
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

ENTROPY REGULARIZATION AND SOFT MARGIN
MAXIMIZATION

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Karen A. Glocer

December 2009

The Dissertation of Karen A. Glocer
is approved:

Professor Manfred Warmuth, Chair

Professor Darrell Long

Dr. James Theiler

Professor S.V.N. Vishwanathan

Tyrus Miller
Vice Provost and Dean of Graduate Studies



Copyright c© by

Karen A. Glocer

2009



Table of Contents

List of Figures v

List of Tables vii

Abstract viii

Dedication ix

Acknowledgments x

1 Introduction 1

2 LPBoost 10
2.1 Assumption on the Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 LPBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Pivots and Linear Programming . . . . . . . . . . . . . . . . . . . . . . 23
2.4 A Lower Bound on the LPBoost Iteration Bound . . . . . . . . . . . . . 25
2.5 The Master Hypothesis Returned by LPBoost . . . . . . . . . . . . . . . 27
2.6 Robustness to Random Label Noise . . . . . . . . . . . . . . . . . . . . . 30

3 Entropy-Based Boosting Algorithms 34
3.1 The SoftBoost Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Lagrangian Dual of SoftBoost . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Relationship Between the Primal and Dual Variables of SoftBoost 42
3.1.3 Iteration Bound for SoftBoost . . . . . . . . . . . . . . . . . . . . 43

3.2 Entropy Regularized LPBoost . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 A Simple Stopping Criterion for ERLPBoost . . . . . . . . . . . 48
3.2.2 A Practical Stopping Criterion for ERLPBoost . . . . . . . . . . 50
3.2.3 Lagrangian Dual of ERLPBoost . . . . . . . . . . . . . . . . . . 54
3.2.4 Relationship Between Primal and Dual Variables for ERLPBoost 60
3.2.5 Iteration Bound for ERLPBoost . . . . . . . . . . . . . . . . . . 62
3.2.6 Alternative Analysis of ERLPBoost . . . . . . . . . . . . . . . . 69

iii



3.3 Binary Entropy Regularized LPBoost . . . . . . . . . . . . . . . . . . . 75
3.3.1 A Simple Stopping Criterion for Binary ERLPBoost . . . . . . . 77
3.3.2 A Practical Stopping Criterion for Binary ERLPBoost . . . . . . 79
3.3.3 Lagrangian Dual of Binary ERLPBoost . . . . . . . . . . . . . . 81
3.3.4 Relationship Between Primal and Dual Variables for Binary ERLP-

Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.5 Iteration Bound for Binary ERLPBoost . . . . . . . . . . . . . . 89

4 Implementation 94
4.1 ERLPBoost and Binary ERLPBoost . . . . . . . . . . . . . . . . . . . . 96
4.2 Corrective ERLPBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.1 Stopping Criterion for Corrective ERLPBoost . . . . . . . . . . . 106
4.2.2 Alternative Corrective ERLPBoost Optimization Problem . . . . 108

4.3 Corrective Binary ERLPBoost . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.1 Stopping Criterion for Corrective Binary ERLPBoost . . . . . . 114
4.3.2 Alternative Corrective Binary ERLPBoost Optimization Problem 117

5 Experimental Evaluation 120
5.1 The Instability of LPBoost . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Sufficient Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3 ERLPBoost vs. Binary ERLPBoost . . . . . . . . . . . . . . . . . . . . 142
5.4 Corrective vs. Totally Corrective Algorithms . . . . . . . . . . . . . . . 152
5.5 Corrective vs. Totally Corrective Algorithms at Higher Precision . . . . 166
5.6 Overall Comparison of Algorithms . . . . . . . . . . . . . . . . . . . . . 169

6 Related Work 177
6.1 The Basics of Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2 Margin Maximization and Boosting . . . . . . . . . . . . . . . . . . . . . 180
6.3 Boosting Algorithms for Noisy Data . . . . . . . . . . . . . . . . . . . . 183
6.4 Corrective and Totally Corrective Algorithms . . . . . . . . . . . . . . . 186
6.5 Significant Experimental Results for Boosting . . . . . . . . . . . . . . 188

7 Conclusion 190

A The Active Set Method 194

Bibliography 198

iv



List of Figures

2.1 Illustration of the margin concept. . . . . . . . . . . . . . . . . . . . . . 11
2.2 Illustration of the soft margin concept. . . . . . . . . . . . . . . . . . . . 11
2.3 LPBoost in both the d and w domain. . . . . . . . . . . . . . . . . . . . 15
2.4 More complex LPBoost objective function in the d domain. . . . . . . . 16
2.5 More complex LPBoost objective function the w domain. . . . . . . . . 16
2.6 Depiction of the LPBoost stopping criterion: minq=1...T uq ·dq−1−P TLP ≤

ε/2 implies g − P TLP ≤ ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Example of a pivot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 An example where LPBoost provably requires Ω(N/2) iterations. . . . . 25
2.9 Even when LPBoost is given a good set of hypotheses, it can return a

very bad final hypothesis. Note that these are the ut vectors, so they
incorporate both the examples and the labels. . . . . . . . . . . . . . . . 28

2.10 Long and Servedio’s counterexample demonstrates no convex potential
booster is robust to random classification noise. . . . . . . . . . . . . . . 30

3.1 Depiction of the simple stopping criterion for ERLPBoost: δT+1 ≤ ε/2
implies g − P TLP ≤ ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Depiction of the practical stopping criterion for ERLPBoost: δ̃T+1 im-
plies g − P TLP ≤ ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 ERLPBoost in the w domain. . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 ERLPBoost in the d domain. . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 The effect of regularization on Binary ERLPBoost in the d domain. . . 85
3.6 The effect of capping on Binary ERLPBoost in the d domain. . . . . . . 85
3.7 The effect of regularization on Binary ERLPBoost in the w domain. . . 86
3.8 The effect of capping on Binary ERLPBoost in the w domain. . . . . . 86

4.1 The original Θ̂t(wt(α),ψt−1) − Θ̂t−1(wt−1,ψt−1) is plotted against the
lower bounds in (4.4) from [77] and (4.3) from Lemma 3.7. The lower
bound in (4.4) is tighter, but it is not optimal. . . . . . . . . . . . . . . 106

5.1 LPBoost without capping for the decision stump hypotheses. . . . . . . 126
5.2 LPBoost without capping for raw data hypotheses. . . . . . . . . . . . . 127

v



5.3 LPBoost without capping for SVM hypotheses. . . . . . . . . . . . . . . 128
5.4 LPBoost with capping for decision stump hypotheses. . . . . . . . . . . 130
5.5 LPBoost with capping for raw data hypotheses. . . . . . . . . . . . . . . 131
5.6 LPBoost with capping for SVM hypotheses. . . . . . . . . . . . . . . . . 132
5.7 Entropy Regularized LPBoost for decision stump hypotheses. . . . . . . 134
5.8 Entropy Regularized LPBoost for raw data hypotheses. . . . . . . . . . 135
5.9 Entropy Regularized LPBoost for SVM hypotheses. . . . . . . . . . . . 136
5.10 Generalization error vs. regularization parameter η for ERLPBoost and

Binary ERLPBoost with decision stump hypotheses. . . . . . . . . . . . 138
5.11 Generalization error vs. regularization parameter η for ERLPBoost and

Binary ERLPBoost with raw data hypotheses. . . . . . . . . . . . . . . 139
5.12 Generalization error vs. regularization parameter η for ERLPBoost and

Binary ERLPBoost with SVM hypotheses. . . . . . . . . . . . . . . . . 140
5.13 Training time vs. ν/N for ERLPBoost and Binary ERLPBoost with

decision stump hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.14 Training time vs. ν/N for ERLPBoost and Binary ERLPBoost with raw

data hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.15 Training time vs. ν/N for ERLPBoost and Binary ERLPBoost with

SVM hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.16 Generalization Error vs. ν/N for ERLPBoost and Binary ERLPBoost

with decision stump hypotheses. . . . . . . . . . . . . . . . . . . . . . . 149
5.17 Generalization Error vs. ν/N for ERLPBoost and Binary ERLPBoost

with raw data hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.18 Generalization Error vs. ν/N for ERLPBoost and Binary ERLPBoost

with svm hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.19 Time vs. η with decision stump hypotheses . . . . . . . . . . . . . . . . 153
5.20 Time vs. η with raw data hypotheses . . . . . . . . . . . . . . . . . . . . 154
5.21 Time vs. η with SVM hypotheses . . . . . . . . . . . . . . . . . . . . . . 155
5.22 Generalization error vs. η with decisions stump hypotheses . . . . . . . 158
5.23 Generalization error vs. η with raw data hypotheses . . . . . . . . . . . 159
5.24 Generalization error vs. η with SVM hypotheses . . . . . . . . . . . . . 160
5.25 Number of hypotheses vs. η with decision stump hypotheses. . . . . . . 162
5.26 Number of hypotheses vs. η with raw data hypotheses. . . . . . . . . . . 163
5.27 Number of hypotheses vs. η with SVM hypotheses. . . . . . . . . . . . . 164
5.28 Duality gap vs. time and iteration for corrective vs. totally corrective

algorithms for diabetes data set with ε = 10−5 . . . . . . . . . . . . . . . 167
5.29 Duality gap vs. time and iteration for corrective vs. totally corrective

algorithms for german data set with ε = 10−5 . . . . . . . . . . . . . . . 168

vi



List of Tables

2.1 Notation for margins, edges, and LPBoost . . . . . . . . . . . . . . . . . 12
2.2 The relationship between the error and the edge of hypothesis t. . . . . 13

3.1 Notation for entropy-based boosting algorithms . . . . . . . . . . . . . . 35

4.1 ERLPBoost and Binary ERLPBoost optimization problems in the d and
w domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Data sets used in experimentation. The reported size of the training and
test sets are before post-processing. . . . . . . . . . . . . . . . . . . . . . 121

5.2 Data sets after processing. . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3 Parameters used in ERLPBoost, Binary ERLPBoost, and Corrective

ERLPBoost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 Lowest overall generalization error of each algorithm for decision stump

hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.5 Lowest overall generalization error of each algorithm for raw data hy-

potheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.6 Lowest overall generalization error of each algorithm for decision stump

hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.7 Training time in seconds for best result of each algorithm for decision

stump hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.8 Training time in seconds for best result of each algorithm for raw data

hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.9 Training time in seconds for best result of each algorithm for SVM hy-

potheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.10 Parameters for best result of each algorithm for decision stump hypotheses.176
5.11 Parameters for best result of each algorithm for raw data hypotheses. . 176
5.12 Parameters for best result of each algorithm for SVM hypotheses. . . . 176

vii



Abstract

Entropy Regularization and Soft Margin Maximization

by

Karen A. Glocer

In the machine learning community, margin maximization is a popular proxy for good

generalization. When the data are not separable by a linear combination of hypotheses,

maximizing the soft margin is considered to be more robust than maximizing the mar-

gin. LPBoost is a boosting algorithm that directly maximizes the soft margin by solving

a linear programming problem. However, we can exhibit cases where the number of it-

erations is linear in the number of examples instead of logarithmic. Moreover, we show

both theoretically and experimentally that this algorithm can exhibit extremely poor

generalization error. This suggests that maximizing the soft margin by itself may be a

poor proxy for good generalization performance. We introduce three algorithms that

address the instability of LPBoost and have iteration bounds that are logarithmic in the

number of examples. The first algorithm, SoftBoost, is based on relative entropy pro-

jection. The other two algorithms, Entropy Regularized LPBoost and Binary Entropy

Regularized LPBoost, add relative entropy and binary relative entropy regularization to

the soft margin respectively. Moreover, in the first large-scale experimental evaluation

of optimization-based boosting algorithms, we demonstrate that even a small amount

of entropy regularization suffices to stabilize LPBoost.
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Chapter 1

Introduction

In binary classification problems, we are given a training set of ± labeled

examples drawn i.i.d. from some underlying distribution. We use these labeled examples

to find a function that maps each example to its label as accurately as possible. For a

given example/label pair, the accuracy of this mapping is determined by a loss function.

The empirical risk is the expected loss over all of the examples in the training set. The

most common loss function used in binary classification is the zero-one loss. In the

zero-one loss, classifying an example correctly incurs no loss and classifying an example

incorrectly incurs a loss of 1. We define empirical error as the empirical risk with

respect to the zero-one loss. Similarly, we define the generalization error as the risk

with respect to the zero-one loss on data from the underlying distribution.

The ultimate goal of any classification algorithm is find a function that min-

imizes generalization error, but generalization error can only be minimized directly if

the underlying distribution that generates the data is known. A common approach is
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to minimize empirical error on a data set drawn i.i.d. from the underlying distribution

in the hope that this will achieve a low generalization error.

We define a hypothesis as a function that predicts the label for each example.

In the simplest case, a hypothesis makes predictions in the range {±1}. A slightly richer

class of hypotheses makes real-valued predictions in the range [−1, 1], and this is the

sort of hypothesis used in this thesis. Given a set of hypotheses H, we say that data

is linearly separable with respect to H if there is a linear combination of hypotheses

h ∈ H that can correctly classify every example. When we say that the data is linearly

separable, it is implicitly assumed that this is with respect to H.

Boosting is a machine learning framework which combines a set of weak hy-

potheses, each of which performs slightly better than random guessing, into a strong

hypothesis that is considerably better than random. To combine these hypotheses effec-

tively, boosting algorithms weigh the examples in the training set such that the examples

that are the most difficult to classify are given the most weight. For the algorithms pro-

posed in this thesis, the weights are probability distributions. At each iteration, this

distribution is given to an oracle, which must return a hypothesis that has a certain

weak guarantee with respect to the current distribution on the examples. Intuitively,

the hypothesis returned by the oracle should have a high weighted accuracy. The al-

gorithm then redistributes the weight on the examples so that more weight is put on

the examples that are harder to classify. In the next iteration, the updated distribution

is given to the oracle, which provides a new hypothesis with the same weak guarantee

for the new distribution. The boosting algorithm incorporates each new hypothesis
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into its master hypothesis, which is a linear combination of the weak hypotheses it has

received from the oracle. This continues until the boosting algorithm terminates, at

which time it returns its master hypothesis which is a linear combination of all of the

weak hypotheses it has received from the oracle.

In boosting there are two sets of weights: the weights on the examples and the

weights on the hypotheses. Boosting algorithms are defined by the way they determine

these weights. These two sets of weights are related by the margin and the edge, both

of which are defined in Chapter 2. The margin of an example is the weighted accuracy

of all of the hypotheses for a single example. Similarly, the edge of a hypothesis is the

weighted accuracy of all of the examples for a single hypothesis.

In many boosting algorithms, the updated weight on the examples is a func-

tion of the margin of each example. For instance, AdaBoost [30], the most well known

boosting algorithm, assigns each example weight proportional to the negative exponen-

tial of its margin. Even after the final linear combination classifies all training examples

correctly, the generalization performance of AdaBoost has been observed to improve

with additional iterations [61]. This is attributed to the observation that the minimum

margin of the examples for the final linear combination continues to increase even after

the training error stabilizes [71]. The problem with AdaBoost is that it only approxi-

mately maximizes the margin [68]. Furthermore, its performance deteriorates when the

examples are not linearly separable [22].

There is a boosting algorithm that uses linear programming to maximize the

margin explicitly. This algorithm is known as LPBoost [36, 64, 21]. In the noisy case,
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the examples are not linearly separable and the hard margin becomes negative. To

alleviate this problem, slack variables are introduced and LPBoost maximizes the soft

margin. The resulting soft margin, defined precisely in Chapter 2, is considered to be

more robust than the margin when the data is not linearly separable.

Although LPBoost is often used in practice, the analysis of this algorithm has

proved to be elusive. In particular, there are no known iteration bounds, and we show

in this thesis why this is the case. This result, originally shown in [87], is a lower

bound on the number of iterations required by LPBoost that is linear in the number of

examples. This is significant because a good iteration bound in the boosting context is

one that is logarithmic in the number of examples. In this thesis we also show that any

linearly separable dataset can be reduced to a dataset on which LPBoost misclassifies

all examples by adding a bad example and a bad hypothesis. Although both of the

results we have discussed are derived for the hard margin case, they can be extended to

the soft margin case as well.

These two results suggest that directly maximizing the margin does not result

in a robust boosting algorithm. In this thesis we present three boosting algorithms that

provably maximize the soft margin but do not exhibit the same brittleness as LPBoost.

These algorithms are SoftBoost, Entropy Regularized LPBoost, and Binary Entropy

Regularized LPBoost. These algorithms share two important characteristics: they are

motivated by either the relative entropy or the binary relative entropy, and given a

sample of size N , these algorithms require at most O( 1
ε2

ln N
ν ) iterations to produce a

hypothesis within ε of the optimal soft margin. Here ν ∈ [1, N ] is the capping parameter

4



that limits how much weight a given example can have. Capping is a common approach

to making boosting algorithms robust to noise by preventing too much weight from

accumulating on a few noisy examples.

The first algorithm, SoftBoost [87], minimizes the relative entropy to the initial

distribution subject to linear constraints on the edges of all the hypotheses obtained so

far. The edge, defined in Chapter 2, is the weighted accuracy of a hypothesis with

respect to a distribution. The upper bound on the edges is gradually decreased, and

this leads to the main problem with SoftBoost: the generalization error decreases slowly

in early iterations. Although SoftBoost provably maximizes the minimum soft margin,

the mechanism for doing so is not quite satisfactory, resulting in a problematic slow

start in our experiments.

The second algorithm, Entropy Regularized LPBoost (ERLPBoost) [90], adds

1
η times the relative entropy to the initial distribution to the maximum soft edge ob-

jective of LPBoost and minimizes the resulting sum. A number of similar algorithms

(such as ν-Arc [64]) were discussed in [62], but no iteration bounds were proved for them

even though they were shown to have good experimental performance. Most recently,

a similar boosting algorithm was considered by [69, 70] based on the Lagrangian dual

of the optimization problem that motivates the ERLPBoost algorithm. However the

O( 1
ε>3 lnN) iteration bound proved for the algorithm in [69, 70] is weaker than the ones

considered in this thesis.

The third algorithm is Binary Entropy Regularized LPBoost (Binary ERLP-

Boost). It adds 1
η times the binary relative entropy to the initial distribution to the

5



optimization problem that defines LPBoost and minimizes the resulting sum. There is

no a-priori reason to believe that one type of regularizer will result in lower generaliza-

tion error than the other. Rather, the appeal of the binary entropy is that it implicitly

enforces the soft margin constraints, which reduces the complexity of the optimization

problem that must be solved at each iteration to compute the updated distribution

on the examples. Interestingly, although the regularizer changes, the iteration bound

remains the same.

Finally, this thesis presents the first experimental analysis of optimization-

based boosting algorithms on large scale data. In our experiments, the oracle will return

either decision stump hypotheses, raw data hypotheses, or SVM hypotheses. These are

discussed in detail in Chapter 5. We will see that the results are heavily dependent

on the class of hypotheses returned by the oracle, so when we discuss our results, we

will specify the algorithm, the data set, and the hypothesis class. Our experimental

evaluation addresses five principal questions.

In the first set of experiments, we demonstrate that LPBoost is unstable in

practice. We then asked whether the instability is corrected by either replacing the hard

margin with the soft margin or by adding entropy regularization. The experimental

results show that the soft margin does not stabilize LPBoost. However, not only does

entropy regularization result in a stable algorithm, even a small amount of regularization

suffices.

In the second set of experiments, we ask whether the theoretical value of the

regularization parameter for ERLPBoost and Binary ERLPBoost that we define in

6



Chapter 3 is optimal, and if not, what constitutes sufficient regularization? We found

that the theoretical value of the regularization parameter is generally a good choice, but

that in many cases, more regularization does not hurt performance.

In the third set of experiments, we compare the binary entropy regularizer and

the relative entropy regularizer. In Chapter 3 we show that for the relative entropy

regularizer, capping in the d domain results in slack variables in the w domain, which

increases the complexity of the optimization problem. In contrast, for the binary en-

tropy, capping in the d domain does not increase the complexity of the optimization

problem in the w domain. Because the optimization problems are all implemented in

the w domain, this suggests that the binary entropy regularizer should be faster than

the relative entropy regularizer, but there is no reason to suspect that one will have

better generalization performance than the other. We found that the binary entropy

is not always faster than the relative entropy but their generalization performance is

similar.

In the fourth set of experiments, we compare the corrective and totally correc-

tive algorithms. The corrective family of boosting algorithms only update the weights

on the examples based on the last hypothesis, while the totally corrective family of

algorithms update the weights based on all past hypotheses. This is covered in Chap-

ter 4 ERLPBoost and Binary ERLPBoost, and SoftBoost belong to the family of totally

corrective algorithms. Shalev-Schwartz and Singer [77] proposed a corrective version of

ERLPBoost. We refer to this algorithm as Corrective ERLPBoost, and it is discussed

at length in Chapter 4. In this thesis, we also introduce Corrective Binary ERLPBoost,

7



a corrective algorithm that uses the binary relative entropy. algorithms. In these exper-

iments, the results are heavily dependent on the hypothesis class. However, the SVM

hypotheses outperformed the other hypothesis classes on every data set. For SVM hy-

potheses, the totally corrective algorithms outperformed the corrective algorithms in

both generalization error and time.

In the last set of experiments we compare the best overall generalization error

achieved by all of the previously mentioned algorithms for each hypothesis class on each

data set. In these experiments we use a train-test-validation methodology described in

Chapter 5. While all of the previous experiments tried to elucidate the properties of

the algorithms we are studying, this is the evaluation that is of the most interest to

practitioners who will eventually use the algorithms. Like the previous set of experi-

ments, these results are heavily dependent on the hypothesis class, and SVM hypotheses

outperformed the other hypothesis classes. For SVM hypotheses, the totally corrective

algorithms outperformed the corrective algorithms in both generalization error and time.

The thesis is outlined as follows. In Chapter 2, we more rigorously define the

LPBoost algorithm and show a lower bound on the iteration bound of LPBoost. In

addition, we show that any linearly separable dataset can be reduced to one on which

LPBoost misclassifies all examples. In Chapter 3 we present three entropy regularization

algorithms that address the instability of LPBoost. These algorithms are SoftBoost,

Entropy Regularized LPBoost, and Binary Entropy Regularized LPBoost. For each

algorithm we discuss its termination condition, its Lagrangian Dual, the relationship

between primal and dual variables, and its iteration bound. In Chapter 4 we discuss the

8



implementation details of the algorithms we use in our experiments. These experiments

can be found in Chapter 5. Chapter 6 puts all of this in the context of the available

scientific literature. Finally, the conclusions can be found in Chapter 7.

The results in this thesis have appeared in three places. The SoftBoost algo-

rithm and the lower bound on the iteration bound on LPBoost were first presented in

NIPS 2007 [87]. The ERLPBoost algorithm first appeared in ALT 2008 [90]. In addi-

tion, a subset of the experimental results in this thesis were also presented in a tutorial

at ICML 2009 [89].
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Chapter 2

LPBoost

In the boosting setting, we are given a set of N labeled training examples

(xn, yn), n = 1 . . . N , where the instances xn are in some domain X and the labels

yn ∈ ±1. Boosting algorithms maintain a distribution d on the N examples, so d lies in

the N dimensional probability simplex SN . Intuitively, the examples that are hard to

classify are given more weight. The initial distribution d0 is uniform. In each iteration

t = 1, 2, . . . the algorithm gives the current distribution dt−1 to an oracle (a.k.a. the

weak learning algorithm), which returns a new hypothesis ht : X → [−1, 1] from some

base hypothesis class H. The hypothesis returned by the oracle comes with a certain

guarantee of performance. This guarantee will be discussed in Chapter 2.1.

The most common measure of the performance of a hypothesis ht is its classi-

fication error. When the range of hypothesis ht is in {−1, 1}, classification error can be

expressed as

1
N

N∑
n=1

I(ht(xn) 6= yn),

10



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

feature 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

fe
a
tu

re
 2

Figure 2.1: Illustration of the margin concept. The geometric margin of an example,
shown by the dotted lines, is the Euclidean distance between the example and the
separating hyperplane. The smallest margins are shown in red.
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Figure 2.2: Illustration of the soft margin concept. One point does not satisfy the
margin requirement, which is shown by the dashed lines. The slack variable ψ is the
distance between the misclassified example and dashed line.
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Symbol Description
N Number of examples.
t Iteration number.
T Final number of iterations.
SM Probability simplex of dimension M.
xn nth example.
X Domain of examples.
yn ∈ {−1, 1} nth label.
ht(xn) ∈ [−1, 1] Prediction of hypothesis t on example xn.
H Hypothesis class.
utn = ynh

t(xn) Convenient notation for combining labels and hypotheses.
d ∈ SN Distribution on examples.
w ∈ St Distribution on hypotheses at iteration t.
ψ ∈ [0,∞]N Slack variable for soft margin problem.
ε Precision parameter.
ν Capping parameter.
g Guarantee of the oracle.
P tLP The solution to the LPBoost problem at iteration t.
PLP The solution to the LPBoost problem over all hypotheses.

Table 2.1: Notation for margins, edges, and LPBoost
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error edge
0 +1
1 -1

0.5 0

Table 2.2: The relationship between the error and the edge of hypothesis t.

where I is the indicator function. The weighted error of a hypothesis ht with respect to

distribution d is

εht =
N∑
n=1

dnI(ht(xn) 6= yn).

Note that the weighted error can be defined w.r.t any distribution d, not just the current

distribution dt−1.

A more convenient quantity is the edge, which measures the weighted accuracy

of a single hypothesis.

Definition 2.1 The edge of hypothesis ht w.r.t. distribution d is defined as

N∑
n=1

dnynh
t(xn).

When the range of ht is ±1 instead of the interval [-1,1], then the edge is just an affine

transformation of the weighted error of the hypothesis ht because I(ht(xn) 6= yn) =

−2ynht(xn) − 1. Note that the edge is also defined when ht ∈ [−1, 1]. A hypothesis

that predicts perfectly has error 0 and edge 1 while a hypothesis that always predicts

incorrectly has error 1 edge −1. A random hypothesis has error approximately 0.5

and edge approximately 0. The higher the edge, the more useful the hypothesis is for

classifying the training examples. These results are summarized in Table 2.2.
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It is convenient to define an N -dimensional vector ut that combines the base

hypothesis ht with the labels yn of the N examples: utn := ynh
t(xn). With this notation,

the edge of the hypothesis ht w.r.t. d becomes simply the dot product ut · d. After

a hypothesis ht is received, the algorithm must update its distribution dt−1 on the

examples using ut. At this time, the algorithm also updates its distribution on the

hypotheses wt. The master hypothesis returned by the boosting algorithm is always

a convex combination of base hypotheses fw(xn) =
∑T

q=1w
T
q h

q(xn), where wTq is the

coefficient of the hypothesis hq added at final iteration T .

Just as the edge measures of the weighted accuracy of a hypothesis, the margin

measures the weighted accuracy of an example.

Definition 2.2 We define the margin of example (xn, yn) over hypotheses h1 . . . ht

w.r.t. distribution w ∈ St as

yn(
t∑

q=1

wqh
q(xn)) =

t∑
q=1

wqu
q
n.

Note that for hypotheses h1 . . . ht, the margin can be defined w.r.t. any w ∈ St, not

just wt. The margin of a set of examples is taken to be the minimum margin of the set.

When the sign of the master hypothesis
∑T

q=1w
T
q h

q(xn) agrees with the label

yn for all n = 1 . . . N , then the examples are separated by the hyperplane defined by the

wT vector, and margin of the set of examples is positive. When this is the case, we say

that the examples are linearly separable. Note that edges are linear in the distribution

over the examples and margins are linear in the distribution over the current set of

hypotheses.
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Figure 2.3: The optimization problem solved by LPBoost in both the d and the w
domain for a simple problem of 2 examples and 2 hypotheses. In the d domain (blue),
the objective function is the l.h.s. of (2.1) and in the w domain (red), the objective
function is the r.h.s. of (2.1).

Edges and margins are related in a fundamental way. By linear programming

duality, the minimum-maximum edge equals the maximum-minimum margin:

min
d∈SN

max
q=1,2,...,t

uq · d = max
w∈St

min
n=1,2,...,N

t∑
q=1

uqn wq. (2.1)

When ||w||2 = 1, then
∑T

q=1wqu
q
n is the Euclidean distance between example xn and

the hyperplane defined by w, also known as the geometric margin [17]. However, in

the above optimization problem, the constraint w ∈ St implies that ||w||1 = 1. Thus,

boosting is based on the 1-norm margin and support vector machines [6] maximize the

geometric margin. Figure 2.1 shows the geometric margins of a set of examples with

respect to their separating hyperplane. The minimum margin of the set is shown in red.

In this case, three points are actually tied for the smallest margin.
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Figure 2.4: The optimization problem solved by LPBoost in the d domain for a more
complex problem of 2 examples and 4 hypotheses. Because d2 = 1 − d1, it suffices to
show d1. The objective function is the l.h.s. of (2.1).
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Figure 2.5: The optimization problem solved by LPBoost in the w domain for a more
complex problem of 4 examples and 2 hypotheses. Because w2 = 1 − w1, it suffices to
show w1. The objective function is the r.h.s. of (2.1).
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Much of the machine learning community works in the margin domain, which

we often call the w domain or the hypothesis domain because we are optimizing the

weights on the hypotheses. In contrast, most of the analysis in this thesis will take

place in the edge domain, which we will often call the d domain or the example domain

because we are optimizing the weights on the examples. As a consequence of (2.1), the

optimal values of the two domains are equivalent.

To help visualize these optimization problems, Figure 2.3 plots the value of the

objective function in both the d and w domains for a simple problem of two examples

and two hypotheses. Note that this is the only problem size that can be represented in

two dimensions in both domains. The red line in Figure 2.3 corresponds to the value

on the r.h.s. of (2.1) and the blue line corresponds to the value on the l.h.s. of (2.1).

Observe that the minimum value in the d domain has the same objective value and

the maximum value in the w domain. This is precisely what (2.1) leads us to expect.

Because there are only two examples, d is a vector of length 2. Also, d2 = 1−d1, which

allows us to represent this as a two-dimensional problem. The same is true in the w

domain.

Unfortunately, this is not a very interesting problem, and additional insight

can be gained from slightly larger problems. Figure 2.4 plots the value of the objective

function on the l.h.s. of (2.1) for a problem of 2 examples and 4 hypotheses. Similarly,

Figure 2.5 shows the value of the objective function on the r.h.s. of (2.1) for a different

problem of 4 examples and 2 hypotheses. The problems in these figures are different

because it is no longer possible to represent these problem sizes in two dimensions for
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both domains.

