### Entropy Regularized LPBoost

Manfred K. Warmuth Karen Glocer S.V.N. Vishwanathan (pretty slides from Gunnar Rätsch)

Updated: October 13, 2008

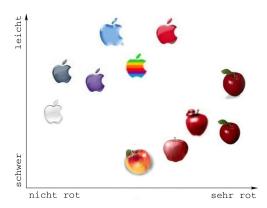


- Maintain distribution on  $N \pm 1$  labeled examples
- At iteration  $t = 1, \ldots, T$ :
  - Receive a "weak" hypothesis  $h^t$
  - Update  $\mathbf{d}^{t-1}$  to  $\mathbf{d}^t$  put more weights on "hard" examples
- Output a convex combination of the weak hypotheses  $\sum_{t=1}^{T} w_t h^t(x)$

Two sets of weights:

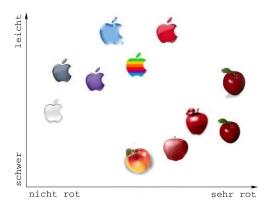
- distribution on  $\boldsymbol{d}$  on examples
- distribution on  $\boldsymbol{w}$  on hypotheses

### Setup for Boosting



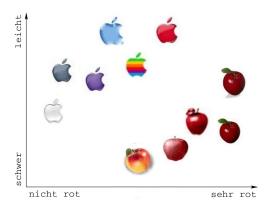
- 11 apples (examples)
- labeled +1 if natural and -1 if artificial
- want to classify the apples

### Setup for Boosting



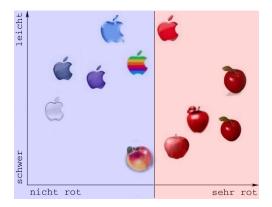
- 11 apples (examples)
- labeled +1 if natural and -1 if artificial
- want to classify the apples

### Setup for Boosting



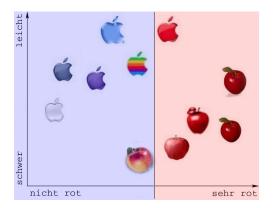
- 11 apples (examples)
- labeled +1 if natural and -1 if artificial
- want to classify the apples

### Weak hypothesis



- weak hypotheses are decision stumps along the two features
- examples = rows
- weak hypotheses = possible columns

### Weak hypothesis



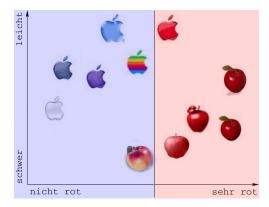
- weak hypotheses are decision stumps along the two features
- examples = rows
- weak hypotheses = possible columns

### Examples and Hypotheses

| Examples              | E Labels    | $h_1$ : redness   |                           |
|-----------------------|-------------|-------------------|---------------------------|
| Ś                     | -1          | -1                |                           |
| Ú.                    | -1          | -1                |                           |
| é                     | -1          | -1                |                           |
| é                     | -1          | 1                 | mistake                   |
| ۲                     | 1           | 1                 |                           |
| 1                     | 1           | 1                 |                           |
| <b>e</b>              | 1           | 1                 |                           |
| ۲                     | 1           | -1                | mistake                   |
| M.K.Warmuth et.al. () | Entropy Reg | gularized LPBoost | Updated: October 13, 2008 |

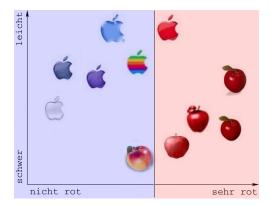
5 / 1

### Boosting: 1st Iteration



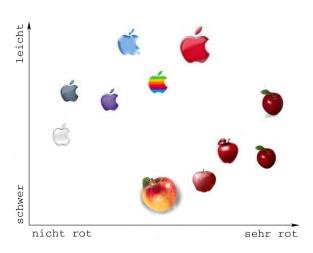
First hypothesis: • error:  $\frac{2}{11}$ Ν  $\sum d_n^0 \; \mathsf{I}(h^1(\mathsf{x}_n) \neq y_n)$ n=1

### Boosting: 1st Iteration



First hypothesis:  
• error: 
$$\frac{2}{11}$$
  
 $\sum_{n=1}^{N} d_n^0 \mathbf{I}(h^1(\mathbf{x}_n) \neq y_n)$   
• edge:  $\frac{9}{22}$   
 $\sum_{n=1}^{N} \underbrace{y_n h(\mathbf{x}_n)}_{\text{goodness on ex. } n} d_n$   
average goodness  
=  $1 - 2 \text{ error}$   
 $\frac{1}{N} \underbrace{y_n h(\mathbf{x}_n)}_{\text{Rate}} d_n$ 

