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Input: pairs of  unit vectors in Rn: (x1, y1), (x2, y2), …, (xT, yT)

Assumption: yt = Rxt + noise, where R is an 
unknown rotation matrix

Problem: find “best-fit” rotation matrix for the data, i.e.
arg minR t kRxt – ytk2



 kRxt – ytk2 = kRxtk2 + kytk2 – 2(yt xt
>) ² R

=  2 - 2(yt xt
>) ² R.

 arg minR t kRxt – ytk2 = arg maxR t yt xt
> ² R

 Computing  arg maxR M² R: “Wahba’s problem”
 Can be solved using SVD of M

A ² B = Tr(A> B) = 
ij AijBij

Linear in R



x1

y1
x2

y2 xT

yT

R1 x1

Choose rot matrix R1

Predict R1x1

L1(R1) =  kR1x1 – y1k2

Choose rot matrix R2

Predict R2x2

L2(R2) =  kR2x2– y2k2

Choose rot matrix RT

Predict RTxT

LT(RT) =  kRTxT – yTk2

R2x2
RTxT

Goal: Minimize regret:
Regret  =  t Lt(Rt) – minR t Lt(R)

Open problem 
from COLT 2008 
[Smith, Warmuth]



 Rot matrix ´ orthogonal matrix of determinant 1
 Set of rot matrices, SO(n):

 Non-convex: so online convex optimization techniques 
like gradient descent, exponentiated gradient, etc. 
don’t apply directly

 Lie group with Lie algebra = set of all skew-symmetric
matrices

 Lie group gives universal representation for all Lie 
groups via a conformal embedding



 [Arora, NIPS ’09] using Lie group/Lie algebra 
structure

 Based on matrix exponentiated gradient: 
matrix exp maps Lie algebra to Lie group

 Deterministic algorithm

 (T) lower bound on any such deterministic 
algorithm, so randomization is crucial



 Assume for convenience that n is even.
 Bad example: xt = e1, yt = -Rtxt.
 Lt(Rt) = kRtxt - ytk2 = k2ytk2 = 4. So total loss = 4T.

 Since n is even, both I, -I are rot matrices, and
t Lt(I) + Lt(-I) = t 2kytk2 + 2kxtk2 = 4T.

 Hence, minR t Lt(R) · 2T.
 So, Regret ¸ 2T.

Adversary can compute Rt

since alg is deterministic



 Randomized algorithm with expected regret 
O(pnL), where L = minR t Lt(R)

 Lower bound on regret of any online learning 
algorithm for choosing rot matrices of (pnT)

 Using Hannan/Kalai-Vempala’s Follow-The-
Perturbed-Leader technique based on linearity 
of loss function



Sample noise matrix N with i.i.d entries
distributed uniformly in [-1/, 1/]

In round t, use Rt = arg minR 1

t-1
Li(R)  - N ² R.

Thm [KV’05]: Regret  · O(n5/4pT).

Using  SVD  solution to 
Wahba’s problem



In round t, use Rt = arg minR 1

t-1
Li(R)  - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the 
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where  = diag(1,2, …,n).



In round t, use Rt = arg minR 1

t-1
Li(R)  - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the 
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where  = diag(1,2, …,n).
E.g. using QR-decomposition 
of matrix with i.i.d. standard 
Gaussian entries



In round t, use Rt = arg minR 1

t-1
Li(R)  - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the 
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where  = diag(1,2, …,n).

Effectively, we choose N w.p. / exp(-kNk*), where 
kNk*= trace norm, i.e. sum of singular values of N



 Stability Lemma [KV’05]:
E[Regret]  · t E[Lt(Rt)] – E[Lt(Rt+1)] + 2E[kNk*] 

 Choose  = pn/L, and we get
E[Regret]  · O(pnL). 

· 2L = 2n/



 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

Re-randomization doesn’t 
change expected regret



 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’  = N – ytxt
>. 

 Then Rt = Rt+1, and so ED[Lt(Rt) ] – ED’[Lt(Rt+1)] = 0.

D = dist of N, 
D’ = dist of N’



 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’  = N – ytxt
>. 

 Then Rt = Rt+1, and so ED[Lt(Rt) ] – ED’[Lt(Rt+1)] = 0.

 However, kD’ – Dk1· . 
 So ED’[Lt(Rt+1)] – ED[Lt(Rt+1)]  · 2.



 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’  = N – ytxt
>. 

 Then Rt = Rt+1, and so ED[Lt(Rt) ] – ED’[Lt(Rt+1)] = 0.

 However, kD’ – Dk1· . 
 So ED’[Lt(Rt+1)] – ED[Lt(Rt+1)]  · 2.

PrD’[N]/PrD[N]  ¼ exp(§ kytxt
>k*)  ¼ 1 § .



E[kNk*]  =  E[i i]
=  i E[i]
=  n/.

Because i is drawn from the exponential 
distribution of density exp(-)



 Bad example: xt = et mod n, yt = §xt w.p. ½ each

 Opt  rot matrix R*= diag(sgn(X1),…, sgn(Xn)) 

Xi = sum of § signs over 
all t s.t. (t mod n) = i.

* ignoring det(R*) = 1 issue

*



 Bad example: xt = et mod n, yt = §xt w.p. ½ each

 Opt  rot matrix R*= diag(sgn(X1),…, sgn(Xn)) 
 Expected total loss  = 

2T – 2i E[|Xi| ] ¸ 2T - n¢ (pT/n) = 2T - (pnT) 

 But for any Rt, E[Lt(Rt)] = 2 – 2E[(ytxt
> ) ² Rt] = 2, 

and hence total expected loss of alg = 2T.

 So, E[Regret]  ¸(pnT).
* ignoring det(R*) = 1 issue

*



 Optimal algorithm for online learning of 
rotations with regret O(pnL)

 Based on FSPL

 Open questions: 
 Other applications for FSPL? Matrix Hedge? 

Faster algorithms for SDPs? More details in 
Manfred’s open problem talk.

 Any other example of natural problems where FPL
is the only known technique that works?

Thank you!


