Entropy Regularized LPBoost

Manfred K. Warmuth Karen Glocer S.V.N. Vishwanathan (pretty slides from Gunnar Rätsch)

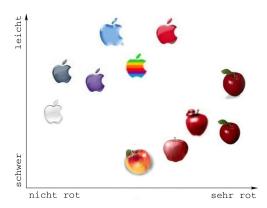
Updated: October 13, 2008

- Maintain distribution on $N \pm 1$ labeled examples
- At iteration $t = 1, \ldots, T$:
 - Receive a "weak" hypothesis h^t
 - Update \mathbf{d}^{t-1} to \mathbf{d}^t put more weights on "hard" examples
- Output a convex combination of the weak hypotheses $\sum_{t=1}^{T} w_t h^t(x)$

Two sets of weights:

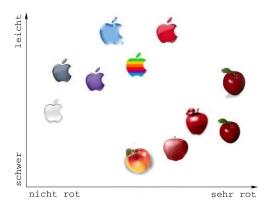
- distribution on \boldsymbol{d} on examples
- distribution on \boldsymbol{w} on hypotheses

Setup for Boosting



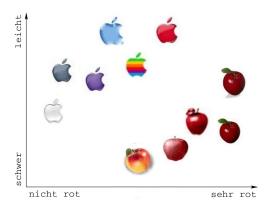
- 11 apples (examples)
- labeled +1 if natural and -1 if artificial
- want to classify the apples

Setup for Boosting



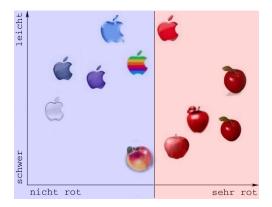
- 11 apples (examples)
- labeled +1 if natural and -1 if artificial
- want to classify the apples

Setup for Boosting



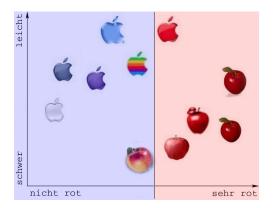
- 11 apples (examples)
- labeled +1 if natural and -1 if artificial
- want to classify the apples

Weak hypothesis



- weak hypotheses are decision stumps along the two features
- examples = rows
- weak hypotheses = possible columns

Weak hypothesis



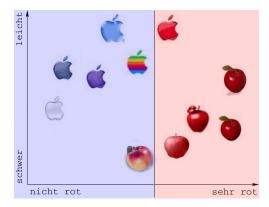
- weak hypotheses are decision stumps along the two features
- examples = rows
- weak hypotheses = possible columns

Examples and Hypotheses

Examples	E Labels	h_1 : redness	
Ś	-1	-1	
Ú.	-1	-1	
é	-1	-1	
é	-1	1	mistake
۲	1	1	
1	1	1	
e	1	1	
۲	1	-1	mistake
M.K.Warmuth et.al. ()	Entropy Reg	gularized LPBoost	Updated: October 13, 2008

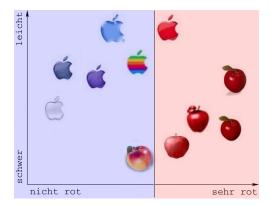
5 / 1

Boosting: 1st Iteration



First hypothesis: • error: $\frac{2}{11}$ Ν $\sum d_n^0 \; \mathsf{I}(h^1(\mathsf{x}_n) \neq y_n)$ n=1

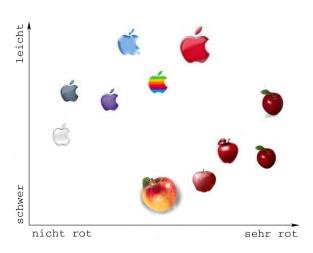
Boosting: 1st Iteration



First hypothesis:
• error:
$$\frac{2}{11}$$

 $\sum_{n=1}^{N} d_n^0 \mathbf{I}(h^1(\mathbf{x}_n) \neq y_n)$
• edge: $\frac{9}{22}$
 $\sum_{n=1}^{N} \underbrace{y_n h(\mathbf{x}_n)}_{\text{goodness on ex. } n} d_n$
average goodness
= $1 - 2 \text{ error}$
 $\frac{1}{N} \underbrace{y_n h(\mathbf{x}_n)}_{\text{Rate}} d_n$

