Follow the leader with Dropout perturbations - Additive versus multiplicative noise

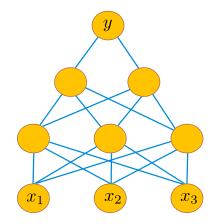
Manfred K. Warmuth

June 11, 2015, UC Berkeley

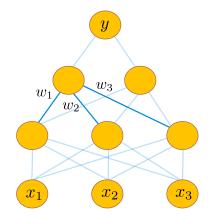
1 What is dropout?

- 2 Learning from expert advice
- 3 Hedge setting
- 4 The algorithms
- 5 Proof methods

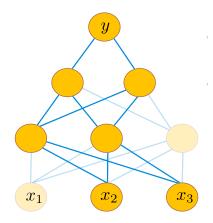
Feed forward neural net



Weights parameters - sigmoids at internal nodes



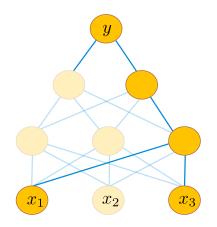
Dropout training



- Stochastic gradient descent
- Randomly remove every hidden/input node with prob. ¹/₂ before each gradient descent update

[Hinton et al. 2012]

Dropout training



- Very successful in image recognition & speech recognition
- Why does it work?

[Wagner, Wang, Liang 2013] [Helmbold, Long 2014] Prove bounds for dropout

- single neuron
- linear loss

1 What is dropout?

- 2 Learning from expert advice
- 3 Hedge setting
- 4 The algorithms
- 5 Proof methods

	E_1	E_2	E_3	 E_n	prediction	label	loss
day 1	0	1	0	 0	0	1	1

		E_1	E_2	E_3	 E_n	prediction	label	loss
_	day 1	0	1	0	 0	0	1	1
	day 2	1	1	0	 0	1	1	0

	E_1	E_2	E_3	 E_n	prediction	label	loss
day 1		1				1	1
day 2	1	1	0	 0	1	1	0
ļ							
ļ							
notation	x_1	x_1	x_2	 x_n	\widehat{y}	y	$ \widehat{y} - y $

	E_1	E_2	E_3		E_n	prediction	label	loss
day 1						0	1	1
day 1 day 2	1	1	0		0	1	1	0
notation		x_1	x_2	•••	x_n		y	
scope	$\in [0,1]$					$\in [0,1]$	$\in \{0,1\}$	$\in [0,1]$

	E_1	E_2	E_3		E_n	prediction	label	loss
day 1	0	1	0		0	0	1	1
day 2	1	1	0		0	1	1	0
notation	x_1	x_1	x_2		x_n	\widehat{y}	y	$ \widehat{y} - y $
scope	$\in [0,1]$			•••		$\in [0,1]$	$\in \{0,1\}$	$\in [0,1]$

- Algorithm maintains probability vector w:
 - prediction $\widehat{y} = \mathbf{w} \cdot \mathbf{x}$

	E_1	E_2	E_3	 E_n	prediction	label	loss
day 1	0	1	0	 0	0	1	1
day 2	1	1	0	 0	1	1	0
notation	x_1	x_1	x_2	 x_n	\widehat{y}	y	$ \widehat{y} - y $
scope	$\in [0,1]$				$\in [0,1]$	$\in \{0,1\}$	$\in [0,1]$

- Algorithm maintains probability vector w:
 - prediction $\widehat{y} = \mathbf{w} \cdot \mathbf{x}$

 \sim

• Loss linear because label $y \in \{0, 1\}$

•
$$\underbrace{|\mathbf{w} \cdot \mathbf{x} - y|}_{\text{loss of alg.}} = \sum_{i} w_{i} \underbrace{|x_{i} - y|}_{\text{loss of expert } i}$$

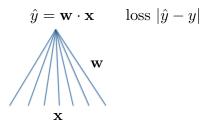
1 What is dropout?

