|------------------|---------------------------------|-----------------------|-------------------|
| Ś         | -1               | -1                              | 1                     |                   |
| Ć         | -1               | -1                              | 1                     |                   |
| é         | -1               | -1                              | 1                     |                   |
| é         | -1               | 1                               | -1                    |                   |
| ۲         | 1                | 1                               | 1                     |                   |
| ۱         | 1                | 1                               | 1                     |                   |
| <b>ö</b>  | 1                | 1                               | 1                     |                   |
| <b>(</b>  | - 1              | -1                              | _1                    |                   |
| I. (UCSC) | ⊥<br>Game Theory | and Boosting                    | ▲<br>Game Theory Clas | ss, UCSC, March 3 |

M.K.Warmuth et.a

2009 / 45

## Margins and Edges

- The margin of example  $x_i$  at iteration t is summing *i*th row =  $\sum_{j=1}^{t} \alpha_j y_i h^j(x_i)$
- The edge of hypothesis  $h^j$  at iteration t is summing jth column =  $\sum_{i=1}^{n} d_i^t y_i h^j(x_i)$
- Example:

$$\begin{array}{cccc} h^1 & h^2 & h^3 \\ \alpha_1 & \alpha_2 & \alpha_3 \\ .2 & .4 & .4 \end{array}$$
 margin

#### Update Distribution



# $\begin{array}{l} \mbox{Misclassified examples} \\ \Rightarrow \mbox{Increased weights} \end{array}$

# fter update:Minimum edge small

#### Update Distribution



# $\begin{array}{l} \mbox{Misclassified examples} \\ \Rightarrow \mbox{Increased weights} \end{array}$

#### After update:

• Minimum edge small

#### Before 2nd Iteration



Hard examples

• High weight

#### Boosting: 2nd Hypothesis



Pick hypotheses with high edge

#### Update Distribution



After update: edge of all chosen hypotheses is small

#### Boosting: 3nd Hypothesis



### Boosting: 4th Hypothesis



#### All Hypotheses



Decision: 
$$f_{\alpha}(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t h^t(\mathbf{x}) > 0$$
?



M.K.Warmu

#### Apple Classification Problem in Matrix Form

|           |          |      | $\alpha_1$ | $\alpha_2$ | $\alpha_3$        | $\alpha_4$ | margin            |     |
|-----------|----------|------|------------|------------|-------------------|------------|-------------------|-----|
|           |          |      | -          | -          | -                 | -          |                   |     |
| Ś         | $d_1$    | 1/11 | 1          | -1         | -1                | 1          | -                 |     |
| Ć         | $d_2$    | 1/11 | 1          | 1          | -1                | 1          | -                 |     |
| Ś         | $d_3$    | 1/11 | 1          | 1          | -1                | 1          | -                 |     |
| <b>É</b>  | $d_4$    | 1/11 | 1          | 1          | 1                 | -1         | -                 |     |
| é         | $d_5$    | 1/11 | 1          | 1          | -1                | 1          | -                 |     |
| é         | $d_6$    | 1/11 | -1         | 1          | 1                 | -1         | -                 |     |
| ٥         | $d_7$    | 1/11 | 1          | -1         | 1                 | 1          | -                 |     |
| ٥         | $d_8$    | 1/11 | 1          | 1          | 1                 | 1          | -                 |     |
| ۱         | $d_9$    | 1/11 | 1          | 1          | 1                 | 1          | -                 |     |
| ۲         | $d_{10}$ | 1/11 | 1          | 1          | 1                 | 1          | -                 |     |
| ۲         | $d_{11}$ | 1/11 | -1         | 1          | 1                 | 1          | -                 |     |
|           | edge     |      | .64        | .64        | .27               | .64        |                   |     |
|           | value    | -1   |            |            |                   | Game       | Theory Class LICS | SC. |
| th et.al. | (UCSC)   | Ga   | me Theory  | Ganle      | Theory Class, OCC | , C,       |                   |     |

