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Problem

Parts of my home town Amsterdam lie 5 metres below sea level

/



Solution

Pump out water

Leeghwater (1607)



This is how we do it



And then global warming sets in . . .



Online learning to the rescue

For t = 1, 2, . . .

I Mill chooses a direction ut

I Wind reveals direction xt

I Gain based on match

What is a reasonable gain?



Measuring gain

Gain quantifies quality of prediction u upon outcome x

Perhaps the simplest gain is the

angle cosine := uᵀx

best when u,x parallel, worst when u,x opposite

Another gain is used in Principal Component Analysis

subspace similarity :=
(
uᵀx

)2
best when u,x parallel or opposite

Our solution: controlled trade-off (windmill-dependent constant c)

directional gain :=
(
uᵀx+ c

)2
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Visualisation of directional gain

(
uᵀx+ c

)2
with c = 1/3

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.5  0  0.5  1  1.5  2

prediction
outcome

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

-π -π/2 0 π/2 π

g
a
in

angle

prediction
outcome



Gain expansion
For randomised prediction u ∼ P:

E
[(
uᵀx+ c

)2]
= E

[
xᵀuuᵀx+ 2cxᵀu+ c2

]
= xᵀE

[
uuᵀ]x+ 2cxᵀE [u] + c2.

Only relevant characteristics of P are its

µ := E [u] first moment vector

D := E
[
uuᵀ] second moment matrix

Observation: gain is linear in µ and in D

Idea: forget P - use µ and D as a parameter

Careful: not all 〈µ,D〉 are moments of some P!
Parameters must lie in the überplex

U :=
{
〈µ,D〉

∣∣ ∃P : µ,D are 1st/2nd moment of P
}
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Überplex U



Characterisation

Theorem

〈µ,D〉 ∈ U iff tr(D) = 1 and D � µµᵀ

Why this is important?

I Überplex U is convex

I Constraint is semi-definite

I Efficient numerical linear/convex optimization over U
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Offline problem

max
(µ,D)∈U

T∑
t=1

(
xᵀ
tDxt + 2cµᵀxt + c2

)
Semi-definite optimisation problem
Good numerical methods



“Our” algorithm: gradient descent

Maintains the two moments (µt ,Dt) ∈ U as parameter
At trial t = 1 . . .T

1. Mill decomposes parameter (µt ,Dt) into a mixture of 6
directions and draws a direction ut at random from it

2. Wind reveals direction xt ∈ R2

3. Mill receives expected gain E
[
(uᵀ

txt + c)2
]

4. Mill updates (µt ,Dt) to (µ̂t+1, D̂t+1) based on the gradient
of the expected gain on xt

µ̂t+1 := µt + 2ηc xt and D̂t+1 := Dt + η xtx
ᵀ
t

5. Mill produces new parameter (µt+1,Dt+1) by projecting
(µ̂t+1, D̂t+1) back into the überplex

(µt+1,Dt+1) := argmin
(µ,D)∈U

‖D − D̂t+1‖2F + ‖µ− µ̂t+1‖2



Guarantees

regret := hindsight-optimal gain− actual gain of Mill

Theorem
The expected regret after T trials of the GD algorithm with

learning rate η =
√

3/2
(4c2+1)T

and initial parameters µ1 = 0 and

D1 = 1
2I is upper bounded by

√
3(4c2 + 1)T

I Regret grows sub-linearly with T

I Mill turned close to the best orientation

I Holland is saved ,
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Conclusion

I An efficient method for orienting windmills

I Characterization of set of first two moments of distributions
on directions

We can do more

I Work in n > 3 dimensions

I Learn sets of k ≥ 1 orthogonal directions

The hard part is to decompose a parameter (µ,D) into a small
mixture from which you can sample
Give some more details pls
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