Vol. 28, No. 3, June 1984

Reprinted from JOURNAL OF COMPUTER AND SYSTEM SCIENCES
Printed in Belgium

All Rights Reserved by Academic Press, New York and London

On the Complexity of Iterated Shuffle*

MANFRED K. WARMUTH AND DAVID HAUSSLER ¥

Department of Computer Science,
University of Colorado, Boulder, Colorado 80309

Received April 7, 1981; revised October 27, 1982

It is demonstrated that the following problems are NP complete:

(1) Given words w and w,, W,,..., w,, is w in the shuffle of w,, w;,..., w,?

(2) Given words w and v, is w in the iterated shuffle of v?
From these results we show that the languages {$wew®:w € {a,b}*}®, U, cian W),
{ab"cde"f:n > 0}®, and {a"*'b"c"f": n > 0}® are NP complete, where ® denotes the iterated
shuffle. By representing these languages in various ways using the operations shuffle, iterated
shuffle, union, concatenation, intersection, intersection with a regular set, non-erasing
homomorphism and inverse homomorphism, results on the complexity of language classes
generated using various subsets of these operations are obtained. Finally, it is shown that the
iterated shuffle of a regular set can be recognized in deterministic polynomial time.

I. INTRODUCTION

The operations of shuffle and iterated shuffle have been used by numerous
researchers to describe sequential computation histories of concurrent programs
[1,8,10-12]. Recently, there has been some investigation into the language
generating power of the operations of shuffle and iterated shuffle, when used in
combination with the more conventional operations of union, concatenation, Kleene
star, intersection, intersection with a regular set, non-erasing homomorphism and
inverse homomorphism [4-6,9, 13]. Jantzen [5, 6] has obtained numerous represen-
tations of the recursively enumerable languages and of the homomorphic images of
the computation sequence sets of petri nets as the closure of various elementary
language classes under certain combinations of the above operations, but allowing
arbitrary homomorphisms or other forms of erasing via cancellation. On the other

* This research was supported in part by NSF Grant MCS 79-03838, the University of Colorado
doctoral fellowship program, the Fulbright Commission of West Germany, and grants from Univac
Corporation, and Storage Technology Corporation. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the authors and do not necessarily reflect the views

of the National Science Foundation.
T Present address: Department of Computer and Information Sciences, University of California, Santa

Cruz, California 95064.
1 Present address: Department of Mathematics and Computer Science, University of Denver, Denver,

Colorado 80208.
345
0022-0000/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

WL i

346 WARMUTH AND HAUSSLER

hand, it is clear that the class NP is closed under the fundamental set of operations
listed above, in which we have omitted the non-erasing homomorphism and all forms
of cancellation. Thus the language classes generated from the finite languages using
these length preserving operations will be subsets of NP. Jantzen’s results using
nonerasing homomorphisms leave it unclear at which point, if any, the languages
generated using these operations become intractable.

In this paper we will be concerned with distinguishing those language classes
generated by various combinations of the above operations which are recognized in
deterministic polynomial time from those that contain NP complete languages.
Intuitively, the operations of shuffle and iterated shuffle are natural condidates for
producing the kind of “hiding of information” which generates NP complete
languages. This intuition is borne out in what follows.

In Section II we give a small set of definitions. Then in Section III we present two
basic NP complete problems. In the first, we are given a word w and words
Wis Wyse..o w, and we ask whether w is in the shuffle of the words wy, w,,..., w,. This
problem remains NP complete even if all words Wi, Wy,..., W, are identical, which
yields a second NP complete problem: for two words w and v, the problem of
whether or not w is in the iterated shuffle of v is NP complete.

Using the above NP complete problems we show in Section IV that

{Swew: w € {a, b} *|®, (Swgw®: w € {a, b}*)®, (J ($w)®, {ab"cde"f: n > 0}®

wela,b)*

and {a""'b"c"d":n>0}® are NP complete, where ® denotes the iterated shuffle.
Because of their simple structure, the last two languages can be expressed using
various subsets of our fundamental set of operations. Hence we are able to use these
languages to explore the complexity of the language classes generated by closing the
finite sets under certain subsets of these basic operations. For instance,
{ab"cde"f: n > 0}® = ({acdf, be}® N ab*cde*f)8, hence the closure of the finite
languages under iterated shuffle and intersection with a regular set contains NP
complete languages. A summary of the complexity results of this type is given in
Table 1.

We conclude Section IV by exploring the effect of alphabet size on the complexity
of the problems and languages we have considered. Basically, we show that two
letters are enough to produce the degree of complexity achieved using larger
alphabets.