Before 2nd Iteration



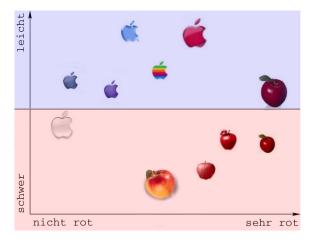
Hard examples

• high weight

Boosting: 2nd Hypothesis

Pick hypotheses with high edge

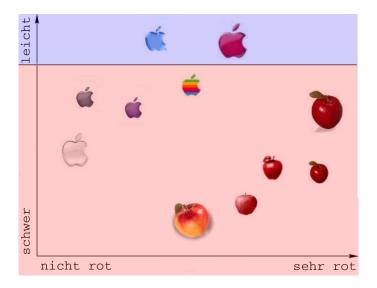
Update Distribution



After update:

edges of all chosen hypotheses should be small

Boosting: 3nd Hypothesis



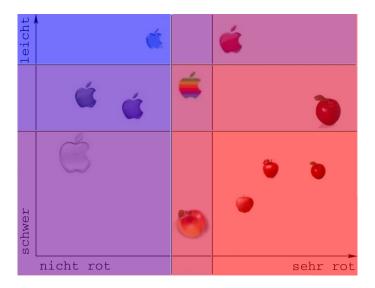
10 / 1

Boosting: 4th Hypothesis



M.K.Warmuth et.al. () Entropy Regularized LPBoost Updated: October 13, 2008

All Hypotheses

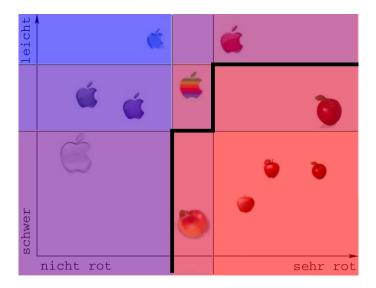


M.K.Warmuth et.al. ()

Entropy Regularized LPBoost

Updated: October 13, 2008 12 / 1

Decision:
$$f_{\mathbf{w}}(\mathbf{x}) = \sum_{t=1}^{T} w_t h^t(\mathbf{x}) > 0$$
?



M.K.Warmuth et.al. ()

Updated: October 13, 2008 13 / 1

Br99 Edge vs. margin Edge • Measurement of "goodness" of a hypothesis w.r.t. a distribution • Edge of a hypothesis h for a distribution **d** on the examples $\mathbf{d}\in\mathcal{P}^{N}$ $\sum_{n=1} \underbrace{y_n h(\mathbf{x}_n)}_{\text{goodness on ex. } n} d_n$ average goodness

Margin

- Measure of "confidence" in prediction for a hypothesis weighting
- Margin of example *n* for current hypothesis weighting **w**

Edge vs. margin Br99 Edge • Measurement of "goodness" of a hypothesis w.r.t. a distribution • Edge of a hypothesis h for a distribution **d** on the examples $\underbrace{\underbrace{y_n n(\mathbf{x}_n)}_{\text{goodness on ex. } n} d_n \qquad \mathbf{d} \in \mathcal{P}^N$ average goodness

Margin

• Measure of "confidence" in prediction for a hypothesis weighting

• Margin of example n for current hypothesis weighting \mathbf{w}

$$y_n \sum_{t=1}^{\prime} h^t(\mathbf{x}_n) w_t \qquad \mathbf{w} \in \mathcal{P}^T$$

Objectives

Edge

- Edges of past hypotheses should be small after update
- Minimize maximum edge of past hypotheses

Margin

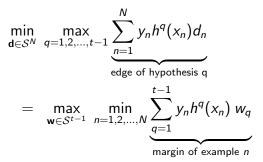
• Choose convex combination of weak hypotheses that maximizes the minimum margin

	Which margin?
SVN	2-norm
Boosting	1-norm

Connection between objectives?

 \oplus

Edge vs. margin



Linear Programming duality

Min max thm for the inseparable case

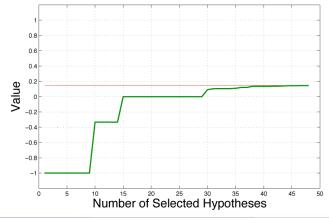
Slack variables in \mathbf{w} domain = capping in \mathbf{d} domain

$$\max_{\mathbf{w}\in\mathcal{S}^{t},\boldsymbol{\psi}\geq\mathbf{0}} \min_{n=1,2,\dots,N} \underbrace{\left(\sum_{q=1}^{t} u_{n}^{q} w_{q} + \psi_{n}\right)}_{\text{margin of example } n} - \frac{1}{\nu} \sum_{n=1}^{N} \psi_{n}$$
$$= \min_{\mathbf{d}\in\mathcal{S}^{N},\mathbf{d}\leq\frac{1}{\nu}\mathbf{1}} \max_{q=1,2,\dots,t} \underbrace{\mathbf{u}^{q}\cdot\mathbf{d}}_{\text{edge of hypothesis q}}$$