In the case when examples are not separable by a linear combination of the

base hypotheses, then the margins are naturally replaced by the soft margins. The term

“soft” here refers to a relaxation of the margin constraint. We now allow examples to lie

below the margin but penalize them linearly via slack variables ψn. Consequently, the

margin we optimize no longer needs to be the minimum margin of the set. To clearly

distinguish between the margin and the soft margin, we call the margin of (2.1) the

hard margin. In Figure 2.2, there is one example that is not classified correctly by at

least the minimum soft margin, which is shown by the dashed line. In fact, this example

is not even on the right side of the hyperplane. If the soft margin is denoted by ρ, then

the slack variable ψn = min(0, ρ −w · un). Thus the slack variable ψn > 0 only when

w · un < ρ.

After adding slack variables ψn, the resulting optimization problem (2.2) is

again a linear program,

max
w∈St, ψ≥0

min
n=1,2,...,N

 t∑
q=1

uqn wq + ψn

− 1
ν

N∑
n=1

ψn, (2.2)

where the trade-off parameter ν is in the range [1, N ]. The ψ variables are non-negative

because they correspond to Lagrange multipliers for inequality constraints. Adding slack

variables in the hypothesis domain (2.2) gives rise to the capping constraints d ≤ 1
ν1 in

the Lagrange dual example domain (see e.g. [64, 21] for an early discussion of capping):

min
d∈SN , d≤ 1

ν
1

max
q=1,2,...,t

uq · d. (2.3)

When ν = 1, the ψ variables cancel in (2.2), so the slack variables disappear
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and this problem is equivalent to the r.h.s. of (2.1). In addition, the capping constraints

in (2.3) are vacuous and this problem is equivalent to the l.h.s. of (2.1). We now reason

that when ν < 1, the capping constraints in (2.3) are also vacuous. The objective

function of (2.2) can be written as
∑t

q=1 u
q
n wq +

(
1− 1

ν

)∑N
n=1 ψn. When ν < 1, the

coefficient (1− 1
ν ) is negative, so the objective function is always maximized when ψ = 0.

Finally, when ν > N , there is no d ∈ SN that satisfies the constraint d ≤ 1
ν1, so the

feasible set is empty.

By linear programming duality, the value at iteration t = 1, 2, . . . of (2.2) is

equal to the value of its dual (2.3), and we will denote this value by P tLP. The equality is

visualized for the hard margin in Figure 2.3. We do not know how to illustrate the soft

margin in this way. This equality of (2.2) and (2.3) suggests that boosting algorithms

that cap the weight on the examples do well on inseparable data for the same reasons

as algorithms that maximize the soft margin.

2.1 Assumption on the Oracle

In each iteration t, the boosting algorithm sends a distribution dt−1 to the

oracle and the oracle returns a hypothesis ht from the base hypothesis set H. The

returned hypothesis satisfies a certain quality assumption. The strongest assumption is

that the oracle returns a hypothesis with maximum edge, i.e. ht ∈ argmax
h∈H

uh · dt−1.

This strong oracle is also assumed for the recently introduced corrective algo-

rithm of [77]. In contrast, in this thesis we follow [66, 91, 87] and only require a lower
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bound g on the edge of the hypothesis returned by the oracle. Iteration bounds for this

weaker oracle are much harder to obtain.

We assume that given any distribution dt−1 ∈ SN on the examples, the oracle

returns a hypothesis ht with edge at least g. We call g the guarantee of the oracle. In

other words, if ut is the vector that combines the base hypothesis ht returned by the

oracle with the labels of the examples, then the edge ut · dt−1 is guaranteed to be at

least g.

Now we must consider the range of the guarantee g for which the oracle as-

sumption holds. Because ut ∈ [−1,+1]N , it is easy to achieve g ≥ −1. We claim that

the maximum achievable guarantee is g = PLP, where PLP is defined as the value of

(2.3) w.r.t. the entire hypothesis set H from which oracle can choose:

PLP := min
d∈SN d≤ 1

ν
1

sup
h∈H

uh · d.

It follows from the definition of PLP that for any distribution d such that d ≤ 1
ν1,

we have maxh∈H uh · d ≥ PLP. Therefore, for any distribution d on the examples,

there always exists a hypothesis in H with edge at least PLP. Also, for any optimal

distribution that realizes the value PLP, there is no hypothesis of edge strictly greater

than PLP.

For computational reasons, the guarantee g of an oracle may be less than PLP,

and therefore we formulate our algorithm and iteration bound for an oracle w.r.t. any

guarantee g ∈ [−1, PLP]. It should be emphasized that our algorithm does not need to

know the guarantee g achieved by the oracle.
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Figure 2.6: Depiction of the LPBoost stopping criterion: minq=1...T uq ·dq−1−P TLP ≤ ε/2
implies g − P TLP ≤ ε.

2.2 LPBoost

There is a simple linear programming problem that defines a basic boosting

algorithm: update dt, the weights on the examples at iteration t, to any distribution

that minimizes the maximum edge of the t hypotheses seen so far. That is, dt ∈

argmind∈SN maxq=1...t uq ·d. This argmin can be solved via linear programming [36, 21].

The resulting boosting algorithm is the hard margin version of LPBoost [36]. Note that

the linear program solved by LPBoost typically has multiple solutions. Therefore, the

distributions chosen by LPBoost in each iteration are typically not unique and depend
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Algorithm 2.1 LPBoost

1. Input: S = 〈(x1, y1), . . . , (xN , yN )〉, accuracy parameter ε > 0, and smoothness

parameter ν ∈ [1, N ].

2. Initialize: d0 to the uniform distribution and γ̂0 to 1.

3. Do for t = 1, . . .

(a) Send dt−1 to oracle and obtain hypothesis ht.

Set utn = ht(xn)yn.

Assume ut · dt−1 ≥ g, where g need not be known.

(b) Update the distribution to any [dt, P tLP] ∈ argmin
d,γ

γ

s.t. uq · d ≤ γ, for 1 ≤ q ≤ t, dn ≤ 1/ν, for 1 ≤ n ≤ N, and
∑

n dn = 1.

(c) If minq=1,...,t uq · dq−1 − P tLP ≤ ε then set T = t and break.

4. Output: fw(x) =
∑T

q=1wqh
q(x), where the coefficients w maximize the soft

margin over the hypothesis set {h1, . . . , hT } using the LP problem (2.2).
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U =
0 0 3
1 1 2
0 0 3

Figure 2.7: Example of a pivot. In this matrix, the pivot is at position (2, 3) and the
pivot value, shown in red, is 2.

on the linear programming solver.

LPBoost begins by setting d0 to the uniform distribution. In iteration t, the

LPBoost algorithm [21] sends its current distribution dt−1 to the oracle and receives

a hypothesis ht that satisfies dt−1 · ut ≥ g. It then updates its distribution to dt by

solving the soft margin linear programming problem defined by (2.3) based on the t

hypotheses received so far.

The goal of the boosting algorithms is to produce a convex combination of

T hypotheses such that P TLP ≥ g − ε. Because we cannot assume that g is known,

LPBoost monitors the quantity minq=1...t uq ·dq−1−P tLP instead, and terminates when

this quantity is less than ε. By the assumption on the oracle, the sequence minq=1...t uq ·

dq−1 is non-increasing and it is lower-bounded by g. Similarly, the sequence P tLP is

non-decreasing and is upper-bounded by PLP . As a result, minq=1...t uq ·dq−1−P tLP ≤ ε

ensures that P tLP ≥ g − ε. This stopping criterion is visualized by Figure 2.6.

2.3 Pivots and Linear Programming

In this section, we establish an elementary result about a special element in

a matrix defining the min−max problem in (2.1). This result will be applied in the

analysis of Chapter 2.4 to show that the iteration bound of LPBoost must be at least
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linear in the number of examples. This result is also used in Chapter 2.5 to show that any

linearly separable dataset can be reduced to a dataset on which LPBoost misclassifies

all examples.

Let ei be a unit vector with a one in position i. Also, let U be the matrix

whose columns are the uq vectors and let Ui,j refer to the element of U at row i and

column j. Note that with this notation, Ui,j = uji .

Definition 2.3 Location (i, j) is a pivot of U if the element Ui,j is greater than or

equal to any element in its row and less than or equal to any element in its column.

An example of a pivot can be seen in Figure 2.7. In this matrix, the pivot is

at position (2, 3) and the pivot value, shown in red, is 2.

Lemma 2.4 If U contains a pivot at position (i, j), then the value of the optimization

problem defined by (2.1) is the pivot value Ui,j and ei, ej are optimal solutions for d

and w respectively [88].

Proof Let P tLP be the value of the optimization problem defined by (2.1). Since the

l.h.s. of (2.1) is a min over d, we have that for any d ∈ SN

P tLP ≤ max
q=1...t

uq · d. (2.4)

For d = ei, we get

P tLP ≤ max
q=1...t

uqi = uji .

Since the r.h.s. of (2.1) is a max over w, the following holds for any w:

P tLP ≥ min
n=1...N

t∑
q=1

utnwq. (2.5)
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n \ t 1 2 3 4 5
1 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ
2 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ
3 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ
4 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ
5 −1 + 2δ +1 −1 + 7δ −1 + 9δ +1− δ
6 −1 + 3δ −1 + 4δ +1 −1 + 9δ +1− δ
7 −1 + 3δ −1 + 5δ −1 + 6δ +1 +1− δ
8 −1 + 3δ −1 + 5δ −1 + 7δ −1 + 8δ +1− δ

P tLP −1 + 2δ −1 + 4δ −1 + 6δ −1 + 8δ ≥ δ/2

Figure 2.8: An example where LPBoost provably requires Ω(N/2) iterations from [87].
These are the ut vectors that are hard for LPBoost (for ν = 1).

For w = ej , we get

P tLP ≥ min
n=1...N

ujn = uji .

We conclude that d = ei makes (2.4) tight and w = ej makes (2.5) tight.

2.4 A Lower Bound on the LPBoost Iteration Bound

To our knowledge, there is no known iteration bound for LPBoost even though

it provably converges to within ε of the optimal solution of the optimization problem [21,

39]. Empirically, the number of iterations required for convergence depends on the linear

programming optimizer, e.g. simplex or interior point solver [91]. In [87] Warmuth et al.

established for the first time a lower bound showing that, independent of the optimizer,

LPBoost can require Ω(N) iterations:

Theorem 2.5 There exists a case where LPBoost requires N/2 iterations to achieve a

hard margin that is within 0.99 of the optimum hard margin.
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Proof Assume we are in the hard margin case (ν = 1). The counterexample has N

examples and N
2 + 1 base hypotheses. After N

2 iterations, the optimal value P tLP for the

chosen hypotheses will still be close to −1, whereas after the last hypothesis is added,

this value is at least δ/2. Here δ > 0 is an arbitrary small number.

Figure 2.8 shows the case where N = 8 and T = 5, but it is trivial to generalize

this example to any even N . There are 8 examples/rows and the five columns are the

u vectors of the five available base hypotheses. Recall that the u vectors combine the

labels and the examples. The examples are linearly separable because if we choose the

weight on the hypotheses w to put half of the weight on the first hypothesis and half

of the weight on the last hypothesis, then the margins of all examples are at least δ/2.

We assume that in each iteration the oracle will return the remaining hypoth-

esis with maximum edge. This will result in LPBoost choosing the hypotheses in order,

and there will never be any ties. The initial distribution d0 is uniform. At the end of

iteration t (1 ≤ t ≤ N/2), the bolded entry of column t in Figure 2.8 is a pivot of the

matrix U whose columns are u1 . . .ut. By Lemma 2.4, the distribution dt will focus all

its weight on example N/2 + t, and the optimal distribution wt will put all of its weight

on the tth hypothesis that was just received. The value of the optimization problem in

(2.1) will be −1 + 2δt at the end of iteration t = 1, . . . , N/2. After N/2 iterations, the

value P tLP of the underlying LP problem will still be close to −1, because δ can be made

arbitrarily small. We reasoned already that the value for all N/2 + 1 hypotheses will be

positive. If δ is sufficiently small, then after N/2 iterations LPBoost is still at least .99

away from the optimal solution.
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Although the example set used in the above proof is linearly separable, we can

modify it explicitly to argue that capping the distribution on examples will not help in

the sense that “soft” LPBoost with ν > 1 can still have linear iteration bounds. To

negate the effect of capping, simply pad out the problem by duplicating all of the rows

ν times. There will now be Ñ = Nν examples, and after N
2 = Ñ

2ν iterations, the value of

the game is still close to −1. This is not a claim that capping has no value. It remains

an important technique for making an algorithm more robust to noise. However, it is

not sufficient to improve the iteration bound of LPBoost from linear growth in N to

logarithmic.

2.5 The Master Hypothesis Returned by LPBoost

Consider the case where LPBoost has terminated and we want to use the

optimization problem defined by (2.1) to find a master hypothesis that is a convex com-

bination of the T selected hypotheses: fw(xn) =
∑T

q=1wqh
q(xn). We seek to determine

whether this master hypothesis is a good one. Specifically, if there exists a convex com-

bination of selected hypotheses that can correctly classify all but one example, then

the master hypothesis should not have significantly worse performance. In this section

we show that when the master hypothesis is computed via the optimization problem

defined by (2.1), it is possible to reduce a linearly separable set of examples to one where

LPBoost misclassifies all examples by adding one bad example and one bad hypothesis.
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n \ t 1 2 3 4 5
1 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ
2 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ
3 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ
4 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ
5 −1 + 2δ +1 −1 + 7δ −1 + 9δ +1− δ
6 −1 + 3δ −1 + 4δ +1 −1 + 9δ +1− δ
7 −1 + 3δ −1 + 5δ −1 + 6δ +1 +1− δ
8 −1 + 3δ −1 + 5δ −1 + 7δ −1 + 8δ +1− δ
9 −3δ −3δ −3δ −3δ −3δ

P tLP −3δ −3δ −3δ −3δ −3δ
(a) Adding a bad example to the counterexample in Figure 2.8.

n \ t 1 2 3 4 5 6
1 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ −δ
2 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ −δ
3 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ −δ
4 +1 −1 + 5δ −1 + 7δ −1 + 9δ −1 + δ −δ
5 −1 + 2δ +1 −1 + 7δ −1 + 9δ +1− δ −δ
6 −1 + 3δ −1 + 4δ +1 −1 + 9δ +1− δ −δ
7 −1 + 3δ −1 + 5δ −1 + 6δ +1 +1− δ −δ
8 −1 + 3δ −1 + 5δ −1 + 7δ −1 + 8δ +1− δ −δ
9 −3δ −3δ −3δ −3δ −3δ −2δ

P tLP −3δ −3δ −3δ −3δ −3δ −2δ
(b) Adding a bad hypothesis to the counterexample in Figure 2.8.

Figure 2.9: Even when LPBoost is given a good set of hypotheses, it can return a very
bad final hypothesis. Note that these are the ut vectors, so they incorporate both the
examples and the labels.
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First we describe this reduction using a concrete example. Suppose that there

is a set of examples that can all be correctly classified by a convex combination of

hypotheses. The counterexample from the previous section (Figure 2.8) satisfies this

condition by putting equal weight on the first and last hypotheses. In Figure 2.9(a),

we add a row of −3δ to the matrix in Figure 2.8. We then add hypothesis that mis-

classifies every example. This corresponds to the last column in Figure 2.9(b). Since

position (9, 6) in this matrix is a pivot, Lemma 2.4 tells us that the value of the opti-

mization problem in (2.1) is −2δ and that w puts all of its weight on the last hypothesis.

Therefore, LPBoost misclassifies all of the examples.

Now we show how the same reduction applies to any linearly separable dataset.

Suppose we have a set of labeled examples (xn, yn) for n = 1 . . . N − 1 and a set of

hypotheses h1 . . . hT−1 such that the examples are linearly separable. Fix 0 < δ � 1.

First we add a bad example xN , such that uqN = −3δ for q = 1 . . . t − 1. We then

construct hypothesis T such that uTn = −δ for n = 1 . . . N − 1 and uTN = −2δ. By

construction, the value corresponding to example N and hypothesis T is a pivot, and

by Lemma 2.4, the w found by LPBoost will put all of its weight on hypothesis T .

Therefore, LPBoost will misclassify every example.

In summary, we can reduce any linearly separable set of examples to one where

LPBoost misclassifies all examples simply by adding one bad example and one bad

hypothesis. This reduction is independent of the size of the dataset and the number of

hypotheses. Also, the reduction does not rely on the scale of the noisy example. As

long as the values in the bad example are negative, they can be arbitrarily close to zero.
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Figure 2.10: Long and Servedio’s counterexample demonstrates no convex potential
booster is robust to random classification noise.

2.6 Robustness to Random Label Noise

Boosting algorithms can be viewed as the minimization of some function of

the margins of the examples via coordinate descent [49, 34, 63, 8, 26]. This function of

the margin, called a potential function, is denoted by φ and must satisfy the following

properties:

1. φ is non-increasing, continuous, and differentiable.

2. φ′(0) < 0 and lim
x→+∞

φ(x) = 0.

The convex potential booster1 as defined in this paper minimizes a global potential

Φ(w) :=
N∑
n=1

φ(yn
t∑

q=1

wqh
t(xn)).

1It should be noted that not all convex potential functions result in boosting algorithms [25].

30



Long and Servedio [49] showed by counterexample that no convex potential

booster can be provably robust to random classification noise. Random classification

noise means that with some fixed probability, the label of an example is corrupted. The

counterexample constructed by Long and Servedio is shown in Figure 2.10. It consists of

four examples and two hypotheses. All of the examples have label 1. It is easy to see that

hypothesis 1 correctly classifies all examples with margin at least γ. The examples are

arranged such that if the label of the example with large margin is corrupted, its scale

can overwhelm the other examples and will force the booster to put too much weight

on hypothesis 2. The main result in [49] is that for any convex potential function and

any noise rate in the range (0, 1/2), there exists a 0 < γ < 1/6 such that the optimal w

misclassifies two of the four examples in Figure 2.10.

Neither LPBoost nor ERLPBoost (described in Chapter 3) satisfy the precon-

ditions of Long and Servedio’s theorem. First of all, LPBoost is not a convex potential

booster. To see why, recall that LPBoost optimizes max
w

min
n=1...N

yn
∑t

q=1wqh
t(xn), which

is equivalent to minimizing

min
n=1...N

−yn
t∑

q=1

wqh
t(xn).

Because there is a min instead of a sum, LPBoost does not optimize a function of

the form of Φ(w). In addition, the potential function for LPBoost would be φ(x) =

−x, which does not satisfy property 2 because lim
x→+∞

φ(x) = −∞. In the w domain,

ERLPBoost optimizes

−1
η

ln
N∑
n=1

d0
n exp(−η(

t∑
q=1

uqnwq + ψn))− 1
ν

N∑
n=1

ψn.
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This does not fit the definition of a convex potential booster, but in the uncapped case

(ν = 1), the ψn variables vanish, and the function optimized by ERLPBoost becomes

−1
η

ln
N∑
n=1

d0
n exp(−η

t∑
q=1

uqnwq).

Since the logarithm is monotonic, it can be dropped from the objective function, and

the resulting function fits the definition of a convex potential booster. However, even in

the uncapped case, Long and Servedio’s theorem does not apply to ERLPBoost. The

reason is that the form of the w vector found in their analysis requires w1 + w2 > 1,

but our algorithms require w1 + w2 = 1.

Nevertheless, we show experimentally that both LPBoost and ERLPBoost

exhibit the same problem as the convex potential boosters that satisfy the theoretical

requirements of the Long and Servedio’s analysis. Recall that the main result in [49]

is that for any convex potential function there exists a γ such that the optimal w

misclassifies two of the four examples in Figure 2.10. Thus, to show that an algorithm

is vulnerable to this counter example, it suffices to find a γ with this property. When

we ran LPBoost and ERLPBoost on Long and Servedio’s counterexample with γ = 0.1,

half of the examples were misclassified. Furthermore, no value of the capping parameter

ν or regularization parameter η was enough make the algorithms more robust. In the

end, the large margin of the bad example is enough to force both algorithms to put too

much weight on hypothesis 2 (the bad hypothesis) and not enough on hypothesis 1 (the

good hypothesis).
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Long and Servedio’s example is significant because it shows that convex po-

tential boosters cannot be provably robust to random label noise. However, because it

relies on extreme margin imbalances and a small sample size, it is not an argument that

convex potential boosters perform badly in practice.

The reduction in the previous section differs from Long and Servedio’s example

in several important ways. First, it is not intended to argue against all convex potential

boosters – it was only intended to argue against LPBoost. Second, the reduction relies on

pivots to uniquely determine the optimal linear programming solution, not on extreme

margin imbalances. In the reduction, the one bad example can have values that are

arbitrarily close to zero. Third, the reduction only requires the original data set to be

linearly separable, but it makes no assumption about the structure of the data set or

its size.
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Chapter 3

Entropy-Based Boosting Algorithms

In this chapter, we present three algorithms: SoftBoost, Entropy Regular-

ized LPBoost (ERLPBoost), and Binary Entropy Regularized LPBoost (Binary ERLP-

Boost). Boosting algorithms maintain a distribution d on the examples, and this distri-

bution is used to select the next hypothesis. These algorithms employ either the relative

entropy or the binary relative entropy to distribute the weights on the examples more

uniformly, thereby avoiding the problem caused by concentrating too much weight on a

few examples, as LPBoost does (see discussion in Chapter 2). SoftBoost minimizes the

entropy subject to an increasing number of constraints, while the entropies are used as

regularizers in ERLPBoost and Binary ERLPBoost.

In Chapter 2.4, we showed that if LPBoost has iteration bounds, they are at

least linear in the number of examples. In contrast, for the algorithms in this chapter

we will prove iteration bounds that are logarithmic in the number of examples. More

specifically, all three algorithms will come ε-close to the optimal linear programming
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Symbol Description
N Number of examples.
t Iteration number.
T Final number of iterations.
SM Probability simplex of dimension M.
xn nth example.
X Domain of examples.
yn ∈ {−1, 1} nth label.
ht(xn) ∈ [−1, 1] Prediction of hypothesis t on example xn.
H Hypothesis class.
utn = ynh

t(xn) Convenient notation for combining labels and hypotheses.
d ∈ SN Distribution on examples.
γ maximum edge w.r.t. distribution d
w ∈ St Distribution on hypotheses at iteration t.
ψ ∈ [0,∞]N Slack variable for soft margin problem.
β Lagrange multiplier for

∑N
n=1 dn = 1 constraint.

ε Precision parameter.
ν Capping parameter.
g Guarantee of the oracle.
P tLP Value of the LPBoost objective function at iteration t.
PLP Value of the LPBoost objective function over all hypotheses.
PS(d) Value of the SoftBoost objective function
Θ̂t
S(w,ψ) Lagrangian dual of Ps

P (d) Value of the ERLPBoost objective function
Θ̂t(w,ψ) Lagrangian dual of P
PU (d) Value of the Unnormalized ERLPBoost objective function
Θ̂U Lagrangian dual of PU
PB(d) Value of the Binary ERLPBoost objective function
Θ̂t
B(w,ψ, β) Lagrangian dual of PB
Aw Active set for u · d ≤ γ constraints
Aψ Active set for dn ≤ 1/ν constraints
δt simple stopping criterion for ERLPBoost
δtB simple stopping criterion for Binary ERLPBoost
δ̃t practical stopping criterion for Binary ERLPBoost
δ̃tB practical stopping criterion for Binary ERLPBoost

Table 3.1: Notation for entropy-based boosting algorithms
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solution in at most O
(

ln(Nν )
ε2

)
iteration, where N is the number of examples and ν is

the capping parameter that constrains the weight on each example to be at most 1
ν .

The range of ν is [1, N ] and the iteration bound tightens as ν increases. When ν = N ,

the bound is zero because the only feasible distribution on the examples is the uniform

distribution.

There are important similarities between LPBoost and the three algorithms

presented in this chapter. Like LPBoost, these algorithms all maximize the soft margin.

Also, these algorithms employ capping to make them robust to noise. Finally, these

algorithms are totally corrective: the updated distribution d on the examples has small

edge w.r.t. all of the past hypotheses.

The chapter is organized as follows. We will discuss SoftBoost, ERLPBoost,

and Binary ERLPBoost. For each algorithm, we derive the stopping criterion, the

Lagrangian dual, the system of linear equations that relate the primal and dual variables,

and the iteration bound.

3.1 The SoftBoost Algorithm

The SoftBoost algorithm [87] is motivated by minimizing the relative en-

tropy to the initial distribution subject to specially chosen constraints. The rela-

tive entropy between distribution d and the uniform distribution d0 is defined as

∆(d,d0) :=
∑

n dn ln dn
d0n

. The relative entropy is minimized when d = d0, so the

optimization problem solved by SoftBoost picks the feasible distribution that is closest
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Algorithm 3.1 SoftBoost with accuracy param. ε and capping parameter ν

1. Input: S = 〈(x1, y1), . . . , (xN , yN )〉, desired accuracy ε, and capping parameter

ν ∈ [1, N ].

2. Initialize: d0 to the uniform distribution and γ̂0 to 1.

3. Do for t = 1, . . .

(a) Send dt−1 to the oracle and obtain hypothesis ht.

Set utn = ht(xn)yn and γ̂t = min{γ̂t−1,ut · dt−1}.

(Assume dt−1 · ut ≥ g, where edge guarantee g is unknown.)

(b) Update3

dt = argmin
d

∆(d,d0), s.t. uq·d ≤ γ̂t−ε, for 1 ≤ q ≤ t,
∑
n

dn = 1, d ≤ 1
ν

1.

(c) If above infeasible or dt contains a zero then T = t and terminate.

4. Output: fw(x) =
∑T

q=1 wT
q h

q(x), where the coefficients wT
q are the dual variables

of the above optimization problem at iteration T .

3 When g is known, replace the upper bound γ̂t − ε by g − ε.
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to uniform. In this way, the relative entropy mechanism prevents d from becoming

overly concentrated on a few examples.

SoftBoost takes as input a sequence of examples S = 〈(x1, y1), . . . , (xN , yN )〉,

an accuracy parameter ε, and a capping parameter ν. The algorithm has an oracle

available with unknown guarantee g. Its initial distribution d0 is uniform. In each

iteration t, the algorithm prompts the oracle for a new base hypothesis, incorporates

it into the constraint set, and updates its distribution dt−1 to dt by minimizing the

relative entropy subject to linear constraints:

min
d

∆(d,d0)

s.t. uq · d ≤ γ̂t − ε, for 1 ≤ q ≤ t,∑
n dn = 1, d ≤ 1

ν1.

(3.1)

We define γ̂t := min1≤q≤t uq · dq−1. Because the set over which the minimum is taken

gets larger with each iteration, γ̂t is non-increasing. Note that decreasing γ̂t amounts

to tightening the constraints of the optimization problem. At the same time, a new

constraint is added to the optimization problem at each iteration. This further reduces

the size of the feasible set. SoftBoost terminates when the above optimization problem

is infeasible or when dt contains a zero.

Observe that removing the relative entropy term from the objective results in

a feasibility problem for a linear program where the edges are upper bounded by γ̂t− ε.

If we remove the relative entropy and minimize the upper bound on the edges, then we

arrive at the optimization problem of LPBoost. In this case, logarithmic growth in the

number of examples is no longer possible. The relative entropy in the objective ensures
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that the probabilities of the examples are always proportional to their exponentiated

negative soft margins (3.2). That is, more weight is put on the examples with low

soft margin, which are the examples that are hard to classify. In contrast, recall from

Chapter 2 that LPBoost puts all of the weight on examples of minimum soft margin.

SoftBoost is the same as TotalBoost except for the additional capping con-

straints. SoftBoost with ν = 1 makes the capping constraints vacuous and recovers

TotalBoost.

3.1.1 Lagrangian Dual of SoftBoost

In the following lemma, we compute the Lagrangian dual of the SoftBoost

optimization problem. We make use of the Lagrangian dual in the iteration bound, but

there is also some insight to be gained from the dual problem. First, as a byproduct

of deriving the Lagrangian dual, we get a closed-form expression for the update on the

d variables in terms of the dual variables w and ψ. The second point of interest is

the form of the Lagrangian dual itself. The corresponding dual for LPBoost tries to

maximize the minimum soft margin. In contrast, the dual of the SoftBoost problem is

a soft max.

Lemma 3.1 The Lagrangian dual of (3.1) is

max
w,ψ

Θ̂t
S(w,ψ), s.t. w ≥ 0, w · 1 = 1,ψ ≥ 0,

where Θ̂t
S(w,ψ) := − ln

N∑
n=1

d0
n exp(−

t∑
q=1

uqnwq − ψn)− (γ̂t − ε)
t∑

q=1

wq −
1
ν

N∑
n=1

ψn.
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The optimal solution dt of (3.6) can be expressed in terms of the dual variables wt and

ψt as follows:

dtn :=
d0
n exp(−

∑t
q=1 u

q
nwtq − ψtn)∑

n′ d
0
n′ exp(−

∑t
q=1 u

q
n′w

t
q − ψtn))

. (3.2)

Proof The Lagrangian of the minimization problem in (3.1) is

Lt( d︸︷︷︸
primal

,w,ψ, β︸ ︷︷ ︸
dual

) = ∆(d,d0) +
t∑

q=1

wq(uq · d− γ̂t + ε)

+
N∑
n=1

ψn(dn − 1/ν) + β(1 · d− 1). (3.3)

The dual is derived from the Lagrangian by plugging in the minimum value of the primal

variables:

Θt
S(w,ψ, β) := inf

d
Lt(d,w,ψ, β).

Differentiating w.r.t. d shows that the n-th component of the optimal d vector has the

form

dn = d0
n exp(−

t∑
q=1

uqnwq − ψn − β − 1). (3.4)

By plugging the optimal d into the Lagrangian shown in (3.3), the dual function sim-

plifies to

Θt
S(w,ψ, β) =−

N∑
n=1

d0
n exp(−

t∑
q=1

uqnwq − ψn − β − 1)− β − (γ̂t − ε)
t∑

q=1

wq −
1
ν

N∑
n=1

ψn.

This results in the following Lagrange dual:

max
w

Θt(w,ψ, β)

s.t. w ≥ 0, ψ ≥ 0,
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By differentiating Θt(w,ψ, β), we can determine the optimal choice of β:

βt(w,ψ) = −1 + ln
N∑
n=1

d0
n exp(−

t∑
q=1

uqnwq − ψn).

Plugging this choice for β into (3.4) results in

dtn :=dtn(wt,ψt, βt(wt,ψt))

=
d0
n exp(−

∑t
q=1 u

q
nwtq − ψtn)∑

n′ d
0
n′ exp(−

∑t
q=1 u

q
n′w

t
q − ψtn)

.