/ 45

March 3, 2009

M.K.Warmuth

#### Apple Classification Problem in Matrix Form

|               |          |    | $\alpha_1$ | $\alpha_2$ | $\alpha_{3}$ | $lpha_{4}$ | margin                    |
|---------------|----------|----|------------|------------|--------------|------------|---------------------------|
|               |          |    | 1          | 0          | 0            | 0          |                           |
| Ś             | $d_1$    | 0  | 1          | -1         | -1           | 1          | 1                         |
| Ć             | $d_2$    | 0  | 1          | 1          | -1           | 1          | 1                         |
| Ś             | $d_3$    | 0  | 1          | 1          | -1           | 1          | 1                         |
| ć             | $d_4$    | 0  | 1          | 1          | 1            | -1         | 1                         |
| <b>é</b>      | $d_5$    | 0  | 1          | 1          | -1           | 1          | 1                         |
| é             | $d_6$    | .5 | -1         | 1          | 1            | -1         | -1                        |
| 0             | $d_7$    | 0  | 1          | -1         | 1            | 1          | 1                         |
| ٥             | $d_8$    | 0  | 1          | 1          | 1            | 1          | 1                         |
| ۵             | $d_9$    | 0  | 1          | 1          | 1            | 1          | 1                         |
| ۲             | $d_{10}$ | 0  | 1          | 1          | 1            | 1          | 1                         |
| ۲             | $d_{11}$ | .5 | -1         | 1          | 1            | 1          | -1                        |
|               | edge     |    | -1         | 1          | 1            | 0          |                           |
|               | value    | -1 | -1         |            |              | c          | Same Theory Class LICSC M |
| et.al. (UCSC) |          | Ga | ame Theo   | ory and B  | oosting      |            |                           |

, March 3, 2009 / 45

#### Apple Classification Problem in Matrix Form

|                           |          |     | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | margin                      |
|---------------------------|----------|-----|------------|------------|------------|------------|-----------------------------|
|                           |          |     | .5         | .5         | 0          | 0          |                             |
| Ś                         | $d_1$    | .25 | 1          | -1         | -1         | 1          | 0                           |
| Ć                         | $d_2$    | 0   | 1          | 1          | -1         | 1          | 1                           |
| Ś                         | $d_3$    | 0   | 1          | 1          | -1         | 1          | 1                           |
| <u></u>                   | $d_4$    | 0   | 1          | 1          | 1          | -1         | 1                           |
| <b>é</b>                  | $d_5$    | 0   | 1          | 1          | -1         | 1          | 1                           |
| é                         | $d_6$    | .25 | -1         | 1          | 1          | -1         | 0                           |
| Ø                         | $d_7$    | .25 | 1          | -1         | 1          | 1          | 0                           |
| ø                         | $d_8$    | 0   | 1          | 1          | 1          | 1          | 1                           |
| ۲                         | $d_9$    | 0   | 1          | 1          | 1          | 1          | 1                           |
| ۲                         | $d_{10}$ | 0   | 1          | 1          | 1          | 1          | 1                           |
| ۲                         | $d_{11}$ | .25 | -1         | 1          | 1          | 1          | 0                           |
|                           | edge     |     | 0          | 0          | .5         | .5         |                             |
|                           | value    | -1  | -1         | 0          |            | 62         | me Theory Class, UCSC March |
| M.K.Warmuth et.al. (UCSC) |          | Ga  | me Theor   | y and Bo   | osting     | 00         |                             |

