Learning a set of directions

Wouter M. Koolen Jiazhong Nie Manfred K. Warmuth

Outline

Motivation

Measuring gain

Algorithm

Conclusion

Problem

Parts of my home town Amsterdam lie 5 metres below sea level

Pump out water

Leeghwater (1607)

This is how we do it

And then global warming sets in ...

Online learning to the rescue

For $t = 1, 2, \ldots$

- Mill chooses a direction u_t
- Wind reveals direction x_t
- Gain based on match

What is a reasonable gain?

Gain quantifies quality of prediction \boldsymbol{u} upon outcome \boldsymbol{x}

Gain quantifies quality of prediction \boldsymbol{u} upon outcome \boldsymbol{x}

Perhaps the simplest gain is the

angle cosine $:= u^{\mathsf{T}} x$

Gain quantifies quality of prediction u upon outcome \boldsymbol{x}

Perhaps the simplest gain is the

angle cosine $:= u^{\mathsf{T}} x$

best when u, x parallel, worst when u, x opposite

Gain quantifies quality of prediction u upon outcome xPerhaps the simplest gain is the

angle cosine $:= u^{\mathsf{T}} x$

best when u, x parallel, worst when u, x opposite

Another gain is used in Principal Component Analysis

subspace similarity
$$\coloneqq (u^{\intercal} x)^2$$

Gain quantifies quality of prediction u upon outcome xPerhaps the simplest gain is the

angle cosine $:= u^{\mathsf{T}} x$

best when u, x parallel, worst when u, x opposite

Another gain is used in Principal Component Analysis

subspace similarity
$$\coloneqq (u^{\intercal} x)^2$$

best when u, x parallel or opposite

Gain quantifies quality of prediction u upon outcome xPerhaps the simplest gain is the

angle cosine $:= u^{\mathsf{T}} x$

best when u, x parallel, worst when u, x opposite

Another gain is used in Principal Component Analysis

subspace similarity
$$\coloneqq (u^{\intercal} \boldsymbol{x})^2$$

best when u, x parallel or opposite

Our solution: controlled trade-off (windmill-dependent constant c)

directional gain
$$\coloneqq (u^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{c})^2$$

Visualisation of directional gain

Only relevant characteristics of $\ensuremath{\mathbb{P}}$ are its

 $\mu \coloneqq \mathbb{E}[u]$ first moment vector $D \coloneqq \mathbb{E}[uu^{\intercal}]$ second moment matrix

Observation: gain is linear in μ and in D

Only relevant characteristics of $\ensuremath{\mathbb{P}}$ are its

 $\mu := \mathbb{E}[u]$ first moment vector $D := \mathbb{E}[uu^{\intercal}]$ second moment matrix

Observation: gain is linear in μ and in D

Idea: forget $\mathbb P$ - use μ and D as a parameter

$$\mathbb{E}\left[\left(u^{\mathsf{T}}\boldsymbol{x}+\boldsymbol{c}\right)^{2}\right] = \mathbb{E}\left[\boldsymbol{x}^{\mathsf{T}}\boldsymbol{u}\boldsymbol{u}^{\mathsf{T}}\boldsymbol{x}+2\boldsymbol{c}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{u}+\boldsymbol{c}^{2}\right]$$
$$= \boldsymbol{x}^{\mathsf{T}}\mathbb{E}\left[\boldsymbol{u}\boldsymbol{u}^{\mathsf{T}}\right]\boldsymbol{x}+2\boldsymbol{c}\boldsymbol{x}^{\mathsf{T}}\mathbb{E}\left[\boldsymbol{u}\right]+\boldsymbol{c}^{2},$$

Only relevant characteristics of $\ensuremath{\mathbb{P}}$ are its

 $\mu \coloneqq \mathbb{E}[u]$ first moment vector $D \coloneqq \mathbb{E}[uu^{\intercal}]$ second moment matrix