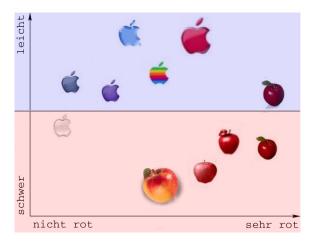
### Before 2nd Iteration



Hard examples

• high weight

### Boosting: 2nd Hypothesis



# Pick hypotheses with high edge

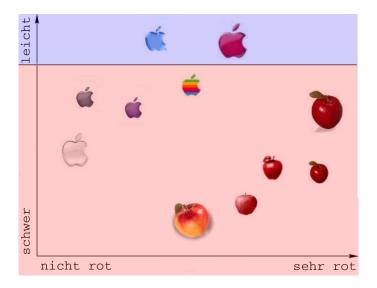
### Update Distribution



After update:

edges of all chosen hypotheses should be small

### Boosting: 3nd Hypothesis



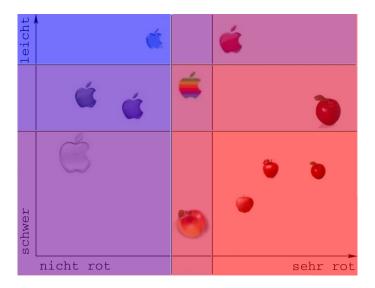
10 / 1

### Boosting: 4th Hypothesis



M.K.Warmuth et.al. () Entropy Regularized LPBoost Updated: October 13, 2008

### All Hypotheses

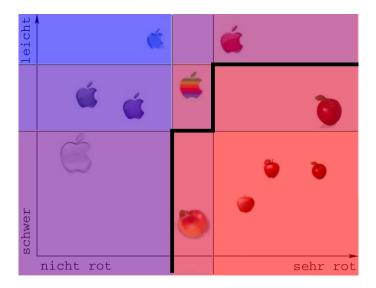


M.K.Warmuth et.al. ()

Entropy Regularized LPBoost

Updated: October 13, 2008 12 / 1

Decision: 
$$f_{\mathbf{w}}(\mathbf{x}) = \sum_{t=1}^{T} w_t h^t(\mathbf{x}) > 0$$
?



M.K.Warmuth et.al. ()

Updated: October 13, 2008 13 / 1

### Br99 Edge vs. margin Edge • Measurement of "goodness" of a hypothesis w.r.t. a distribution • Edge of a hypothesis h for a distribution **d** on the examples $\mathbf{d}\in\mathcal{P}^{N}$ $\sum_{n=1} \underbrace{y_n h(\mathbf{x}_n)}_{\text{goodness on ex. } n} d_n$ average goodness

#### Margin

- Measure of "confidence" in prediction for a hypothesis weighting
- Margin of example *n* for current hypothesis weighting **w**

## Edge vs. margin Br99 Edge • Measurement of "goodness" of a hypothesis w.r.t. a distribution • Edge of a hypothesis h for a distribution **d** on the examples $\underbrace{\underbrace{y_n n(\mathbf{x}_n)}_{\text{goodness on ex. } n} d_n \qquad \mathbf{d} \in \mathcal{P}^N$ average goodness

#### Margin

• Measure of "confidence" in prediction for a hypothesis weighting

• Margin of example n for current hypothesis weighting  $\mathbf{w}$ 

$$y_n \sum_{t=1}^{\prime} h^t(\mathbf{x}_n) w_t \qquad \mathbf{w} \in \mathcal{P}^T$$

### Objectives

Edge

- Edges of past hypotheses should be small after update
- Minimize maximum edge of past hypotheses

Margin

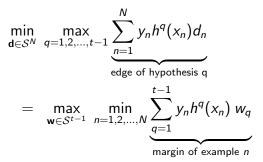
• Choose convex combination of weak hypotheses that maximizes the minimum margin

|          | Which margin? |
|----------|---------------|
| SVN      | 2-norm        |
| Boosting | 1-norm        |