- 2 Learning from expert advice
- 3 Hedge setting
- 4 The algorithms
- 5 Proof methods

Predicting with expert advice

$$\hat{y} = \mathbf{w} \cdot \mathbf{x}$$
 loss $|\hat{y} - y|$

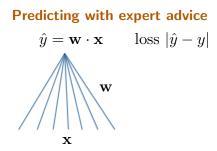
Predicting with expert advice



trial t

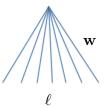
- get advice vector \mathbf{x}_t
- predict $\widehat{y}_t = \mathbf{w}_t \cdot \mathbf{x}_t$
- get label y_t
- exp. losses $|x_{t,i} y_t|$
- alg. loss $|\widehat{y}_t y_t|$
- update $\mathbf{w}_t
 ightarrow \mathbf{w}_{t+1}$

On-line learning



Hedge setting

loss $\mathbf{w} \cdot \boldsymbol{\ell}$



trial t

- get advice vector \mathbf{x}_t
- predict $\widehat{y}_t = \mathbf{w}_t \cdot \mathbf{x}_t$
- get label y_t
- exp. losses $|x_{t,i} y_t|$
- alg. loss $|\widehat{y}_t y_t|$
- update $\mathbf{w}_t
 ightarrow \mathbf{w}_{t+1}$

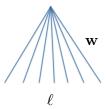
On-line learning

Predicting with expert advice $\hat{y} = \mathbf{w} \cdot \mathbf{x}$ loss $|\hat{y} - y|$ w x

trial t

- get advice vector \mathbf{x}_t
- predict $\widehat{y}_t = \mathbf{w}_t \cdot \mathbf{x}_t$
- get label y_t
- exp. losses $|x_{t,i} y_t|$
- alg. loss $|\widehat{y}_t y_t|$
- update $\mathbf{w}_t
 ightarrow \mathbf{w}_{t+1}$

loss $\mathbf{w} \cdot \boldsymbol{\ell}$



- -
- predict \mathbf{w}_t
- get loss vector ℓ_t
- exp. losses $\ell_{t,i}$
- alg. loss $\mathbf{w}_t \cdot \boldsymbol{\ell}_t$
- update $\mathbf{w}_t
 ightarrow \mathbf{w}_{t+1}$

 $\mathsf{trial}\ t$

- predict \mathbf{w}_t

or predict with random expert \widehat{i}_t

trial t

- predict \mathbf{w}_t or predict with random expert \widehat{i}_t
- get loss vector $\boldsymbol{\ell}_t$
- alg. loss $\mathbf{w}_t \cdot \boldsymbol{\ell}_t$

or alg. expected loss
$$\mathbb{E}\left[\mathbf{e}_{\hat{i}_{t}} \cdot \boldsymbol{\ell}_{t}\right] = \underbrace{\mathbb{E}\left[\mathbf{e}_{\hat{i}_{t}}\right]}_{\mathbf{w}_{t}} \cdot \boldsymbol{\ell}_{t}$$

trial t

- predict \mathbf{w}_t or predict with random expert \widehat{i}_t
- get loss vector $\boldsymbol{\ell}_t$
- alg. loss $\mathbf{w}_t \cdot \boldsymbol{\ell}_t$

or alg. expected loss
$$\mathbb{E}\left[\mathbf{e}_{\widehat{i}_{t}} \cdot \boldsymbol{\ell}_{t}\right] = \underbrace{\mathbb{E}\left[\mathbf{e}_{\widehat{i}_{t}}\right]}_{\mathbf{w}_{t}} \cdot \boldsymbol{\ell}_{t}$$

- update $\mathbf{w}_t
ightarrow \mathbf{w}_{t+1}$

trial t

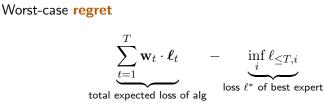
- predict \mathbf{w}_t or predict with random expert $\widehat{i_t}$
- get loss vector $\boldsymbol{\ell}_t$
- alg. loss $\mathbf{w}_t \cdot \boldsymbol{\ell}_t$ or alg. expected loss $\mathbb{E}\left[\mathbf{e}_{\hat{i}_t} \cdot \boldsymbol{\ell}_t\right] = \mathbb{E}\left[\mathbf{e}_{\hat{i}_t}\right] \cdot \boldsymbol{\ell}_t$