3. 2009

45

M.K.Warmut

#### Apple Classification Problem in Matrix Form

|                                          |             | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | margin                                  |      |
|------------------------------------------|-------------|------------|------------|------------|------------|-----------------------------------------|------|
|                                          |             | .5         | .18        | .32        | 0          |                                         |      |
| 🗯 d_1                                    | .5          | 1          | -1         | -1         | 1          | 0                                       |      |
| ć d <sub>2</sub>                         | 0           | 1          | 1          | -1         | 1          | .36                                     |      |
| 🗯 d <sub>3</sub>                         | 0           | 1          | 1          | -1         | 1          | .36                                     |      |
| 🔹 d <sub>4</sub>                         | 0           | 1          | 1          | 1          | -1         | 1                                       |      |
| <b>≤</b> d₅                              | 0           | 1          | 1          | -1         | 1          | .36                                     |      |
| <ul> <li><i>d</i><sub>6</sub></li> </ul> | .25         | -1         | 1          | 1          | -1         | 0                                       |      |
| ) d                                      | 0           | 1          | -1         | 1          | 1          | .64                                     |      |
| ه d <sub>8</sub>                         | 0           | 1          | 1          | 1          | 1          | 1                                       |      |
| 🗎 d <sub>9</sub>                         | 0           | 1          | 1          | 1          | 1          | 1                                       |      |
| d <sub>10</sub>                          | 0           | 1          | 1          | 1          | 1          | 1                                       |      |
| ĕ d <sub>11</sub>                        | .25         | -1         | 1          | 1          | 1          | 0                                       |      |
| edg                                      | e           | 0          | 0          | 0          | .5         |                                         |      |
| valu                                     | <b>e</b> -1 | -1         | 0          | 0          | Gan        | ne Theory Class, UCSC, M                | arch |
| h et.al. (UCSC)                          | G           | ame Theo   | ory and Bo | osting     |            | , , , , , , , , , , , , , , , , , , , , |      |

45

M.K.Warmi

#### Apple Classification Problem in Matrix Form

|              |          |    | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$              | margin              |                   |
|--------------|----------|----|------------|------------|------------|-------------------------|---------------------|-------------------|
|              |          |    | .25        | .44        | .06        | .25                     |                     |                   |
| Ś            | $d_1$    | .5 | 1          | -1         | -1         | 1                       | 0                   |                   |
| Ć            | $d_2$    | 0  | 1          | 1          | -1         | 1                       | .88                 |                   |
| ć            | $d_3$    | 0  | 1          | 1          | -1         | 1                       | .88                 |                   |
| Ć.           | $d_4$    | 0  | 1          | 1          | 1          | -1                      | .5                  |                   |
| é            | $d_5$    | 0  | 1          | 1          | -1         | 1                       | .88                 |                   |
| é            | $d_6$    | .5 | -1         | 1          | 1          | -1                      | 0                   |                   |
| ٥            | $d_7$    | 0  | 1          | -1         | 1          | 1                       | .12                 |                   |
| Ö            | $d_8$    | 0  | 1          | 1          | 1          | 1                       | 1                   |                   |
| ۵            | $d_9$    | 0  | 1          | 1          | 1          | 1                       | 1                   |                   |
| ۲            | $d_{10}$ | 0  | 1          | 1          | 1          | 1                       | 1                   |                   |
| ۲            | $d_{11}$ | 0  | -1         | 1          | 1          | 1                       | .5                  |                   |
|              | edge     |    | 0          | 0          | 0          | 0                       |                     |                   |
|              | value    | -1 | -1         | 0          | 0          | <b>0</b> <sub>Gan</sub> | ne Theory Class, U( | SC. March 3, 2009 |
| uth et.al. ( | UCSC)    |    | Game The   | ory and B  | oosting    | Gui                     |                     | / 45              |

#### Outline



2 A Machine learning problem

#### 3 What is Boosting?

4 LPBoost and entropy regularized version

What is Boosting?

#### Boosting = greedy method for increasing margin

Converges to optimum marging w.r.t. all hypotheses



#### Want small number of iterations

M.K.Warmuth et.al. (UCSC)

Game Theory Class, UCSC, March 3, 2009 / 45

#### Assumption on next weak hypothesis

For current weighting of examples, oracle returns hypothesis of edge  $\geq g$ 

Goal

- For given  $\epsilon,$  produce convex combination of weak hypotheses with margin  $\geq g-\epsilon$
- Number of iterations  $O(\frac{\ln n}{\epsilon^2})$

#### Outline



2 A Machine learning problem

#### 3 What is Boosting?

4 LPBoost and entropy regularized version

#### LPBoost

# [GS98,RSS+00,DBST02]

Choose distribution that minimizes the maximum edge via LP

$$= \min_{\substack{\sum_n d_n=1, d_i \ge 0 \ q=1,2,...,t \\ \sum_n d_n=1, d_i \ge 0 \\ M_{*,q} \cdot \mathbf{d} \le c}} \max_{\substack{M_{*,q} \cdot \mathbf{d} \le c}} M_{*,q} \cdot \mathbf{d}$$