Once β is optimized, the Lagrangian becomes

Θt
S(w,ψ, βt(w,ψ)) = Θ̂t

S(w,ψ)

:= −1
η

ln
N∑
n=1

d0
n exp(−η

t∑
q=1

uqnwq − ηψn)− (γ̂t − ε)
t∑

q=1

wq −
1
ν

N∑
n=1

ψn.

The dual problem now reduces to

max
w,ψ

Θ̂t
S(w,ψ)

s.t. w ≥ 0, ψ ≥ 0.

The primal objective is convex and the primal constraints are affine. Also, the

uniform distribution is always a feasible solution. Therefore, Slater’s condition [7] tells

us that since this problem has a non-empty feasible set, strong duality holds and the

values of the primal and the dual problems are the same.
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3.1.2 Relationship Between the Primal and Dual Variables of Soft-

Boost

In the process of finding the Lagrangian dual of the SoftBoost problem, we

were able to express the optimal dt in terms of the dual variables wt and ψt:

dtn =
d0
n exp(−

∑t
q=1 u

q
nwtq − ψtn)∑

n′ d
0
n′ exp(−

∑t
q=1 u

q
n′w

t
q − ψtn)

.

We now want to compute wt and ψt given dt. It is possible to do so via the Karush-

Kuhn-Tucker optimality conditions, which relate the primal and dual optimal solu-

tions [7]. Let en be a unit vector with a 1 in the nth component. Then for the SoftBoost

algorithm, the KKT conditions are:

uq · dt − γ̂t + ε ≤ 0, q = 1 . . . t dtn ≤ 1
ν , n = 1 . . . N

wtq ≥ 0, q = 1 . . . t ψtn ≥ 0, n = 1 . . . N

wtq(u
q · dt − γ̂t + ε) = 0, q = 1 . . . t ψtn(dtn − 1

ν ) = 0, n = 1 . . . N∑
n d

t
n − 1 = 0, n = 1 . . . N

1
η + 1

η ln
(

dt

d0

)
+
∑t

q=1w
t
qu

q +
∑N

n=1 ψ
t
nen + βt1 = 0.

The inequality constraints make this a complicated set of equations to solve,

but the problem can be considerably simplified by observing that dt, the optimal value

of d, is already known. Knowing dt means we also know which inequality constraints

are active and which are slack. Following the discussion in Appendix A, we can make

use of this knowledge to find w and ψ by solving an equivalent simpler KKT system.

For a given d, we define the sets of active constraints for w as Aw(d) := {q ∈

1 . . . t : uq · d = γ̂t − ε} and ψ as Aψ(d) := {n ∈ 1 . . . N : dn = 1
ν }. If Aw(dt) and
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Aψ(dt) are the optimal active sets, then (3.1) can be equivalently expressed as

min
d

∆(d,d0)

s.t. uq · d = γ̂t − ε for q ∈ Aw(dt),∑
n dn = 1, dn = 1

ν for n ∈ Aψ(dt).

Then the KKT optimality conditions for this problem are∑
n d

t
n = 1

dtn = 1
ν for n ∈ Aψ(dt)

dt · uq = γ̂t − ε for q ∈ Aw(dt)

1
η + 1

η ln
(

dt

d0

)
+
∑

q∈Aw(dt)wqu
q +

∑
n∈Aψ(dt) ψ

t
nen + βt1 = 0.

Recall that in this scenario, we are given dt and want to use this knowledge to get wt

and ψt. Because the first three of the above equations are simply solving for dt and dt

is already known, we can ignore them. The last equation is what relates dt to the dual

variables. We can find wt, ψt, and βt by solving the linear system

1
η

+
1
η

ln
(

dt

d0

)
+

∑
q∈Aw(dt)

wquq +
∑

n∈Aψ(dt)

ψnen + β1 = 0.

The SoftBoost optimization problem is strictly convex and its feasible set is a closed

convex set, so as long as the optimization problem is feasible, then it has a unique

optimal solution [7]. As a result, the system of equations defined by the KKT conditions

has an exact solution.

3.1.3 Iteration Bound for SoftBoost

In this section, we prove an upper bound on the number of iterations required

by SoftBoost to achieve a soft margin that is within ε of guarantee g. This result
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originally appeared in [87]. The iteration bound for SoftBoost is very similar to the

bound proved for TotalBoost [91], differing only in the additional details related to

capping. The main tools used in this iteration bound are the Pythagorean theorem for

Bregman divergences and Pinsker’s inequality.

Theorem 3.2 SoftBoost terminates after at most d 2
ε2

ln(N/ν)e iterations with a convex

combination that is at most ε below the optimum value g.

Proof We begin by observing that if the optimization problem at iteration t is infeasible,

then P tLP > γ̂t − ε ≥ g − ε, where P tLP is the optimal solution to the soft margin linear

programming problem at iteration t. The objective function ∆(d,d0) is strictly convex

in d and minimized at the interior point d0. If dt contains a zero, then there is no

optimal solution in the interior of the simplex. Hence, P tLP = γ̂t − ε ≥ g − ε.

Let Ct be the convex subset of probability vectors d ∈ SN satisfying d ≤ 1
ν1

and maxtm=1 d · ut ≤ γ̂t − ε. Notice that C0 is the N dimensional probability simplex

where the components are capped to 1
ν . The distribution dt−1 at iteration t− 1 is the

projection of d0 onto the closed convex set Ct−1. Because adding a new hypothesis in

iteration t results in an additional constraint and γ̂t ≤ γ̂t−1, we have Ct ⊆ Ct−1. If

t ≤ T − 1, then our termination condition ensures that at iteration t − 1, the set Ct−1

has a feasible solution in the interior of the simplex. Also, d0 lies in the interior and

dt ∈ Ct ⊆ Ct−1. These preconditions ensure that at iteration t−1, the projection dt−1 of

d0 onto Ct−1, exists and the Generalized Pythagorean Theorem for Bregman divergences
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[15, 9] is applicable:

∆(dt,d0)−∆(dt−1,d0) ≥ ∆(dt,dt−1). (3.5)

By Pinsker’s inequality [60], ∆(dt,dt−1) ≥ (||dt−dt−1||1)2

2 , and by Hölder’s inequality,

||dt−1 − dt||1 ≥ ||dt−1 − dt||1||ut||∞ ≥ dt−1 · ut − dt · ut. By the definition of γ̂t,

dt−1 · ut ≥ γ̂t. The constraints on the optimization problem assure that dt · ut ≤ γ̂t − ε

and thus dt−1 · ut − dt · ut ≥ γ̂t − (γ̂t − ε) = ε. We conclude that ∆(dt,dt−1) ≥ ε2

2 at

iterations 1 through T − 1. By summing (3.5) over the first T − 1 iterations, we obtain

∆(dT ,d0)−∆(d0,d0) ≥ (T − 1)
ε2

2
.

Since the left side is at most ln(N/ν), the bound of the theorem follows.

When ν = 1, then capping is vacuous and the SoftBoost algorithm becomes

TotalBoost. Note that the upper bound ln(N/ν) on the relative entropy decreases with

ν. When ν = N , then the distribution stays at d0 and the iteration bound is zero.

3.2 Entropy Regularized LPBoost

The SoftBoost algorithm maximized the soft margin and had an O( 1
ε2

ln N
ν ),

but it also had undesirable characteristics. As we showed in [87], the generalization

error decreases slowly in early iterations. Also, the SoftBoost optimization problem

had γ̂t − ε in the edge constraints. The epsilon was necessary but inelegant. Entropy

Regularized LPBoost has the same advantages as SoftBoost, but it has a simpler, more
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Algorithm 3.2 Entropy Regularized LPBoost

1. Input: S = {(x1, y1), . . . , (xN , yN )}, accuracy parameter ε > 0, regularization

parameter η > 0, and smoothness parameter ν ∈ [1, N ]. The canonical value of

η = 2
ε ln N

ν .

2. Initialize: d0 to the uniform distribution.

3. Do for t = 1, . . .

(a) Send dt−1 to oracle and obtain hypothesis ht.

Set utn = ynh
t(xn)

Assume ut · dt−1 ≥ g, where g need not be known.

(b) Set δ̂t = min
q=1...t

P q(dq−1)− Θ̂t−1(wt−1,ψt−1),

where P t(d) = max
q=1,2,...,t

uq · d + 1
η∆(d,d0)

and Θ̂t(w,ψ) := − 1
η ln

∑N
n=1 d

0
n exp(−η(

∑t
q=1 u

q
nwq + ψn))− 1

ν

∑N
n=1 ψn.

(c) If δ̂t ≤ ε/2 then set T = t− 1 and break.

(d) Else update the distribution to dt = argmin
d

max
q=1,2,...,t

uq · d + 1
η∆(d,d0).

s.t. dn ≤ 1/ν, for n = 1 . . . N,
∑

n dn = 1.

4. Output: fw(x) =
∑T

q=1w
T
q h

q(x), where the coefficients wTq are the dual variables

to the optimization problem at iteration T .
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natural motivation.

In the minimization problem that motivates Entropy Regularized LPBoost

(ERLPBoost), a relative entropy is added to the linear programming problem in (2.3):

min
d∈SN , d≤ 1

ν
1

max
q=1,2,...,t

uq · d.

As in the previous section, the initial distribution d0 is the uniform distribution. The

factor 1/η is a trade-off parameter between the relative entropy and the maximum edge.

The modified mini-max problem is defined as follows:

min

d · 1 = 1

d ≤ 1
ν1

max
q=1,2,...,t

uq · d +
1
η

∆(d,d0)︸ ︷︷ ︸
:=P t(d)

. (3.6)

Note that the constraint d ≥ 0 was dropped because the relative entropy is not defined

for negative dn, and therefore the constraints d ≥ 0 are enforced implicitly. The rela-

tive entropy term makes the objective function P t(d) strictly convex and therefore the

minimization problem has a unique solution, which we denote as dt. We also define

P t(d) when t = 0. In this case the maximum in (3.6) is over an empty set of hypotheses

and is defined as −1 as before. Thus the minimization problem over d, P 0(d), becomes

−1 + 1
η∆(d,d0), which is minimized at d0 and therefore P 0(d0) := −1.

The Entropy Regularized LPBoost algorithm, shown in Algorithm 3.2, predicts

at trial t with this distribution dt. Note that in the statement of the algorithm we

reformulated (3.6) into an equivalent convex optimization problem. If the regularization

term 1
η∆(d,d0) is dropped from the optimization problem then this algorithm becomes
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Figure 3.1: Depiction of the simple stopping criterion for ERLPBoost: δT+1 ≤ ε/2
implies g − P TLP ≤ ε.

the original LPBoost, whose solution is not unique and depends on the LP solver that

is used.

3.2.1 A Simple Stopping Criterion for ERLPBoost

The simple stopping criterion for ERLPBoost algorithm monitors

δt := min
q=1,2,...,t

P q(dq−1)− P t−1(dt−1)

and stops when δT+1 ≤ ε/2, for a predefined threshold ε > 0. All relevant quantities

used in the proof are depicted in Figure 3.1. The sequence 〈P tLP 〉 approaches the line

48



PLP from below and the sequence 〈minq=1...t+1 P
q(dq−1)〉 approaches the line g from

above. When g < PLP, then both sequences cross, and when g = PLP, then both

sequences get arbitrarily close.

Lemma 3.3 If η ≥ 2
ε ln N

ν in (3.6), then δT+1 ≤ ε/2 implies g − P TLP ≤ ε, where g is

the guarantee of the oracle.

Proof Since ∆(d,d0) ≤ ln N
ν and η ≥ 2

ε ln N
ν , we have 1

η∆(d,d0) ≤ ε/2 and

P T (dT ) ≤ P TLP + ε/2. (3.7)

On the other hand, from the fact that ∆(d,d0) ≥ 0 and the assumption on the oracle,

we know that

g ≤ min
q=1,2,...,T+1

uq · dq−1 ≤ min
q=1,2,...,T+1

P q(dq−1).

Subtracting P T (dT ) and using the stopping criterion we have

g − P T (dT ) ≤ min
q=1,2,...,T+1

P q(dq−1)− P T (dT ) = δT+1 ≤ ε/2.

Adding (3.7) to the above yields g ≤ P TLP + ε.

When η ≥ 2
ε ln N

ν , then the regularization term 1
η∆(d,d0) is at most ε/2, im-

plying that the values of the regularized problems in the example domain are always at

most ε/2 larger than the corresponding unregularized problems. The ERLPBoost algo-

rithm produces a final weight vector w based on the dual of the regularized minimum-

maximum edge problem (3.6) given in the next section. In [87] and [90] we compute
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Figure 3.2: Depiction of the practical stopping criterion for ERLPBoost: δ̃T+1 implies
g − P TLP ≤ ε.

the final w via the dual of the unregularized optimization problem, but the results in

Chapter 2 suggest this choice of w can result in poor performance.

3.2.2 A Practical Stopping Criterion for ERLPBoost

In practice, computing dt−1 to high precision is too computationally expensive.

If the overall precision of our algorithm ε is not that high, then it can be argued that our

intermediate solution dt−1 does not need to be solved with very high precision either.

However, this requires a somewhat different stopping criterion, which was originally
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proposed by Vishwanathan [84].

Recall that the simple stopping criterion for ERLPBoost monitors the quantity

δt := min
q=1,2,...,t

P q(dq−1)− P t−1(dt−1)

and terminates when δt ≤ ε/2. Now suppose that dt−1 is not known to high precision.

Analysis of following inequality shows that reducing the precision requirement for dt−1

introduces a problem. Let d̃t−1 be a low precision approximation of dt−1 and let w̃t−1

and ψ̃t−1 be the dual variables that correspond to the d̃t−1. Then by duality,

P t−1(d̃t−1) > min
d
P t−1(d) = max

w,ψ
Θ̂t−1(w,ψ) > Θ̂t−1(w̃t−1, ψ̃t−1)

From this, it follows that using the low precision approximation d̃t−1 will make δt too

small, and this will cause the algorithm to terminate prematurely.

To be able to use ERLPBoost with low precision solution d̃t−1, we introduce a

more practical stopping criterion. At each iteration, we define the necessary precision of

d̃t−1 by requiring that P t−1(d̃t−1)− Θ̂t(w̃t−1, ψ̃t−1) ≤ ε/4. The new stopping criterion

monitors

δ̃t := min
q=1,2,...,t

P q(d̃q−1)− Θ̂t−1(w̃t−1, ψ̃t−1),

stops when δ̃T+1 ≤ ε/2 for a predefined threshold ε > 0. Recall that Θ̂t is the Lagrangian

dual of the ERLPBoost optimization problem shown in (3.10). When d̃t−1 = dt−1, it

is clear that δ̃t = δt because P t−1(dt−1) = Θ̂t−1(wt−1,ψt−1).

To prove iteration bounds for the practical stopping criterion, we need to

introduce one more quantity. In Theorem 3.10, which proves the final iteration bound
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for the simple stopping criterion, we require that δt > ε/2 for t = 1 . . . T and δT+1 ≤ ε/2.

We want to prove a similar theorem for the practical stopping criterion. Unfortunately,

δ̃t > ε/2 does not imply that δt > ε/2 for t = 1 . . . T and δ̃T+1 ≤ ε/2 does not imply

δt ≤ ε/2. The reason is that in this scenario, the low precision d̃t−1 is known but the

optimal value dt−1 is not. Consequently, the value of min
q=1,2,...,t

P q(dq−1) is also unknown

and it is not possible to bound it by min
q=1,2,...,t

P q(d̃q−1). Instead, we define

δ̂t := min
q=1,2,...,t

P q(d̃q−1)− P t−1(dt−1).

When we prove bounds for this stopping criterion, we will work with δ̂t instead of δt.

This stopping criterion is visualized in Figure 3.2. The main difference between this

figure and Figure 3.1 are the two lines that upper and lower bound P t(dt).

The following lemma establishes the relationship between δ̃ and δ̂ before and

after termination. These relationships are used to prove iteration bounds ERLPBoost

when we use the practical stopping criterion.

Lemma 3.4 For t = 1 . . . T , δ̃t > ε/2 implies δ̂t > ε/4 . Furthermore, δ̃T+1 ≤ ε/2

implies δ̂T+1 ≤ ε/2.

Proof Using the fact that Θ̂t(w̃t−1, ψ̃t−1) < P t−1(dt−1) < P t−1(d̃t−1) we know that

P t−1(d̃t−1)− Θ̂t(w̃t−1, ψ̃t−1) ≤ ε/4 implies

P t−1(dt−1)− Θ̂t(w̃t−1, ψ̃t−1) ≤ ε/4. (3.8)

From the termination condition we also know that for t ≤ T ,

min
q=1,2,...,t

P q(d̃q−1)− Θ̂t−1(w̃t−1, ψ̃t−1) = δ̃t > ε/2.
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Subtracting (3.8) from the above equation yields

min
q=1,2,...,t

P q(d̃q−1)− P t−1(dt−1) = δ̂t > ε/4.

The last part of this lemma comes from the fact that Θ̂t(w̃t−1, ψ̃t−1) < P t−1(dt−1),

which implies

min
q=1,2,...,t

P T+1(d̃T )− P T (dT )︸ ︷︷ ︸bδT+1

≤ min
q=1,2,...,t

P T+1(d̃T )− Θ̂t−1(w̃t−1, ψ̃t−1)︸ ︷︷ ︸eδT+1

≤ ε/2.

We now want to prove that δ̃T+1 ≤ ε/2 implies g − P TLP ≤ ε.

Lemma 3.5 If η ≥ 2
ε ln N

ν in (3.6), then δ̃T+1 ≤ ε/2 implies g − P TLP ≤ ε, where g is

the guarantee of the oracle.

Proof Since ∆(d,d0) ≤ ln N
ν for all d ∈ SN and η ≥ 2

ε ln N
ν , we have 1

η∆(d,d0) ≤ ε/2

and

Θ̂T (w̃T , ψ̃T ) ≤ P T (dT ) ≤ P TLP + ε/2. (3.9)

On the other hand, from the fact that ∆(d,d0) ≥ 0 and the assumption on the oracle,

we know that

g ≤ min
q=1,2,...,T+1

uq · d̃q−1 ≤ min
q=1,2,...,T+1

P q(d̃q−1).

Subtracting Θ̂T (w̃T , ψ̃T ) and using the stopping criterion we have

g − Θ̂T (w̃T , ψ̃T ) ≤ min
q=1,2,...,T+1

P q(d̃q−1)− Θ̂T (w̃T , ψ̃T ) = δ̃T+1 ≤ ε/2.
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Adding (3.9) to the above yields g ≤ P TLP + ε.

3.2.3 Lagrangian Dual of ERLPBoost

In this section we compute the Lagrangian dual of (3.6) and discuss the dual

relationship between the the problem of optimizing the distribution on the examples

versus optimizing the distribution on the current set of hypotheses. For the purpose of

this proof, we call the former problem the primal and the latter problem the dual.

Lemma 3.6 The Lagrangian dual of (3.6) is

max
w,ψ

Θ̂t(w,ψ), s.t. w ≥ 0, w · 1 = 1,ψ ≥ 0, (3.10)

where Θ̂t(w,ψ) := −1
η

ln
N∑
n=1

d0
n exp(−η(

t∑
q=1

uqnwq + ψn))− 1
ν

N∑
n=1

ψn.

The optimal solution dt of (3.6) can be expressed in terms of the dual variables wt and

ψt as follows:

dtn :=
d0
n exp(−η(

∑t
q=1 u

q
nwtq + ψtn))∑

n′ d
0
n′ exp(−η(

∑t
q=1 u

q
n′w

t
q + ψtn))

. (3.11)

Furthermore, the value of the primal is equal to the value of the dual. Also, for the

optimal primal solution dt and optimal dual solution wt,

t∑
q=1

wtq uq · dt = max
q=1,2,...,t

uq · dt.

Proof We start with an equivalent form of (3.6), the optimization problem used in

Entropy Regularized LPBoost. In this reformulation, we introduce the variable γ and
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the inequality constraints uq · d ≤ γ. This is equivalent to the maxq=1,2,...,t uq · d term

from (3.6). The resulting optimization problem is:

mind,γ γ +
1
η

∆(d,d0),

s.t. uq · d ≤ γ, for 1 ≤ q ≤ t,

dn ≤ 1/ν, for 1 ≤ n ≤ N,∑
n

dn = 1.

The Lagrangian for this minimization problem is

Lt( d, γ︸︷︷︸
primal

,w,ψ, β︸ ︷︷ ︸
dual

) = γ +
1
η

∆(d,d0) +
t∑

q=1

wq(uq · d− γ)

+
N∑
n=1

ψn(dn − 1/ν) + β(1 · d− 1). (3.12)

The dual is derived from the Lagrangian by plugging in the minimum value of the primal

variables:

Θt(w,ψ, β) := inf
d,γ

Lt(d, γ,w,ψ, β).

Because the Lagrangian is linear w.r.t. γ and a linear function is unbounded below

unless it is zero everywhere, the result is the following implicit constraint:

∂Lt

∂γ
= 1− 1 ·w = 0.

If we enforce the constraint 1 ·w = 1, then γ vanishes from the Lagrangian. Differenti-

ating the Lagrangian w.r.t. d shows that the n-th component of the optimal d vector

has the form

dn = d0
n exp(−η

t∑
q=1

uqnwq − ηψn − ηβ − 1). (3.13)
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By plugging the optimal d into the Lagrangian (3.12) and enforcing the constraint

1 ·w = 1, the dual function simplifies to

Θt(w,ψ, β) = −1
η

N∑
n=1

d0
n exp(−η

t∑
q=1

uqnwq − ηψn − ηβ − 1)− β − 1
ν

N∑
n=1

ψn.

This results in the following Lagrange dual:

max
w,ψ,β

Θt(w,ψ, β) (3.14)

s.t. w ≥ 0, w · 1 = 1,ψ ≥ 0, (3.15)

By differentiating Θt(w,ψ, β) we can determine the optimal choice of β:

βt(w,ψ) = −1
η

+
1
η

ln
N∑
n=1

d0
n exp(−η

t∑
q=1

uqnwq − ηψn). (3.16)

Plugging this choice for β into (3.13) results in

dtn :=dtn(wt,ψt, βt(wt,ψt))

=
d0
n exp(−η(

∑t
q=1 u

q
nwtq − ψtn))∑

n′ d
0
n′ exp(−η(

∑t
q=1 u

q
n′w

t
q − ψtn))

.

Once β is optimized, the Lagrangian becomes

Θt(w,ψ, βt(w,ψ)) = Θ̂t(w,ψ)

:= −1
η

ln
N∑
n=1

d0
n exp(−η

t∑
q=1

uqnwq − ηψn)− 1
ν

N∑
n=1

ψn.

The dual problem now reduces to

max
w,ψ

Θ̂t(w,ψ)

s.t. w ≥ 0, w · 1 = 1,ψ ≥ 0.
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The primal objective is convex and the primal constraints are affine. Also, the

uniform distribution is always a feasible solution. Therefore, Slater’s condition tells us

that since this problem has a non-empty feasible set, strong duality holds and the values

of the primal and the dual problems are the same.

To prove the last part of the lemma, we observe that when the optimal value of

every parameter is plugged into the Lagrangian, its value is equal to that of the optimal

value of the original objective function. More precisely,

P t(dt) = Lt(dt, γt,wt,ψt, βt),

where dt and γt are the optimal primal parameters that satisfy the primal constraints

and wt, ψt, βt are the optimal dual parameters that satisfy the dual constraint. We

now develop a simplified expression for Lt(dt, γt,wt,ψt, βt).

First observe that the primal constraint (1 ·dt−1) = 0 and the dual constraint

1 ·wt = 1 cause βt and γt, respectively, to vanish from the Lagrangian Lt. Furthermore,

the KKT conditions [7] imply that the product ψtn(dtn−1/ν) = 0, and this also eliminates

ψt from Lt. We are left with the partial Lagrangian

P t(dt) = Lt(dt,wt) =
1
η

∆(dt,d0) +
t∑

q=1

wtqu
q · dt.

Together with the definition (3.6) of P t(dt), this implies that

t∑
q=1

wtqu
q · dt = max

q=1,2,...,t
uq · dt.
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Figure 3.3: Θ̂t(w), the objective function of ERLPBoost in the w domain vs. w1 on a
simple problem of two hypotheses and four examples. It is concave and differentiable.
This is in the uncapped case ν = 1 because otherwise it would not reduce to a 2-
dimensional problem.

0.0 0.2 0.4 0.6 0.8 1.0

d1

0.0

0.5

1.0

1.5

2.0

2.5

O
b
je

ct
iv

e
 v

a
lu

e

η=1/2

η=1

η=2

η=5
η=∞

Figure 3.4: P t(d), the objective function of ERLPBoost in the d domain, vs. d1 on
a simple problem of four hypotheses and two examples. This function is piecewise
continuous and it is not differentiable. This is in the uncapped case ν = 1 because
otherwise it would not reduce to a 2-dimensional problem.

58



Note that Θ̂t(w,ψ) is a “smoothed” minimum soft margin of the examples for

the linear combination w of the first t hypotheses. As η →∞, this margin becomes the

minimum soft margin. Figure 3.3 plots Θ̂t(w) against w1 for a simple dataset with four

examples and two hypotheses in the uncapped case (ν = 1). Note that the ψ variable

does not appear when ν = 1. Because w is a vector of length 2 and w2 = 1−w1, this can

be reduced to a 2-dimension problem of Θ̂t(w) vs. w1. As η increases, the curvature of

the objective function decreases and when η = ∞, Θ̂t(w) is a concave piecewise linear

function.

A smoothing effect can also be seen in the d domain. Whereas LPBoost puts its

entire weight onto the examples with minimum soft margin w.r.t. the current hypothesis

set {h1, . . . , ht}, Entropy Regularized LPBoost spreads the weight to examples with

higher soft margins by taking the soft min of these margins. The degree of the smoothing

is controlled by η. As η →∞, Entropy Regularized LPBoost reverts to an instantiation

of LPBoost (i.e. all weight is put on examples with minimum soft margin). Figure 3.4

plots the value of P t(d) in the uncapped case for a simple problem of four hypotheses

and two examples. Because d2 = 1−d1, this can be reduced to a 2-dimensional problem

of P t(d) vs. d1.
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3.2.4 Relationship Between Primal and Dual Variables for ERLP-

Boost

In the process of finding the Lagrangian dual of the ERLPBoost problem, we

were able to express the optimal distribution dt in terms of wt and ψt:

dtn :=
d0
n exp(−η(

∑t
q=1 u

q
nwtq + ψtn))∑

n′ d
0
n′ exp(−η(

∑t
q=1 u

q
n′w

t
q + ψtn))

.

We now want to know how to find wt and ψt given dt. This can be done by

solving the system of equations defined by the Karush-Kuhn-Tucker (KKT) optimality

conditions, which relate the primal and dual optimal solutions. For the ERLPBoost

algorithm, the KKT conditions relating the primal and dual variables are:

dt · uq − γt ≤ 0, q = 1 . . . t dtn ≤ 1
ν , n = 1 . . . N

wtq ≥ 0, q = 1 . . . t ψtn ≥ 0, n = 1 . . . N

wtq(u
q · dt − γt) = 0, q = 1 . . . t ψtn(dtn − 1

ν ) = 0, n = 1 . . . N∑
n d

t
n − 1 = 0, n = 1 . . . N

∑t
q=1w

t
q − 1 = 0, q = 1 . . . t

1
η1 + 1

η ln
(

dt

d0

)
+
∑t

q=1w
t
qu

q +
∑N

n=1 ψ
t
nen + βt1 = 0

where d/d0 indicates componentwise division and en is a unit vector whose nth compo-

nent is 1. Note that the last two equations come from the condition that the gradient

of the Lagrangian must be zero. For completeness, the Lagrangian of the ERLPBoost

optimization problem is

Lt( d, γ︸︷︷︸
primal

,w,ψ, β︸ ︷︷ ︸
dual

) = γ +
1
η

∆(d,d0) +
t∑

q=1

wq(uq · d− γ)

+
N∑
n=1

ψn(dn − 1/ν) + β(1 · d− 1).
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Observe that these equations now require w to be normalized, which was not the case

for SoftBoost. Also recall that β is the Lagrange multiplier for constraint that d must

sum to 1.

Because the optimal value of the primal variables, dt and γt, is already known,

we also know which constraints are active. Following the discussion in Appendix A and

Chapter 3.1.2, we can use this knowledge to simplify the problem. For a given d, we

define the sets of active constraints for w as Aw(d) := {q ∈ 1 . . . t : uq · d = γt} and ψ

as Aψ(d) := {n ∈ 1 . . . N : dn = 1
ν }. If Aw(dt) and Aψ(dt) are the optimal active sets,

then (3.6) can be equivalently expressed as

min
d,γ

γ + 1
η∆(d,d0)

s.t. d · uq = γ for q ∈ Aw(dt),∑
n dn = 1, dn = 1

ν for n ∈ Aψ(dt).

Then the KKT optimality conditions for the ERLPBoost problem at iteration t can be

simplified to

∑
n d

t
n = 1

dtn = 1
ν for n ∈ Aψ(dt)

dt · uq = γt for q ∈ Aw(dt)∑t
q∈Aw(dt)w

t
q = 1.

1
η1 + 1

η ln
(

dt

d0

)
+
∑

q∈Aw(dt)wqu
q +

∑
n∈Aψ(dt) ψ

t
nen + βt1 = 0

The first three equations are solving for dt and γt, but since these are known,

these equations can be ignored. Therefore, solving for wt, ψt, and βt reduces to solving
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the linear system defined by

∑t
q∈Aw(dt)w

t
q = 1.∑

q∈Aw(dt)wqu
q +

∑
n∈Aψ(dt) ψ

t
nen + βt1 = − 1

η1−
1
η ln

(
dt

d0

)
The ERLPBoost optimization problem is strictly convex and its feasible set is a closed

convex set, so as long as the optimization problem is feasible, then it has a unique

optimal solution [7]. As a result, the system of equations defined by the KKT conditions

has an exact solution.

3.2.5 Iteration Bound for ERLPBoost

We now bound the number of iterations T needed before the value of the

ERLPBoost optimization problem gets within ε of the guarantee g. For clarity, the

number of iterations corresponds to the number of hypotheses incorporated into the

final linear combination, rather than calls to the oracle. The number of calls to the

oracle is T + 1 but the number of hypotheses in the final linear combination is T . In

other words, the hypothesis hT+1 obtained in the last call to the oracle is discarded.

In this section, we actually prove two iteration bounds for ERLPBoost. One

will use the simple stopping criterion of Chapter 3.2.1 and the other will use the practical

stopping criterion of Chapter 3.2.2. We will see that the bound for the former is tighter

than the bound for the latter by a factor of two.