- update
$$\mathbf{w}_t
ightarrow \mathbf{w}_{t+1}$$

weights are implicit

Only works for linear loss

 \mathbf{w}_t



Should be logarithmic in # of experts n

1 What is dropout?

- 2 Learning from expert advice
- 3 Hedge setting
- 4 The algorithms

5 Proof methods

FL
$$\hat{i}_t = \operatorname{argmin}_i \ell_{\leq t-1,i}$$
 ties broken uniformly

FL $\hat{i}_t = \operatorname{argmin}_i \ \ell_{\leq t-1,i}$ ties broken uniformlyFPL(η) $\hat{i}_t = \operatorname{argmin}_i \ \ell_{\leq t-1,i} + \frac{1}{\eta}\xi_{t,i}$ indep. additive noise

$$\begin{array}{ll} \mathsf{FL} & \widehat{i}_t = \mathop{\mathrm{argmin}}_i \, \ell_{\leq t-1,i} & \text{ties broken uniformly} \\ \mathsf{FPL}(\eta) & \widehat{i}_t = \mathop{\mathrm{argmin}}_i \, \ell_{\leq t-1,i} + \frac{1}{\eta} \xi_{t,i} & \text{indep. } \underline{additive} \text{ noise} \\ \mathsf{Hedge}(\eta) & w_i = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z} & \mathsf{Weighted Majority algorithm} \\ \text{for pred. with Expert Advice} \\ \mathsf{Soft min} \end{array}$$

15 / 32

Dropout

Dropout

Dropout

FL on
$$\widehat{i}_t = \underset{i}{\operatorname{argmin}} \ \widehat{\ell}_{\leq t-1,i}$$

Optimal worst case regret: $\sqrt{L^* \ln n} + \ln n$

Optimal worst case regret: $\sqrt{L^* \ln n} + \ln n$

FL is bad

■ FPL(η) and Hedge(η) achieve optimal regret with tuning
 - fancy tunings: AdaHedge and Flipflop

Optimal worst case regret: $\sqrt{L^* \ln n} + \ln n$

- FL is bad
- FPL(η) and Hedge(η) achieve optimal regret with tuning
 fancy tunings: AdaHedge and Flipflop
- FL on dropout requires no tuning

Optimal worst case regret: $\sqrt{L^* \ln n} + \ln n$

FL is bad

- FPL(η) and Hedge(η) achieve optimal regret with tuning
 fancy tunings: AdaHedge and Flipflop
- FL on dropout requires no tuning
 - dropout better noise for achieving optimal worst case regret additive noise needs tuning - multiplicative noise does not
 - in iid case when gap between 1st and 2nd: $\log n$ regret

Optimal worst case regret: $\sqrt{L^* \ln n} + \ln n$

FL is bad

FPL(η) and Hedge(η) achieve optimal regret with tuning
 fancy tunings: AdaHedge and Flipflop

- FL on dropout requires no tuning
 - dropout better noise for achieving optimal worst case regret additive noise needs tuning - multiplicative noise does not
 - in iid case when gap between 1st and 2nd: $\log n$ regret

In the meantime

- new fancy algorithms by

Haipeng Luo, Rob Schapire & Tim van Erven, Wouter Koolen

Optimal worst case regret: $\sqrt{L^* \ln n} + \ln n$

FL is bad

- FPL(η) and Hedge(η) achieve optimal regret with tuning
 fancy tunings: AdaHedge and Flipflop
- FL on dropout requires no tuning
 - dropout better noise for achieving optimal worst case regret additive noise needs tuning - multiplicative noise does not
 - in iid case when gap between 1st and 2nd: $\log n$ regret
- In the meantime
 - new fancy algorithms by
 - Haipeng Luo, Rob Schapire & Tim van Erven, Wouter Koolen
 - also no tuning, many other advantages

Loss vectors $\ell_t \longrightarrow$ loss matrices \mathbf{L}_t Prob. vectors $\mathbf{w}_t \longrightarrow$ density matrices \mathbf{W}_t Hedge $w_{t,i} = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z} \longrightarrow$ Matrix Hedge $\mathbf{W}_t = \frac{\exp(-\eta \mathbf{L}_{\leq t-1})}{Z'}$

