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Batch Learning of Rotations

Input: pairs of unit vectorsin R™ (x,, v.), (X,, V), ---
Assumption: y, = Rx, + noise, where R is an
unknown rotation matrix

Problem: find “best-fit” rotation matrix for the datg, i.e.
arg ming 2., ||Rx,—y,|?



How to Solve the Batch Problem

- HRXt_YtH2 = HRXt”2 T HYtHZ_ 2(Y; XtT) o R

= 2-2(y, % ') ®R. AeB=Tr(ATB) = J

S AB.

= arg ming 2. [|[Rx,—y,||> =arg maxg 2. y; X, ' R

[Linearin R

= Computing arg max,; Me R: *Wahba'’s problem”
= Can be solved using SVD of M



Learning Rotations Online

Choose rot matrix R, Chooserot matrixR, ~ Choose rot matrix R;

Predict R x, Predict R,x, Predict Rx;
L1(R1) - ||R1X1_Y1||2 Lz(Rz) - “szz_ YZH2 LT(RT) - ||RTXT_YTH2
Open problem
Goal: Minimize regret: from COLT 2008
Regret = 2., Ly(Ry) —ming 2, L(R) [Smith, Warmuth] |




Rotation Matrices

= Rot matrix = orthogonal matrix of determinant 1
= Set of rot matrices, SO(n):

= Non-convex: so online convex optimization techniques
like gradient descent, exponentiated gradient, etc.
don't apply directly

= Lie group with Lie algebra = set of all skew-symmetric
matrices

= Lie group gives universal representation for all Lie
groups via a conformal embedding



Previous Work

= [Arora, NIPS ‘0g] using Lie group/Lie algebra
structure

» Based on matrix exponentiated gradient:
matrix exp maps Lie algebra to Lie group

= Deterministic algorithm

= ()(T) lower bound on any such deterministic
algorithm, so randomization is crucial



Adversary can compute R,
since alg is deterministic

Lower Bound for Deterministic Algs

= Assume for convenienc nis even.
= Bad example: x,=e_, v, = -Rx,.
* L(R) = [Rxc- yill? = 12,12 = 4. So total loss = 4T.

= Since nis even, both |, -l are rot matrices, and
2 L) + L) = 2 2]y + 2{Ix[[> = 4T.

= Hence, ming 2. L.(R) < 2T.
= 50, Regret > 2T.



Our Results

= Randomized algorithm with expected regret
O(y/nL), where L = min, 2., L.(R)

= Lower bound on regret of any online learning
algorithm for choosing rot matrices of Q(,/nT)

» Using Hannan/Kalai-Vempala’s Follow-The-
Perturbed-Leader technique based on linearity
of loss function



Simple (but Suboptimal) FPL Algorithm

Sample noise matrix N with i.i.d entries
distributed uniformly in [-1/n, 1/1]

In round t, use R, = arg ming th'l L(R) -NeR.

Using SVD solution to
Wahba's problem

Thm [KV'o5]: Regret < O(n5/4,/T).




Optimal Algorithm: Follow-The-

Spectrally-Perturbed-Leader (FSPL)

Sample n numbers . ,G,, ...,c,i.i.d. from the
exponential distribution of density nexp(-no)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

SetN=UXV', where X =diag(c,,0,, ...,5,).

In round t, use R, = arg ming th'l L.(R) -NeR.




Optimal Algorithm: Follow-The-
Spectrally-Perturbed-Leader (FSPL)

Sample n numbers . ,G,, ...,c,i.i.d. from the
exponential distribution of density nexp(-no)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

E.g. using QR-decomposition
Set N =UX V', wher{ of matrix with i.i.d. standard
_Gaussian entries P

In round t, use R, = arg ming th'l L.(R) -NeR.




Optimal Algorithm: Follow-The-

Spectrally-Perturbed-Leader (FSPL)

Sample n numbers . ,G,, ...,c,i.i.d. from the

ex b)
Effectively, we choose N w.p. oc exp(-1||N||.), where
S |N|+= trace norm, i.e. sum of singular values of N

d

uniform Wure

SetN=UXV', where X =diag(c,,0,, ...,5,).

2

In round t, use R, = arg ming th'l L.(R) -NeR.




Analysis

s Stability Lemma [KV'o5]:

E[Regret] < 2. E[L.(R)]—-E[L(R,,,)]+ 2E[||N]|+]
I\ J J
Y Y
< 21’]L = zn/n

= Choose 1 = /n/L, and we get
E[Regret] < O(y/nL).



Zt E[Lt(Rt)] _ E[Lt(Rt+1)] S ZTIT

= R, =arg maxg (th'1 y.x." +N)eR
= R,,, =arg maxg (th y.x." +N)eR

t+1

\
Re-randomization doesn’t

change expected regret
\ J




Zt E[Lt(Rt)] _ E[Lt(Rt+1)] S ZT]T

= R, =arg maxR(Ztly,xlT + N) e R
= R,,, =arg maxg S, yixT +N)eR

= First sample N, thenset N" =N —vy,x,T.
= ThenR,=R,,,andso E,[L.(R,) ]-E,[L.(R,,,)] =0.

A

D = dist of N,

D’ = dist of N’
- Y,

t+1/




Zt E[Lt(Rt)] _ E[Lt(Rt+1)] S ZT]T

= R, =arg maxR(Ztly,xlT + N) e R
= R,,, =arg maxg S, yixT +N)eR

= First sample N, thenset N" =N —vy,x,T.
= ThenR,=R,,,andso E,[L.(R,) ]-E,[L.(R,,,)] =0.

t+1/

= However, |[D'—D||, <
" 50 Ep{Li(Re, )] = Ep[Li(Re, )] < 2.




Zt E[Lt(Rt)] i

E[L.(R,,)] < 2nT

= R, =arg maxR(Ztly,xlT +N) e R

= R

t+1

= First sample N, then set N’

= arg maxg (Z y: X" +N')eR

=N=-yXT.

= ThenR,=R,,,andso E,[L.(R,) ]-E,[L.(R,,,)] =0.
= However, |D’—D||, <n.

n SO Ep[L (R L(R., )] <2m.
[PrD,[N]/PrD[N] ~ exp(En [|lyxT|l+) &~ 1+m. J




E[||N][.] =n/n

E[|N][.] = E[2; o]
— Zi E[Gi]
= n/n.

r—/\

Because o, is drawn from the exponential
distribution of density nexp(-no)

~

\_




Lower Bound on Any Algorithm

= Bad example: x,=e, 4. Vi = X W.p. Y2 each

. Opt* rot matrix R*M(Xl),..., sgn(X.))
)

X. = sum of =+ signs over

allts.t. (t modn) =i.
. Y

“ignoring det(R") = 1 issue



Lower Bound on Any Algorithm

= Bad example: x,=e, 4. Vi = X W.p. Y2 each

= Opt rot matrix R*= diag(sgn(X,),..., sgn(X.))
= Expected total loss =

2T =22 E[|[X|]>2T-n-Q (/T/n) =2T - Q(;/nT)

= Butforany R, E[L,(R,)]=2—-2E[(yx,T) e R] =2,
and hence total expected loss of alg = 2T.

= So, E[Regret] > Q(,/nT).

“ignoring det(R") = 1 issue



Conclusions and Future Work

= Optimal algorithm for online learning of
rotations with regret O(,/nL)
= Based on FSPL

= Open questions:

= Other applications for FSPL? Matrix Hedge?
Faster algorithms for SDPs? More details in
Manfred’s open problem talk.

= Any other example of natural problems where FPL
is the only known technique that works?

Thank you!