Our first technical lemma bounds the increase P t(dt)−P t−1(dt−1) by a quadratic

term. This lemma is used in iteration bounds for both of the stopping criteria.

Lemma 3.7 If η ≥ 1
2 , then P t(dt)− P t−1(dt−1) ≥ 1

8η (P t(dt−1)− P t−1(dt−1))2.
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Proof First observe that P t(dt−1)−P t−1(dt−1) = maxq=1,2,...,t uq·dt−1−maxq=1,2,...,t−1 uq·

dt−1. Clearly the first max is at least as large as the second. If both are the same, then

the lemma trivially holds because P t(dt−1) = P t−1(dt−1). If P t(dt−1) > P t−1(dt−1),

then the first max equals ut · dt−1. We can also rewrite the second max by invoking

Lemma 3.6 with t− 1 instead of t, obtaining

P t(dt−1)− P t−1(dt−1) = ut · dt−1 −
t−1∑
q=1

wt−1
q uq · dt−1 := (ut −

t−1∑
q=1

wt−1
q uq︸ ︷︷ ︸

:=x

) · dt−1.

We still need to show that when x · dt−1 ≥ 0, P t(dt)− P t−1(dt−1) ≥ 1
8η (x · dt−1)2.

By Lemma 3.6, the value of the optimization problem defining Entropy Reg-

ularized LPBoost, P t(d), equals the value of its dual problem. We begin by lower

bounding the increase of this value between successive iterations. Let wt and ψt denote

optimal parameters for the dual problem at iteration t. Because the dual is a maxi-

mization problem, Θ̂t(wt,ψt) ≥ Θ̂t(w,ψ) for any suboptimal w ∈ St and ψ ≥ 0. For

our lower bound on the value we replace ψt by the suboptimal previous value ψt−1 and
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wt by wt(α) = (1− α)

 wt−1

0

+ α

 0

1

 , where α ∈ [0, 1] :

P t(dt)− P t−1(dt−1) = Θ̂t(wt,ψt)− Θ̂t−1(wt−1,ψt−1)

≥ Θ̂t(wt(α),ψt−1)− Θ̂t−1(wt−1,ψt−1)

=− 1
η

ln
N∑
n=1

d0
n exp

−η t−1∑
q=1

uqnw
t−1
q − ηαutn + η α

t−1∑
q=1

uqnw
t−1
q − ηψt−1

n


+

1
η

ln
N∑
n=1

d0
n exp

−η t−1∑
q=1

uqnw
t−1
q − ηψt−1

n



(3.11)
= − 1

η
ln

N∑
n=1

dt−1
n exp

−ηα
utn − t−1∑

q=1

uqnw
t−1
q


︸ ︷︷ ︸

:=xn

 .

This holds for any α ∈ [0, 1]. Since xn ∈ [−2, 2], then exp(xn) ≤

2+xn
4 exp(−2ηα) + 2−xn

4 exp(2ηα) and this lets us lower bound the above as

−1
η

ln
(

2 + x · dt−1

4
exp (−2ηα) +

2− x · dt−1

4
exp (2ηα)

)
= 2α− 1

η
ln
(

1− 2− x · dt−1

4
(1− exp(4ηα)

)
.

By applying the following inequality from [37]

∀c ∈ [0, 1] and r ∈ R : − ln(1− c(1− er)) ≥ −cr − r2

8
,

the above can be lower bounded by 2α − 2−x·dt−1

4 4α − 16ηα2

8 . This is maximized at

α = x·dt−1

4η which lies in [0,1] because x · dt−1 ∈ [0, 2] and η ≥ 1
2 . Plugging this α into

the above, we get (x·dt−1)2

8η as desired.
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Using this bound on progress, we prove iteration bounds for ERLPBoost for

the simple and the practical stopping criteria respectively. We begin with the sim-

ple stopping criterion described in Chapter 3.2.1. Recall the definition of δt that is

monitored by the simple stopping criterion:

δt = min
q=1,2,...,t

P q(dq−1)− P t−1(dt−1).

As done in [78], we now prove a quadratic recurrence for δt.

Lemma 3.8 If η ≥ 1/2 and δt ≥ 0, then δt − δt+1 ≥ (δt)2

8η , for 1 ≤ t ≤ T.

Proof We prove this recurrence by bounding the inequality of the previous lemma

from above and below. We upper bound the l.h.s. via

P t(dt)− P t−1(dt−1) ≤ min
1≤q≤t

P q(dq−1)− P t−1(dt−1)︸ ︷︷ ︸
δt

− min
1≤q≤t+1

P q(dq−1)− P t(dt)︸ ︷︷ ︸
δt+1

.

To lower bound the r.h.s. of the same inequality, first observe that

P t(dt−1)− P t−1(dt−1) ≥ min
1≤q≤t

P q(dq−1)− P t−1(dt−1) = δt,

Since we assumed δt ≥ 0, we can lower bound the r.h.s. as

(P t(dt−1)− P t−1(dt−1))2

8η
≥ (δt)2

8η
.

The lemma requires δt ≥ 0. The stopping criterion actually ensures that

δt > ε
2 , for 1 ≤ t ≤ T . Instead of using a recurrence relation, the standard approach
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would be to show that the value of the underlying optimization problem drops by at

least a constant. See e.g. [91, 87] for examples for this type of proof. More precisely, in

our case we have

P t(dt−1)− P t−1(dt−1) ≥ (δt)2

8η
≥ 1

32η
ε2.

Unfortunately, for our solution to get ε-close to the guarantee g, we need that η is

inversely proportional to ε and therefore this proof technique only yields the iteration

bound of O( 1
ε3

ln N
ν ). We shall now see that our recurrence method leads to an improved

iteration bound of O( 1
ε2

ln N
ν ), which is optimal in the hard margin case (when ν = 1).

Lemma 3.9 Let 〈δ1, δ2, . . .〉 be a sequence of non-negative numbers satisfying the fol-

lowing recurrence, for t ≥ 1: δt−δt+1 ≥ c(δt)2, where c > 0 is a positive constant. Then

for all integers t ≥ 1,

1
c(t− 1 + 1

δ1c
)
≥ δt.

This is Sublemma 5.4 of [1] which is is easily proved by induction.

Theorem 3.10 If η = max(2
ε ln N

ν ,
1
2) in (3.6), then Entropy Regularized LPBoost ter-

minates in

T ≤ max(
32
ε2

ln
N

ν
,
8
ε

)

iterations with a final convex combination of hypotheses for which g − P tLP ≤ ε.

Proof Since η ≥ 1
2 , we can apply Lemma 3.9 with c = 1

8η . This give us δt ≤ 8η

t−1+ 8η

δ1

,

which can be rearranged to t ≤ 8η
δt −

8η
δ1

+ 1 < 8η
δt , since η ≥ 1

2 and 0 ≤ δ1 ≤ 1. By the
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stopping criterion, δT > ε/2 and δT+1 ≤ ε/2. Thus the above inequality implies that

T <
8η
δT
≤ 16η

ε
. (3.17)

By Lemma 3.3, δT+1 ≤ ε/2 implies tolerance ε if η ≥ 2
ε ln N

ν . Plugging η = max(2
ε ln N

ν ,
1
2)

into the above inequality results in T ≤ max(32
ε2

ln N
ν ,

8
ε ). Because the aborted iteration

T + 1 is not counted, we arrive at the iteration bound of the theorem.

Note that 2
ε ln N

ν ≥ 1/2 iff ε ≤ 4 ln N
ν . As pointed out before, when η → ∞ then En-

tropy Regularized LPBoost morphs into a version of LPBoost. Notice that the iteration

bound (3.17) is linear in η. Therefore as η →∞, the iteration bound becomes vacuous.

We now prove a similar iteration bound for the practical stopping criterion of

Chapter 3.2.2. We will see that the bound we get with the practical stopping criterion

will be looser than that of Theorem 3.10 by a factor of two. Recall that this stopping

criterion monitors

δ̃t := min
q=1,2,...,t

P q(d̃q−1)− Θ̂t−1(w̃t−1, ψ̃t−1),

and stops when δ̃T+1 ≤ ε/2 for a predefined threshold ε > 0. However, the real quantity

of interest is δ̂t, which is defined as

δ̂t := min
q=1,2,...,t

P q(d̃q−1)− P t−1(dt−1).

Observe that δ̂t is extremely similar to δt. The difference between the two is that the

former uses min
q=1,2,...,t

P q(dq−1) and the latter uses min
q=1,2,...,t

P q(d̃q−1).
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In the following lemma, we prove a quadratic recurrence for δ̂t. This lemma is

analogous to Lemma 3.8, which was proved for the simple stopping criterion.

Lemma 3.11 If η ≥ 1/2 and δ̂t ≥ 0, then δ̂t − δ̂t+1 ≥ (bδt)2
8η , for 1 ≤ t ≤ T.

This lemma requires δ̂t > 0. According to Lemma 3.4, the practical stopping criterion

ensures that δ̂t > ε/4 for t = 1 . . . T . The proof is omitted because it is identical to that

of Lemma 3.8 except that min
q=1,2,...,t

P q(d̃q−1) appears in place of min
q=1,2,...,t

P q(dq−1).

The following theorem contains the final iteration bound for the practical stop-

ping criterion. This theorem is an adaptation of Theorem 3.10 for the practical stopping

criterion. The factor of two difference between the two bounds comes from the fact that

for t = 1 . . . T , δt > ε/2 while δ̂t > ε/4.

Theorem 3.12 If η = max(2
ε ln N

ν ,
1
2) in (3.6) and the practical stopping criterion from

Chapter 3.2.2 is used, then Entropy Regularized LPBoost terminates in

T ≤ max(
64
ε2

ln
N

ν
,
16
ε

)

iterations with a final convex combination of hypotheses for which g − P tLP ≤ ε.

The proof is omitted because it is nearly identical to Theorem 3.10. The

only difference is that in this proof, δ̂t > ε/4 for t = 1 . . . T . On the other hand, in

Theorem 3.10 we had that δt > ε/2. This is the source of the difference between the

two bounds.
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3.2.6 Alternative Analysis of ERLPBoost

An equivalent derivation of Lemma 3.7, which bounds the increase P t(dt) −

P t−1(dt−1) in successive iterations, can be found using the unnormalized relative en-

tropy. The unnormalized relative entropy is defined as

∆U :=
N∑
n=1

(dn ln
dn
d0
n

− dn + d0
n).

Recall the definition of the relative entropy: ∆(d,d0) :=
∑N

n=1 dn ln(dn/d0
n). When d

and d0 are probability distributions, ∆U (d,d0) = ∆(d,d0). The optimization problem

associated with the unnormalized relative entropy regularization is

min∑N
n=1 dn = 1

d ≤ 1/ν

max
q=1,2,...,t

uq · d +
1
η

∆U (d,d0)︸ ︷︷ ︸
:=P tU (d)

. (3.18)

Normalization plays a central role in our analysis. Notice that the normalization con-

straint of the above optimization problem requires d to be a probability distribution. As

a result, ∆U (d,d0) = ∆(d,d0), so the value of this optimization problem will be identi-

cal to (3.6) for all feasible points and thus, they must arrive at the same solution. If the∑N
n=1 dn = 1 constraint were not present in the unnormalized entropy problem, then

the two optimization problems would be different. As we will see in the next section,

the Lagrangians duals of (3.6) and (3.18) appear to be different. However, when we

optimize out the Lagrange multiplier that corresponds to the normalization constraint

in the the dual of(3.18), it becomes identical to the dual of (3.6). In our analysis, we

work with the Lagrangian dual of the unnormalized entropy in the intermediate stage,
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before we optimize out the Lagrange multiplier. This is what causes the analysis in this

section to differ from the analysis of the previous section. This is interesting because the

iteration bound for Binary ERLPBoost, covered in Chapter 3.3, follows directly from

the analysis of the unnormalized entropy.

3.2.6.1 Lagrangian Dual of Unnormalized Entropy Problem

We now derive the Lagrangian dual of the unnormalized relative entropy. This

is interesting because P t(dt) = P tU (dt) when d ∈ SN , but the Lagrangians of these

two optimization problems are different. Consequently, the Lagrangian duals of these

optimization problems, Θt(w,ψ, β) and Θt
U (w,ψ, β) respectively, are also of different

form. In particular, Θt(w,ψ, β) is the log partition function and Θt
U (w,ψ, β) is the

partition function without the logarithm. However, once we substitute in the optimal

value for the dual variable β, we show that Θ̂t(w,ψ) = Θ̂t
U (w,ψ).

Lemma 3.13 The Lagrangian dual of (3.18) is

max
w,ψ,β

Θ̂t
U (w,ψ, β), s.t. w ≥ 0, w · 1 = 1,ψ ≥ 0, β ∈ R.

where

Θ̂t
U (w,ψ, β) :=

1
η

− N∑
n=1

d0
n exp(−η(

t∑
q=1

wqu
q
n + ψn + β)) + d0

n

− 1
ν

N∑
n=1

ψn−β. (3.19)

The optimal solution dt of (3.18) can be expressed in terms of the dual variables wt as

follows:

dtn := d0
n exp(−η(

t∑
q=1

wqu
q
n + ψn + β)) (3.20)
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Furthermore, if the optimal β is substituted into Θ̂t
U (w, β), the result is

Θ̂t
U (w,ψ) = −1

η
ln

N∑
n=1

d0
n exp(−η(

t∑
q=1

wqu
q
n + ψn))− 1

ν

N∑
n=1

ψn.

This is equal to the Lagrangian dual of the normalized entropy problem.

Finally, the value of the primal is equal to the value of the dual. Also, for the

optimal primal solution dt and optimal dual solution wt,

t∑
q=1

wtq uq · dt = max
q=1,2,...,t

uq · dt.

Proof Equation (3.18) can be rewritten as

min
d,γ

γ +
1
η

N∑
n=1

(dn ln
dn
d0
n

− dn + d0
n) (3.21)

s.t. d · uq ≤ γ for q = 1 . . . t

d ≤ 1/ν,
∑
n

dn = 1.

The Lagrangian of this optimization problem is

LU (d, γ,w,ψ, β) = γ + 1
η

∑N
n=1(dn ln dn

d0n
− dn + d0

n) +
∑t

q=1wq(d · uq − γ)

+
∑N

n=1 ψn(dn − 1
ν ) + β(

∑N
n=1 dn − 1).

Because the Lagrangian is linear w.r.t. γ and a linear function is unbounded below

unless it is zero everywhere, the result is the following implicit constraint:

∂LU
∂γ

= 1−
t∑

q=1

wq = 0.

The partial derivative of LU w.r.t. dn is

∂LU
∂dn

=
1
η

(ln
dn
d0
n

) +
t∑

q=1

wqu
q
n + ψn + β.
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The update for dn takes the form dn = d0
n exp(−η(

∑t
q=1wqu

q
n +ψn + β)). Plugging the

update back into the Lagrangian results in the dual problem

Θt
U (w,ψ, β) := max

w,ψ,β

1
η

− N∑
n=1

d0
n exp(−η(

t∑
q=1

wqu
q
n + ψn + β)) + d0

n

− 1
ν

N∑
n=1

ψn − β

s.t.
t∑

q=1

wq = q, ψ ≥ 0.

This is not the same as the dual for the normalized relative entropy, shown in (3.14).

However, after we substitute in the optimal choice for β, the Lagrangian duals become

identical. By differentiating Θt
U (w,ψ, β), we can determine the optimal choice for β:

β(w,ψ) =
1
η

ln
N∑
n=1

d0
n exp(−η(

t∑
q=1

uqnwq + ψn)).

Note that this is not the same as the optimal β for normalized entropy, shown in (3.16).

Once β is optimized, the result is

Θ̂t
U (w,ψ) = −1

η
ln

N∑
n=1

d0
n exp(−η(

t∑
q=1

wqu
q
n + ψn))− 1

ν

N∑
n=1

ψn.

This is identical to (3.10), the dual of the normalized relative entropy.

The final step in this proof is to show that

t∑
q=1

wtq uq · dt = max
q=1,2,...,t

uq · dt.

We do so by showing that the l.h.s. and the r.h.s. of the above equation are both equal

to γ. From (3.21), it is clear that maxq=1,2,...,t uq · dt = γ. Because wt is the optimal

dual variable, we know that complementary slackness applies. This means that either

uq ·dt = γ or wtq = 0. We also know that
∑t

q=1w
t
q = 1. The l.h.s. of the above equation

is therefore equivalent to γ
∑t

q=1w
t
q = γ.
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3.2.6.2 Alternate Bound on Progress

In Lemma 3.7, we bounded the increase P t(dt) − P t(dt−1) in terms of a

quadratic term. Because P tU (d) = P t(d) for all d ∈ SN , we can use the unnormal-

ized entropy to prove an alternate version of Lemma 3.7 by bounding the increase of

P tU (dt) − P tU (dt−1). Recall that the Lagrangian dual of P t(d) is identical to dual of

P tU (d) when β is optimized out, but if β is not optimized out, they differ. By using

the unnormalized entropy without optimizing β, we can arrive at the same bound via

a different path. Most importantly, the inequalities used in this proof turn out to be

useful in proving bounds for Binary ERLPBoost, discussed in Chapter 3.3.

Lemma 3.14 If η ≥ 1/2, then P t(dt)− P t−1(dt−1) ≥ 1
8η (P t(dt−1)− P t−1(dt−1))2.

Proof Because P tU (d) = P t(d) for all d ∈ SN , it suffices to bound the increase of

P tU (dt) − P tU (dt−1), the value of the objective function for the unnormalized entropy.

First observe that P tU (dt−1)− P t−1
U (dt−1) = maxq=1,2,...,t uq · dt−1 −maxq=1,2,...,t−1 uq ·

dt−1. Clearly the first max is at least as large as the second. If both are the same, then

the lemma trivially holds because P tU (dt−1) = P t−1
U (dt−1). If P tU (dt−1) > P t−1

U (dt−1),

then the first max equals ut · dt−1. We can also rewrite the second max by invoking

Lemma 3.13 with t− 1 instead of t, obtaining

P tU (dt−1)− P t−1
U (dt−1) = ut · dt−1 −

t−1∑
q=1

wt−1
q uq · dt−1 := (ut −

t−1∑
q=1

wt−1
q uq︸ ︷︷ ︸

:=x

) · dt−1.

We still need to show that when x · dt−1 ≥ 0, P tU (dt) − P t−1
U (dt−1) ≥ 1

8η (x ·

dt−1)2.
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By Lemma 3.13, the value of P tU (d) at its optimal solution equals the value

of its dual problem. We begin by lower bounding the increase of this value between

successive iterations. Let wt, ψt, and βt denote optimal parameters for (3.19), the dual

problem at iteration t. Because the dual is a maximization problem, Θ̂t
U (wt,ψt, βt) ≥

Θ̂t
U (w,ψ, β) for any suboptimal w ∈ St, ψ ≥ 0, and β. For our lower bound on the

value we replace ψt by the suboptimal previous value ψt−1, we replace βt by βt−1, and

we replace wt by wt(α) = (1− α)

 wt−1

0

+ α

 0

1

 , where α ∈ [0, 1] :

P tU (dt)− P t−1
U (dt−1) = Θ̂t

U (wt,ψt, βt)− Θ̂t−1
U (wt−1,ψt−1, βt−1)

≥ Θ̂t
U (wt(α),ψt−1, βt−1)− Θ̂t−1

U (wt−1,ψt−1, βt−1)

=− 1
η

N∑
n=1

d0
n exp(−η(1− α)

t∑
q=1

wqu
q
n − ηαutn − ηψt−1

n − ηβt−1)

+
1
η

N∑
n=1

d0
n exp(−η

t∑
q=1

wqu
q
n − ηψt−1

n − ηβt−1)

=
1
η

1−
N∑
n=1

dt−1
n exp(−ηα (utn −

t∑
q=1

wqu
q
n)︸ ︷︷ ︸

xn

)

 (3.22)

≥1
η

(
1−

N∑
n=1

dt−1
n

(
2 + xn

4
exp(−2ηα) +

2− xn
4

exp(2ηα)
))

=
1
η

(
1− 2 + d · x

4
exp(−2ηα)− 2− d · x

4
exp(2ηα)

)
(3.23)

First observe that the inequality holds for any α ∈ [0, 1], so choose α = d · x/(4η).

It is easy to see that this value of α is valid as long as η ≥ 1/2. Also, for notational

simplicity, we introduce the change of variable z = d · x. Making these substitutions
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and rearranging (3.23) results in

1
η

(
1− 1

2
(exp(z/2) + exp(−z/2)) +

z

4
(exp(z/2)− exp(−z/2))

)
=

1
η

(
1− cosh(z/2) +

z

2
sinh(z/2)

)
. (3.24)

We now reason that the above expression is lower bounded by z2

8η which gives us the

promised lower bound of 1
8η (P tU (dt−1) − P t−1

U (dt−1))2 and completes the proof of the

theorem.

To see this observe that the derivative of the expression (3.24) minus z2

8η is

z
4η cosh(z/2)− z

4η which is 0 at z = 0 and is antisymmetric around 0. Thus the expres-

sion (3.24) minus z2

8η has a minimum at z = 0. It is easy to check that the value of the

minimum is 0 and therefore expression (3.24) is lower bounded by z2

8η .

3.3 Binary Entropy Regularized LPBoost

In this section we present Binary Entropy Regularized LPBoost (Binary ERLP-

Boost). We motivate this algorithm by showing that at each iteration it solves an op-

timization problem of lower dimension than ERLPBoost. At iteration t, ERLPBoost

finds updated distribution dt that minimizes (3.6). In practice, we actually find dt by

minimizing −Θ̂t(w,ψ) in (3.10) for w and ψ and then substituting these values into

(3.11). The key observation is that the capping constraints enforced by ERLPBoost

make the ψ variables appear in the w domain, and this greatly increases the dimension-

ality of the problem. Because w is of dimension t and ψ is of dimension N , ERLPBoost
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solves an optimization problem of dimension of t+N , where N � t. On the other hand,

Binary ERLPBoost incorporates the capping constraints directly into the binary relative

entropy. Therefore, the ψ variables are not needed. The normalization constraint can

be expressed in closed form in ERLPBoost, but not in Binary ERLPBoost. As a result,

Binary ERLPBoost has only has t + 1 variables. Optimization problems scale poorly

with the number of input variables, so using Binary ERLPBoost could potentially be

more computationally efficient.

If we replace the relative entropy regularizer with the binary entropy, we can

reduce the optimization problem to one of t+1 variables. Since N � t and optimization

problems scale poorly with the number of input variables, this could potentially result

in greatly improved computational efficiency.

In the minimization problem that motivates Binary Entropy Regularized LP-

Boost, shown in Algorithm 3.3, a binary relative entropy is added to the linear program-

ming problem in the example domain. The binary entropy of a single random variable

can be interpreted as the entropy of a Bernoulli trial with probability of success d, and

is defined as −d ln d− (1−d)log(1−d). The binary relative entropy between probability

distributions d and d0 is defined as

∆2(d,d0) =
N∑
n=1

dn ln
dn
d0
n

+
N∑
n=1

(1− dn) ln
1− dn
1− d0

n

.

The Binary ERLPBoost algorithm must solve an optimization problem involving this

quantity at every iteration, but with the constraints that 0 ≤ dn ≤ 1
ν for n = 1 . . . N .

Note that this constitutes 2N interval constraints. Since N is large, eliminating these
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constraints would be helpful.

There is a generalization of the binary relative entropy that restricts the ele-

ments of d and d0 to lie within two real numbers L and M , where L < M [12]:

∆2,L,M (d,d0) =
N∑
n=1

(dn − L) ln
dn − L
d0
n − L

+
N∑
n=1

(M − dn) ln
M − dn
M − d0

n

.

Using this generalization allows us to eliminate the 2N interval constraints, which should

therefore result in a more efficient optimization problem. In our case, we want the

restriction 0 ≤ d ≤ 1
ν , so the form of the binary entropy that we want to use in our

optimization problem would look like

∆2,ν(d,d0) =
N∑
n=1

dn ln
dn
d0
n

+
N∑
n=1

(
1
ν
− dn) ln

1
ν − dn
1
ν − d0

n

.

The modified mini-max problem is defined as follows:

min
d∈SN

max
q=1,2,...,t

uq · d +
1
η

∆2,ν(d,d0)︸ ︷︷ ︸
:=PtB(d)

. (3.25)

The factor 1/η is a trade-off parameter between the relative entropy and the maximum

edge.

3.3.1 A Simple Stopping Criterion for Binary ERLPBoost

The stopping criterion for Binary ERLPBoost requires that η ≥ 2
ε

(
ln N

ν + 1
)
.

Since ∆2,ν(d,d0) ≤ ln N
ν +1, our condition ensures that 1

η∆2,ν(d,d0) ≤ ε for all d ∈ SN .

This is slightly different from the stopping criterion for ERLPBoost, which requires

η ≥ 2
ε ln N

ν .
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Algorithm 3.3 Binary Entropy Regularized LPBoost

1. Input: S = {(x1, y1), . . . , (xN , yN )}, accuracy parameter ε > 0, regularization

parameter η > 0, and smoothness parameter ν ∈ [1, N ]. The canonical value of

η = 2
ε (ln

N
ν + 1).

2. Initialize: d0 to the uniform distribution.

3. Do for t = 1, . . .

(a) Send dt−1 to oracle and obtain hypothesis ht.

Set utn = ynh
t(xn)

Assume ut · dt−1 ≥ g, where g need not be known.

(b) Set δ̃tB = minq=1...t Pq(dq−1)− Θ̂t−1
B (wt−1, βt−1),

where Pt(d) = maxq=1,2,...,t uq · d + 1
η∆2,ν(d,d0)

and Θ̂t
B(w, β) := − 1

ην

∑N
n=1 ln(1− νd0

n + νd0
n exp(−η(

∑t
q=1wqu

q
n + β)))− β.

(c) If δ̃tB ≤ ε/2 then set T = t− 1 and break.

(d) Else Update the distribution to

dt = argmin
d∈SN

max
q=1,2,...,t

uq · d +
1
η

∆2,ν(d,d0).

4. Output: fw(x) =
∑T

q=1w
T
q h

q(x), where the coefficients wTq are the dual variables

to the above optimization problem at iteration T .
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The simple stopping criterion for Binary ERLPBoost algorithm monitors

δtB := min
q=1,2,...,t

P qB(dq−1)− P t−1
B (dt−1)

and stops when δT+1
B ≤ ε/2, for a predefined threshold ε > 0. This stopping criterion

is comparable to the simple stopping criterion for ERLPBoost that was covered in

Chapter 3.2.1.

Lemma 3.15 If η ≥ 2
ε

(
ln N

ν + 1
)

in (3.25), then δT+1
B ≤ ε/2 implies g − P TLP ≤ ε,

where g is the guarantee of the oracle.

Because the proof of this lemma is identical to Lemma 3.3, it has been omitted.

3.3.2 A Practical Stopping Criterion for Binary ERLPBoost

We now present a practical stopping criterion for Binary ERLPBoost that en-

ables us to use a low precision estimate of dt−1 to improve the computational efficiency

of the algorithm. This stopping criterion is comparable to the one proposed in Chap-

ter 3.2.2 for ERLPBoost. The primary difference between this stopping criterion and

the one in Chapter 3.2.2 is the value of η. As we mentioned in the previous section,

the stopping criterion for Binary ERLPBoost requires that η ≥ 2
ε

(
ln N

ν + 1
)
. Since

∆2,ν(d,d0) ≤ ln N
ν + 1, our condition ensures that 1

η∆2,ν(d,d0) ≤ ε for all d ∈ SN .

This is slightly different from the stopping criterion for ERLPBoost, which requires

η ≥ 2
ε ln N

ν .

Let d̃t−1 be a low precision approximation of dt−1 and let w̃t−1 and ψ̃t−1 be

the dual variables that correspond to the d̃t−1. As in Chapter 3.2.2, we define the
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necessary precision of d̃t−1 by requiring that P t−1
B (d̃t−1)− Θ̂t

B(w̃t−1, ψ̃t−1) ≤ ε/4. This

stopping criterion monitors

δ̃tB := min
q=1,2,...,t

P qB(d̃q−1)− Θ̂t−1
B (w̃t−1, ψ̃t−1),

stops when δ̃T+1 ≤ ε/2 for a predefined threshold ε > 0. Note that Θ̂t
B is the Lagrangian

dual of the Binary ERLPBoost optimization problem shown in (3.26).

To prove an iteration bound for Binary ERLPBoost using this stopping crite-

rion, we need to introduce one more quantity. In Theorem 3.21, which proves the final

iteration bound for the simple stopping criterion, we require that δtB > ε/2 for t = 1 . . . T

and δT+1
B ≤ ε/2. We want to prove a similar theorem for the practical stopping criterion.

Unfortunately, δ̃tB > ε/2 does not imply that δtB > ε/2 for t = 1 . . . T and δ̃T+1
B ≤ ε/2

does not imply δtB ≤ ε/2. The reason is that in this scenario, the low precision d̃t−1 is

known but the optimal value dt−1 is not. Consequently, the value of min
q=1,2,...,t

P qB(dq−1)

is also unknown and it is not possible to bound it by min
q=1,2,...,t

P qB(d̃q−1). To overcome

this difficulty, we define

δ̂tB := min
q=1,2,...,t

P qB(d̃q−1)− P t−1
B (dt−1).

When we prove bounds for this stopping criterion, we will work with δ̂tB instead of δtB.

This next lemma establishes the relationship between δ̃B and δ̂B before and

after termination. These relationships are used to prove iteration bounds Binary ERLP-

Boost when we use the practical stopping criterion introduced in this section.

Lemma 3.16 For t = 1 . . . T , δ̃tB > ε/2 implies δ̂tB > ε/4 . Furthermore, δ̃T+1
B ≤ ε/2

implies δ̂T+1
B ≤ ε/2.
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The proof is omitted because it is identical to the proof of Lemma 3.4.

We now want to prove that δ̃T+1
B ≤ ε/2 implies g − P TLP ≤ ε.

Lemma 3.17 If η ≥ 2
ε (ln

N
ν +1) in (3.25), then δ̃T+1

B ≤ ε/2 implies g−P TLP ≤ ε, where

g is the guarantee of the oracle.

Because it is identical to that of Lemma 3.5, this proof is omitted as well.

3.3.3 Lagrangian Dual of Binary ERLPBoost

In this section we derive the Lagrangian dual of the binary relative entropy

optimization problem. This dual differs from the previous duals in two important re-

spects. In all of the previous algorithms, an optimal value for β, the Lagrange multiplier

for the normalization constraint, had a closed form. This value could be substituted

into the dual to get a closed form solution for dt in terms of w and ψ alone. In contrast,

the binary entropy problem does not allow for a similar closed form solution.