• Matrix Hedge $O(n^3)$ per update

- Loss vectors $\ell_t \longrightarrow$ loss matrices \mathbf{L}_t Prob. vectors $\mathbf{w}_t \longrightarrow$ density matrices \mathbf{W}_t Hedge $w_{t,i} = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z} \longrightarrow$ Matrix Hedge $\mathbf{W}_t = \frac{\exp(-\eta \mathbf{L}_{\leq t-1})}{Z'}$
- Matrix Hedge $O(n^3)$ per update
- FL minimum eigenvector calculation of $\mathbf{L}_{\leq t-1}$: $O(n^2)$

- Loss vectors $\ell_t \longrightarrow$ loss matrices \mathbf{L}_t Prob. vectors $\mathbf{w}_t \longrightarrow$ density matrices \mathbf{W}_t Hedge $w_{t,i} = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z} \longrightarrow$ Matrix Hedge $\mathbf{W}_t = \frac{\exp(-\eta \mathbf{L}_{\leq t-1})}{Z'}$
- Matrix Hedge $O(n^3)$ per update
- FL minimum eigenvector calculation of $\mathbf{L}_{\leq t-1}$: $O(n^2)$
- Is there $O(n^2)$ perturbation with optimal regret bound?

Loss vectors $\ell_t \longrightarrow$ loss matrices \mathbf{L}_t Prob. vectors $\mathbf{w}_t \longrightarrow$ density matrices \mathbf{W}_t Hedge $w_{t,i} = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z} \longrightarrow$ Matrix Hedge $\mathbf{W}_t = \frac{\exp(-\eta \mathbf{L}_{\leq t-1})}{Z'}$

• Matrix Hedge $O(n^3)$ per update

- FL minimum eigenvector calculation of $\mathbf{L}_{\leq t-1}$: $O(n^2)$
- Is there $O(n^2)$ perturbation with optimal regret bound?

• Follow the skipping leader:

Drop entire loss \mathbf{L}_t with probability $\frac{1}{2}$

= Online Bagging

Loss vectors $\ell_t \longrightarrow$ loss matrices \mathbf{L}_t Prob. vectors $\mathbf{w}_t \longrightarrow$ density matrices \mathbf{W}_t Hedge $w_{t,i} = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z} \longrightarrow$ Matrix Hedge $\mathbf{W}_t = \frac{\exp(-\eta \mathbf{L}_{\leq t-1})}{Z'}$

• Matrix Hedge $O(n^3)$ per update

- FL minimum eigenvector calculation of $\mathbf{L}_{\leq t-1}$: $O(n^2)$
- Is there $O(n^2)$ perturbation with optimal regret bound?

• Follow the skipping leader:

Drop entire loss \mathbf{L}_t with probability $\frac{1}{2}$

- = Online Bagging
- Proof techniques break down
 - settled for vector case and independent multiplicative noise
 - $= \mathsf{dropout}$

Loss vectors $\ell_t \longrightarrow$ loss matrices \mathbf{L}_t Prob. vectors $\mathbf{w}_t \longrightarrow$ density matrices \mathbf{W}_t Hedge $w_{t,i} = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z} \longrightarrow$ Matrix Hedge $\mathbf{W}_t = \frac{\exp(-\eta \mathbf{L}_{\leq t-1})}{Z'}$

• Matrix Hedge $O(n^3)$ per update

- FL minimum eigenvector calculation of $\mathbf{L}_{\leq t-1}$: $O(n^2)$
- Is there $O(n^2)$ perturbation with optimal regret bound?

