Learning a set of directions
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e Problem N

Parts of my home town Amsterdam lie 5 metres below sea level
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%“ Solution ’T\:%

Pump out water

Leeghwater (1607)



%"4\ This is how we do it




%f‘ And then global warming sets in ... 'ﬁ'}g




Zg‘f\ Online learning to the rescue

Fort=1,2,...
» Mill chooses a direction u;
» Wind reveals direction x;

» Gain based on match

What is a reasonable gain?
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Gain quantifies quality of prediction w upon outcome x

Perhaps the simplest gain is the
angle cosine = u'x

best when wu,x parallel, worst when w,x opposite

Another gain is used in Principal Component Analysis
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subspace similarity = (u'x)
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Z//:“ Measuring gain N

w”

Gain quantifies quality of prediction w upon outcome x

Perhaps the simplest gain is the
angle cosine = u'x

best when wu,x parallel, worst when w,x opposite

Another gain is used in Principal Component Analysis
Lo 2
subspace similarity = (u'x)

best when w,x parallel or opposite

Our solution: controlled trade-off (windmill-dependent constant ¢)

directional gain = (uTz + c)2
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: A . . AN
Z/( Gain expansion ,\§

é For randomised prediction u ~ P:
E [(uTaz + C)ﬂ = E[zTuuTz + 2czTu + 2]
= z'E[uu’]|z + 2cz E [u] + 2.
Only relevant characteristics of P are its

p = Elu] first moment vector

D = E[uu] second moment matrix

Observation: gain is linear in 1 and in D
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é For randomised prediction u ~ P:
E [(uTaz + C)ﬂ = E[zTuuTz + 2czTu + 2]
= z'E[uu’]|z + 2cz E [u] + 2.
Only relevant characteristics of P are its

p = Elu] first moment vector

D = E[uu] second moment matrix

Observation: gain is linear in 1 and in D

Idea: forget P - use i and D as a parameter
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Z/KA\ : :
Gain expansion

For randomised prediction u ~ P:
E [(uTaz + C)z} = E[zTuuTz + 2czTu + 2]
= z'E[uu’]|z + 2cz E [u] + 2.
Only relevant characteristics of P are its

p = Elu] first moment vector
D = E[uu] second moment matrix
Observation: gain is linear in 1 and in D
Idea: forget P - use i and D as a parameter

Careful: not all (¢, D) are moments of some P!
Parameters must lie in the tiberplex

U = {{u,D) ! 3P : i, D are 1°¢/2" moment of P}



Uberplex U
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Theorem

(n, D) elU

%/(;4\

Characterisation

iff

tr(D)

1

and D = pp’



7/4\ Characterisation ”:‘\x

Theorem

(n, D) elU iff (D) =1 and D = pu'

Why this is important?
» Uberplex U is convex
» Constraint is semi-definite

» Efficient numerical linear/convex optimization over U
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) Offline problem f";\x

T

max 2! Dx; + 2cpxy + 2
(e DYeu tz_;( ¢ t plry + )

Semi-definite optimisation problem
Good numerical methods



7/:“ “Our” algorithm: gradient descent ’T\§

Maintains the two moments (p¢, D¢) € U as parameter
Attrial t=1...T

1. Mill decomposes parameter (f1¢, D¢) into a mixture of 6
directions and draws a direction u; at random from it

2. Wind reveals direction x; € R?

3. Mill receives expected gain E [(u]z; + c)?]

4. Mill updates (p¢, D) to (ﬁt+1,f)t+1) based on the gradient
of the expected gain on x;

l/’;’t+1 = ut—l—chmt and ﬁt+1 = Dt—l—nmtml

5. Mill produces new parameter (tir+1, Dey1) by projecting
(¢t1, Dty1) back into the iiberplex

(tes1, Des1) == argmin |[D — Dyjq||F + || — ﬁt+1H2
(n,D)eU

)



Z//Q Guarantees ’T\g

regret = hindsight-optimal gain — actual gain of Mill

Theorem
The expected regret after T trials of the GD algorithm with

learning rate n = 1/% and initial parameters 1 = 0 and
Dy = 11 is upper bounded by \/3(4c2+1)T
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Z//Q Guarantees ’T\\%

regret = hindsight-optimal gain — actual gain of Mill

Theorem
The expected regret after T trials of the GD algorithm with

learning rate n = 1/% and initial parameters 1 = 0 and
Dy = 11 is upper bounded by \/3(4c2+1)T

> Regret grows sub-linearly with T
» Mill turned close to the best orientation
» Holland is saved ©
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%4\ Conclusion N
> An efficient method for orienting windmills
» Characterization of set of first two moments of distributions
on directions
We can do more
» Work in n > 3 dimensions
> Learn sets of k > 1 orthogonal directions

The hard part is to decompose a parameter (p, D) into a small
mixture from which you can sample
Give some more details pls
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