Another important difference between ERLPBoost and Binary ERLPBoost is

the number of dual variables. The dual variables for ERLPBoost are w and ψ. Because

w is of dimension t and ψ is of dimension N , we must solve an optimization problem

of dimension t + N . In contrast, the dual variables for Binary ERLPBoost are w and

β, where w is of dimension t and β is a scalar. Consequently, the Lagrangian dual of

the Binary ERLPBoost problem has a total of t+ 1 variables, which is much less than

t+N .

81



Lemma 3.18 The Lagrangian dual of (3.25) is

max
w,β

Θ̂t
B(w, β), s.t. w ≥ 0, w · 1 = 1, β ∈ R. (3.26)

where Θ̂t
B(w, β) := − 1

ην

N∑
n=1

ln(1− νd0
n + νd0

n exp(−η(
t∑

q=1

wqu
q
n + β)))− β.

The optimal solution dt of (3.25) can be expressed in terms of the dual variables wt as

follows:

dtn :=
d0
n exp(−η(

∑t
q=1wqu

q
n + β))

1− νd0
n + νd0

n exp(−η(
∑t

q=1wqu
q
n + β))

(3.27)

Furthermore, the value of the primal is equal to the value of the dual. Also, for the

optimal primal solution dt and optimal dual solution wt,

t∑
q=1

wtq uq · dt = max
q=1,2,...,t

uq · dt.

Proof The optimization problem in (3.25) can be rewritten equivalently as

min
γ,d

γ +
1
η

∆2,ν(d,d0)

s.t. d · uq ≤ γ for q = 1 . . . t
n∑
n=1

dn = 1 for n = 1 . . . N

The Lagrangian of this optimization problem at iteration t is

Lt = γ +
1
η

[
N∑
n=1

dn ln
dn
d0
n

+
N∑
n=1

(
1
ν
− dn) ln

1
ν − dn
1
ν − d0

n

]
+

t∑
q=1

wq(d · uq − γ) + β(
N∑
n=1

dn − 1)

(3.28)

The dual is derived from the Lagrangian by plugging in the minimum value of the primal

variables:

Θt
B(w, β) := inf

d,γ
Lt(d, γ,w, β).
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Because the Lagrangian is linear w.r.t. γ and a linear function is unbounded below

unless it is zero everywhere, the result is the following implicit constraint:

∂Lt

∂γ
= 1− 1 ·w = 0.

Therefore, if we enforce the constraint 1 ·w = 1, then γ vanishes from the Lagrangian.

Differentiating the Lagrangian w.r.t. d results in

∂L

∂dn
=

1
η

[
ln
dn
d0
n

− ln
1
ν − dn
1
ν − d0

n

]
+

t∑
q=1

wqu
q
n + β.

The update for dn takes the form

dt+1
n =

d0
n exp(−η(

∑t
q=1wqu

q
n + β))

1− νd0
n + νd0

n exp(−η(
∑t

q=1wqu
q
n + β))

.

Plugging this update back into (3.28) results in the dual

Θ̂t
B(w, β) = − 1

ην

N∑
n=1

ln(1− νd0
n + νd0

n exp(−η(
t∑

q=1

wqu
q
n + β))− β.

The dual problem now reduces to

max
w,β

Θ̂t
B(w, β)

s.t. w ≥ 0, w · 1 = 1, β ∈ R.

The final step in this proof is to show that

t∑
q=1

wtq uq · dt = max
q=1,2,...,t

uq · dt.

We do so by showing that the l.h.s. and the r.h.s. of the above equation are both equal

to γ. From (3.21), it is clear that maxq=1,2,...,t uq · dt = γ. Because wt is the optimal

dual variable, we know that complementary slackness applies. This means that either
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uq ·dt = γ or wtq = 0. We also know that
∑t

q=1w
t
q = 1. The l.h.s. of the above equation

is therefore equivalent to γ
∑t

q=1w
t
q = γ.

It is useful to visualize the optimization problems in Binary ERLPBoost in the

d and w domains. Figure 3.5 plots the objective function P t(dt) of (3.25) for a simple

problem of two examples and four hypotheses. This is analogous to Figure 3.4, which

shows the objective function for ERLPBoost. Note that these figures are extremely

similar. Because d is a vector of dimension two and the components must sum to one,

d2 = 1 − d1. Consequently, this reduces to a two dimensional problem. The objective

function is strictly convex, and it is easy to see that decreasing η increases the amount

of regularization and therefore the curvature of the function. Similarly, Figure 3.6

illustrates the effect of the capping parameter ν, which constrains d1, d2 ≤ 1/ν. The

corresponding plot for ERLPBoost is not interesting: changing ν does not change the

value of the objective function, just the domain.

It is also possible to visualize Binary ERLPBoost in the w domain. Figure 3.7

plots the objective function of (3.26) for a simple problem of four examples and two

hypotheses. As before, w is a vector of length two and the components must sum

to one, so w2 = 1 − w1. Therefore we can again reduce this to a two dimensional

problem. The objective function is strictly concave, and it is easy to see that decreasing

η increases the amount of regularization and therefore the curvature of the function.

Similarly, Figure 3.8 illustrates the effect of the capping parameter ν. However, the
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Figure 3.5: The effect of regularization on Binary ERLPBoost in the d domain. This
function is piecewise continuous and it is not differentiable.
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Figure 3.6: The effect of capping on Binary ERLPBoost in the d domain. This function
is piecewise continuous and it is not differentiable.
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Figure 3.7: The effect of regularization on Binary ERLPBoost in the w domain for
1
ν = 0.8. This function is the Lagrangian dual of the function in the d domain. It is
concave and differentiable.
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Figure 3.8: The effect of capping on Binary ERLPBoost in the w domain.This function
is the Lagrangian dual of the function in the d domain. It is concave and differentiable.

86



effect of changing ν in the w domain is somewhat harder to interpret. The corresponding

plot for ERLPBoost is not available because the ψ variables in the w domain make it

impossible to visualize even the simplest problem in two dimensions. The fact that

Binary ERLPBoost lacks ψ variables in the w domain – the Lagrange multipliers for

the capping constraints – is the primary argument for using it.

3.3.4 Relationship Between Primal and Dual Variables for Binary

ERLPBoost

Given the optimal dt for Binary ERLPBoost, we now describe how to get wt

and ψt. The approach is the similar to the one derived for SoftBoost, ERLPBoost, and

Unnormalized ERLPBoost. This approach relies on the active set method, covered in

Appendix A, to eliminate the inequality constraints so that the KKT conditions can be

solved as a linear system.

For the Binary ERLPBoost algorithm, the KKT conditions relating the primal

and dual variables are:

dt · uq − γt ≤ 0, q = 1 . . . t dtn ≤ 1
ν , n = 1 . . . N

wtq ≥ 0, q = 1 . . . t ψtn ≥ 0, n = 1 . . . N

wtq(u
q · dt − γt) = 0, q = 1 . . . t ψtn(dtn − 1

ν ) = 0, n = 1 . . . N∑
n d

t
n − 1 = 0, n = 1 . . . N

∑t
q=1w

t
q = 1, q = 1 . . . t

1
η

[
ln
(

dt

d0

)
− ln

(
1
ν − dt
1
ν − d0

)]
+

t∑
q=1

wtqu
q +

N∑
n=1

ψtnen + βt1 = 0,

where en is a unit vector whose nth component is 1. Note that the last two equations

come from the condition that the gradient of the Lagrangian must be zero.

87



Because the optimal value of the primal variables, dt and γt, is already known,

we also know which constraints are active. Following the discussion in Appendix A and

Chapter 3.1.2, we can use this knowledge to simplify the problem. For a given d, we

define the sets of active constraints for w as Aw(d) := {q ∈ 1 . . . t : uq · d = γt} and

ψ as Aψ(d) := {n ∈ 1 . . . N : dn = 1
ν }. Then the KKT optimality conditions for the

Unnormalized ERLPBoost problem at iteration t can be simplified to

∑
n d

t
n = 1

dtn = 1
ν for n ∈ Aψ(dt)

dt · uq = γ for q ∈ Aw(dt)∑t
q∈Aw(dt)w

t
q = 1.

1
η

[
ln
(

dt

d0

)
− ln

( 1
ν
−dt

1
ν
−d0

)]
+
∑

q∈Aw(dt)wqu
q +

∑
n∈Aψ(dt) ψ

t
nen + βt1 = 0

The first three equations are solving for dt and γt, but since these are known,

these equations can be ignored. Therefore, solving for wt, ψt, and βt reduces to solving

the linear system defined by

∑t
q∈Aw(dt)w

t
q = 1.

1
η

[
ln
(

dt

d0

)
− ln

( 1
ν
−dt

1
ν
−d0

)]
+
∑

q∈Aw(dt)wqu
q +

∑
n∈Aψ(dt) ψ

t
nen + βt1 = 0

The Binary ERLPBoost optimization problem is strictly convex and its feasible set is

a closed convex set, so as long as the optimization problem is feasible, then it has a

unique optimal solution [7]. As a result, the system of equations defined by the KKT

conditions has an exact solution.
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3.3.5 Iteration Bound for Binary ERLPBoost

We now bound the number of iterations T needed before the value of the

Binary ERLPBoost optimization problem gets within ε of the guarantee g. This section

contains two iteration bounds. One bound assumes that we use the simple stopping

criterion and the other assumes that we use the practical stopping criterion.

We begin by bounding the increase P tB(dt)−P t−1
B (dt−1) in successive iterations

by a quadratic term. This lemma follows from Lemma 3.14, where we lower bounded

the increase in the objective function for the unnormalized entropy by

1
η

(
1−

N∑
n=1

dt−1
n exp(−ηαxn)

)
.

The same expression can be shown to lower bound the increase of the objective function

for the optimization problem solved by Binary ERLPBoost. This result is used in the

iteration bounds for both stopping criteria.

Lemma 3.19 For Binary Entropy Regularized LPBoost, if η ≥ 1/2, then

P tB(dt)− P t−1
B (dt−1) ≥ 1

8η
(P tB(dt−1)− P t−1

B (dt−1))2.

Proof First observe that

P tB(dt−1)− P t−1
B (dt−1) = max

q=1,2,...,t
uq · dt−1 − max

q=1,2,...,t−1
uq · dt−1.

Clearly the first max is at least as large as the second. If both are the same, then the

lemma trivially holds because P tB(dt−1) = P t−1
B (dt−1). If P tB(dt−1) > P t−1

B (dt−1), then

the first max equals ut · dt−1. We can also rewrite the second max by invoking Lemma
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3.13 with t− 1 instead of t, obtaining

P tB(dt−1)− P t−1
B (dt−1) = ut · dt−1 −

t−1∑
q=1

wt−1
q uq · dt−1 := (ut −

t−1∑
q=1

wt−1
q uq︸ ︷︷ ︸

:=x

) · dt−1.

We still need to show that when x · dt−1 ≥ 0, P tB(dt) − P t−1
B (dt−1) ≥ 1

8η (x ·

dt−1)2.

By Lemma 3.18, the optimal value of the optimization problem defining Binary

Entropy Regularized LPBoost, P tB(dt), equals the optimal value of its dual problem.

We begin by lower bounding the increase of this value between successive iterations.

Let wt and βt denote optimal parameters for the dual problem at iteration t. Because

the dual is a maximization problem, Θt
B(wt, βt) ≥ Θt

B(w, β) for any suboptimal w ∈ St

and β ∈ R. For our lower bound on the value we replace βt by the suboptimal previous

value βt−1 and wt by wt(α) = (1− α)

 wt−1

0

+ α

 0

1

 , where α ∈ [0, 1] :
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P tB(dt)− P t−1
B (dt−1) = Θ̂t

B(wt, βt)− Θ̂t−1
B (wt−1, βt−1)

≥ Θ̂t
B(wt(α), βt−1)− Θ̂t−1

B (wt−1, βt−1)

= − 1
νη

N∑
n=1

ln

1− νd0
n + νd0

n exp

−η t−1∑
q=1

uqnw
t−1
q − ηαutn + ηα

t−1∑
q=1

uqnw
t−1
q − ηβt−1


+

1
νη

N∑
n=1

ln

1− νd0
n + νd0

n exp

−η t−1∑
q=1

uqnw
t−1
q − ηβt−1


= − 1

νη

N∑
n=1

ln

(
1− νd0

n

1− νd0
n + νd0

n exp(−η
∑t−1

q=1 u
q
nw

t−1
q )

+
νd0

n exp
(
−η
∑t−1

q=1 u
q
nwt−1

q − ηαutn + ηα
∑t−1

q=1 u
q
nwt−1

q

)
1− νd0

n + νd0
n exp(−η

∑t−1
q=1 u

q
nw

t−1
q )


= − 1

νη

N∑
n=1

ln
(
1− νdt−1

n + νdt−1
n exp(−ηαxn)

)
Using the inequality ln(1 + x) ≤ x, we get that

− 1
νη

N∑
n=1

ln
(
1− νdt−1

n + νdt−1
n exp(−ηαxn)

)
≥ 1
η

N∑
n=1

(
dt−1
n − dt−1

n exp(−ηαxn)
)

The r.h.s. of this last inequality is identical to Equation (3.22) in Lemma 3.14, and so

this proof follows from that one.

We now prove iteration bounds for Binary ERLPBoost for the simple and the

practical stopping criteria respectively. Since the recursion we proved in Lemma 3.19

for the Binary ERLPBoost is of the same form as the one proved in Lemma 3.7 for

the ERLPBoost, all of the subsequent analysis is virtually identical. In fact, the only

difference in the final bounds comes from the different value of regularization param-
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eter η required to achieve the termination condition. Recall that for ERLPBoost, the

canonical value of η = 2
ε ln N

ν and for Binary ERLPBoost η = 2
ε (ln

N
ν + 1). Because

the analysis is the same, we will give a complete statement of the following lemmas and

theorems, but their proofs will be omitted.

We begin with the simple stopping criterion described in Chapter 3.3.1. Recall

the definition of δtB that is monitored by the simple stopping criterion:

δtB = min
q=1,2,...,t

P qB(dq−1)− P t−1
B (dt−1).

The following lemma gives a quadratic recurrence for δtB that is identical to the one

proved for ERLPBoost in Lemma 3.8.

Lemma 3.20 If η ≥ 1/2 and δtB ≥ 0, then δtB − δ
t+1
B ≥ (δtB)2

8η , for 1 ≤ t ≤ T.

By making use of Lemma 3.19, Lemma 3.20, and Lemma 3.9, we arrive at the

final iteration bound for Binary ERLPBoost using the simple stopping criterion. The

proof of this theorem is of the same form as Theorem 3.10.

Theorem 3.21 If η = max(2
ε (ln

N
ν + 1), 1

2) in (3.25) and we use the simple stopping

criterion of Chapter 3.3.1, then Binary ERLPBoost terminates in

T ≤ max(
32
ε2

(ln
N

ν
+ 1),

8
ε

)

iterations with a final convex combination of hypotheses for which g − P tLP ≤ ε.

We now prove a similar iteration bound for Binary ERLPBoost using the

practical stopping criterion of Chapter 3.3.2. We will see that the bound we get with
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the practical stopping criterion is looser than that of Theorem 3.21 by a factor of two.

Moreover, it is identical to the bound in Theorem 3.10 for ERLPBoost with the practical

stopping criterion. Recall that this stopping criterion monitors

δ̃tB := min
q=1,2,...,t

P qB(d̃q−1)− Θ̂t−1
B (w̃t−1, ψ̃t−1),

stops when δ̃T+1
B ≤ ε/2 for a predefined threshold ε > 0. However, the real quantity of

interest is δ̂tB, which is defined as

δ̂tB := min
q=1,2,...,t

P qB(d̃q−1)− P t−1
B (dt−1).

In the following lemma, we prove a quadratic recurrence for δ̂tB.

Lemma 3.22 If η ≥ 1/2 and δ̂tB ≥ 0, then δ̂tB − δ̂
t+1
B ≥ (bδtB)2

8η , for 1 ≤ t ≤ T.

The proof is virtually identical to that of Lemma 3.8. This lemma requires δ̂tB > 0.

According to Lemma 3.16, the practical stopping criterion ensures that δ̂tB > ε/4 for

t = 1 . . . T .

The following theorem contains the final iteration bound for Binary ERLP-

Boost using the practical stopping criterion. This theorem is a version of Theorem 3.21

that corresponds to the practical stopping criterion. The factor of two difference between

the two bounds comes from the fact that for t = 1 . . . T , δtB > ε/2 while δ̂tB > ε/4.

Theorem 3.23 If η = max(2
ε ln N

ν ,
1
2) in (3.6) and the practical stopping criterion from

Chapter 3.3.2 is used, then Binary ERLPBoost terminates in

T ≤ max(
64
ε2

ln
N

ν
,
16
ε

)

iterations with a final convex combination of hypotheses for which g − P tLP ≤ ε.
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Chapter 4

Implementation

In this chapter, we discuss the implementation of the algorithms we use in our

experiments. First we cover the ERLPBoost and Binary ERLPBoost algorithms. For

these algorithms, the most difficult step is the optimization problem they solve at each

iteration. We discuss these algorithms together because despite their differences, their

optimization problems are solved in the same way. The next algorithm that we cover,

originally proposed in [77], is extremely similar to ERLPBoost except that instead of

updating the weights on all of the hypotheses at each iteration, it only updates the weight

on the last hypothesis. We will refer to this algorithm as Corrective ERLPBoost. This

algorithm uses relative entropy regularization, but it is easy to derive a similar algorithm

that uses a binary entropy regularizer instead. We call this last algorithm Corrective

Binary ERLPBoost.
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ERLPBoost

domain optimization problem

d
min
d

maxq=1,2,...,t uq · d + 1
η∆(d,d0)

s.t. d · 1 = 1, d ≤ 1
ν1

w

max
w,ψ

−1
η

ln
N∑
n=1

d0
n exp(−η(

t∑
q=1

uqnwq + ψn))− 1
ν

N∑
n=1

ψn︸ ︷︷ ︸bΘt(w,ψ)

s.t. w ≥ 0, w · 1 = 1, ψ ≥ 0

Binary ERLPBoost

domain optimization problem

d
min
d

maxq=1,2,...,t uq · d + 1
η∆2,ν(d,d0)

s.t. d · 1 = 1, d ≤ 1
ν1

w

max
w,β

− 1
ην

N∑
n=1

ln(1− νd0
n + νd0

n exp(−η(
t∑

q=1

wqu
q
n + β)))− β︸ ︷︷ ︸bΘTB(w,β)

s.t. w ≥ 0, w · 1 = 1, β ∈ R.

Table 4.1: ERLPBoost and Binary ERLPBoost optimization problems in the d and w
domains. The objective functions are not differentiable in the d domain, but they are
in the w domain.
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4.1 ERLPBoost and Binary ERLPBoost

The ERLPBoost algorithm is given in Algorithm 3.2 from Chapter 3.2 and

the Binary ERLPBoost algorithm is given in Algorithm 3.3 from Chapter 3.3. In both

algorithms, the most difficult step to implement is the optimization problem used to

find updated dt. In this section we will discuss in detail how to solve this kind of

optimization problem. First we will explain why we chose to work in the w domain.

We then motivate LANCELOT [19], the augmented Lagrangian method that was used

to solve the optimization problem1. Finally, we provide a detailed description of how

we solve the bound-constrained sub-problem of the augmented Lagrangian method with

the BLMVM2 algorithm [5]. BLMVM requires the user to provide two things: an initial

estimate of the variables and a user-defined function to compute the value and gradient

of the augmented Lagrangian.

In the d domain, ERLPBoost solves the optimization problem defined in (3.6)

and Binary ERLPBoost solves the problem defined in (3.25). For clarity, both of these

problems are summarized in Table 4.1. Unfortunately, because of the max, neither

of the objective functions is differentiable in the d domain. However, Table 4.1 also

contains the optimization problems solved by ERLPBoost and Binary ERLPBoost in

the w domain, which are the Lagrangian duals of the problems in the d domain. Notice

that in the w domain, both objective functions are differentiable. Furthermore, as

we discussed in Chapter 3, it is extremely easy to recover dt given wt and ψt for
1LANCELOT is an acronym for Large And Nonlinear Constrained Extended Lagrangian Optimiza-

tion Techniques.
2BLMVM is an acronym for Bound-constrained Limited Memory Variable Metric
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ERLPBoost. It is equally easy to recover dt given wt and βt for Binary ERLPBoost.

It therefore makes sense to solve the optimization problems in the w domain.

Both of these optimization problems have special structure that we can take

advantage of. Note that the inequality constraints are all bounds on the variables. The

only additional constraint is a single equality constraint, w · 1 = 1. If the equality con-

straint were not there, this optimization problem would be a simple bound-constrained

optimization problem. There are many algorithms that can solve this type of problem,

for example LBFGS-B [13] and BLMVM [5].

To handle the equality constraint, the experiments in our thesis use the aug-

mented Lagrangian method from the LANCELOT package [19, 58]. This algorithm is

designed to solve problems of the form:

min
x

f(x)

s.t. c(x) = 0

l1 ≤ x ≤ u1.

If we set x = [w,ψ], c(x) = (w · 1− 1), and f(x) = Θ̂t(w,ψ) or Θ̂t
B(w,ψ), we can see

that this problem has the same form as that of ERLPBoost and Binary ERLPBoost.

To motivate the augmented Lagrangian method, let us first consider the simple

approach of incorporating the equality constraint into the objective function in the form

of a penalty term. The resulting optimization problem is

min
x

f(x) +
1

2µ
c(x)2

s.t. l1 ≤ x ≤ u1,

97



where µ is a penalty parameter given by the user. Observe that a sufficiently small

value of µ will push c(x) toward zero and that this optimization problem can be solved

with any bound-constrained optimization algorithm. The penalty method solves the

above optimization problem with a decreasing sequence of µ values until the equality

constraint is satisfied to sufficient precision. It has been established that ci(xt) ≈ λ∗µt,

where λ∗ is the optimal Lagrange multiplier for the equality constraint while xt and µt

are the values of the variables at iteration t [58]. Unfortunately, the problem becomes

ill conditioned when µ becomes too small, so we introduce an alternative method that

does not have this problem.

The augmented Lagrangian method is related to the penalty method, but it

reduces the possibility of ill conditioning by introducing Lagrange multiplier estimates.

The augmented Lagrangian function is

LA(x, λ, µ) := f(x)− λc(x) +
1

2µ
c(x)2

and resulting optimization problem is

min
x

LA(x, λ, µ) (4.1)

s.t. l1 ≤ x ≤ u1,

where λ is the Lagrange multiplier of the equality constraint and µ is the penalty

parameter. Both of these values are given by the user, and the only variable being

optimized is x. This problem can be solved with a bound-constrained optimization

solver as well. The first-order optimality conditions imply that ci(x) ≈ µt(λ∗ − λt),

where λ∗ is the optimal Lagrange multiplier and λt is its estimate at iteration t [58].
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Thus, the augmented Lagrangian approach pushes ci(x) to zero more efficiently than the

penalty method. Theorem 17.5 of [58] states that given λ∗, there exists a threshold value

µ̄ such that for all µ ≤ µ̄, the variable x∗ (the minimizer of the original optimization

problem) is also the minimizer of (4.1).

We have therefore reduced the problem to finding sufficiently good estimates of

λ and µ. The LANCELOT algorithm accomplishes this by solving (4.1) with a sequence

of estimates of µ and λ until the equality constraint is satisfied to sufficient precision.

The implementation follows the description in [19]. In particular, the initial parameter

values are the ones described in [19]. The only deviation from the algorithm description

occurs when we solve (4.1). Instead of the trust region method used by LANCELOT,

we use the BLMVM algorithm from TAO [5].

We now discuss the use of BLMVM to minimize the bound-constrained aug-

mented Lagrangian problem for ERLPBoost and Binary ERLPBoost. First, BLMVM

requires an initial estimate of w and ψ for ERLPBoost and an initial estimate of w

and β for Binary ERLPBoost. In the first iteration, we initialize w0 to uniform. For

ERLPBoost we also initialize ψ0 = 0, while for Binary ERLPBoost we initialize β0 = 0.

In subsequent iterations, a common technique is to initialize a variable with its value

from the previous iteration. At iteration t, we initialize ψt = ψt−1 for ERLPBoost and

βt = βt−1 for Binary ERLPBoost. The difficulty is that the length of w increases by

one at each iteration, so we cannot simply set wt = wt−1. In our implementation, we

solve this problem by mimicking a single iteration of the corrective algorithm, which
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will be defined in Algorithm 4.1 in the next section. We initialize

wtt = max

(
0,min

(
1,

(ut −
∑t−1

q=0w
t−1
q uq) · dt−1

η||ut −
∑t−1

q=0w
t
quq||2∞

))
,

and we set

wt−1
q = (1− wtt)wt−1

q for q = 1 . . . t− 1.

BLMVM also requires a user-defined function that computes the value of the

augmented Lagrangian and and its gradient. We now explain how these values are

computed, beginning with ERLPBoost. The value of the original objective function,

Θ̂t(w,ψ) is in Table 4.1. The augmented Lagrangian value is

LA(w,ψ, λ, µ) = Θ̂t(w,ψ) + λ(
t∑

q=1

wq − 1) +
1

2µ
(
t∑

q=1

wq − 1)2.

The gradient of the augmented Lagrangian consists of its partial derivative w.r.t w and

ψ. The partial derivative of the augmented Lagrangian w.r.t. w is

∂LA(w,ψ, λ, µ)
∂wq

=
∂Θ̂t(w,ψ)

∂wq
+ λ+

1
µ

(
t∑

q=1

wq − 1),

where

∂Θ̂t(w,ψ)
∂wq

=
N∑
n=1

d0
nu

q
n exp(−η(

∑t
q=1 u

q
nwq + ψn))∑N

n′=1 d
0
n′u

q
n′ exp(−η(

∑t
q=1 u

q
n′wq + ψn′))

.

Since ψ does not appear in the equality constraint, the partial derivative of the aug-

mented Lagrangian w.r.t. ψ is equal to

∂LA(w,ψ, λ, µ)
∂ψn

=
∂Θ̂t(w,ψ)

∂ψn
=

d0
n exp(−η(

∑t
q=1 u

q
nwq + ψn))∑N

n=1 d
0
nu

q
n exp(−η(

∑t
q=1 u

q
nwq + ψn))

.

We now derive the value of the augmented Lagrangian and its gradient for Bi-

nary ERLPBoost. The value of the original objective function, Θ̂t
B(w, β) is in Table 4.1.
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The augmented Lagrangian value is

LA(w, β, λ, µ) = Θ̂t
B(w, β) + λ(

t∑
q=1

wq − 1) +
1

2µ
(
t∑

q=1

wq − 1)2.

The partial derivative of the augmented Lagrangian w.r.t. w is

∂LA(w, β, λ, µ)
∂wq

=
∂Θ̂t

B(w, β)
∂wq

+ λ+
1
µ

(
t∑

q=1

wq − 1),

where

∂Θ̂t
B(w, β)
∂wq

=
N∑
n=1

d0
nu

q
n exp(−η(

∑t
q=1 u

q
nwq + β))∑N

n′=1 1− νd0
n′ + νd0

n′ exp(−η(
∑t

q=1 u
q
n′wq + β))

.

As before, since β does not appear in the equality constraint, the gradient of the aug-

mented Lagrangian w.r.t. β is equal to

∂LA(w, β, λ, µ)
∂β

=
∂Θ̂t

B(w, β)
∂β

=
d0
n exp(−η(

∑t
q=1 u

q
nwq + β))∑N

n=1 1− νd0
n + νd0

n exp(−η(
∑t

q=1 u
q
nwq + β))

.

Finally, the initial value of the variables, the value of the objective function,

and the value of the gradient are given to BLMVM, which is documented in [5]. The

remaining steps in ERLPBoost and Binary ERLPBoost are straightforward and do not

require further documentation.

4.2 Corrective ERLPBoost

Shalev-Schwartz and Singer [77] proposed an algorithm that is similar to

ERLPBoost, but it differs in two respects. First, instead of updating the weights on all

of the hypotheses at each iteration, it only updates the weight on the last hypothesis
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Algorithm 4.1 Corrective ERLPBoost (based on [77])

1. Input: S = {(x1, y1), . . . , (xN , yN )}, accuracy parameter ε > 0, regularization

parameter η > 0, and smoothness parameter ν ∈ [1, N ].

2. Initialize: d0 to the uniform distribution,

w0 = 0, ψ0 = 0, P 1
C(d0) = 1 and Θ̂0

C(w0,ψ0) = −1.

3. Do for t = 1, . . .

(a) Send dt−1 to oracle and obtain hypothesis ht. Set utn = ynh
t(xn).

(b) Set wtt = max
(

0,min
(

1,
(ut−

Pt−1
q=0 w

t−1
q uq)·dt−1

η||ut−
Pt−1
q=0 w

t
qu
q ||2∞

))
.

(c) Set wtq = (1− wtt)wt−1
q for q = 1 . . . t− 1.

(d) Set δt = minq=1...t P
q(dq−1)− Θ̂t−1(wt−1,ψt−1),

where P t(d) =
∑t

q=1w
t
q(u

q · d) + 1
η∆(d,d0) and

Θ̂t(w,ψ) := − 1
η ln

∑N
n=1 d

0
n exp(−η(

∑t
q=1 u

q
nwq + ψn))− 1

ν

∑N
n=1 ψn.

(e) If δt ≤ ε/2 then set T = t− 1 and break.

(f) Update the distribution to dtn = d0
n exp(−η

∑t
q=1 u

q
nwtq).

(g) Project dt using Algorithm 4.2 and define C = {n : dtn = 1
ν }.

(h) Set Zt = 1
(1−|C|/ν)

∑
n6∈C

d0
n exp(−η

∑t
q=1 u

q
nwtq).

(i) Set ψtn =


−
∑t

q=1 u
q
nwtq − 1

η ln
(
Zt

d0nν

)
if n ∈ C

0 if n 6∈ C
.

4. Output: fw(x) =
∑T

q=1w
T
q h

q(x).
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Algorithm 4.2 Project Simplex [77]

1. Input: distribution d ∈ SN and capping parameter ν ∈ [1, N ].

2. Sort d in descending order and store in d′.

3. Initialize: Z =
∑N

n=1 d
′
n

4. Do for n = 1, . . . N

(a) θ = 1−ν(n−1)
Z

(b) If θd′n ≤ ν then break

(c) Z = Z − d′n

5. Output: d̂ s.t. d̂n = min{ν, θdn}.

and rescales the weights on the previous hypotheses accordingly. Also, instead of up-

dating the weights on the examples and the hypotheses at the same time, this algorithm

updates them separately. We call this algorithm Corrective ERLPBoost, and its details

are given in Algorithm 4.1. In this section, we first explain the motivation for this

algorithm in terms of its totally corrective counterpart, ERLPBoost. We then present a

stopping criterion for Corrective ERLPBoost. This is the main difference between our

implementation and the original algorithm description in [77], which does not contain

a stopping criterion. Finally, we present an optimization problem that simultaneously

updates d and w and whose update is equivalent to the update in Algorithm 4.1.