Observation: gain is linear in μ and in D

Idea: forget $\mathbb P$ - use μ and D as a parameter

Careful: not all $\langle \mu,D\rangle$ are moments of some $\mathbb{P}!$ Parameters must lie in the $\ddot{u}berplex$

$$\mathcal{U} \ \coloneqq \ \left\{ \langle \mu, D \rangle \ \middle| \ \exists \mathbb{P} : \mu, D \text{ are } 1^{\mathsf{st}}/2^{\mathsf{nd}} \text{ moment of } \mathbb{P}
ight\}$$

Characterisation

Theorem

$\langle \mu, D angle \in \mathcal{U} \quad \textit{ iff } \quad \mathsf{tr}(D) \ = \ 1 \ \textit{ and } \ D \ \succeq \ \mu \mu^\intercal$

Characterisation

Theorem

$$\langle \mu, D
angle \in \mathcal{U} \quad \textit{ iff } \quad \mathsf{tr}(D) \ = \ 1 \ \textit{ and } \ D \ \succeq \ \mu \mu^\intercal$$

Why this is important?

- Überplex U is convex
- Constraint is semi-definite
- Efficient numerical linear/convex optimization over ${\cal U}$

Offline problem

$$\max_{(\mu,D)\in\mathcal{U}} \sum_{t=1}^{T} \left(\boldsymbol{x}_{t}^{\mathsf{T}} \boldsymbol{D} \boldsymbol{x}_{t} + 2\boldsymbol{c} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{x}_{t} + \boldsymbol{c}^{2} \right)$$

Semi-definite optimisation problem Good numerical methods

"Our" algorithm: gradient descent

Maintains the two moments $(\mu_t, D_t) \in \mathcal{U}$ as parameter At trial $t = 1 \dots T$

- 1. Mill *decomposes* parameter (μ_t, D_t) into a mixture of 6 directions and draws a direction u_t at random from it
- 2. Wind reveals direction $\boldsymbol{x}_t \in \mathbb{R}^2$
- 3. Mill receives expected gain $\mathbb{E}\left[(u_t^{\mathsf{T}} x_t + c)^2\right]$
- 4. Mill updates (μ_t, D_t) to $(\hat{\mu}_{t+1}, \hat{D}_{t+1})$ based on the gradient of the expected gain on x_t

$$\widehat{\mu}_{t+1} \coloneqq \mu_t + 2\eta c \, x_t$$
 and $\widehat{D}_{t+1} \coloneqq D_t + \eta \, x_t x_t^{\mathsf{T}}$

5. Mill produces new parameter (μ_{t+1}, D_{t+1}) by projecting $(\hat{\mu}_{t+1}, \hat{D}_{t+1})$ back into the überplex

$$(\mu_{t+1}, D_{t+1}) \coloneqq \operatorname*{argmin}_{(\mu, D) \in \mathcal{U}} \|D - \widehat{D}_{t+1}\|_F^2 + \|\mu - \widehat{\mu}_{t+1}\|^2$$

Guarantees

 $\textbf{regret} \ \coloneqq \ \textbf{hindsight-optimal gain} - \textbf{actual gain of Mill}$

Theorem

The expected regret after T trials of the GD algorithm with learning rate $\eta = \sqrt{\frac{3/2}{(4c^2+1)T}}$ and initial parameters $\mu_1 = 0$ and $D_1 = \frac{1}{2}I$ is upper bounded by $\sqrt{3(4c^2+1)T}$

Guarantees

 $\textbf{regret} \ \coloneqq \ \textbf{hindsight-optimal gain} - \textbf{actual gain of Mill}$

Theorem

The expected regret after T trials of the GD algorithm with learning rate $\eta = \sqrt{\frac{3/2}{(4c^2+1)T}}$ and initial parameters $\mu_1 = 0$ and $D_1 = \frac{1}{2}I$ is upper bounded by $\sqrt{3(4c^2+1)T}$

- Regret grows sub-linearly with T
- Mill turned close to the best orientation
- ► Holland is saved 🙂

Conclusion

- An efficient method for orienting windmills
- Characterization of set of first two moments of distributions on directions

We can do more

- Work in n > 3 dimensions
- Learn sets of $k \ge 1$ orthogonal directions

The hard part is to decompose a parameter (μ, D) into a small mixture from which you can sample Give some more details pls