#### **Connection between objectives?**

 $\oplus$ 

### Edge vs. margin



#### Linear Programming duality

### Min max thm for the inseparable case

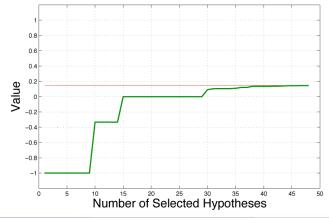
Slack variables in  $\mathbf{w}$  domain = capping in  $\mathbf{d}$  domain

$$\max_{\mathbf{w}\in\mathcal{S}^{t},\boldsymbol{\psi}\geq\mathbf{0}} \min_{n=1,2,\dots,N} \underbrace{\left(\sum_{q=1}^{t} u_{n}^{q} w_{q} + \psi_{n}\right)}_{\text{margin of example } n} - \frac{1}{\nu} \sum_{n=1}^{N} \psi_{n}$$
$$= \min_{\mathbf{d}\in\mathcal{S}^{N},\mathbf{d}\leq\frac{1}{\nu}\mathbf{1}} \max_{q=1,2,\dots,t} \underbrace{\mathbf{u}^{q}\cdot\mathbf{d}}_{\text{edge of hypothesis q}}$$

Notation:  $u_n^q = y_n h^q(x_n)$ 

### Boosting = greedy method for increasing margin

Converges to optimum marging w.r.t. all hypotheses



M.K.Warmuth et.al. ()

Entropy Regularized LPBoost

Updated: October 13, 2008 18 / 1

For current weighting of examples, oracle returns hypothesis of edge  $\geq g$ 

Goal

- For given  $\epsilon,$  produce convex combination of weak hypotheses with soft margin  $\geq g-\epsilon$
- Number of iterations  $O(\frac{\ln n/\nu}{\epsilon^2})$

Choose distribution that minimizes the maximum edge via LP

$$\min_{\sum_{n} d_{n}=1, \mathbf{d} \leq \frac{1}{\nu} \mathbf{1}} \max_{q=1,2,\ldots,t} \mathbf{u}^{q} \cdot \mathbf{d}$$

- Good practical boosting algorithm
- All weight is put on examples with minimum soft margin
- Brittle: iteration bound can be linear in N on malign artificial data sets

I PBoost

[WGR07]

### Entropy Regularized LPBoost

$$\min_{\sum_{n} d_{n}=1, \mathbf{d} \leq \frac{1}{\nu} \mathbf{1}} \max_{q=1,2,\dots,t} \mathbf{u}^{q} \cdot \mathbf{d} + \frac{1}{\eta} \Delta(\mathbf{d}, \mathbf{d}^{0})$$

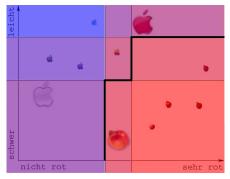
$$\mathbf{d}_n = \frac{\exp^{-\eta \text{ soft margin of example } n}}{Z}$$

#### "soft min"

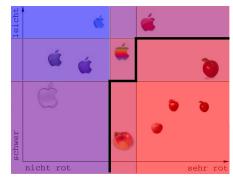
- Within  $\epsilon$  of maximum soft margin in  $O(\frac{\log n/\nu}{\epsilon^2})$  iterations
- Above form of weights first appeared in  $\nu$ -Arc algorithm [RSS+00]

### The effect of entropy regularization

#### Different distribution on the examples



LPBoost: lots of zeros



ERLPBoost: smoother distribution

### $\mathsf{AdaBoost}$



$$d_n^t := \frac{d_n^{t-1} \exp(-w_t u_n^t)}{\sum_{n'} d_{n'}^{t-1} \exp(-w_t u_{n'}^t)},$$

where  $w_t$  s.t.  $\sum_{n'} d_{n'}^{t-1} \exp(-w u_{n'}^t)$  is minimized

- Easy to implement
- Gets within half of the optimal hard margin [RSD07] but only in the limit

### Corrective versus totally corrective

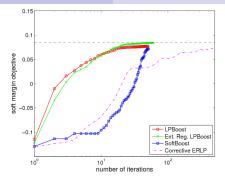
Processing last hypothesis versus all past hypotheses

| Corrective | Totally Corrective |
|------------|--------------------|
| AdaBoost   | LPBoost            |
| LogitBoost | TotalBoost         |
| AdaBoost*  | SoftBoost          |
| SS,Colt08  | ERLPBoost          |

### Myths about boosting

- LPBoost does the trick in practice most of the time
- For safety, add relative entropy regularization
- Corrective algs
  - Sometimes easy to code
  - Fast per iteration
- Totally corrective algs
  - Smaller number of iterations
  - Nevertheless faster overall time
- Weak versus strong oracle makes a big difference

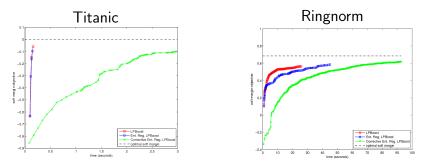
weak: return hypothesis of edge larger than some guarantee *g* strong: return hypothesis of maximum edge



Soft margin objective vs. the number of iterations on a single run for the Banana data set with  $\epsilon = 0.01$  and  $\nu/N = 0.1$ . For ERLPBoost,  $\eta = \frac{2}{\epsilon} \log \frac{N}{\nu}$ .