We note that Jantzen [6] has shown that {ab"cde"f:n > 0}® is not a member of
the subset of deterministic polynomial time languages accepted by real time one-way
multi-counter machines. We show that this language is NP complete, thus we would
expect that in fact {ab"cde"f: n > 0}® is not in .2 at all.

This language also demonstrates that the iterated shuffle of a linear language can
be NP complete. In Section V we give a deterministic polynomial time algorithm for
the iterated shuffle of an arbitrary regular language. Using this result we show that
the class Shuf, defined by Jantzen [5, 6] as the closure of the finite languages under
the operations of union, shuffle, and iterated shuffle, is contained in .2. We also show

ITERATED SHUFFLE 347

that the closure of the finite languages under any pair of operations consisting of
iterated shuffle and one operation in the set {intersection, non-erasing
homomorphism, inverse homomorphism, union, and Kleene star} is contained in 2.
It remains open whether or not this is the case for the operations of iterated shuffle
and concatenation.! We suspect that in fact the class SE, obtained by closing the
class of finite sets under the operations union, concatenation, Kleene star, shuffle, and
iterated shuffle, is contained in .#. This class has been examined in several papers
including [6, 8, 12], usually being presented as the class of languages obtained by
extending the regular expressions to include the operations of shuffle and iterated
shuffle. The complexity of these “extended regular languages” remains a primary
open problem in this area.

II. DEFINITIONS

Several different symbols for the operations shuffle and iterated shuffle have been
used in the literature (see, e.g., |5, 10, 12]). We use the symbol () for shuffle and ®
for iterated shuffle, following Shaw [12], because they correspond nicely to the
operations concatenation - and Kleene star *. Formally, we have the following
definitions: Given a finite alphabet X2 and words v, w € X *, we define

VO w= {0, W, 0,W, -+ VWiV, W, € Z* for

1i<kv=v,---v,and w=w, -+ W

K}

e o]
w®= {4}, W@= WO w, and w®= () w@

=0

i

Given words Wy, Wy,..., W, € Z*, we define []f_, w,=w,w, - w, and @k, w=
w, O w,® -+ O w,. We will extend the above operations from strings to languages
in the usual manner. :

All the polynomial reductions of our paper are reductions from the following NP
complete problem:

3-Partition

Given: a sequence of natural numbers S=(n;:1<i<3m) such that B=
(3™, n;)/m € N and for each i, 1 <i<3m, B/4 <n;<B/2.

Question: Can S be partitioned into m disjoint subsequences S s S, such that
for each k, 1 <k <m, S, has exactly three elements and }_,cs 7= B. This was the
first problem proven to be NP complete in the strong sense [2, 3]. Thus it remains NP
complete when the n; are given in unary notation, which will be essential for our
paper. The number B above will be referred to as the bound for S and the partition of
S described above will be called a 3-partition.

! Jantzen [7] recently proved this class to be in 7.

(LR R

348 WARMUTH AND HAUSSLER
ITII. Two NP COMPLETE PROBLEMS

In this section we will demonstrate how the shuffle operation can be used to
perform the partitioning and addition required to determine if a given instance of 3-
partition has a solution. Our goal is to derive two fundamental NP complete
problems involving the shuffle operation from 3-partition. First, we present a few
properties of the shuffle operation which will be used extensively in this paper. -

LEMMA 3.1. Given a finite alphabet X containing the symbols a, b, and c, the
words v, X, w, W ; W,,..., w, € £*, and natural numbers n, Ny, Ry,..., 1y, for some l > 0,
where x does not begin with a, b, or ¢ and w; does not begin with c, for i: 1 <i<|,
then

(i) a*b"c*wex® @'_, ab"cw, < there exist distinct indices J1seews Jy SUCh
thatn=3}_, n; and w € x O (@, w;) © ®§:1,16[j| j ab"iew;.
(i) a"c"w€x(© @;_, a"c"w, <> there exist distinct indicies Jiseees Ji Such
thatn=3; \n; andwe€ x © (@%_, w;) © @:{zueu, o atictiw,.
(iii) a"*'c"wex O @!_, a"*'c"w, <> there exists an index k such that
me=nandw€x© @i_, ;. a"*'c"w,.

Proof. (i) The words w,, w,,..., w, do not start with the symbol c. Therefore, to
account for the @’s and ¢’s, the prefix a“b"c* of a*b"c*w must be formed by shuffling
exactly k prefixes of the ab™cw;’s of the form ab”ic and the result follows.