Notation: $u_n^q = y_n h^q(x_n)$

Boosting = greedy method for increasing margin

Converges to optimum marging w.r.t. all hypotheses



M.K.Warmuth et.al. ()

Entropy Regularized LPBoost

Updated: October 13, 2008 18 / 1

For current weighting of examples, oracle returns hypothesis of edge $\geq g$

Goal

- For given $\epsilon,$ produce convex combination of weak hypotheses with soft margin $\geq g-\epsilon$
- Number of iterations $O(\frac{\ln n/\nu}{\epsilon^2})$

Choose distribution that minimizes the maximum edge via LP

$$\min_{\sum_{n} d_{n}=1, \mathbf{d} \leq \frac{1}{\nu} \mathbf{1}} \max_{q=1,2,\ldots,t} \mathbf{u}^{q} \cdot \mathbf{d}$$

- Good practical boosting algorithm
- All weight is put on examples with minimum soft margin
- Brittle: iteration bound can be linear in N on malign artificial data sets

I PBoost

[WGR07]

Entropy Regularized LPBoost

$$\min_{\sum_{n} d_{n}=1, \mathbf{d} \leq \frac{1}{\nu} \mathbf{1}} \max_{q=1,2,\dots,t} \mathbf{u}^{q} \cdot \mathbf{d} + \frac{1}{\eta} \Delta(\mathbf{d}, \mathbf{d}^{0})$$

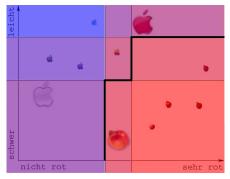
$$\mathbf{d}_n = \frac{\exp^{-\eta \text{ soft margin of example } n}}{Z}$$

"soft min"

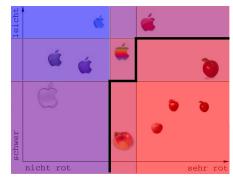
- Within ϵ of maximum soft margin in $O(\frac{\log n/\nu}{\epsilon^2})$ iterations
- Above form of weights first appeared in ν -Arc algorithm [RSS+00]

The effect of entropy regularization

Different distribution on the examples



LPBoost: lots of zeros



ERLPBoost: smoother distribution

$\mathsf{AdaBoost}$

$$d_n^t := \frac{d_n^{t-1} \exp(-w_t u_n^t)}{\sum_{n'} d_{n'}^{t-1} \exp(-w_t u_{n'}^t)},$$

where w_t s.t. $\sum_{n'} d_{n'}^{t-1} \exp(-w u_{n'}^t)$ is minimized

- Easy to implement
- Gets within half of the optimal hard margin [RSD07] but only in the limit

Corrective versus totally corrective

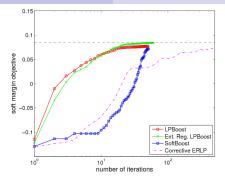
Processing last hypothesis versus all past hypotheses

Corrective	Totally Corrective
AdaBoost	LPBoost
LogitBoost	TotalBoost
AdaBoost*	SoftBoost
SS,Colt08	ERLPBoost

Myths about boosting

- LPBoost does the trick in practice most of the time
- For safety, add relative entropy regularization
- Corrective algs
 - Sometimes easy to code
 - Fast per iteration
- Totally corrective algs
 - Smaller number of iterations
 - Nevertheless faster overall time
- Weak versus strong oracle makes a big difference

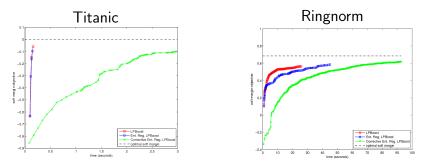
weak: return hypothesis of edge larger than some guarantee *g* strong: return hypothesis of maximum edge



Soft margin objective vs. the number of iterations on a single run for the Banana data set with $\epsilon = 0.01$ and $\nu/N = 0.1$. For ERLPBoost, $\eta = \frac{2}{\epsilon} \log \frac{N}{\nu}$.

