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A simple problem
Learn single feature
of a random matrix X

n instances
(rows)

n features (columns)

random 
±1

target
labelsTrain on subset of rows

- labeled with some target column
- loss averaged over all n examples

Sparse & linear:
- unit vector ei picks out ith feature

Hard for any kernelizable algorithm

Characterization of algorithms
Examples (xt, yt)

Prediction is ŷ = σ(w ·x) and
w = [linear combination of training instances]
(i.e. kernelizable)

Such as:

Gradient Descent with ‖w‖22 regularization on

• Square loss (linear regression),

• Logistic loss (logistic regression),

• Hinge loss (SVM).

Hardness
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GD + 2−norm
GD + 1−norm
EG

The problem is easy - VC dimension is log n

Good algorithms:

1. GD with 1-norm regularization,

2. Exponentiated Gradient algorithm

We show that any kernelizable algorithm
requires Ω(n) instances

Kernelization does not help
- hard for any embedding
- when averaged over targets as well

Prediction matrix

pi,t = zi ·wt = zi Ẑ
T
ct

zi = φ(xi)

ŷi,t = σ(pi,t)yi,t = xi,t

Z ∈ Rn×q is the embedded instances
Ẑ ∈ Rk×q is the training subset of size k
C ∈ Rk×n is linear combination coefficients

Prediction matrix P = Z Ẑ
T
C has rank at

most k.

Loss function
Loss averaged over all instances and all targets:

1

n2

∑
i,t

L(pi,t, xi,t),

Previous work. If L is the square loss, use SVD
spectrum s1, ..., sn of X and the rank k of P:

1

n2
‖P−X ‖2F ≥

1

n2

n∑
i=k+1

s2i .

Our contribution. More general family of C-
regular loss functions:

There is a constant C > 0 such that given
y ∈ {1,−1} and p ∈ R, if p y < 0, then
L(p, y) ≥ C.

Our approach

We analyze the number of sign errors in the lin-
ear prediction. Each one incurs loss at least C.

Counting arguments show that a low-rank ma-
trix P will have a large number of sign-errors.

A linear lower bound is obtained.

Main Theorem
Let L be aC-regular loss function. A random
n× n data matrix X almost certainly has the
property that for any kernelized algorithm,
the average lossL after observing k instances
is at least 4C ( 1

20 −
k
n ).

Weights plotted

Conjecture: bound holds for deep neural nets

Remains hard for any deep neural net
trained with Gradient Descent + 2-norm reg-
ularization

1-norm regularization works fine

Adding hidden layers does not help
Changing transfer function does not help
Dropout does not help

Only experimental evidence

Proof sketch
Data matrix X is (k, r)-learnable if there exists
a prediction matrix P ∈ Rn×n of rank ≤k with
at most r sign errors

P sign(P) X

2 −3 1 + − + + + +
5 1 −2 + + − − + −
−3 −2 −8 − − − − + +

r = 4
loss ≥ 4C

n2

Define: Number of:
signsn(k) {sign(P) | rank(P) ≤ k}
changesn(r) patterns from ≤r sign-changes
easyn(k, r) (k, r)-learnable data matrices X
alln = 2n

2

all possible data matrices X

easyn(k, r) ≤ signsn(k) · changesn(r)

signsn(k) ≤ 2(3+log k
n )(4kn+n)

changesn(r) =
r∑

i=0

(
n2

i

)
≤ 2H( r

n2 )n2

⇓⇓⇓

easyn

(
k, 4n2 (1/20− k/n)

)
� 2n

2

= alln

loss ≥ 4C

(
1

20
− k

n

)
for almost all X


