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Protocol of Boosting [FS97]

Maintain distribution on N ±1 labeled examples

At iteration t = 1, . . . ,T :
- Receive a “weak” hypothesis ht

- Update dt−1 to dt - put more weights on “hard” examples

Output a convex combination of the weak hypotheses∑T
t=1 wth

t(x)

Two sets of weights:
- distribution on d on examples
- distribution on w on hypotheses
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Setup for Boosting

11 apples (examples)

labeled +1 if natural
and -1 if artificial

want to classify the apples
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Weak hypothesis

weak hypotheses are
decision stumps along the
two features

examples = rows

weak hypotheses =
possible columns
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Examples and Hypotheses

Examples Labels h1: redness

-1 -1

-1 -1

-1 -1

-1 1 mistake

1 1

1 1

1 1

1 -1 mistake
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Boosting: 1st Iteration

First hypothesis:
error: 2

11
N∑

n=1

d0
n I(h1(xn) 6= yn)

edge: 9
22

N∑
n=1

ynh(xn)︸ ︷︷ ︸
goodness on ex. n

dn

︸ ︷︷ ︸
average goodness

d ∈ PN

= 1− 2 error
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Before 2nd Iteration

y

Hard examples

high weight
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Boosting: 2nd Hypothesis

Pick hypotheses
with high edge
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Update Distribution

After update:

edges of all
chosen hypotheses
should be small
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Boosting: 3nd Hypothesis
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Boosting: 4th Hypothesis
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All Hypotheses
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Decision: fw(x) =
∑T

t=1 wth
t(x) > 0 ?
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Edge vs. margin [Br99]

Edge

Measurement of “goodness” of a hypothesis w.r.t. a distribution

Edge of a hypothesis h for a distribution d on the examples
N∑

n=1

ynh(xn)︸ ︷︷ ︸
goodness on ex. n

dn

︸ ︷︷ ︸
average goodness

d ∈ PN

Margin

Measure of “confidence” in prediction for a hypothesis weighting

Margin of example n for current hypothesis weighting w

yn

T∑
t=1

ht(xn) wt w ∈ PT
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Objectives

Edge

Edges of past hypotheses should be small after update

Minimize maximum edge of past hypotheses

Margin

Choose convex combination of weak hypotheses
that maximizes the minimum margin

Which margin?
SVN 2-norm

Boosting 1-norm

Connection between objectives?
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Edge vs. margin

min
d∈SN

max
q=1,2,...,t−1

N∑
n=1

ynh
q(xn)dn︸ ︷︷ ︸

edge of hypothesis q

= max
w∈St−1

min
n=1,2,...,N

t−1∑
q=1

ynh
q(xn) wq︸ ︷︷ ︸

margin of example n

Linear Programming duality

M.K.Warmuth et.al. () Entropy Regularized LPBoost Updated: October 13, 2008 16 / 1



Min max thm for the inseparable case

Slack variables in w domain = capping in d domain

max
w∈St ,ψ≥0

min
n=1,2,...,N

(
t∑

q=1

uq
n wq + ψn

)
︸ ︷︷ ︸

margin of example n

−1

ν

N∑
n=1

ψn

= min
d∈SN ,d≤ 1

ν
1

max
q=1,2,...,t

uq · d︸ ︷︷ ︸
edge of hypothesis q

Notation: uq
n = ynh

q(xn)
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Boosting = greedy method for increasing margin

Converges to optimum marging w.r.t. all hypotheses
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Assumption on next weak hypothesis

For current weighting of examples,
oracle returns hypothesis of edge ≥ g

Goal

For given ε, produce convex combination of weak hypotheses
with soft margin ≥ g − ε
Number of iterations O( ln n/ν

ε2
)
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LPBoost [GS98,RSS+00,DBST02]

Choose distribution that minimizes the maximum edge via LP

minP
n dn=1,d≤ 1

ν
1

max
q=1,2,...,t

uq · d

Good practical boosting algorithm

All weight is put on examples with minimum soft margin

Brittle: iteration bound can be linear in N
on malign artificial data sets [WGR07]
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Entropy Regularized LPBoost

minP
n dn=1,d≤ 1

ν
1

max
q=1,2,...,t

uq · d +
1

η
∆(d,d0)

dn =
exp−η soft margin of example n

Z
”soft min”