- Good practical boosting algorithm
- All weight is put on examples with minimum margin
- Brittle: iteration bound can be linear in number of examples *n* on malign artificial data sets [WGR07]

|       |      | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | $\alpha_5$ | margin |
|-------|------|------------|------------|------------|------------|------------|--------|
|       |      | 0          | 0          | 0          | 0          | 0          |        |
|       |      |            |            |            |            |            |        |
| $d_1$ | .125 | +1         | 95         | 93         | 91         | 99         | —      |
| $d_2$ | .125 | +1         | 95         | 93         | 91         | 99         | —      |
| $d_3$ | .125 | +1         | 95         | 93         | 91         | 99         | —      |
| $d_4$ | .125 | +1         | 95         | 93         | 91         | 99         | _      |
| $d_5$ | .125 | 98         | +1         | 93         | 91         | +.99       | —      |
| $d_6$ | .125 | 97         | 96         | +1         | 91         | +.99       | _      |
| d7    | .125 | 97         | 95         | 94         | +1         | +.99       | —      |
| $d_8$ | .125 | 97         | 95         | 93         | 92         | +.99       | _      |
| edge  |      | .0137      | 7075       | 6900       | 6725       | .0000      |        |
| value | -1   |            |            |            |            |            |        |

|       |    | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | $\alpha_5$ | margin |
|-------|----|------------|------------|------------|------------|------------|--------|
|       |    | 1          | 0          | 0          | 0          | 0          |        |
|       |    |            |            |            |            |            |        |
| $d_1$ | 0  | +1         | 95         | 93         | 91         | 99         | 1      |
| $d_2$ | 0  | +1         | 95         | 93         | 91         | 99         | 1      |
| $d_3$ | 0  | +1         | 95         | 93         | 91         | 99         | 1      |
| $d_4$ | 0  | +1         | 95         | 93         | 91         | 99         | 1      |
| $d_5$ | 1  | 98         | +1         | 93         | 91         | +.99       | 98     |
| $d_6$ | 0  | 97         | 96         | +1         | 91         | +.99       | 97     |
| $d_7$ | 0  | 97         | 95         | 94         | +1         | +.99       | 97     |
| $d_8$ | 0  | 97         | 95         | 93         | 92         | +.99       | 97     |
| edge  |    | 98         | 1          | 93         | 91         | .99        |        |
| value | -1 | 98         |            |            |            |            |        |

|       |    | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | $\alpha_5$ | margin |
|-------|----|------------|------------|------------|------------|------------|--------|
|       |    | 0          | 1          | 0          | 0          | 0          |        |
|       |    |            |            |            |            |            |        |
| $d_1$ | 0  | +1         | 95         | 93         | 91         | 99         | 95     |
| $d_2$ | 0  | +1         | 95         | 93         | 91         | 99         | 95     |
| $d_3$ | 0  | +1         | 95         | 93         | 91         | 99         | 95     |
| $d_4$ | 0  | +1         | 95         | 93         | 91         | 99         | 95     |
| $d_5$ | 0  | 98         | +1         | 93         | 91         | +.99       | 1      |
| $d_6$ | 1  | 97         | 96         | +1         | 91         | +.99       | 96     |
| $d_7$ | 0  | 97         | 95         | 94         | +1         | +.99       | 95     |
| $d_8$ | 0  | 97         | 95         | 93         | 92         | +.99       | 95     |
| edge  |    | 97         | 96         | 1          | 91         | .99        |        |
| value | -1 | 98         | 96         |            |            |            |        |

|       |    | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | $\alpha_5$ | margin |
|-------|----|------------|------------|------------|------------|------------|--------|
|       |    | 0          | 0          | 1          | 0          | 0          |        |
|       |    |            |            |            |            |            |        |
| $d_1$ | 0  | +1         | 95         | 93         | 91         | 99         | 93     |
| $d_2$ | 0  | +1         | 95         | 93         | 91         | 99         | 93     |
| $d_3$ | 0  | +1         | 95         | 93         | 91         | 99         | 93     |
| $d_4$ | 0  | +1         | 95         | 93         | 91         | 99         | 93     |
| $d_5$ | 0  | 98         | +1         | 93         | 91         | +.99       | 93     |
| $d_6$ | 0  | 97         | 96         | +1         | 91         | +.99       | 1      |
| $d_7$ | 1  | 97         | 95         | 94         | +1         | +.99       | 94     |
| $d_8$ | 0  | 97         | 95         | 93         | 92         | +.99       | 93     |
| edge  |    | 97         | 95         | 94         | 1          | .99        |        |
| value | -1 | 98         | 96         | 94         |            |            |        |