- LPBoost indistinguishable from ERLPBoost
- SoftBoost's margin begins increasing much later than the others
- Corrective alg. converges more slowly than totally corrective

### Corrective vs. Totally Corrective



- Results for a single run of each algorithm
- Margin vs. time
- Titanic is the smallest dataset we used
- Ringnorm is the largest dataset we used

### Conclusion

- Adding relative entropy regularization of LPBoost leads to good boosting alg.
- Boosting is instantiation of MaxEnt and MinxEnt principles
   [Jaines 57,Kullback 59]
- Is sparsity neccessary for good generalization or is relative entropy reguarization sufficient?

### From AdaBoost to SoftBoost

AdaBoost(as interpreted in [KW99,La99])Primal:Dual:

 $\begin{array}{ll} \min_{\mathbf{d}} & \Delta(\mathbf{d}, \mathbf{d}^{t-1}) & \max_{\mathbf{w}} & -\ln\sum_{n} d_{n}^{t-1} \exp(u_{n}^{t-1} w_{t-1}) \\ \text{s.t.} & \mathbf{d} \cdot \mathbf{u}^{t-1} = 0, \ \|\mathbf{d}\|_{1} = 1 & \text{s.t.} & \mathbf{w} \ge 0 \\ \text{Achieves half of optimum hard margin in the limit} \end{array}$ 

#### AdaBoost\* Primal:

Dual:

 $\begin{array}{ll} \min_{\mathbf{d}} & \Delta(\mathbf{d}, \mathbf{d}^{t-1}) & \max_{\mathbf{w}} & -ln \sum_{n} d_{n}^{t-1} \exp(u_{n}^{t-1} w_{t-1}) \\ \text{s.t.} & \mathbf{d} \cdot \mathbf{u}^{t-1} \leq \gamma_{t-1}, & -\gamma_{t-1} ||\mathbf{w}||_{1} \\ \|\mathbf{d}\|_{1} = 1 & \text{s.t.} & \mathbf{w} \geq 0 \\ \text{where edgebound } \gamma_{t} \text{ is adjusted downward by a heuristic} \\ \text{Good iteration bound for reaching optimum hard margin} \end{array}$ 

[RW05]

#### SoftBoost Primal:

$$\begin{array}{ll} \min_{\mathbf{d}} & \Delta(\mathbf{d}, \mathbf{d}^0) \\ \text{s.t.} & \|\mathbf{d}\|_1 = 1, \ \mathbf{d} \leq \frac{1}{\nu} \mathbf{1} \\ & \mathbf{d} \cdot \mathbf{u}^q \leq \gamma_{t-1}, \\ & 1 \leq q \leq t-1 \end{array} \end{array} \qquad \begin{array}{l} \min_{\mathbf{w}, \psi} & -\ln \sum_n \mathbf{d}_n^0 \exp(-\eta \sum_{q=1}^{t-1} u_n^q w_q) \\ & -\eta \psi_n - \frac{1}{\nu} \|\psi\|_1 - \gamma_{t-1} \|\mathbf{w}\|_1 \\ & \text{s.t.} \quad \mathbf{w} \geq 0, \ \psi \geq 0 \end{array}$$

where edgebound  $\gamma_{t-1}$  is adjusted downward by a heuristic

ERLPBoost [WGV08]

Primal:

#### Dual:

 $\begin{array}{ll} \min_{\mathbf{d},\gamma} & \gamma + \frac{1}{\eta} \Delta(\mathbf{d}, \mathbf{d}^0) \\ \text{s.t.} & \|\mathbf{d}\|_1 = 1, \ \mathbf{d} \le \frac{1}{\nu} \mathbf{1} \\ & \mathbf{d} \cdot \mathbf{u}^q \le \gamma, \\ & 1 \le q \le t-1 \end{array} & \begin{array}{l} \min_{\mathbf{w},\psi} & -\frac{1}{\eta} \ln \sum_n \mathbf{d}_n^0 \exp(-\eta \sum_{q=1}^{t-1} u_n^q w_q) \\ & -\eta \psi_n) - \frac{1}{\nu} \|\psi\|_1 \\ \text{s.t.} & \mathbf{w} \ge 0, \ \|\mathbf{w}\|_1 = 1, \ \psi \ge 0 \end{array}$ 

where for the iteration bound  $\eta$  is fixed to  $\max(\frac{2}{\epsilon} \ln \frac{N}{\nu}, \frac{1}{2})$ 

[WGR07]