• Follow the skipping leader:

Drop entire loss \mathbf{L}_t with probability $\frac{1}{2}$

- = Online Bagging
- Proof techniques break down
 - settled for vector case and independent multiplicative noise
 - = dropout

Follow the skipping leader has linear regret [Lugosi,Neu2014]

$\mathsf{Hedge}(\eta)$ relative entropy

$Hedge(\eta)$ $FPL(\eta)$

relative entropy additive $\frac{1}{\eta}$ log exponential noise = Hedge(η)

 $\begin{array}{ll} \mbox{Hedge}(\eta) & \mbox{relative entropy} \\ \mbox{FPL}(\eta) & \mbox{additive } \frac{1}{\eta} \mbox{ log exponential noise} = \mbox{Hedge}(\eta) \end{array}$

FL on dropout tricky

Feed forward NN Logistic regression Linear loss case [Wagner, Wang, Liang 2013] [Helmbold, Long 2014] [ALST 2014]

1 What is dropout?

- 2 Learning from expert advice
- 3 Hedge setting
- 4 The algorithms

5 Proof methods

Any deterministic alg. (such as FL) has huge regret

- \blacksquare For T trials: give algorithm's expert a unit of loss
- Loss of alg.: T loss of best: $\leq \frac{T}{n}$

Any deterministic alg. (such as FL) has huge regret

- For T trials: give algorithm's expert a unit of loss
- Loss of alg.: T loss of best: $\leq \frac{T}{n}$ regret: $\geq \underbrace{T}_{nL^*} - \underbrace{\frac{T}{n}}_{T^*} = (n-1)L^*$

Any deterministic alg. (such as FL) has huge regret

 \blacksquare For T trials: give algorithm's expert a unit of loss

• Loss of alg.:
$$T$$
 loss of best: $\leq \frac{T}{n}$
regret: $\geq \underbrace{T}_{nL^*} - \underbrace{\frac{T}{n}}_{L^*} = (n-1)L^*$

Recall optimum regret: $\sqrt{L^* \ln n} + \ln n$

FL with random ties

Any deterministic alg. (such as FL) has huge regret

- For T trials: give algorithm's expert a unit of loss
- Loss of alg.: T loss of best: $\leq \frac{T}{n}$ regret: $\geq \underbrace{T}_{nL^*} - \underbrace{\frac{T}{n}}_{T^*} = (n-1)L^*$

Recall optimum regret: $\sqrt{L^* \ln n} + \ln n$

FL with random ties

- Give every expert one unit of loss - iterate L* + 1 times
- Loss per sweep $\frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} + 1 \approx \ln n$
- Loss of alg.: $(L^* + 1) \ln n$ loss of best: L^* regret: $L^* \ln n$

Our analysis of dropout

Unit rule

Adversary forces more regret by splitting loss vectors into units

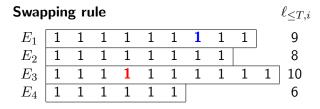
$$\begin{pmatrix} \mathbf{1} \\ 0 \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathbf{1} \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \mathbf{1} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \mathbf{1} \\ 0 \end{pmatrix}$$

Our analysis of dropout

Unit rule

Adversary forces more regret by splitting loss vectors into units

$$\begin{pmatrix} \mathbf{1} \\ 0 \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathbf{1} \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \mathbf{1} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \mathbf{1} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \mathbf{1} \end{pmatrix}$$

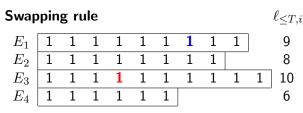


Our analysis of dropout

Unit rule

Adversary forces more regret by splitting loss vectors into units

$$\begin{pmatrix} \mathbf{1} \\ 0 \\ \mathbf{1} \\ 1 \end{pmatrix} \longrightarrow \begin{pmatrix} \mathbf{1} \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \mathbf{1} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \mathbf{1} \\ 0 \end{pmatrix}$$



- 1's occur in some order
- Worst case: 1 before 1
- Otherwise adversary benefits from swapping