|       |    | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | $\alpha_5$ | margin |
|-------|----|------------|------------|------------|------------|------------|--------|
|       |    | 0          | 0          | 0          | 1          | 0          |        |
|       |    |            |            |            |            |            |        |
| $d_1$ | 0  | +1         | 95         | 93         | 91         | 99         | 91     |
| $d_2$ | 0  | +1         | 95         | 93         | 91         | 99         | 91     |
| $d_3$ | 0  | +1         | 95         | 93         | 91         | 99         | 91     |
| $d_4$ | 0  | +1         | 95         | 93         | 91         | 99         | 91     |
| $d_5$ | 0  | 98         | +1         | 93         | 91         | +.99       | 91     |
| $d_6$ | 0  | 97         | 96         | +1         | 91         | +.99       | 91     |
| $d_7$ | 0  | 97         | 95         | 94         | +1         | +.99       | 1      |
| $d_8$ | 1  | 97         | 95         | 93         | 92         | +.99       | 92     |
| edge  |    | 97         | 95         | 94         | 92         | .99        |        |
| value | -1 | 98         | 96         | 94         | 92         |            |        |

|       |        | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | $\alpha_{5}$ | margin |
|-------|--------|------------|------------|------------|------------|--------------|--------|
|       |        | .5         | .0026      | 0          | 0          | .4975        |        |
|       |        |            |            |            |            |              |        |
| $d_1$ | 0.4974 | +1         | 95         | 93         | 91         | 99           | .0051  |
| $d_2$ | 0      | +1         | 95         | 93         | 91         | 99           | .0051  |
| $d_3$ | 0      | +1         | 95         | 93         | 91         | 99           | .0051  |
| $d_4$ | 0      | +1         | 95         | 93         | 91         | 99           | .0051  |
| $d_5$ | 0      | 98         | +1         | 93         | 91         | +.99         | .0051  |
| $d_6$ | .4898  | 97         | 96         | +1         | 91         | +.99         | .0051  |
| d7    | 0      | 97         | 95         | 94         | +1         | +.99         | .0051  |
| $d_8$ | .0127  | 97         | 95         | 93         | 92         | +.99         | .0051  |
| edge  |        | .0051      | .0051      | .9055      | .9100      | .0051        |        |
| value | -1     | 98         | 96         | 94         | 92         | .0051        |        |
|       |        |            |            |            |            |              |        |

# Entropy Regularized LPBoost

$$\min_{\sum_n d_n=1} \max_{q=1,2,\dots,t} M_{*,q} \cdot \mathbf{d} + \frac{1}{\eta} \Delta(\mathbf{d}, \mathbf{d}^0),$$

where regularizer  $\Delta(\mathbf{d}, \mathbf{d}^0)$  is relative entropy  $\sum_i d_i \ln \frac{d_i}{d_i^0}$ See visualization in part 2 of Lecture 3:

http://www.soe.ucsc.edu/classes/cmps290c/Spring07/

$$\mathbf{d}_n = \frac{\exp^{-\eta \text{ margin of example } n}}{Z} \qquad \text{"soft min"}$$

- Within  $\epsilon$  of maximum margin in  $O(\frac{\log n}{\epsilon^2})$  iterations
- Above form of weights first appeared in  $\nu$ -Arc algorithm [RSS+00]

M.K.Warmuth et.al. (UCSC)

# The effect of entropy regularization

#### Different distribution on the examples



LPBoost: lots of zeros sometimes  $\Omega(n)$  iterations



ERLPBoost: smoother distribution always  $O(\frac{\log n}{\epsilon^2})$  iterations

#### Conclusion

- Machine learning problems often modeled as games against nature or adversary
- Often end up with zero-sum games
- Its all about efficiency: Even against worst adversary we only need so much resources