Before we proceed, let us clarify the notation we will use in the following two
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sections. We refer to the updated weight on hypothesis t at iteration t as wtt, and if

the value is not updated, we call this weight wt. Next, observe that in Algorithm 4.1,

Corrective ERLPBoost first chooses wtt and then sets wtq = (1−wtt)wt−1
q for q = 1 . . . t−1.

These values define vector wt.

To understand how Corrective ERLPBoost and ERLPBoost are related, we

analyze the way Corrective ERLPBoost chooses the updated weight wt
t for hypothesis

t. This choice is motivated by Lemma 3.7, which lower bounds the increase of the

ERLPBoost objective function at each iteration via the Lagrangian dual. Recall that

because the ERLPBoost dual is a maximization problem, Θ̂t(wt,ψt) ≥ Θ̂t(w,ψ) for

any suboptimal w ∈ St and ψ ≥ 0. For our lower bound on the value we replaced ψt

by the suboptimal previous value ψt−1 and wt by

wt(α) = (1− α)

 wt−1

0

+ α

 0

1

 , where α ∈ [0, 1].

This substitution results in the following lower bound from Lemma 3.7:

P t(dt) −P t−1(dt−1) = Θ̂t(wt,ψt)− Θ̂t−1(wt−1,ψt−1)

≥ Θ̂t(wt(α),ψt−1)− Θ̂t−1(wt−1,ψt−1)

= − 1
η ln

∑N
n=1 d

t−1
n exp

(
−ηα

(
utn −

∑t−1
q=1 u

q
nwt−1

q

))
(4.2)

≥ α(ut −
∑t−1

q=1 uqwt−1
q ) · d− 2ηα2. (4.3)

The best possible choice that Corrective ERLPBoost could make for wtt is the value of

α that maximizes (4.2), but there is no closed form solution for α. Instead, Corrective

ERLPBoost chooses α to maximize a lower bound on this expression. Observe that
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tighter lower bound means more progress per iteration, which results in faster conver-

gence. A naive choice for α would be the maximizer of (4.3), but we will show that a

better choice of α is found in[77].

In the analysis of [77], (4.3) is replaced by

α(ut −
t−1∑
q=1

uqwt−1
q ) · d− 2ηα2||ut −

t−1∑
q=1

uqwt−1
q ||2∞. (4.4)

Corrective ERLPBoost sets wtt to the value of α that maximizes the above expression

because as Figure 4.1 shows, this is a tighter lower bound on (4.2). Figure 4.1 com-

pares the value of Equation (4.2) with its two lower bounds shown in (4.3) and (4.4)

respectively. This figure is for a simple problem of two examples and two hypotheses in

the uncapped case. We must use the uncapped case because otherwise, the ψ variables

would make it impossible to visualize the problem in two dimensions. According to

Figure 4.1, neither lower bound is tight. However, the lower bound of (4.4), which is

used by Corrective ERLPBoost, is tighter than the lower bound of (4.3), which is used

in Lemma 3.7.

A potential advantage of the corrective algorithm is that the update on the

weights performed at each iteration has a complexity of O(N ln(N)), which is much

faster than solving a complicated constrained optimization problem. Note that it is

the projection step that is O(N ln(N)), and the update could be done in linear time

by using the projection algorithm in Herbster and Warmuth [38]. While the corrective

algorithm is always simpler and faster on an iteration by iteration basis, it requires more

iterations than its totally corrective counterpart. Despite this, Corrective ERLPBoost
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Figure 4.1: The original Θ̂t(wt(α),ψt−1)−Θ̂t−1(wt−1,ψt−1) is plotted against the lower
bounds in (4.4) from [77] and (4.3) from Lemma 3.7. The lower bound in (4.4) is tighter,
but it is not optimal.

has an iteration bound of O( 1
ε2

ln N
ν ), the same iteration bound as ERLPBoost. This is

possible because the iteration bound is loose.

4.2.1 Stopping Criterion for Corrective ERLPBoost

Our implementation of Corrective ERLPBoost, shown in Algorithm 4.1, differs

from the algorithm proposed in [77] in only one respect: the stopping criterion. The al-

gorithm in [77] has no stopping criterion. Instead, it was proved that after Ω( 1
ε2

ln(Nν )),

then P tLP − Θ̂t(w,ψ) ≤ ε, where Θ̂t(w,ψ) (defined in (3.10)) is the Lagrangian dual

of the ERLPBoost objective function P t(d). Observe that in the analysis of the cor-

rective algorithm, the convergence is measured using the totally corrective optimization

problem.
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Unfortunately, Ω( 1
ε2

ln(Nν )) is very large number of iterations, and it is likely

that the algorithm will require far fewer iterations to reach a precision of ε. For this

reason, we chose to modify the algorithm defined in [77] to use the practical ERLP-

Boost stopping criterion defined in Chapter 3.2.2. Corrective ERLPBoost monitors the

quantity

δ̃t = min
q=1...t

P q(dq−1)− Θ̂t−1(wt−1
t−1,ψ

t−1),

where P t(d) is given in (3.6) and Θ̂t(w,ψ) is given in (3.10). The algorithm terminates

when when δ̃t ≤ ε
2 .

Every variable in the above expression is known except ψ. This is because

in the projection step, Algorithm 4.2 is given the unnormalized distribution whose

components are d0
n exp(−η

∑t
q=1wqu

q
n) and returns a distribution whose components

are in the capped simplex, but ψ is never computed in the process. We will now get a

closed form expression for the ψtn corresponding to the projected distribution. This was

originally derived by Vishwanathan [85].

After setting wtq = (1−wtt)wt−1
q for q = 1 . . . t−1, the update d on the examples

becomes

dtn =
d0
n exp(−η

∑t
q=1 u

q
nwtq − ηψtn)∑

n′ d
0
n′ exp(−η

∑t
q=1 u

q
nwtq − ηψtn)︸ ︷︷ ︸

Zt

. (4.5)

The KKT conditions imply that the product ψtn(dtn − 1
ν ) = 0. This means that either

ψtn = 0 and dtn <
1
ν or dtn = 1

ν and ψtn ≥ 0. Let us define the set of indices of active
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constraints C = {n : dtn = 1
ν }. We know that

∑N
n=1 dn = 1, so

∑
n6∈C

dtn = 1− 1
ν
|C|.

Since ψtn = 0 for n 6∈ C,

∑
n6∈C

dtn =
∑
n6∈C

d0
n exp(−η

∑t
q=1 u

q
nwtq − ηψtn)∑

n′ d
0
n′ exp(−η

∑t
q=1 u

q
nwtq − ηψtn)

The above expression can be computed from quantities that are already known. Com-

bining the previous two expressions yields

Zt =

∑
n6∈C d

t
n

1− 1
ν |C|

.

Once we have Zt, getting ψtn is straightforward. If n 6∈ C, ψtn = 0. If n ∈ C, then by

using the form of the update in (4.5) along with the fact that dtn = 1
ν , it is clear that

ψtn satisfies

d0
n exp(−η

t∑
q=1

uqnw
t
q − ηψtn) =

Zt

ν
.

Solving for ψtn gives us

ψtn = −
t∑

q=1

uqnw
t
q −

1
η

ln(
Zt

d0
nν

).

4.2.2 Alternative Corrective ERLPBoost Optimization Problem

Recall from Algorithm 4.1 that Corrective ERLPBoost updates the d and wt

variables separately. We now present an optimization problem that optimizes d and wt

jointly and whose optimal value dt is of the exact same form as (4.5). The optimal wtt

is the dual variable to an equality constraint; it is not determined heuristically as it was

in Algorithm 4.1.
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At iteration t, we define the following optimization problem:

min

d · 1 = 1

d ≤ 1
ν1

(ut −
∑t−1

q=1w
t−1
q uq) · d = 0

ut · d +
1
η

∆(d,d0). (4.6)

The last constraint ensures that the edge w.r.t. the latest hypothesis is equal to the edge

w.r.t. the convex combination of the previous hypotheses. It is instructive to compare

this optimization problem with that of ERLPBoost. Recall from Chapter 3.2 that the

optimization problem solved by ERLPBoost at each iteration is

min

d · 1 = 1

d ≤ 1
ν1

max
q=1,2,...,t

uq · d +
1
η

∆(d,d0).

Notice the difference in the first terms of their respective objective functions. The

corrective algorithm minimizes (ut ·d), while the totally corrective algorithm minimizes

max
q=1,2,...,t

uq · d.

We now derive the Lagrangian dual of (4.6), and in the process, we show that

the form of the update on d is equivalent to (4.5).

Lemma 4.1 The Lagrangian dual of (4.6) is

max
wt,ψ

Θ̂t
C(wt,ψ) s.t. ψ ≥ 0, where (4.7)

Θ̂t
C(wt,ψ) := −1

η
ln

N∑
n=1

d0
n exp(−η(1− wt)

t−1∑
q=1

uqnw
t−1
q − ηwtutn − ηψn))− 1

ν

N∑
n=1

ψn.
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The optimal solution dt of (4.6) can be expressed in terms of the dual variables wtt and

ψt as follows:

dtn :=
d0
n exp(−η(1− wtt)

∑t−1
q=1 u

q
nwt−1

q − ηwttutn − ηψtn)∑
n′ d

0
n′ exp(−η(1− wtt)

∑t−1
q=1 u

q
nw

t−1
q − ηwttutn − ηψtn))

. (4.8)

Furthermore, when we introduce the change of variable wtq = (1−wtt)wt−1
q , the optimal

solution dt becomes

dtn :=
d0
n exp(−η

∑t
q=1 u

q
nwtq − ηψtn)∑

n′ d
0
n′ exp(−η

∑t
q=1 u

q
nwtq − ηψtn))

.

Proof The Lagrangian for this minimization problem in (4.6) is

Lt( d︸︷︷︸
primal

, α,ψ, β︸ ︷︷ ︸
dual

) = ut · d +
1
η

∆(d,d0) + α(
t−1∑
q=1

wq(uq · dt)− ut · dt)

+
N∑
n=1

ψn(dn − 1/ν) + β(1 · d− 1).

To get the form of the update to match that of [77], let us do a change of variable and

substitute wt = 1− α. The new Lagrangian is

Lt( d︸︷︷︸
primal

, wt,ψ, β︸ ︷︷ ︸
dual

) = ut · d +
1
η

∆(d,d0) + (1− wt)(
t−1∑
q=1

wq(uq · dt)− ut · dt)

+
N∑
n=1

ψn(dn − 1/ν) + β(1 · d− 1). (4.9)

The dual is derived from the Lagrangian by plugging in the minimum value of

the primal variables:

Θt
C(wt,ψ, β) := inf

d
Lt(d, wt,ψ, β).

Differentiating the Lagrangian w.r.t. d shows that the n-th component of the optimal
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d vector has the form

dtn = d0
n exp(−η(1− wt)

t−1∑
q=1

uqnwq − ηwtutn − ηψn − ηβ − 1). (4.10)

By plugging the optimal d into the Lagrangian (4.9), the dual function simplifies to

Θt
C(wt,ψ, β) = −1

η

N∑
n=1

d0
n exp(−η(1−wt)

t−1∑
q=1

uqnwq−ηwtutn−ηψn−ηβ−1)−β− 1
ν

N∑
n=1

ψn.

This results in the following Lagrange dual:

max
ψ,β

Θt
C(wt,ψ, β)

s.t. ψ ≥ 0,

By differentiating Θt
C(wt,ψ, β) we can determine the optimal choice of β:

βt(wt,ψ) = −1
η

+
1
η

ln
N∑
n=1

d0
n exp(−η(1− wt)

t−1∑
q=1

uqnwq − ηwtutn − ηψn).

Plugging this choice for β into (4.10) results in

dtn :=dtn(wt,ψt, βt(ψt))

=
d0
n exp(−η(1− wt)

∑t−1
q=1 u

q
nwq − ηwtutn − ηψtn)∑

n′ d
0
n′ exp(−η(1− wt)

∑t−1
q=1 u

q
nwq − ηwtutn − ηψtn)

.

Once β is optimized, the Lagrangian becomes

Θt
C(wt,ψ, βt(ψ)) = Θ̂t

C(wt,ψ)

:= −1
η

ln
N∑
n=1

d0
n exp(−η(1− wt)

t−1∑
q=1

uqnwq − ηwtutn − ηψn)− 1
ν

N∑
n=1

ψn.

The dual problem now reduces to

max
wt,ψ

Θ̂t
C(wt,ψ)

s.t. ψ ≥ 0.
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The primal objective is convex and the primal constraints are affine. Also, the

uniform distribution is always a feasible solution. Therefore, Slater’s condition tells us

that since this problem has a non-empty feasible set, strong duality holds and the values

of the primal and the dual problems are the same.

4.3 Corrective Binary ERLPBoost

The algorithm defined in [77] uses a relative entropy regularizer, but it is

easy to derive a similar algorithm that uses a binary entropy regularizer. We call this

algorithm Corrective Binary ERLPBoost, and its details are given in Algorithm 4.3. In

this section, we first explain the motivation for this algorithm in terms of its totally

corrective counterpart, Binary ERLPBoost. We then discuss the stopping criterion and

the computation of β, the variable that ensures that the updated dt is normalized. We

will see that the two primary differences between Corrective ERLPBoost and Corrective

Binary ERLPBoost are the update on the weights and the normalization mechanism.

Finally, we present an optimization problem that updates the weights on the examples

and the hypotheses jointly and whose update has the same form as that of Algorithm 4.3.

Corrective Binary ERLPBoost approximates Binary ERLPBoost in the same

way that the algorithm in the previous section approximates ERLPBoost. This al-

gorithm finds an updated wtt based only on the current hypothesis, whereas Binary
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ERLPBoost updates the entire w vector based on all previous hypotheses. The choice

of wtt is motivated by Lemma 3.19, which lower bounds the increase of the Binary

ERLPBoost objective function at each iteration via the Lagrangian dual. Because the

Binary ERLPBoost dual is a maximization problem, Θ̂t
B(wt, βt) ≥ Θ̂t

B(w, β) for any

suboptimal w ∈ St and β ∈ R. For our lower bound, we replaced βt by the suboptimal

previous value βt−1 and wt by wt(α) = (1− α)

 wt−1

0

+ α

 0

1

 , where α ∈ [0, 1].

This substitution results in the following lower bound:

P tB(dt) −P t−1
B (dt−1) = Θ̂t

B(wt, βt)− Θ̂t−1
B (wt−1, βt−1)

≥ Θ̂t
B(wt(α), βt−1)− Θ̂t−1

B (wt−1, βt−1)

= − 1
νη

∑N
n=1 ln

(
1− νdt−1

n + νdt−1
n exp(−ηα(utn −

∑t−1
q=1 u

q
nwt−1

q ))
)

≥ α(ut −
∑t−1

q=1 uqwt−1
q ) · d− 2ηα2.

Note that the lower bound for Binary ERLPBoost is identical to that of ERLPBoost.

The updated wt for Corrective Binary ERLPBoost is based on the same sub-

stitution of suboptimal variables. Recall from the previous section that the analysis

of [77] uses a tighter lower bound, (4.4). The same lower bound holds in the case of

binary entropy regularization, so we set wtt to the value of α that maximizes (4.4) in

the interval [0, 1]:

wtt = max

(
0,min

(
1,

(ut −
∑t−1

q=0w
t−1
q uq) · dt−1

η||ut −
∑t−1

q=0w
t
quq||2∞

))
.

Before continuing, it is worth noting that Corrective Binary ERLPBoost does

not project dt into the capped simplex in the same way that Corrective ERLPBoost

does. Instead, the capping is handled implicitly by the binary relative entropy and
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normalization is achieved by finding the right value of β via binary search, as shown in

Algorithm 4.4.

4.3.1 Stopping Criterion for Corrective Binary ERLPBoost

Recall that in the analysis of [77], the convergence of the corrective algorithm

is measured using the totally corrective optimization problem. We therefore chose to

modify Corrective Binary ERLPBoost to use the practical stopping criterion of Binary

ERLPBoost, described in Chapter 3.3.2. Corrective Binary ERLPBoost monitors the

quantity

δ̃tB = min
q=1...t

Pq(dq−1)− Θ̂t−1
B (wt−1, βt−1),

where

Pt(d) = max
q=1,2,...,t

uq · d +
1
η

∆2,ν(d,d0)

and

Θ̂t
B(w, β) := − 1

ην

N∑
n=1

ln(1− νd0
n + νd0

n exp(−η(
t∑

q=1

wqu
q
n + β)))− β.

The algorithm terminates when δ̃tB ≤
ε
2 .

Every variable in the above expression is known except β, for which there is

no closed form expression. Instead, we find β via binary search in Algorithm 4.4. In

contrast, for Corrective ERLPBoost we were able to find closed-form expression for the

ψ variables. The binary search is computationally expensive, so for this reason we con-

jecture that Corrective Binary ERLPBoost will be slower than Corrective ERLPBoost.
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Algorithm 4.3 Corrective Binary ERLPBoost

1. Input: S = {(x1, y1), . . . , (xN , yN )}, accuracy parameter ε > 0, smoothness pa-

rameter ν ∈ [1, N ], and regularization parameter η > 0. The canonical value of

η = 2
ε (ln

N
ν + 1).

2. Initialize: d0 to the uniform distribution,

w0 = 0, β0 = 0, P 1
CB(d0) = 1 and Θ̂0

CB(w0, β0) = −1.

3. Do for t = 1, . . .

(a) Send dt−1 to oracle and obtain hypothesis ht. Set utn = ynh
t(xn).

(b) Set wtt = max
(

0,min
(

1,
(ut−

Pt−1
q=0 w

t−1
q uq)·dt−1

η||ut−
Pt−1
q=0 w

t
qu
q ||2∞

))
.

(c) Set wtq = (1− wtt)wt−1
q for q = 1 . . . t− 1.

(d) Set δ̃tB = minq=1...t Pq(dq−1)− Θ̂t−1
B (wt−1, βt−1),

where Pt(d) = maxq=1,2,...,t uq · d + 1
η∆2,ν(d,d0)

and Θ̂t
B(w, β) := − 1

ην

∑N
n=1 ln(1− νd0

n + νd0
n exp(−η(

∑t
q=1wqu

q
n + β)))− β.

(e) If δtCB ≤ ε/2 then set T = t− 1 and break.

(f) Find β via Algorithm 4.4

(g) Update the distribution to

dtn :=
d0
n exp(−η(

∑t
q=1w

t
qu
q
n + β))

1− νd0
n + νd0

n exp(−η(
∑t

q=1w
t
qu
q
n + β))

. (4.11)

4. Output: fw(x) =
∑T

q=1w
T
q h

q(x).
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Algorithm 4.4 Binary Search for β

1. Input: w, ν, η, uq for q = 1 . . . t, tolerance τ ,

and maximum number of bisections T .

2. Initialize: βl < 0 < βu.

3. Define: s(β) :=
∑N

n=1

d0n exp(−η(
Pt
q=1 wqu

q
n+β))

1−νd0n+νd0n exp(−η(
Pt
q=1 wqu

q
n+β))

4. While s(βl) ≥ 1, set βl = 2βl.

5. While s(βu) ≤ 1, set βu = 2βu.

6. Do for t = 1, . . . T

(a) β = βl + 1
2(βl + βu)

(b) If |s(β)| ≤ τ then break

(c) If s(β) < 1 then set βu = β, Else set βl = β

7. Output: β

116



4.3.2 Alternative Corrective Binary ERLPBoost Optimization Prob-

lem

Algorithm 4.3 shows that Corrective Binary ERLPBoost updates the d and wt

variables separately. We now present an optimization problem that optimizes d and wt

simultaneously and whose update on dt is equivalent to (4.11) in Algorithm 4.3. Note

that in this optimization problem, wt is the dual variable to an equality constraint; it

is not determined heuristically as it was in Algorithm 4.3.

At iteration t, we define the following optimization problem:

min

d · 1 = 1

(ut −
∑t−1

q=1wqu
q) · d = 0

ut · d +
1
η

∆2,ν(d,d0). (4.12)

The last constraint balances the edge w.r.t. the latest hypothesis and the edge w.r.t.

the convex combination of the previous hypotheses. It is instructive to compare this

optimization problem with that of Binary ERLPBoost. Recall from Chapter 3.3 that

the at each iteration Binary ERLPBoost solves the following optimization problem:

min

d · 1 = 1

max
q=1,2,...,t

uq · d +
1
η

∆2,ν(d,d0).

These problems also differ in the first term of their respective objective functions. The

corrective algorithm minimizes
∑t

q=1wq(u
q · d), while the totally corrective algorithm

minimizes max
q=1,2,...,t

uq · d.

We now derive the Lagrangian dual of (4.12), and in the process, we show that

the form of the update on d is equivalent to (4.11).
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Lemma 4.2 The Lagrangian dual of (4.12) is

max
wt,β

Θ̂t
CB(wt,ψ), s.t. β ∈ R, where (4.13)

Θ̂t
CB(wt, β) :=− 1

ην

N∑
n=1

ln(1− νd0
n + νd0

n exp(−η(wtutn + (1− wt)
t−1∑
q=1

wt−1
q uqn + β)))− β.

The optimal solution dt of (4.12) can be expressed in terms of the dual variables wtt and

βt as follows:

dtn :=
d0
n exp(−ηwttutn − η(1− wtt)

∑t−1
q=1w

t−1
q uqn − ηβt)

1− νd0
n + νd0

n exp(−ηwttutn − η(1− wtt)
∑t−1

q=1w
t−1
q uqn − ηβt)

(4.14)

Furthermore, when we introduce the change of variable wtq = wttw
t−1
q , the update becomes

dtn :=
d0
n exp(−η(

∑t
q=1w

t
qu
q
n + βt))

1− νd0
n + νd0

n exp(−η(
∑t

q=1w
t
qu
q
n + βt))

.

This is the same form as the update in Algorithm 4.3.

Proof The Lagrangian for this minimization problem in (4.12) is

Lt( d︸︷︷︸
primal

, α, β︸︷︷︸
dual

) = ut · d +
1
η

∆2,ν(d,d0) + α(
t−1∑
q=1

wt−1
q (uq · dt)− ut · dt)

+ β(1 · d− 1).

To get the form of the update to match that of Algorithm 4.3, let us do a change of

variable and substitute wt = 1− α.

Lt( d︸︷︷︸
primal

, wt, β︸ ︷︷ ︸
dual

) = ut · d +
1
η

∆2,ν(d,d0) + (1− wt)(
t−1∑
q=1

wt−1
q (uq · dt)− ut · dt)

+
N∑
n=1

ψn(dn − 1/ν) + β(1 · d− 1). (4.15)
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The dual is derived from the Lagrangian by plugging in the minimum value of

the primal variables:

Θt
CB(wt, β) := inf

d
Lt(d, wt, β).

Differentiating the Lagrangian w.r.t. d results in

∂Lt

∂dn
=

1
η

[
ln
dn
d0
n

− ln
1
ν − dn
1
ν − d0

n

]
+ wtu

t
n − (1− wt)

t−1∑
q=1

wt−1
q uqn + β.

The update for dn has the form

dtn :=
d0
n exp(−ηwtutn − η(1− wt)

∑t
q=1w

t−1
q uqn − ηβ)

1− νd0
n + νd0

n exp(−ηwtutn − η(1− wt)
∑t

q=1w
t−1
q uqn − ηβ)

.

By plugging the optimal d into the Lagrangian (4.15), the dual function simplifies to

Θt
CB(wt, β) = − 1

ην

N∑
n=1

ln(1− νd0
n + νd0

n exp(−η(wtutn + (1−wt)
t∑

q=1

wt−1
q uqn + β)))− β.

The primal objective is convex and the primal constraints are affine. Also, the

uniform distribution is always a feasible solution. Therefore, Slater’s condition tells us

that since this problem has a non-empty feasible set, strong duality holds and the values

of the primal and the dual problems are the same.
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Chapter 5

Experimental Evaluation

In this chapter, we present an experimental evaluation of LPBoost, ERLP-

Boost, and Binary ERLPBoost. We address five different experimental questions. The

first question is whether LPBoost is stable in practice. We found that it is unstable

for most data sets on most hypothesis classes, so we asked whether the instability is

corrected by either replacing the hard margin with the soft margin or by adding entropy

regularization. The second question is whether the theoretical value of the regularization

parameter for ERLPBoost and Binary ERLPBoost is optimal, and if not, what consti-

tutes sufficient regularization? The third question is whether Binary ERLPBoost is

faster than ERLPBoost and whether there is a difference in generalization performance

between the two algorithms. The fourth question is how totally corrective algorithms

compare to their corrective counterparts. The final question is how these algorithms

compare to each other in terms of their best overall performance.

Table 5.1 lists the data sets used in our experiments. Every data set can be
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Data Set Train/Test Size Dimensions
news20 [42] 19,996 1,355,191
real-sim [55] 72,309 20,958
astro-physics [40] 62,369/32,487 99,757
adult9 (a9a) [3] 32,561/16,281 123
german [3] 1000 24
diabetes [3] 768 8

Table 5.1: Data sets used in experimentation. The reported size of the training and
test sets are before post-processing.

Data Set Train Valid Test Size
news20 11,997 3,999 4,000
real-sim 43,385 14,462 14,462
astro-ph 56,913 18,971 18,972
a9a 29,305 9,768 9,769
german 600 200 200
diabetes 460 154 154

Table 5.2: Data sets after processing.

found in the LIBSVM1 repository [16] except for the Astro-physics data set [40]. The

data sets are post-processed according to the following procedure. First, the training

and test sets are concatenated to make a single large data set. Then, we randomly assign

examples such that 60% of the examples are in the training set, 20% of the examples

are in the validation set, and 20% of the examples are in the test set. The script we

used to process the data is freely available2. The sizes of the processed data sets are

listed in Table 5.2.

The parameters used in our experiments are listed in Table 5.3. Recall that ε is

the precision parameter, ν is the capping parameter, and η is the regularization param-

eter for algorithms with entropy regularization. Note that unless otherwise specified,
1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
2http://www.soe.ucsc.edu/~kag/dissertation.shtml

121



ERLPBoost, Binary ERLPBoost
param description value
η regularization 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 3000
ν/N capping 1/N , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
ε precision 0.001
max-iter max number of iterations 1,000
reflexive consider negative features True
opt type of optimizer TAO [5]

Corrective ERLPBoost, Corrective Binary ERLPBoost
param description value
η regularization 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 3000
ν/N capping 1/N , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
ε precision 0.001
max-iter max number of iterations 20,000
reflexive consider negative features True

LPBoost
param description value
ν/N capping 1/N , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
ε precision 0.01
max-iter max number of iterations 1,000
reflexive consider negative features True

Table 5.3: Parameters used in ERLPBoost, Binary ERLPBoost, and Corrective ERLP-
Boost. Note that we are fixing the ratio ν/N , where N is the number of examples.
Although ν values will vary from data set to data set, the ratio remains fixed.
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ν = 1 and η is the theoretical value established in Chapter 3. Because it has not been

mentioned before, the reflexive parameter requires some explanation. For a given set of

hypotheses, if the reflexive parameter is set to True, then for each hypothesis in the set,

its negative counterpart is also in the set. This provides a way to use hypotheses that

are negatively correlated with the labels in the scenario where negative weights are not

allowed. Some hypothesis classes, for example decision stumps, do this implicitly.

The parameters for ERLPBoost and Binary ERLPBoost are identical, but a

few of the parameters for the corrective algorithms differ slightly. For consistency, all

four of these algorithms are called with the same sets of values for ε, ν, and η. However,

the corrective algorithms are allowed a much higher maximum number of iterations.

This is because while each iteration of the corrective algorithm is faster than its totally

corrective counterpart, it requires an order of magnitude more iterations to converge

properly. The optimizer type is specified for the totally corrective algorithms. The

corrective algorithms do not require an optimization solver.

The LPBoost parameters are also similar. While LPBoost has no regulariza-

tion and therefore no regularization parameter η, we use the same values of ν. However,

the LPBoost is extremely unstable on this data, and for ε = 0.001, it would not con-

verge. We therefore had to use ε = 0.05 and 0.01 instead. LPBoost was implemented

with the COIN-LP linear programming solver [50]. The only tunable parameter for

AdaBoost is the number of iterations. We set the number of iterations to 20,000, the

same number used for the corrective algorithms.

In our experiments, the oracle will return either decision stump, raw data, or
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SVM hypotheses. We now describe the three hypothesis classes. Consider the original

data sets to be matrices whose rows are the examples and whose columns are the original

features. A raw data hypothesis is simply a column of this matrix, which is equivalent

to a feature of the original data. A decision stump takes a column in the matrix we just

described and thresholds it, predicting +1 for all values on one side of the threshold and

−1 for all examples on the other side. Thus, a decision stump can be represented by a

column number, a direction, and a threshold. Finally, an SVM hypothesis is equivalent

to multiplying the original data matrix by one of its rows, where a row corresponds to

an example. The resulting column vector is a linear combination of the columns of the

data matrix. Note that boosting SVM hypotheses is not the same as training SVMs on

the data and boosting the result. We will see that the results are heavily dependent on

the class of hypotheses returned by the oracle, so when we discuss our results, we will

specify the algorithm, the data set, and the hypothesis class.

Last but not least, we discuss the strength of the oracle we use in our experi-

ments. Recall that at each iteration, boosting algorithms send the current distribution

d to the oracle, which then returns a hypothesis. Our theoretical analysis only assumes

that the oracle will return a hypothesis with edge at least g w.r.t. d. In our experiments,

on the other hand, the oracle returns the hypothesis of maximum edge w.r.t. d. Thus,

the oracle that we use in our experiments is stronger than the oracle that we use in our

theoretical analysis. The reason for this discrepancy is that, for the hypothesis classes

that we use in our experiments, finding the hypothesis of maximum edge is so easy that

we considered it to be the right approach.
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5.1 The Instability of LPBoost

In this section, we ask whether LPBoost is stable by looking at generalization

error, the ultimate measure of any machine learning algorithm. LPBoost [36, 21] is a

boosting algorithm that directly maximizes the margin over all of its current hypothesis

at each iteration via linear programming. In Chapter 2, we showed that any linearly

separable data set can be reduced to a data set on which LPBoost misclassifies all

examples by adding a bad example and a bad hypothesis. Thus we have established

that in at least one case, the generalization error can change dramatically in a single

iteration. We conjecture that there will also be cases where LPBoost is similarly unstable

in practice.