Worst-case pattern

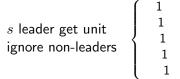
1 1 1 1 1 1 1 1 1 1

Assume we have \boldsymbol{s} leaders

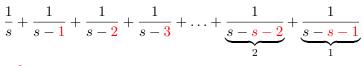
Assume we have s leaders

 $s \text{ leader get unit} \begin{cases} 1\\1\\1\\1\\1\\1\\1\\1 \end{cases}$

Assume we have s leaders

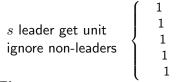


FL

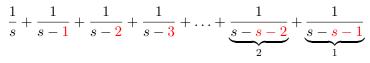


$\approx \ln s$

Assume we have s leaders



FL

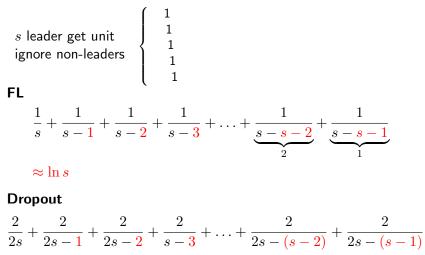


$\approx \ln s$

Dropout

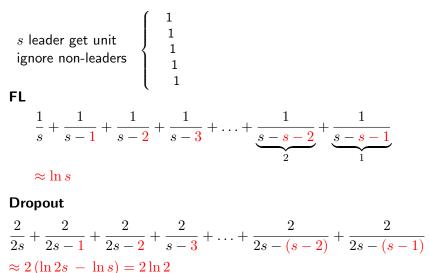
$$\frac{1}{s} + \frac{1}{s - 1/2} + \frac{1}{s - 2/2} + \frac{1}{s - 3/2} + \ldots + \frac{1}{s - (s - 2)/2} + \frac{1}{s - (s - 1)/2}$$

Assume we have s leaders



 $\approx 2\left(\ln 2s - \ln s\right) = 2\ln 2$

Assume we have s leaders



$L^* = 0$ - one expert incurs no loss

FL

$$\frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} \not \to I \approx (\ln n) - 1$$

Optimal

FL

One sweep

$$\frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} \not \to 1 \approx (\ln n) - 1$$

Optimal

Dropout

- # of leaders reduced by half in each sweep

- Focus on first L sweeps
- \blacksquare Only occurs constant regret if number of leaders >1

- Focus on first L sweeps
- Only occurs constant regret if number of leaders > 1

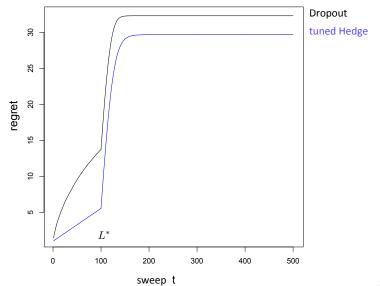
Prob. that number of leaders > 1 is at most $\sqrt{\frac{\ln n}{q+1}}$ for sweep q

- Focus on first L sweeps
- Only occurs constant regret if number of leaders > 1

 \blacksquare Prob. that number of leaders >1 is at most $\sqrt{\frac{\ln n}{q+1}}$ for sweep q

For Hedge(η) and FPL(η) cost per sweep constant and dependent on η

Dropout versus Hedge



28 / 32

- Combinatorial experts
- Matrix case
- Where else can dropout perturbations be used?
- Dropout for convex losses
- Dropout for neural nets

- Combinatorial experts
- Matrix case
- Where else can dropout perturbations be used?
- Dropout for convex losses
- Dropout for neural nets
- Privacy

[Lugosi, Neu 2014] dense counter example

Iterate this pattern n times:

$$\sum_{i=1}^{n} \left(\frac{n-i}{n-i+1} + \frac{1}{2} \right)$$
$$\approx n - \ln n + \frac{n}{2}$$

 $L^* = n$: Follow the Scipping Leader has linear regret

How does dropout ovoid this example?

How does dropout ovoid this example?

It leaves the adversary clueless as to who the leader is i.e. privacy against adversary

sparse counter example

$$\begin{array}{c|c|c} 0 & 1^* \\ \frac{1}{n-1} & 0 \\ \frac{1}{n-1} & 1 \\ \hline \end{array}$$

Iterate this pattern n times:

$$\sum_{i=1}^{n} \left(\frac{n-i}{(n-i+1)^2} + \frac{1}{2} \right)$$
$$= \sum_{i=1}^{n} \left(\frac{1}{n-i+1} - \frac{1}{(n-i+1)^2} + \frac{1}{2} \right)$$
$$\approx \ln n - O(1) + \frac{n}{2}$$

 $L^* = \ln n$: Follow the Scipping Leader has linear regret