Within ε of maximum soft margin
in O( log n/ν

ε2
) iterations

Above form of weights first appeared in ν-Arc algorithm
[RSS+00]
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The effect of entropy regularization

Different distribution on the examples

LPBoost: lots of zeros ERLPBoost: smoother distribution

M.K.Warmuth et.al. () Entropy Regularized LPBoost Updated: October 13, 2008 22 / 1



AdaBoost [FS97]

d t
n :=

d t−1
n exp(−wtu

t
n)∑

n′ d
t−1
n′ exp(−wtut

n′)
,

where wt s.t.
∑

n′ d
t−1
n′ exp(−w ut

n′) is minimized

Easy to implement

Gets within half of the optimal hard margin [RSD07]
but only in the limit
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Corrective versus totally corrective

Processing last hypothesis versus all past hypotheses

Corrective Totally Corrective
AdaBoost LPBoost

LogitBoost TotalBoost
AdaBoost* SoftBoost
SS,Colt08 ERLPBoost
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Myths about boosting

LPBoost does the trick in practice most of the time

For safety, add relative entropy regularization

Corrective algs

Sometimes easy to code
Fast per iteration

Totally corrective algs

Smaller number of iterations
Nevertheless faster overall time

Weak versus strong oracle makes a big difference

weak: return hypothesis of edge larger than some guarantee g
strong: return hypothesis of maximum edge
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Soft margin objective vs. the number of iterations on a single run for the
Banana data set with ε = 0.01 and ν/N = 0.1. For ERLPBoost,
η = 2

ε log N
ν .

LPBoost indistinguishable from ERLPBoost

SoftBoost’s margin begins increasing much later than the others

Corrective alg. converges more slowly than totally corrective
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Corrective vs. Totally Corrective

Titanic Ringnorm

Results for a single run of each algorithm

Margin vs. time

Titanic is the smallest dataset we used

Ringnorm is the largest dataset we used
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Conclusion

Adding relative entropy regularization of LPBoost
leads to good boosting alg.

Boosting is instantiation of MaxEnt and MinxEnt principles
[Jaines 57,Kullback 59]

Is sparsity neccessary for good generalization
or is relative entropy reguarization sufficient?
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From AdaBoost to SoftBoost

AdaBoost (as interpreted in [KW99,La99])
Primal:

min
d

∆(d,dt−1)

s.t. d · ut−1 = 0, ‖d‖1 = 1

Dual:

max
w
−ln

∑
n d t−1

n exp(ut−1
n wt−1)

s.t. w ≥ 0
Achieves half of optimum hard margin in the limit

AdaBoost∗ [RW05]
Primal:

min
d

∆(d,dt−1)

s.t. d · ut−1 ≤ γt−1,
‖d‖1 = 1

Dual:

max
w
−ln

∑
n d t−1

n exp(ut−1
n wt−1)

−γt−1||w||1
s.t. w ≥ 0

where edgebound γt is adjusted downward by a heuristic
Good iteration bound for reaching optimum hard margin
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SoftBoost [WGR07]
Primal:

min
d

∆(d,d0)

s.t. ‖d‖1 = 1, d ≤ 1
ν
1

d · uq ≤ γt−1,
1 ≤ q ≤ t − 1

Dual:

min
w,ψ

− ln
∑
n

d0
n exp(−η

t−1∑
q=1

uq
nwq

−ηψn)− 1
ν
‖ψ‖1 − γt−1‖w‖1

s.t. w ≥ 0, ψ ≥ 0

where edgebound γt−1 is adjusted downward by a heuristic

ERLPBoost [WGV08]
Primal:

min
d,γ

γ + 1
η

∆(d,d0)

s.t. ‖d‖1 = 1, d ≤ 1
ν
1

d · uq ≤ γ,
1 ≤ q ≤ t − 1

Dual:

min
w,ψ

− 1
η

ln
∑
n

d0
n exp(−η

t−1∑
q=1

uq
nwq

−ηψn)− 1
ν
‖ψ‖1

s.t. w ≥ 0, ‖w‖1 = 1, ψ ≥ 0

where for the iteration bound η is fixed to max(2
ε

ln N
ν
, 1

2
)
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