To test this conjecture, we plot the generalization error as a function of it-

eration for LPBoost in the uncapped case (ν = 1). Each plot follows a single run of

LPBoost through the training process. During each training iteration, a new hypothesis

is added to the ensemble and LPBoost finds a new w that maximizes the margin. We

then measure the generalization error achieved by this new ensemble on the test set.

This tells us how well LPBoost would have generalized if it had terminated at that

iteration. If LPBoost is stable, we would expect to see generalization error decrease

steadily. Small increases in generalization error are reasonable, but generalization er-

ror should not increase dramatically in a single iteration. Recall that the only tunable

parameter for LPBoost is ε, which controls the number of iterations. If tweaking ε to

make LPBoost run for one more iteration also causes the generalization error to spike,
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Figure 5.1: LPBoost without capping for decision stump hypotheses. This algorithm
is extremely unstable.
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Figure 5.2: LPBoost without capping for raw data hypotheses. This algorithm is
extremely unstable.
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Figure 5.3: LPBoost without capping for SVM hypotheses. This algorithm is extremely
unstable.

128



then the algorithm is not stable enough to be practical.

The main result in this section is that sudden increases in generalization error

are extremely common for LPBoost. Figure 5.1 shows generalization error as a function

of iteration for LPBoost with decision stump hypotheses. Note that the range of the y

axis varies because it is chosen to match the range of the underlying data. Instead of

decreasing steadily, the generalization error fluctuates wildly. This effect was observed

on every data set except a9a, on which LPBoost has consistently poor performance.

Moreover, the same effect can be observed for raw data hypotheses. Figure 5.2 shows

generalization error as a function of iteration for LPBoost for raw data hypotheses,

and these results are unstable on every data set except news20 and diabetes. Finally,

Figure 5.3 plots generalization error as a function of iteration for SVM hypotheses.

In this case, LPBoost was unstable on every data set except real-sim. It is not clear

why LPBoost is stable on real-sim and not on the other data sets. We have therefore

demonstrated that in the uncapped case, LPBoost is unstable on nearly every data set

for all three different classes of hypotheses. Our intuition was that LPBoost would be

unstable on sparse data sets, especially if the hypotheses preserved the sparsity. Decision

stumps and raw data hypotheses preserve sparsity, but LPBoost was also unstable on

SVM hypotheses, which are dense because they are the result of a matrix-vector product.

We now ask whether maximizing the soft margin (ν > 1) will stabilize LP-

Boost. In the previous experiment, an examination of the d and w distributions found

by LPBoost shows that LPBoost is putting weight on very few examples and hypotheses.

Because capping forces the algorithm to distribute the weight across more examples, it
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Figure 5.4: LPBoost with capping for decision stump hypotheses. Capping does not
make LPBoost more stable.
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Figure 5.5: LPBoost with capping for raw data hypotheses. Capping does not make
LPBoost more stable.
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Figure 5.6: LPBoost with capping for SVM hypotheses. Capping does not make
LPBoost more stable.
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is plausible that introducing capping will eliminate the instability we have just observed.

Figures 5.4, 5.5, and 5.6 show generalization error as a function of iteration for decision

stumps, raw data, and SVM hypotheses respectively. The key result in these figures

is that capping does not stabilize the algorithm. The only example where LPBoost is

stable is the real-sim data set for SVM hypotheses, shown in Figure 5.6. Also note that

for higher values of ν/N , the algorithms stop early. To understand why, recall that

d ≤ 1
ν1. Increasing ν constrains d more tightly. In particular, when ν = N , d must

remain uniform and the algorithm will terminate after a single iteration. In this way,

capping works as an early stopping mechanism.

We now ask whether adding entropy regularization results in a more stable

algorithm. Figures 5.7, 5.8 and 5.9 show generalization error as a function of iteration

for ERLPBoost with decision stumps, raw data, and SVM hypotheses respectively. In

these figures, we show results for ERLPBoost run with three different values of the

regularization parameter: η = 20, 200, and 2000 (the theoretical value for ε = 0.001

is approximately 20, 000). Recall that the regularization term is proportional to 1/η,

so η = 2000 represents a small amount of regularization. In almost every case, the

instability that plagued LPBoost is now gone. Surprisingly, even a small amount of

regularization is sufficient to ensure the stability of ERLPBoost. We discuss the tuning

of the regularization parameter in Chapter 5.2.

It is worth noting that Figures 5.7(e) and 5.7(f) are not unstable. The upward

drift of the generalization error in successive iterations suggests that ERLPBoost is

overfitting. Nevertheless, the generalization error does not fluctuate dramatically at
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Figure 5.7: Entropy Regularized LPBoost for decision stump hypotheses. Entropy
regularization does result in a stable algorithm.
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Figure 5.8: Entropy Regularized LPBoost for raw data hypotheses. Entropy regular-
ization does result in a stable algorithm.
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Figure 5.9: Entropy Regularized LPBoost for SVM hypotheses. Entropy regularization
does result in a stable algorithm.

136



each iteration the way it did for LPBoost. The most unstable instance of ERLPBoost

occurs in Figure 5.9(f), where the generalization error changes by as much as 0.07 in a

single iteration. Nevertheless, this is not nearly as severe as the comparable fluctuations

of LPBoost, shown in Figures 5.3(f) and 5.6(f).

It is also worth discussing the value of ε used in these experiments. For every

algorithm in this thesis except LPBoost, we report results for ε = 0.001. For many of

the data sets we use, the algorithms in this thesis require ε as small as 0.001 to achieve

a reasonable generalization error. Note that for LPBoost, we only report results for

ε = 0.05 and 0.01. The reason is that LPBoost will not converge in a timely manner

(if at all) for smaller values of ε. However, for LPBoost, changing ε only changes the

number of iterations. The generalization error at each iteration remains the same, and

so does the brittleness shown in Figures 5.1 through 5.6. The point of these plots is to

show the brittleness of LPBoost, and for this it suffices to use a higher value of ε.

In summary, we have shown that LPBoost is extremely unstable on real world

data and that capping does not mitigate this problem. However, even a small amount of

entropy regularization resolves the instability and causes generalization error to steadily

decrease over time.

5.2 Sufficient Regularization

In this section, we investigate whether more regularization can result in reduced

generalization error. Recall that in the theoretical analysis of Entropy Regularized
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Figure 5.10: Generalization error vs. η (the regularization parameter) for ERLP-
Boost and Binary ERLPBoost with decision stump hypotheses. Recall that larger η
means less regularization.
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Figure 5.11: Generalization error vs. η (the regularization parameter) for ERLP-
Boost and Binary ERLPBoost with raw data hypotheses. Recall that larger η means
less regularization.
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Figure 5.12: Generalization error vs. η (the regularization parameter) for ERLP-
Boost and Binary ERLPBoost with SVM hypotheses. Recall that larger η means less
regularization.
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LPBoost in Chapter 3.2, we set η = 2
ε ln N

ν . Similarly, in the theoretical analysis of

Binary Entropy Regularized LPBoost in Chapter 3.3, we set η = 2
ε

(
ln N

ν + 1
)
. We chose

these values to ensure that the value of the regularization term will never exceed ε. This

allows us to assert that when the algorithm terminates, the value of the optimization

problem will be ε-close to the linear programming solution PLP . It would be interesting

to know whether coming within ε of the optimal linear programming solution is truly

important. For this reason we consider the possibility that more regularization might

result in lower generalization error.

The figures in this section plot generalization error as a function of the regu-

larization parameter η. Recall that the regularization coefficient is 1
η , so as η increases,

the amount of regularization decreases. In these plots, η ranges from 1 to the theoreti-

cal value. Observe that the theoretical value for Binary ERLPBoost is larger than the

theoretical value for ERLPBoost. For decision stump hypotheses, shown in Figure 5.10,

the theoretical value of η is a reasonable choice for all data sets except german and

diabetes. However, with more regularization, the algorithms generalize just as well if

not better. For raw data hypotheses, shown in Figure 5.11, the theoretical value is the

best for astro-ph, news20, and real-sim. More regularization is equally good for a9a and

more regularization significantly reduces the generalization error for the german and

diabetes data sets. Finally, Figure 5.12 shows that for SVM hypotheses, the theoretical

value of η is the best for the news20 data set and it is a reasonable choice for all other

data sets.

The naive interpretation of tuning η focuses only on how close ERLPBoost
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gets to the maximum margin solution. However, it is also important to consider that

insufficient regularization can also lead to overfitting. Increasing η also increases the

number of iterations and recall that boosting algorithms add a new hypothesis at each

iteration. Therefore, the longer the algorithm is allowed to run, the more complex

the master hypothesis becomes, which can lead to overfitting. To illustrate this point,

observe that german and diabetes are the only two data sets that seem to require

extremely high regularization. The likely explanation is that these are the smallest

data sets and they begin overfitting in very few iterations. Decreasing η forces the

algorithm to terminate sooner, which prevents overfitting. A good illustration of this

can be seen in Figures 5.7(e) and 5.7(f), where the generalization error initially decreases

but then begins increasing again before iteration 50.

In summary, the theoretical value of η is a reasonable value except on the

german and diabetes data sets. This holds true for all three hypothesis classes. Nev-

ertheless we have shown that there are many cases where increasing the regularization

will not hurt the generalization error and may even reduce it.

5.3 ERLPBoost vs. Binary ERLPBoost

In this section, we compare ERLPBoost and Binary ERLPBoost in terms of

execution time and generalization error. We conjectured in Chapter 3.3 that Binary

ERLPBoost would be faster than ERLPBoost because the optimization problem asso-

ciated with Binary ERLPBoost has fewer variables. Recall from Chapter 3 that the
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difference comes from the way the capping constraints are enforced. The variables in

the ERLPBoost optimization problem are w ∈ St and ψ ∈ RN
≥0, where the ψ variables

in the w domain are the dual variables associated with the capping constraints in the d

domain. This is a problem of t+N dimensions. In contrast, the optimization problem

solved by Binary ERLPBoost enforces the capping constraints implicitly. The variables

of Binary ERLPBoost in the w domain are w ∈ St and β ∈ R, so the problem has t+ 1

dimensions. Because its optimization problem has fewer variables, we conjectured that

Binary ERLPBoost should converge more quickly than ERLPBoost.

To test this conjecture, we set η to the theoretical value and plotted the training

time as a function of ν/N . We chose to vary ν/N because the capped case is where

we expect the two algorithms to differ the most. Recall that N is the total number of

examples and ν ∈ [1 . . . N ] is the capping parameter. The uncapped case corresponds to

ν = 1, and increasing the value of ν/N increases the stringency of the capping constraint.

The purpose of these plots is to compare ERLPBoost and Binary ERLPBoost over

a range of parameters, not to establish a relationship between ν/N and total time.

Figure 5.13 shows total execution time as a function of ν/N for the two algorithms with

decision stump hypotheses. In most cases Binary ERLPBoost is faster than ERLPBoost.

Figure 5.14 shows this is true for raw data hypotheses as well. The results for SVM

hypotheses, shown in Figure 5.15, are more mixed. For the german and diabetes data

sets, Binary ERLPBoost is clearly faster than ERLPBoost for all ν, but the opposite is

true of the other data sets.

We now ask whether one particular type of entropy regularization results in
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lower generalization error than the other. This is an interesting question because when

ν = 1 and η = 1, ERLPBoost optimizes an exponential loss function and Binary

ERLPBoost optimizes a logistic loss function. It has been argued that the logistic loss

function results in an algorithm that is more robust to noise [34]. If this is true, then it

may cause Binary ERLPBoost to generalize better than ERLPBoost. Figure 5.16 plots

generalization as a function of ν/N for decision stump hypotheses. We found that the

generalization error of the two algorithms is virtually identical. The same is true for

SVM hypotheses, shown in Figure 5.18. The two algorithms are also very similar for raw

data hypotheses, shown in Figure 5.17, but not quite as similar as they are for decision

stumps and SVM hypotheses. Binary ERLPBoost performs slightly better on german

and diabetes, the two noisiest data sets. ERLPBoost performs significantly better on

astro-ph and real-sim, and the two algorithms are virtually the same on a9a.

These plots also show the effect of capping on each data set. There are three

data sets with relatively little noise: astro-ph, news20, real-sim. On these data sets,

capping (setting ν > 1) increases the generalization error. There is another data set

with a moderate amount of noise, a9a, where capping does not help much either. As we

will show later, all algorithms are able to achieve a generalization error of approximately

0.15 on a9a without capping. Some values of ν/N do not seem to hurt the generalization,

but none seem to be able to improve on this value. Finally, there are two data sets that

are quite noisy: german and diabetes. On these data sets, capping appears to be quite

effective. This discussion holds true for all three hypothesis classes.

In summary, Binary ERLPBoost is generally faster than ERLPBoost for de-
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cision stumps and raw data hypotheses, but not for SVM hypotheses. In terms of

generalization error, the algorithms are virtually identical for decision stump and SVM

hypotheses, and they are still very similar for raw data hypotheses.
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Figure 5.13: Training time vs. ν/N for ERLPBoost and Binary ERLPBoost with
decision stump hypotheses. Note that ν = 1 is the uncapped case, so the smaller
values of ν/N have less stringent capping.
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Figure 5.14: Training time vs. ν/N for ERLPBoost and Binary ERLPBoost with
raw data hypotheses. Note that ν = 1 is the uncapped case, so the smaller values of
ν/N have less stringent capping.
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Figure 5.15: Training time vs. ν/N for ERLPBoost and Binary ERLPBoost with
SVM hypotheses. Note that ν = 1 is the uncapped case, so the smaller values of ν/N
have less stringent capping.
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Figure 5.16: Generalization error vs. ν/N for ERLPBoost and Binary ERLPBoost
with decision stump hypotheses. Note that ν = 1 is the uncapped case, so the smaller
values of ν/N have less stringent capping.
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Figure 5.17: Generalization error vs. ν/N for ERLPBoost and Binary ERLPBoost
with raw data hypotheses. Note that ν = 1 is the uncapped case, so the smaller values
of ν/N have less stringent capping.
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Figure 5.18: Generalization error vs. ν/N for ERLPBoost and Binary ERLPBoost
with SVM hypotheses. Note that ν = 1 is the uncapped case, so the smaller values of
ν/N have less stringent capping.
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5.4 Corrective vs. Totally Corrective Algorithms

In this section, we compare the totally corrective algorithms with their cor-

rective counterparts. Recall that the corrective family of algorithms only update the

weights on the examples based on the last hypothesis while totally corrective algorithms

optimize the weights on the examples based on all past hypotheses. The totally cor-

rective algorithms are ERLPBoost and Binary ERLPBoost. The corrective algorithms

are Corrective ERLPBoost and Corrective Binary ERLPBoost. Corrective ERLPBoost

is described in detail in Chapter 4.2. It is directly comparable to ERLPBoost. Simi-

larly, the Corrective Binary ERLPBoost algorithm, described in Chapter 4.3, is directly

comparable to Binary ERLPBoost.

In comparing the corrective and totally corrective algorithms, there are four

primary questions we want to ask. First, is the corrective algorithm faster than the

corresponding totally corrective algorithm overall? Second, is Corrective ERLPBoost

faster than Corrective Binary ERLPBoost? Third, do the corrective algorithms gener-

alize better than the totally corrective algorithms? Fourth, are the master hypotheses

returned by the totally corrective algorithms smaller than those of the corrective algo-

rithms? Smaller master hypotheses are sometimes preferred because they are easier to

interpret and because they are more efficient to apply to large amounts of test data.

First we compare the total training time for the corrective and totally corrective

algorithms. One of the primary motivations for the corrective algorithms is that at each

iteration they perform a simple exponential update instead of solving an optimization
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Figure 5.19: Time vs. η with decision stump hypotheses.
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Figure 5.20: Time vs. η with raw data hypotheses.
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Figure 5.21: Time vs. η with SVM hypotheses.
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problem [77]. As a result, a single iteration of the corrective algorithms should be faster

than a single iteration of the totally corrective algorithms. However, the corrective

algorithms should require far more iterations than the totally corrective algorithms.

Clearly the overall difference in training time between corrective and totally corrective

algorithms will depend on both the relative speed of a single iteration and the relative

number of iterations.

In this experiment, we plot the training time of each of the four algorithms

as a function of η. The results depend heavily on the hypothesis class. Figure 5.19

plots total execution time as a function of η for decision stump hypotheses. The totally

corrective algorithms are always faster for low η, which corresponds to high regulariza-

tion. However, as η increases, the number of iterations also increases, and the totally

corrective algorithms become slower than the corrective algorithms on every data set

except a9a. The reason is that the optimizer used by the totally corrective algorithms

struggles with decision stumps, particularly in later iterations. Figure 5.20 plots train-

ing time as a function of η for raw data hypotheses. In this case the totally corrective

algorithms are generally faster than the corrective algorithms except for the german

data set, where the results are mixed. For SVM hypotheses, shown in Figure 5.21, the

results are even more dramatic. For every data set except a9a, the totally corrective

algorithms are significantly faster than the corrective algorithms. The optimizer does

not struggle with these hypotheses the way it did with decision stumps. However, the

primary reason that the totally corrective algorithms have a competitive advantage with

SVM hypotheses is that the SVM oracle takes longer. The more time-consuming it is
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to find the next hypothesis, the more it pays to invest in a slower but more effective

update. This result is especially important because, as we will establish shortly, the

SVM hypotheses have the lowest overall generalization error.

In addition, Figures 5.19, 5.20, and 5.21 allow us to compare the training time

of Corrective ERLPBoost and Corrective Binary ERLPBoost. Recall from Chapter 4.3

that the primary difference between the two algorithms is the normalization mechanism.

Corrective ERLPBoost is able to use the projection method described in Chapter 4.2,

and it must enforce the normalization constraint via a binary search. We therefore

expect Corrective Binary ERLPBoost to be slower, and this conjecture is confirmed by

our experiments.

Overall, Corrective ERLPBoost is generally faster than Corrective Binary

ERLPBoost. For decision stumps, shown in Figure 5.19, we can see that the only time

Corrective Binary ERLPBoost is faster is on the astro-ph data set when η = 2000. For

SVM hypotheses, shown in Figure 5.21, Corrective Binary ERLPBoost ties Corrective

ERLPBoost on astro-ph, but it is slower on the other data sets. Finally, Figure 5.20

shows that for raw data hypotheses, Corrective Binary ERLPBoost is always signifi-

cantly slower.

The next question we will address is whether the corrective algorithms gener-

alize better than the totally corrective algorithms. This is significant because general-

ization error is the single most important criterion by which we judge machine learning

algorithms. In this experiment, we plot generalization error as a function of η for each

of the four algorithms. This serves to establish whether the trend holds across a broad
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Figure 5.22: Generalization error vs. η with decision stump hypotheses.
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Figure 5.23: Generalization error vs. η with raw data hypotheses.
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Figure 5.24: Generalization error vs. η with SVM hypotheses.
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range of regularization parameters.

Again, the results seem to depend heavily on the hypothesis class. Figure 5.22

shows generalization error as a function of η for decision stumps. The corrective and

totally corrective algorithms are tied when η is small, but as η increases, the correc-

tive algorithms are at least as good as the totally corrective algorithms on all but the

german and diabetes data sets. For raw data hypotheses, shown in Figure 5.23, the

corrective and totally corrective algorithms are also tied when η is small. However, as

η increases, the totally corrective algorithms beat the corrective algorithms on three

data sets and tie on the other three. It is with SVM hypotheses, shown in Figure 5.24,

that the totally corrective algorithms are truly dominant. They outperform their cor-

rective counterparts on astro-ph, news20, real-sim, and a9a. There is no significant

difference between the algorithms on the remaining two data sets. Observe that the

SVM hypotheses generalize better overall than the other hypotheses, so the fact that

the totally corrective algorithms beat the corrective algorithms with SVM hypotheses

is particularly important.

We now compare the number of unique hypotheses and the number of iterations

of each algorithm. For each algorithm, we plot the number of unique hypotheses as a

function of η. On the same figure, we also plot the number of iterations as a function

of η, but only for the corrective algorithms. The reason is that the totally corrective

algorithms never select the same hypothesis twice. Therefore, the number of hypotheses

is equal to the number of iterations, and it suffices to show only one of those quantities.

In contrast, the corrective algorithms are perfectly free to choose the same hypothesis
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Figure 5.25: Number of hypotheses vs. η with decision stump hypotheses.
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Figure 5.26: Number of hypotheses vs. η with raw data hypotheses.
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Figure 5.27: Number of hypotheses vs. η with SVM hypotheses.
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multiple times. In fact, this is a common behavior.

The results are shown in Figures 5.25, 5.26, and 5.27. Two interesting results

can be inferred from these plots. First, the corrective algorithms require an order

of magnitude more iterations than the totally corrective algorithms, sometimes two.

Second, the number of unique hypotheses selected by the corrective algorithms is much

lower than the number of iterations. It is always the same order of magnitude as the

number selected by the totally corrective algorithms. This makes intuitive sense because

the corrective algorithms can choose the same hypotheses multiple times, so the number

of hypotheses should be much smaller than the number of iterations.

In addition, we can observe a relationship between the number of unique hy-

potheses and generalization error. Let us compare Figure 5.22 with Figure 5.25 for

astro-ph, news20, and real-sim. These figures show the number of hypotheses and the

generalization error for decision stump hypotheses. By comparing these figures, we can

see that the algorithms that find the most hypotheses also have the best generalization

performance. The same is true when we compare Figures 5.23 and 5.26 for raw data

and Figures 5.24 and 5.27 for SVM hypotheses. It is harder to make this comparison

with the a9a, diabetes, and german data sets because the difference in generalization

error between the algorithms is often insignificant. While it is probably incorrect to

draw the sweeping conclusion that more hypotheses result in better generalization, the

correlation nonetheless merits a remark.

In summary, the most significant contributor to training time for the correc-

tive algorithms is the time it takes the oracle to return a hypothesis. This is because
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the corrective algorithms require far more iterations than their totally corrective coun-

terparts. For the totally corrective algorithms, the most significant contributor to the

training time is the optimization problem solved at each iteration. These optimization

problems have not been studied extensively before, and improving them would make

the totally corrective algorithms even more competitive. Most importantly, the best

overall generalization is achieved by the SVM hypotheses and in this case, the totally

corrective algorithms are faster and have better generalization error.

5.5 Corrective vs. Totally Corrective Algorithms at Higher

Precision

In the previous section, we found many instances where the corrective algo-

rithms converge more quickly than the totally corrective algorithms. Recall that all of

these experiments were done with precision parameter ε = 0.001. In this section, we

seek to determine whether the totally corrective algorithms converge more quickly than

the corrective algorithms for smaller values of ε. We conjecture that for sufficiently

small ε, the totally corrective algorithms will converge in both fewer iterations and less

time than the corrective algorithms. To test this conjecture, we set ε = 10−5 - two

orders of magnitude smaller than it was before. We then compared ERLPBoost with

Corrective ERLPBoost on our two smallest data sets: diabetes and german. It is not

currently possible to get ERLPBoost to converge to sufficiently high precision on the

larger data sets.
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Figure 5.28: Duality gap vs. time and iteration for corrective vs. totally corrective
algorithms for diabetes data set with ε = 10−5
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Figure 5.29: Duality gap vs. time and iteration for corrective vs. totally corrective
algorithms for german data set with ε = 10−5
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Recall that both ERLPBoost and Corrective ERLPBoost converge when the

duality gap is less than ε/2. Comparing the duality gaps of the two algorithms is a good

way to visualize their relative convergence behavior. Figure 5.28 plots the duality gap

as a function of iteration and time side by side for each hypothesis class on the diabetes

data set. When ε = 10−5, ERLPBoost converges in fewer iterations than Corrective

ERLPBoost. Moreover, ERLPBoost also requires less time to converge. The results are

similar for the german data set. Figure 5.29 plots the duality gap as a function iteration

and the duality gap as a function of time for the german data set for all three hypothesis

classes. In this case, ERLPBoost converges in less time than Corrective ERLPBoost for

decision stump and SVM hypotheses, but not for raw data hypotheses. Interestingly,

even decreasing ε to 10−8 will not cause ERLPBoost to converge faster than Corrective

ERLPBoost for raw data hypotheses on the german data set.

5.6 Overall Comparison of Algorithms

In this section, we analyze the best achievable performance of each algorithm.

This is the experimental question that is of the most interest to practitioners. For each

hypothesis class, we report the best generalization error of each algorithm on each data

set over all parameter settings that we explored. In addition, we report the training

time associated with the best overall results.

The algorithms included in this comparison are ERLPBoost, Binary ERLP-

Boost, Corrective ERLPBoost, Corrective Binary ERLPBoost, and AdaBoost. Ad-
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aBoost was chosen as a comparator because it is by far the most well known boosting

algorithm. Also, we included linear SVMs in the comparison for SVM hypotheses.

In fact, the reason we introduced SVM hypotheses is because the master hypothesis

returned by a linear SVM is a linear combination of SVM hypotheses. Thus, SVM

hypotheses enable us to make a direct comparison between boosting and linear SVMs.

We did not include LPBoost in these comparisons because we were not able to run it

on comparable parameters. Since LPBoost is extremely unstable on these data sets it

is unlikely to be a strong competitor anyway.

The experiments in this section use the train-validation-test methodology. For

each algorithm and each data set, we used the training set to find a master hypothesis.

To determine the best parameter values, we applied the master hypothesis to the valida-

tion data. The parameter settings we used are described in Table 5.3. We obtained our

final result by applying the master hypothesis trained with the best parameter values

to the test data. The best overall parameters values are reported in Tables 5.11, 5.10

and 5.12.

Generalization error is the most important criterion by which machine learning

algorithms are judged. We now report the best overall generalization error for our

experiments. For each hypothesis class, we present a table with the best result achieved

for each data set by each algorithm. For each data set, the best result is in bold font.

First we show the best achievable generalization error using decision stump

hypotheses in Table 5.4. In the case of decision stumps, the best result is always achieved

by either Corrective ERLPBoost or Corrective Binary ERLPBoost. Nevertheless, there
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alg / data set astro-ph news20 real-sim a9a german diabetes
erlp 3.85 8.43 4.82 15.60 28.50 24.03
bin 3.42 8.18 4.76 15.65 27.50 24.03
corr 3.30 7.25 4.72 15.65 25.00 24.03
corr bin 3.27 7.22 4.75 15.54 26.00 24.03
ada 3.44 7.25 4.72 15.65 30.50 34.42

Table 5.4: Lowest overall generalization error of each algorithm for decision stump
hypotheses. The best result for each data set is in bold.

alg / data set astro-ph news20 real-sim a9a german diabetes
erlp 3.67 9.75 5.12 15.61 27.00 26.62
bin 3.98 12.93 7.41 15.59 26.50 26.62
corr 7.12 14.22 13.53 15.65 27.50 25.97
corr bin 7.12 14.22 13.59 15.69 26.50 26.62
ada 10.23 24.10 16.28 15.64 26.00 25.97

Table 5.5: Lowest overall generalization error of each algorithm for raw data hy-
potheses. The best result for each data set is in bold.

alg/data set astro-ph news20 real-sim a9a german diabetes
erlp 3.41 7.28 4.25 15.62 26.50 24.03
bin 3.20 7.35 3.58 15.64 26.50 25.97
corr 6.26 21.35 6.73 15.65 26.50 25.97
corr bin 6.26 21.35 6.73 15.65 26.50 24.68
SVM 3.21 3.26 3.29 15.62 26.00 25.96

Table 5.6: Lowest overall generalization error of each algorithm for SVM hypotheses.
The best result for each data set is in bold.
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are some notable ties. For example, AdaBoost is tied for the lowest generalization error

on the real-sim data set and all algorithms except AdaBoost are tied on the diabetes

data set. The latter result is not surprising because the results for the diabetes data set

have been similar across a broad range of algorithms and parameter settings.

We now show the best achievable generalization error for raw data hypothe-

ses in Table 5.5. For raw data hypotheses, the ERLPBoost algorithm has the best

overall performance. It beats every other algorithm on astro-ph, news20, and real-sim

datasets and it is a close second on a9a. The second best algorithm in terms of overall

performance is Binary ERLPBoost. AdaBoost is significantly worse than the other algo-

rithms on the astro-ph, news20, and real-sim datasets, and comparable on a9a, german,

and diabetes. At first this was surprising because german and diabetes are the noisiest

datasets and AdaBoost is believed to perform badly on noisy data. However, german

and diabetes have yielded very similar results across a broad range of algorithms and

parameter settings so perhaps none of the algorithms we have tried are particularly well

suited to these data sets.

Finally, we show the best achievable generalization error for SVM hypotheses in

Table 5.6. This hypothesis class was introduced to enable a direct comparison between

boosting algorithms and linear SVMs. Overall, the SVM has the lowest generalization

error on four data sets. The only dataset where it does significantly worse than the

boosting algorithms is diabetes. Still, this may be the result of using only a small

number of data sets. Perhaps if we try a broader range of datasets with different

characteristics we will find a class of problems that are better suited to boosting than
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SVMs. Also observe that for each dataset except german, the best result for SVM

hypotheses beats the best result for decision stumps and raw data. Also note that the

totally corrective algorithms are at least as good as the corrective algorithms on every

data set. Most importantly, the totally corrective algorithms are dramatically better

than the corrective algorithms on the astro-ph, news20, and real-sim datasets.

Given two algorithms with similar generalization error, we would prefer the

faster one. Also, many end users would be willing to sacrifice a small amount of gener-

alization performance for a marked reduction in training time. For this reason, it is also

useful to compare the time required to achieve the best overall generalization result of

each algorithm.

First we show the training time of each algorithm for decision stump hypotheses

in Table 5.7. One every data set except real-sim and german, the totally corrective

algorithms have the fastest overall time. Still, it is worth noting that the corrective

algorithms are faster by nearly a factor of ten on the real-sim data set. In general,

the training time for the totally corrective algorithms is dominated by the optimizer,

which struggles with decision stumps. Finally, it is worth noting that Corrective Binary

ERLPBoost is slower than Corrective ERLPBoost on all data sets. This is true for the

other two hypothesis classes as well.

