
Satyen Kale (Yahoo! Research)

Joint work with
Elad Hazan (IBM Almaden) and Manfred Warmuth (UCSC)

x1

y1
x2

y2 xT

yT

Input: pairs of unit vectors in Rn: (x1, y1), (x2, y2), …, (xT, yT)

Assumption: yt = Rxt + noise, where R is an
unknown rotation matrix

Problem: find “best-fit” rotation matrix for the data, i.e.
arg minR t kRxt – ytk2

 kRxt – ytk2 = kRxtk2 + kytk2 – 2(yt xt
>) ² R

= 2 - 2(yt xt
>) ² R.

 arg minR t kRxt – ytk2 = arg maxR t yt xt
> ² R

 Computing arg maxR M² R: “Wahba’s problem”
 Can be solved using SVD of M

A ² B = Tr(A> B) =
ij AijBij

Linear in R

x1

y1
x2

y2 xT

yT

R1 x1

Choose rot matrix R1

Predict R1x1

L1(R1) = kR1x1 – y1k2

Choose rot matrix R2

Predict R2x2

L2(R2) = kR2x2– y2k2

Choose rot matrix RT

Predict RTxT

LT(RT) = kRTxT – yTk2

R2x2
RTxT

Goal: Minimize regret:
Regret = t Lt(Rt) – minR t Lt(R)

Open problem
from COLT 2008
[Smith, Warmuth]

 Rot matrix ´ orthogonal matrix of determinant 1
 Set of rot matrices, SO(n):

 Non-convex: so online convex optimization techniques
like gradient descent, exponentiated gradient, etc.
don’t apply directly

 Lie group with Lie algebra = set of all skew-symmetric
matrices

 Lie group gives universal representation for all Lie
groups via a conformal embedding

 [Arora, NIPS ’09] using Lie group/Lie algebra
structure

 Based on matrix exponentiated gradient:
matrix exp maps Lie algebra to Lie group

 Deterministic algorithm

 (T) lower bound on any such deterministic
algorithm, so randomization is crucial

 Assume for convenience that n is even.
 Bad example: xt = e1, yt = -Rtxt.
 Lt(Rt) = kRtxt - ytk2 = k2ytk2 = 4. So total loss = 4T.

 Since n is even, both I, -I are rot matrices, and
t Lt(I) + Lt(-I) = t 2kytk2 + 2kxtk2 = 4T.

 Hence, minR t Lt(R) · 2T.
 So, Regret ¸ 2T.

Adversary can compute Rt

since alg is deterministic

 Randomized algorithm with expected regret
O(pnL), where L = minR t Lt(R)

 Lower bound on regret of any online learning
algorithm for choosing rot matrices of (pnT)

 Using Hannan/Kalai-Vempala’s Follow-The-
Perturbed-Leader technique based on linearity
of loss function

Sample noise matrix N with i.i.d entries
distributed uniformly in [-1/, 1/]

In round t, use Rt = arg minR 1

t-1
Li(R) - N ² R.

Thm [KV’05]: Regret · O(n5/4pT).

Using SVD solution to
Wahba’s problem

In round t, use Rt = arg minR 1

t-1
Li(R) - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where  = diag(1,2, …,n).

In round t, use Rt = arg minR 1

t-1
Li(R) - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where  = diag(1,2, …,n).
E.g. using QR-decomposition
of matrix with i.i.d. standard
Gaussian entries

In round t, use Rt = arg minR 1

t-1
Li(R) - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where  = diag(1,2, …,n).

Effectively, we choose N w.p. / exp(-kNk*), where
kNk*= trace norm, i.e. sum of singular values of N

 Stability Lemma [KV’05]:
E[Regret] · t E[Lt(Rt)] – E[Lt(Rt+1)] + 2E[kNk*]

 Choose  = pn/L, and we get
E[Regret] · O(pnL).

· 2L = 2n/

 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

Re-randomization doesn’t
change expected regret

 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’ = N – ytxt
>.

 Then Rt = Rt+1, and so ED[Lt(Rt)] – ED’[Lt(Rt+1)] = 0.

D = dist of N,
D’ = dist of N’

 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’ = N – ytxt
>.

 Then Rt = Rt+1, and so ED[Lt(Rt)] – ED’[Lt(Rt+1)] = 0.

 However, kD’ – Dk1· .
 So ED’[Lt(Rt+1)] – ED[Lt(Rt+1)] · 2.

 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’ = N – ytxt
>.

 Then Rt = Rt+1, and so ED[Lt(Rt)] – ED’[Lt(Rt+1)] = 0.

 However, kD’ – Dk1· .
 So ED’[Lt(Rt+1)] – ED[Lt(Rt+1)] · 2.

PrD’[N]/PrD[N] ¼ exp(§ kytxt
>k*) ¼ 1 § .

E[kNk*] = E[i i]
= i E[i]
= n/.

Because i is drawn from the exponential
distribution of density exp(-)

 Bad example: xt = et mod n, yt = §xt w.p. ½ each

 Opt rot matrix R*= diag(sgn(X1),…, sgn(Xn))

Xi = sum of § signs over
all t s.t. (t mod n) = i.

* ignoring det(R*) = 1 issue

*

 Bad example: xt = et mod n, yt = §xt w.p. ½ each

 Opt rot matrix R*= diag(sgn(X1),…, sgn(Xn))
 Expected total loss =

2T – 2i E[|Xi|] ¸ 2T - n¢ (pT/n) = 2T - (pnT)

 But for any Rt, E[Lt(Rt)] = 2 – 2E[(ytxt
>) ² Rt] = 2,

and hence total expected loss of alg = 2T.

 So, E[Regret] ¸(pnT).
* ignoring det(R*) = 1 issue

*

 Optimal algorithm for online learning of
rotations with regret O(pnL)

 Based on FSPL

 Open questions:
 Other applications for FSPL? Matrix Hedge?

Faster algorithms for SDPs? More details in
Manfred’s open problem talk.

 Any other example of natural problems where FPL
is the only known technique that works?

Thank you!

