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Michat Derezinski

A simple problem

Learn single feature

of a random matrix X n features (columns)

h

N instances

random
(rows)

+1

target

Train on subset of rows
labels

- labeled with some target column
- loss averaged over all n examples

Sparse & linear:
- unit vector e; picks out ith feature

Hard for any kernelizable algorithm

Characterization of algorithms
Examples (x;, y¢)

Prediction is y = o(w - x) and
w = [linear combination of training instances]
(i.e. kernelizable)

Such as:

Gradient Descent with ||w||3 regularization on
e Square loss (linear regression),
o [ogistic loss (logistic regression),

e Hinge loss (SVM).

Hardness

—GDI+ 2—norm
i GD + 1—=norm
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The problem is easy - VC dimension is log n
Good algorithms:
1. GD with 1-norm regularization,

2. Exponentiated Gradient algorithm

We show that any kernelizable algorithm
requires (2(n) instances

Kernelization does not help
- hard for any embedding
- when averaged over targets as well

Thelimits of squaread

Euclideandistance regularization
Manfred K. Warmuth

Prediction matrix
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7  R™"*9 is the embedded instances
7. € R"*4 is the training subset of size k
C ¢ RF*7 ig linear combination coefficients

T
Prediction matrix P = Z 7 C has rank at
most k.

Our approach

We analyze the number of sign errors in the lin-
ear prediction. Each one incurs loss at least C.

Counting arguments show that a low-rank ma-
trix P will have a large number of sign-errors.

A linear lower bound is obtained.

Weights plotted

Weights of the GD algorithm

3
—Relevant Feature
2 — Other features
2 L.
1.5}
Vs
e
K. -
(@) B
2
0.5f .
o
-0.5f
-1 | I | |
0 20 40 60 80 100
Weilghts of the GD + 1-norm algorithm
5 T T T T

—Relevant Feature
— Other features

welghts

0 20 40 60 80 100

satonz.  UNIVERSITY OF CALIFORNIA

.,...-A —-.<--. Q)
B )
i\ ?;f% é;—; :nv..‘ 2 ::
A\ s S f
N e
ANy
1868 N

Loss function

Loss averaged over all instances and all targets:
1
n2 Z L(pit, Tit),
it

Previous work. If L is the square loss, use SVD
spectrum sy, ..., s, of X and the rank k of P:

1 1 —
EHP—XH%’ZE Z 3?-
1=k-4+1

Our contribution. More general family ot C-
regular loss functions:

There is a constant C' > 0 such that given
y € {1,—1} and p € R, if py < 0, then
L(p,y) = C.

Main Theorem

Let L be a C-regular loss function. A random
n X n data matrix X almost certainly has the
property that for any kernelized algorithm,
the average loss L after observing k instances
is at least 4C (55 — £).

Proof sketch

Data matrix X is (k, r)-learnable if there exists
a prediction matrix P € R"*" of rank <k with
at most r sign errors

P sign(P) X
2 -3 1 + — + + + +
5 01 -2 + + — — + -
3 -2 8 — — —|— 4+ +
r=4
loss > 4¢
Define: Number of: "
signs,, (k) {sign(P) | rank(P) <k}
changes,, (r) = patterns from <r sign-changes
easy, (k,r) | (k,r)-learnable data matrices X
all, = 2" all possible data matrices X

casy,, (k,r) < signs, (k) - changes,, (1)

Signsn(k) < 2(3—|—log%)(4kn—|—n)
z TL2 H( - 2
h — < 9H(3z)n
changes,, () ; ( z' > <
S
easy,, (k,4n” (1/20 — k/n)) < 2" = all,
k

loss > 4C (210 > for almost all X

n

Conjecture: bound holds for deep neural nets

Remains hard for any deep neural net
trained with Gradient Descent + 2-norm reg-
ularization

1-norm regularization works fine

Adding hidden layers does not help
Changing transfer function does not help
Dropout does not help

Only experimental evidence