We now show the training time of each algorithm for raw data hypotheses in

Table 5.8. Although its generalization error was poor, AdaBoost was the fastest on

three out of six datasets. The AdaBoost update is both the fastest but also the least

sophisticated, so this is not surprising. The comparison between corrective and totally
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alg/dataset astro-ph news20 real-sim a9a german diabetes
erlp 4693.00 11563.00 45821.00 536.10 1.80 0.10
bin 12167.00 8535.80 43449.00 149.10 2.10 0.10
corr 8143.30 10194.00 3025.40 194.90 0.00 1.10
corr bin 10302.00 11063.00 5100.90 456.90 13.00 3.50
ada 5507.71 15846.90 2561.14 350.30 6.99 3.32

Table 5.7: Training time in seconds for best result of each algorithm for decision
stump hypotheses. The fastest time for each dataset is in bold.

alg/dataset astro-ph news20 real-sim a9a german diabetes
erlp 6524.40 1737.30 9145.10 151.60 0.10 0.40
bin 1600.30 237.50 503.20 114.00 0.30 0.00
corr 1566.90 2436.20 828.00 134.70 0.00 0.00
corr bin 4268.00 2724.00 2902.60 1458.50 0.90 19.20
ada 1101.09 1827.55 478.00 75.72 22.03 5.77

Table 5.8: Training time in seconds for best result of each algorithm for raw data
hypotheses. The fastest time for each dataset is in bold.

alg/dataset astro-ph news20 real-sim a9a german diabetes
erlp 6540.00 22806.00 9965.60 8312.20 11.00 41.30
bin 29803.00 95984.00 18128.00 3844.60 81.60 0.10
corr 21870.00 64028.00 19154.00 16117.00 38.30 0.10
corr bin 22393.00 64028.00 19154.00 16117.00 38.30 24.10
svm 18 60 30 3.6 2.05 1.11

Table 5.9: Training time in seconds for best result of each algorithm for SVM hy-
potheses. The fastest time for each dataset is in bold.
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corrective algorithms is mixed. Corrective ERLPBoost was faster than ERLPBoost on

every dataset except news20. At the same time, Binary ERLPBoost was faster than

Corrective Binary ERLPBoost on every data set.

Finally, we show the training time of each algorithm for SVM hypotheses

in Table 5.9. Observe that SVMs are dramatically faster than any of our boosting

algorithms. However, the SVM optimization problem has been studied extensively for

over a decade while the ERLPBoost optimization problem has not. It is likely that part

of the disparity comes from comparing a mature technology with a nascent one. Also,

boosting algorithms must solve an optimization problem at each iteration while the

SVM problem is only solved once. Thus, even if the two optimization problems could

be solved in the same amount of time, ERLPBoost would be slower overall unless the

optimal solution includes very few hypotheses. This table also shows that the totally

corrective algorithms are faster than the corrective algorithms for SVM hypotheses.

Recall that SVM hypotheses had the best overall generalization error and that the totally

corrective algorithms generalized better than the corrective algorithms. Theses two

results combine to form a powerful argument in favor of totally corrective algorithms.
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alg/dataset astro-ph news20 real-sim a9a german diabetes
erlp 0, 21899 .2, 3219 0, 21356 .3, 2408 .5, 139 ∗ 0, 12262
bin .1, 6605 0, 20785 0, 23356 .2, 5219 .5, 3386 0, 14262
corr 0, 21899 0, 18785 0, 21356 0, 20571 .4, 1833 0, 12262
corr bin 0, 23899 0, 20785 0, 23356 .1, 6605 .5, 339 ∗ 0, 14262

Table 5.10: Parameters for best result of each algorithm for decision stump hy-
potheses. For each algorithm and dataset, we report ν/N , η. By default, ε = 0.001
except for the ∗ entries, which have ε = 0.01. The value of η depends on N/ν, which is
set independently of N , so many η values are the same. Here, ν/N = 0 indicates that
ν = 1.

alg/dataset astro-ph news20 real-sim a9a german diabetes
erlp .1, 4605 .1, 4605 .1, 4605 .2, 3219 0, 1279 ∗ .6, 1022
bin .1, 6605 .2, 5219 .1, 6605 .2, 5219 .2, 5219 .6, 3022
corr 0, 21899 0, 18785 .1, 4605 0, 20571 .3, 241 ∗ .3, 241 ∗
corr bin 0, 23899 0, 20785 0, 23356 .3, 4408 .2, 5219 .6, 3022

Table 5.11: Parameters for best result of each algorithm for raw data hypotheses.
For each algorithm and dataset, we report ν, η. By default, ε = 0.001 except for the ∗
entries, which have ε = 0.01. The value of η depends on N/ν, which is set independently
of N , so many η values are the same. Here, ν/N = 0 indicates that ν = 1.

alg/dataset astro-ph news20 real-sim a9a german diabetes
erlp .1, 4605 .1, 4605 0, 21356 0, 20571 0, 1.27e6 .4, 1833
bin .1, 6.6e5 .2, 5.2e5 .1, 6.6e5 .3, 4408 0, 1.48e6 0, 1.4e6
corr 0, 21899 0, 18785 0, 21356 0, 2.06e6 0, 1.28e6 .4, 1833
corr bin 0, 23899 0, 20785 0, 23356 0, 2.26e6 0, 1.48e6 .5, 3386

Table 5.12: Parameters for best result of each algorithm for SVM hypotheses. For
each algorithm and dataset, we report ν/N , η. By default, ε = 0.001 except for the ∗
entries, which have ε = 0.01. The value of η depends on N/ν, which is set independently
of N , so many η values are the same. Here, ν/N = 0 indicates that ν = 1.
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Chapter 6

Related Work

Boosting is a a class of algorithms that has been extensively studied, and in

placing our work within the context of the literature, we discuss five different areas of

boosting research. We begin with a review of the fundamentals of boosting, including

a basic discussion of AdaBoost, the most popular boosting algorithm. Next, we review

the research on margin maximization and the convergence properties of AdaBoost. We

follow this with a review the previous work on boosting algorithms that are robust to

noise. We then review corrective and totally corrective boosting algorithms. Finally,

we review significant experimental results for boosting.

6.1 The Basics of Boosting

One of the questions posed within the PAC framework [81] is whether a weak

learning algorithm (or oracle) that returns a hypothesis that is only marginally better

than random guessing can be used to create a strong learning algorithm, which is highly
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accurate [41]. The first algorithm to show the equivalence between weak learnability and

strong learnability was discovered by Schapire [72]. The was the first boosting algorithm

because it boosted a weak learning algorithm into a strong learning algorithm. This is a

relatively complicated algorithm using a recursive construction, and so the question was

whether a linear combination of weak hypotheses could constitute a boosting algorithm.

The first such algorithm was Boost by Majority [31]. Although simple and elegant, Boost

by Majority was not practical because it required the weak guarantee g to be known

ahead of time (see the definition of guarantee g in Chapter 2). Algorithms that do not

require g to be known ahead of time are called adaptive. The first adaptive boosting

algorithm was AdaBoost [30]. Some very good introductory discussion of boosting can

be found in [57, 73].

AdaBoost is a practical, efficient algorithm that works by maintaining a distri-

bution d on the examples. At each iteration, this distribution is used to find a hypoth-

esis that has high weighted accuracy with respect to distribution d. When hypothesis

ht ∈ ±1 , it is given weight

wt =
1
2

ln
(

1− εt
εt

)
where εt is the weighted error of hypothesis t. When ht ∈ [−1.1], then wt is chosen via

line search. The distribution dt is updated so that it puts more weight on the examples

that are harder to classify:

dtn = dt−1
n exp(−wt−1ynh

t−1(xn))/Zt,

where Zt is the normalization factor that ensures that dt is a probability distribution.
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This distribution is a key component of all modern boosting algorithms. What differen-

tiates them is how they compute d and how they compute the weights on the hypotheses

w. After T iterations, AdaBoost returns a master hypothesis that is a linear combina-

tion of weak hypotheses. The master hypothesis takes the form fw(x) =
∑T

q=1wqh
q(x)

and the sign of the master hypothesis is the prediction.

It was shown in [34] that AdaBoost is an additive logistic regression algorithm

that uses Newton’s method to optimize the loss function

1
N

N∑
n=1

exp(−ynfw(xn)).

Note that ynfw(xn) is the margin of example xn achieved by the master hypothesis.

Boosting algorithms can also be generalized to optimize other loss functions, which may

actually result in more effective algorithms [54]. However, not all potential functions

result in boosting algorithms. Duffy and Helmbold [25] were able to establish necessary

and sufficient conditions for potential functions to result in boosting algorithms.

A different interpretation of AdaBoost is that at each iteration, it minimizes a

relative entropy to the current distribution subject to the linear constraint that the edge

of the last hypothesis is non-negative [43, 45]. All boosting algorithms whose iteration

bounds are logarithmic in the number of examples are motivated by either optimizing a

sum of exponentials in the hypothesis domain or a cost function that involves a relative

entropy in the example domain. As we discussed in Chapter 3, both motivations lead to

the same algorithms and are dual views of the same underlying optimization problems.

Boosting algorithms can also be extended to cover richer hypothesis classes and
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more complex cost structures. The original AdaBoost algorithm handles only simple

predictions of ±1. Schapire and Singer proposed an improvement to this algorithm that

can handle confidence-rated predictions [74]. There are also boosting algorithms that

use asymmetric loss functions [52, 28] to handle the case where it is more costly to

mispredict one class than another.

Boosting has been successfully applied to many practical problems, which

fuels its popularity. The first experimental result for AdaBoost was on an optical

character recognition problem (OCR) [32]. Boosting has also been applied to text

classification [75]. In the imagery domain, popular applications include object detec-

tion [27, 82, 59, 80, 46], face detection [83], and image retrieval [79].

6.2 Margin Maximization and Boosting

Multiple studies have observed that allowing AdaBoost to continue running

even after it achieves consistency on the training examples results in improved general-

ization [24, 61, 11]. However, each iteration of AdaBoost increases the complexity of the

resulting master hypothesis. Because overly complex models are prone to overfitting,

this improvement in generalization error is surprising. Schapire et al. [71] attribute this

to the observation that allowing AdaBoost to continue for additional iterations improves

the margin. This observation is reinforced by the existence of bounds on the generaliza-

tion error of the master hypothesis that improve as the margin of the master hypothesis

increases [44, 53].
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There are two problems with this line of reasoning. First, Rudin et al. [68]

proved that there are cases where AdaBoost does not maximize the margin. Second,

the generalization error bounds of [71] depend on the entire empirical margin distri-

bution, not the minimum margin. This point is emphasized in [67]. There are other

generalization results for boosted classifiers in terms of the margin distribution. Mason

et al. extend the upper bound on the generalization error to other cost functions of

the margin [53]. This bound is independent of the dimension of the master hypothesis,

though it does depend on the VC dimension of the hypothesis class. Koltchinskii et

al. [44] developed a similar bound that depends on the empirical margin distribution

and the Rademacher complexity of the hypothesis class.

Although AdaBoost does not maximize the margin, there are many boosting

algorithms that do. Breiman proposed Arc-gv [10], which maximizes the margin, but

only asymptotically. The first boosting algorithm to provably maximize the margin was

AdaBoost∗ [66]. Since that time, there have been many boosting algorithms proposed

that provably maximize either the margin or the soft margin. Examples include To-

talBoost [91], SoftBoost [87] ERLPBoost [90], Binary ERLPBoost, and several others

[69, 70, 63, 65, 77].

In Chapter 2 we explored the connection between margins, edges, and linear

programming. Freund and Schapire [33] were the first to suggest the connection between

boosting, game theory and von Neumann’s minimax theorem [86]. In a similar vein,

there is also a connection between margins and weak learnability. We say that a set

of examples is weak learnable when g > 0. This is equivalent to saying that when any
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distribution on the examples d is given to our oracle, it will return a hypothesis h that

has edge at least g > 0. Shalev Schwartz and Singer pointed out that this is true if and

only if the examples are linearly separable [77].

The LPBoost algorithm is motivated by direct margin maximization [21, 36].

For the current set of hypotheses, it computes the weights w to maximize the margin.

This can be solved as a linear programming problem. The earliest variant of this algo-

rithm was DualLPBoost [36], developed by Grove and Schuurmans. DualLPBoost only

solves the hard margin problem. This algorithm was motivated by the margin theory,

which was used to explain the success of AdaBoost. Grove and Schuurmans reasoned

that if margins were fundamentally important, then DualLPBoost would be even more

successful. Experimentally, they found that on real-world data, focusing exclusively on

the minimum margin was actually detrimental to performance. Demiriz et al.[21] ex-

tended DualLPBoost to the soft margin case, and it is their algorithm that we employ

extensively in this thesis. One of the more interesting results for LPBoost is that it

directly minimizes the bound on the generalization error given in [17] in terms of the

soft margin and the covering number.

The key point is that if margin maximization were the single most important

contributor to good generalization performance, then LPBoost would be ideal. However,

one of the primary results of this thesis is that directly maximizing the margin via the

LPBoost optimization problem can result in a very brittle algorithm.
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6.3 Boosting Algorithms for Noisy Data

Dietterich [22] was the first to observe that the classification performance of

AdaBoost deteriorates markedly in the presence of noise. The reason is that AdaBoost’s

exponential update concentrates too much weight on examples that are the hardest to

classify. When some examples are noisy, AdaBoost rapidly concentrates the weight

on these examples. This causes the noisy examples dominate the hypothesis selection

process.

A popular approach for dealing with noisy examples is to cap the amount

of weight that can be put on any given example. In this thesis we call this capping.

This approach originated in the SVM community [20]. In the boosting literature this

is also referred to smoothing the distribution on the examples, and boosting algorithms

that employ this technique are often called smooth boosters. DualLPBoost [36] is the

first example of a smooth booster. Another early example comes from the work of

Rätsch et al. [63], which presents two adaptations of AdaBoost that employ capping,

LP-AdaBoost and QP-AdaBoost. All of the algorithms discussed in this thesis (LP-

Boost [21], SoftBoost [87], ERLPBoost [90], Binary ERLPBoost, Corrective ERLP-

Boost [77], and Corrective Binary ERLPBoost) use capping as well. Other examples of

smooth boosting algorithms are SmoothBoost [76] and AdaFlat [35], though the itera-

tion bounds on these algorithms are significantly weaker than those of the ERLPBoost

family. MadaBoost[23] also fits loosely into this category because it caps the weights

on the examples by not allowing them to exceed their initial probabilities. However, in

183



this case the weights on the examples are no longer a probability distribution. Another

drawback of MadaBoost is that it requires edges of the hypotheses to be monotonically

decreasing, something that is difficult to ensure in practice.

A different approach to making boosting robust to noise replaces the exponen-

tial loss function of AdaBoost with a loss function that penalizes misclassified examples

more gently. One example is the truncated exponential loss function of MadaBoost[23].

A more popular example is the negative log likelihood function, also known as the lo-

gistic loss function. The most well-known algorithm that minimizes the logistic loss is

LogitBoost. Note that LogitBoost requires the oracle to choose ht by solving a weighted

least squares regression problem rather than via the edge, and each hypothesis is given

weight wt = 1/2. The LogLossBoost [18] and FilterBoost [8] algorithms also provably

minimize the logistic loss function. While it can be plausibly argued that the logistic

loss is better than the exponential loss for noisy data, there is no way to adapt any of

these algorithms to different noise rates, something that can easily be done with cap-

ping. Also, the two approaches are not mutually exclusive. Binary ERLPBoost is an

algorithm that optimizes the logistic loss and employs capping as well.

All of the algorithms that we have seen so far optimize some convex function of

the margin, but some boosting algorithms optimize loss functions that are not convex.

BrownBoost [29] was the first algorithm of this type. Perhaps the most useful char-

acteristic of BrownBoost is that it is able to give up on examples that are frequently

misclassified by the weak hypotheses to focus on examples that have a better chance of

being correctly classified. In contrast, algorithms that employ capping would still put
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weight on those examples. In BrownBoost, the weights on the examples take the form

of a Gaussian where the mean is related to the average margin and the variance is C,

BrownBoost’s only tunable parameter, which corresponds to the time the algorithm is

allowed to run. Note that the mean changes with each iteration. In our experiments,

SoftBoost and ERLPBoost outperform BrownBoost [90]. The same result was found in

a recent experimental study by Arvey [2]. There is also a modification of BrownBoost

known as margin conscious BrownBoost [2]. In its final iterations, the loss function of

BrownBoost is dominated by examples of very small positive margin. Margin conscious

BrownBoost [2] introduces an additional parameter, δ, which adds additional loss to ex-

amples with margin less than δ. This modification appears to outperform BrownBoost

empirically.

The other significant boosting algorithm that does not optimize a convex loss

function is MartiBoost [48]. Unlike the other boosting algorithms discussed so far, Mar-

tiBoost does not return a linear combination of hypotheses. The MartiBoost hypothesis

is a directed graph. Each node of this graph corresponds to a hypothesis and the start-

ing point of this graph is the first hypothesis. MartiBoost requires the hypotheses to

have error rates that are balanced between false positives and false negatives and to

be slightly better than random guessing, but in [48] it was shown that the balanced

error rate requirement is achievable. Classifying an example corresponds to a random

walk along this graph with constant step size, where each step is slightly biased toward

correct classification. A drawback of MartiBoost is its requirement that its hypotheses

predict ±1, but this is remedied by Adaptive MartiBoost [47]. Adaptive MartiBoost in
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an extension of MartiBoost that can take advantage of the varying quality of hypothe-

ses by varying the step size in the random walk. Adaptive MartiBoost can also handle

confidence-rated hypotheses.

6.4 Corrective and Totally Corrective Algorithms

In Chapter 4, we discussed the corrective and totally corrective algorithms

used in this thesis. In this section, we provide a broader overview of the subject. Recall

that corrective algorithms, the updated distribution dt is based on the last hypothesis,

while totally corrective algorithms base their updates on all previous hypotheses.

We begin with the origins of the corrective update. Schapire and Singer [74]

were able to bound the classification error of the training sample in terms of the product

of the normalization factors Zt found at each iteration of the AdaBoost algorithm. Recall

that at iteration t, AdaBoost chooses weight wt based only on hypothesis ht, and wt

is not changed in subsequent iterations. Schapire and Singer also showed that when

utn ∈ ±1, AdaBoost chooses wt to minimize Zt. In the general case where utn ∈ [−1, 1],

then the optimal choice of wt minimizes Zt via line search. Schapire and Singer showed

that in this case, Zt is minimized when dt · ut = 0. In other words, the updated

distribution dt is chosen so that its edge with respect to the most recent hypothesis is

zero. This choice of wt makes the bound on the training error as tight as possible, and

the resulting update is called a corrective update.

Kivinen and Warmuth [43] showed that AdaBoost with the corrective update
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is equivalent to solving the following entropy minimization problem for dt:

dt = argmin
d∈SN ,d·ut=0

∆(d,dt−1).

Furthermore, they showed that that the value of wt that minimizes Schapire and Singer’s

bound is the Lagrange multiplier corresponding to the d · ut = 0 constraint. This was

an early connection between boosting and optimization theory. Other early connections

between boosting and optimization theory include [62, 33, 36, 45].

Since the corrective update depends only on the last hypothesis, corrective

algorithms can cycle, picking similar hypotheses multiple times [91]. This motivates

the totally corrective update. At iteration t, totally corrective algorithms constrain the

edges dt · uq, for q = 1 . . . t. The weight wq on hypothesis q is the dual variable to the

dt · uq constraint, so the entire weight vector w changes at each iteration, instead of

just wt. This also means that the updated dt depends on all previous hypotheses, not

just the last one one.

LogLossBoost [18], which changes all weights w on the hypotheses at each

iteration, is a precursor to the totally corrective algorithm The update is called a parallel

update, but it is not equivalent to a totally corrective update because it is not based on

requiring all previous hypotheses to have small edge.

The first totally corrective algorithm was TotalBoost[91]. At each iteration,

TotalBoost finds d by solving the optimization problem

dt = argmin
d∈SN

∆(d,dt−1)

s.t. d · uq ≤ γ̂t − ε for q = 1 . . . t
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where γ̂t is a specially chosen parameter and ε is the precision parameter. LPBoost [36,

21], SoftBoost [87], ERLPBoost [90], and Binary ERLPBoost are also totally corrective

algorithms.

A major criticism of totally corrective algorithms is that they must solve com-

plex optimization problems at each iteration. Shalev Schwartz and Singer [77] propose

a corrective version of ERLPBoost, and this algorithm can easily be extended to the

binary entropy as well. These algorithms are discussed at length in Chapters 4 and 5.

6.5 Significant Experimental Results for Boosting

Many of the theoretical developments in the study of boosting were inspired

by experimental results. In an early experimental study of boosting, Quinlan [61] ob-

served that even after the master hypothesis classifies all training examples correctly,

the generalization error of AdaBoost continued to decrease with additional iterations.

This was attributed to the fact that the minimum margin of the examples for the mas-

ter hypothesis continued to increase even after the training error stabilizes [71]. In the

same study, Quinlan observed that AdaBoost sometimes generalized very poorly, and in

those cases, he observed that the distribution on the examples was very concentrated.

Similar results were found in [51] and [4]. In addition, Bauer and Kohavi [4] observed

that AdaBoost reduces both bias and variance.

Dietterich [22] made the famous connection between poor generalization and

noisy data. In particular, when noise was deliberately introduced, AdaBoost puts a great
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deal of weight on a few noisy examples, and the performance of AdaBoost deteriorated

markedly. This is the motivation for capping the weights on the examples, which was

discussed in Chapter 6.3.

Mease and Wyner [56] attempt to refute the statistical view of boosting first

set out in [34] with a series of simple experiments on data where the Bayes error is

controlled. The Bayes error of a dataset is the lowest error that any algorithm can

achieve. One of their most interesting findings is that when the Bayes error is greater

than zero, LogitBoost often overfits while AdaBoost does not. This is surprising because

LogitBoost optimizes a loss function that is more gentle than the AdaBoost loss function,

and this fact is used to argue that LogitBoost is robust to noise.

A rigorous comparison of a very large number of disparate supervised learning

algorithms was performed by Caruana and Niculesco-Mizil [14]. The only boosting

algorithm they used was AdaBoost, though it was tried with a variety of decision trees.

In these experiments, AdaBoost with decision trees had the best overall performance.

Although experiments were performed on a large number of datasets, the experiments

were limited to 5000 examples, so the scalability of the algorithms was not explored.

Finally, Arvey [2] performed a recent experimental comparison of margin-

conscious BrownBoost, BrownBoost, AdaBoost, LogitBoost, and ERLPBoost. In this

comparison, ERLPBoost outperformed AdaBoost, LogitBoost and BrownBoost and is

competitive with margin conscious BrownBoost on noisy data. Furthermore, in these

experiments, the performance of ERLPBoost might be underestimated because of a

poor choice of η.
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Chapter 7

Conclusion

The boosting community commonly uses margin maximization as a proxy for

good generalization. The first contribution of this thesis is a strong argument that direct

margin maximization does not necessarily result in low generalization error. LPBoost is

the boosting algorithm that maximizes the margin directly. Although LPBoost is often

used in practice, the analysis of this algorithm has proved to be elusive. In particular,

there are no known iteration bounds, and we show in this thesis why this is the case. This

result, originally shown in [87], is a lower bound on the number of iterations required

by LPBoost that is linear in the number of examples. This is significant because a

good iteration bound in the boosting context is one that is logarithmic in the number of

examples. In this thesis we also show that any linearly separable dataset can be reduced

to a dataset on which LPBoost misclassifies all examples by adding a bad example and

a bad hypothesis. Both of the results we have discussed rely on forcing LPBoost to

concentrate its weight on a single example and a single hypothesis. Boosting algorithms
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use the weights on the examples to choose subsequent hypotheses. If the weight becomes

concentrated on a few examples, this can cause the boosting algorithm to choose bad

hypotheses. This is particularly true when some of the examples are noisy, which means

that the data is not linearly separable.

In this thesis we present three algorithms: SoftBoost, ERLPBoost, and Binary

ERLPBoost, each of which employs either the relative entropy or the binary relative

entropy to distribute the weights on the examples more uniformly. Thus, we avoid the

problem caused by too much weight concentrating on a single example as can happen

with LPBoost. SoftBoost minimizes the entropy subject to an increasing number of con-

straints, while the entropies are used as regularizers in ERLPBoost and Binary ERLP-

Boost. Although no iteration bound is known for LPBoost, incorporating an entropy

into the algorithm makes it possible to prove an iteration bound that is O
(

ln(N/ν)
ε2

)
.

Furthermore, all three algorithms come ε-close to the optimal linear programming solu-

tion.

Shalev-Schwartz and Singer [77] proposed a similar algorithm to ERLPBoost

except that instead of updating the weights on all of the hypotheses at every iteration,

it updates only the weight on the last hypothesis. We call this algorithm Corrective

ERLPBoost. The algorithm defined in [77] uses a relative entropy regularizer, but it is

easy to derive a similar algorithm that uses a binary entropy regularizer. We call this

algorithm Corrective Binary ERLPBoost. We first describe the relationship between

these corrective algorithms and their totally corrective counterparts. Next, we note that

the algorithm described in [77] does not have a stopping criterion. We next introduce a
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stopping criterion for this algorithm to enable a fair comparison between corrective and

totally corrective algorithms in terms of training time and generalization error.

This thesis presents the first experimental analysis of optimization-based boost-

ing algorithms on large-scale data. Our main experimental result demonstrates that

LPBoost is extremely unstable on real world data. For LPBoost, generalization error

fluctuated wildly from one iteration to the next. Capping is a common approach to

making boosting algorithms robust to noise by limiting the weight on a single example,

but it did not ameliorate the instability. However, even a small amount of entropy reg-

ularization resolved the instability and caused generalization error to steadily decrease

over time.

The second important experimental result compares corrective and totally cor-

rective algorithms. Relative performance depends heavily on the hypothesis class. SVM

hypotheses generalize better overall than the other hypothesis classes. For SVM hy-

potheses, the totally corrective algorithms are faster and have lower generalization error.

An iteration of the corrective algorithms is dominated by the time it takes the oracle

to return a hypothesis. In contrast, the totally corrective algorithms are dominated by

the optimization problem that defines the update on the weights. The slowness of the

SVM oracle explains why totally corrective algorithms are faster than the corrective

algorithms. Ultimately, the more time-consuming it is to find the next hypothesis, the

more it pays to invest in a slower but more effective update. The totally corrective

optimization problems have not been studied extensively before, and improving them

would make the totally corrective algorithms even more competitive.
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Our motivation for including SVM hypotheses is to enable a direct comparison

between SVMs and boosting using the same hypothesis class. Unfortunately, none

of our boosting algorithms compare favorably with SVMs in either training time or

generalization error. Part of the disparity probably comes from comparing a mature

technology with a nascent one. Also, boosting algorithms have to solve an optimization

problem at every iteration while the SVM optimization problem is only solved once.

Thus, even if the two optimization problems could be solved in the same amount of

time, ERLPBoost would be slower overall unless the optimal solution includes very few

hypotheses.

Ultimately, we demonstrated theoretically and experimentally that ERLP-

Boost and Binary ERLPBoost are more robust than direct margin maximization. Fur-

thermore, we demonstrated that totally corrective algorithms clearly outperform cor-

rective algorithms when invoking the oracle is computationally expensive. We hope this

work will inspire future theoretical exploration so that the full potential of this algo-

rithmic paradigm may be realized. It is also our hope that these algorithms will be a

practical and effective tool to solve classification problems on real-world data.
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Appendix A

The Active Set Method

In this section, we discuss how the primal and dual variables can be related via

the Karush-Kuhn-Tucker (KKT) conditions. This is discussed in great length in both

[58] and [7], and the following discussion is a summary of the relevant points.

Relating the primal and dual variables is relatively straightforward in the case

where there are only equality constraints. When the optimization problem also has

inequality constraints, the KKT conditions are considerably more difficult. The active

set method[58] can be employed to reduce a problem with inequality constraints to one

that only has equality constraints.

First we derive the KKT system for an equality constrained quadratic program.

Suppose we are trying to solve an optimization problem of the form

min
x

1
2
xTHx + xTg

s.t. Ax = b
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where we there are m constraints and A is an m×n matrix. Let us assume that m ≤ n.

Also, let us denote the Lagrange multipliers for the equality constraints by λ. Then the

Lagrangian for this optimization problem is

L(x,λ) =
1
2
xTHx + xTg + λT (Ax− b).

Let us denote the optimal values of x and λ by x∗ and λ∗ respectively. Then Karush-

Kuhn-Tucker (KKT) conditions for this problem are

Ax∗ = b and Hx + g +ATλ∗ = 0.

These can be expressed equivalently in matrix form as H AT

A 0


 x∗

λ∗

 =

 −g
b

 . (A.1)

If H is positive definite, A is of full row rank, and the feasible set is nonempty, then

there is a unique solution for x∗ and λ∗. Moreover, if we already know x∗ and we want

to solve for λ∗, the problem reduces to

ATλ∗ = −g −Hx∗. (A.2)

We have assume that m ≤ n, so this is potentially an overconstrained problem, but we

can solve this system using least squares because we know that there is a consistent

solution for λ∗.

Suppose instead that the optimization has inequality constraints:

min
x

1
2
xTHx + xTg (A.3)

s.t. aTi x ≤ bi for i = 0 . . .m,
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where the ai are the rows of the A matrix and λ are the dual variables for the constraints.

As before, x∗ and λ∗ are the optimal solutions for x and λ respectively. The KKT

conditions for this problem are

Ax∗ = b, Hx + g +ATλ∗ = 0,

λi(aTi x− b) = 0, λi ≥ 0 for i = 1 . . .m

The key to the active set method is the complementary slackness condition:

λi(aTi x− b) = 0.

From this we can infer that if aTi x < b (the inequality constraint is inactive), then λi = 0.

Therefore the only nonzero dual variables correspond to the constraints where aTi x = b,

also known as the active constraints. Let us define the active set A(x) = {i : aTi x = b}.

If the active set is already known, then the optimal solution to (A.3) is equivalent to

the solution of

min
x

1
2
xTHx + xTg

s.t. aTi x = bi for i = A(x).

This can be solved by a linear system similar to (A.1), except that in this case only the

active constraints are included. The active set is rarely known ahead of time. However,

there is one particular scenario that will come up frequently in this dissertation where

this is true: the case where x∗ is known and we want to solve for λ∗. In this case, the

problem reduces to (A.2).

It should be noted that the KKT conditions can be reduced to solving a matrix

equation because the problem we are considering has a quadratic objective function and
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affine constraints. However, the algorithms proposed in this dissertation will not have

quadratic objective functions. This can be resolved in two different ways. First, we

generally solve these optimization problems via sequential quadratic programming [58],

so it makes sense to simply take the quadratic approximation of the objective function.

In this thesis, we make use of active sets when we know the value of the primal

variables and seek to use this information to find the value of the dual variables. In this

case, reducing the problem to a linear system is also straightforward. It is important

to consider is that numerical issues may make this approach unreliable. In practice,

optimizers find the value of the primal variables to a finite precision. Often this is not

very high precision, which results in a certain amount of ambiguity when it comes to

determining the optimal active set.
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