- LPBoost indistinguishable from ERLPBoost
- SoftBoost's margin begins increasing much later than the others
- Corrective alg. converges more slowly than totally corrective

Corrective vs. Totally Corrective



- Results for a single run of each algorithm
- Margin vs. time
- Titanic is the smallest dataset we used
- Ringnorm is the largest dataset we used

Conclusion

- Adding relative entropy regularization of LPBoost leads to good boosting alg.
- Boosting is instantiation of MaxEnt and MinxEnt principles
 [Jaines 57,Kullback 59]
- Is sparsity neccessary for good generalization or is relative entropy reguarization sufficient?

From AdaBoost to SoftBoost

AdaBoost(as interpreted in [KW99,La99])Primal:Dual:

 $\begin{array}{ll} \min_{\mathbf{d}} & \Delta(\mathbf{d}, \mathbf{d}^{t-1}) & \max_{\mathbf{w}} & -\ln\sum_{n} d_{n}^{t-1} \exp(u_{n}^{t-1} w_{t-1}) \\ \text{s.t.} & \mathbf{d} \cdot \mathbf{u}^{t-1} = 0, \ \|\mathbf{d}\|_{1} = 1 & \text{s.t.} & \mathbf{w} \ge 0 \\ \text{Achieves half of optimum hard margin in the limit} \end{array}$

AdaBoost* Primal:

Dual:

 $\begin{array}{ll} \min_{\mathbf{d}} & \Delta(\mathbf{d}, \mathbf{d}^{t-1}) & \max_{\mathbf{w}} & -ln \sum_{n} d_{n}^{t-1} \exp(u_{n}^{t-1} w_{t-1}) \\ \text{s.t.} & \mathbf{d} \cdot \mathbf{u}^{t-1} \leq \gamma_{t-1}, & -\gamma_{t-1} ||\mathbf{w}||_{1} \\ \|\mathbf{d}\|_{1} = 1 & \text{s.t.} & \mathbf{w} \geq 0 \\ \text{where edgebound } \gamma_{t} \text{ is adjusted downward by a heuristic} \\ \text{Good iteration bound for reaching optimum hard margin} \end{array}$

[RW05]

SoftBoost Primal:

$$\begin{array}{ll} \min_{\mathbf{d}} & \Delta(\mathbf{d}, \mathbf{d}^0) \\ \text{s.t.} & \|\mathbf{d}\|_1 = 1, \ \mathbf{d} \leq \frac{1}{\nu} \mathbf{1} \\ & \mathbf{d} \cdot \mathbf{u}^q \leq \gamma_{t-1}, \\ & 1 \leq q \leq t-1 \end{array} \end{array} \qquad \begin{array}{l} \min_{\mathbf{w}, \psi} & -\ln \sum_n \mathbf{d}_n^0 \exp(-\eta \sum_{q=1}^{t-1} u_n^q w_q) \\ & -\eta \psi_n - \frac{1}{\nu} \|\psi\|_1 - \gamma_{t-1} \|\mathbf{w}\|_1 \\ & \text{s.t.} \quad \mathbf{w} \geq 0, \ \psi \geq 0 \end{array}$$

where edgebound γ_{t-1} is adjusted downward by a heuristic

ERLPBoost [WGV08]

Primal:

Dual:

 $\begin{array}{ll} \min_{\mathbf{d},\gamma} & \gamma + \frac{1}{\eta} \Delta(\mathbf{d}, \mathbf{d}^0) \\ \text{s.t.} & \|\mathbf{d}\|_1 = 1, \ \mathbf{d} \le \frac{1}{\nu} \mathbf{1} \\ & \mathbf{d} \cdot \mathbf{u}^q \le \gamma, \\ & 1 \le q \le t-1 \end{array} & \begin{array}{l} \min_{\mathbf{w},\psi} & -\frac{1}{\eta} \ln \sum_n \mathbf{d}_n^0 \exp(-\eta \sum_{q=1}^{t-1} u_n^q w_q) \\ & -\eta \psi_n) - \frac{1}{\nu} \|\psi\|_1 \\ \text{s.t.} & \mathbf{w} \ge 0, \ \|\mathbf{w}\|_1 = 1, \ \psi \ge 0 \end{array}$

where for the iteration bound η is fixed to $\max(\frac{2}{\epsilon} \ln \frac{N}{\nu}, \frac{1}{2})$

[WGR07]