(ii) Since the w;’s do not start with ¢, the prefix a"c" of a"c"w has to be created by
shuffling prefixes of the a"ic"iw;’s of the form a”c?, p>q>0. Since n a’s are needed
followed by an equal amount of ¢’s only prefixes of the form a”c” can be used and
the result follows.

(iii) To get the prefix a"*'c" of a”*'c"w, prefixes of the a"i*'e"iw?s of the form

a’c?, p>q >0, have to be shuffled. Since there is only one more g than ¢ in a"tlen
at most one prefix can be used. [

LEMMA 3.2. Let S =(n;: 1 <i<3m) be an instance of 3-partition with bound B.
The following are equivalent:

(i) S has a 3-partition,
(i) (a*b®c*)y™ e @:™, abic,
(iii) (a®b®)" € @™, a™b™.

Proof. 1t is easily seen that (i)= (ii) and (i) = (iii). We simply merge using the
shuffle operation each of the m triplets guaranteed by the partition to obtain the
desired word. To see that (ii)= (i) we argue by induction on m. The case m = 1 is
trivial. If w = a’b®c*(a’b%c*)" € @3}"**" ab"ic for some S = (ni: 1<i<3(m+ 1)),
an instance of 3-partition with bound B, then the initial @*h%¢® of w must be the
result of shuffling exactly three words from (ab™c: 1 <i< 3(m + 1)). This follows
directly from Lemma 3.1(i). Thus the remaining suffix (a’b%c*)™ of w is formed by

IIRERTI I

ITERATED SHUFFLE 349

shuffling the remaining 3m ab™c’s. By hypothesis then, these remaining n;’s have a 3-
partition. Hence the entire sequence S has a 3-partition and the inductive step is
complete. The proof that (iii)=> (i) is similar. Assuming that a’b®(a®b®)" €
@3+ g"b" for S, B as above, again the initial a®h® must be obtained from
shuffling some words from 7T =(a"b":1<i<3(m+1)). Here we use
Lemma 3.1(ii). The fact that in any instance of 3-partition we requife that
B/4 < n; < B/2 for all i implies that we must shuffle exactly three words from 7 to
obtain the initial a®b®. Our result then follows by induction as above. 1

As an immediate consequence of Lemma 3.2, we have

THEOREM 3.1. Given a finite alphabet X = {a, b, ¢} and words w, w,..., w, € L'*,
the problem of whether or not w € @¥_, w; is NP complete.

Proof. We use Lemma 3.2 to encode an instance of 3-partition into the above
problem. Since 3-partition is strongly NP complete, we can assume the numbers are
given in unary notation, thus the transformation will be polynomial. [|

The above problem remains NP complete when we restrict ourselves to the case in
which all of the w/s are identical. To demonstrate this, we will use the set
@™ (1™, a b™c) in place of the simpler set @;”, ab"ic used in Lemma 3.1. The
essence of our argument is contained in

" LEmMMA 3.3. Givena sequence of words T = {ab"c: 1 i< 3m); let

i 3m
U= knl ab"™c and v;= ,H ab™c, for 1<i<3m,
_ =i

Im

w=1uy,=0v,=|] ab"c,
i=1

Im—1 3m

p=]]lw and g=[]v,.
i=1 i

Then for any B, p(a’b®c®)"q € w™ iff (a*b®c*)" € @7, ab™c.

Proof. The “if” part of this proof is very simple. We form the p and g of
p(a’b®c®)™q by collecting the proper prefixes and suffixes of each of the copies of w,
in each case leaving one string of the form ab"ic for a different i to contribute to
(a*b®c*)™. The sequence of middle words obtained in this way will be T, which by
hypothesis will shuffle to form the desired word (a*b®c’)™. To see that the “only if”
part holds, we notice that every subword of p(a’b’c’)"q the form a*b*c* for
k € {1,3} must have come from exactly k subwords of the form ab*c, each from a

different copy of w. This follows from Lemma 3.1(i). Since p(a’b®c’)"q € w@, a
total of 3m copies of each ab™c are involved. p and g consume exactly 3m — 1 copies
of each ab"ic for 1< i< 3m, leaving exactly one copy of each ab"ic to be shuffled
together to form the middle word (a’*b®c®)™. Thus (a’b®c*)™ € @;", ab™c. 1

i i

350 WARMUTH AND HAUSSLER
Using this lemma, we obtain a second NP complete problem.

THEOREM 3.2. Given a finite alphabet ¥ = {a, b,c} and words w,v € Z*, the
problem of whether or not v € w® is NP complete.

Proof. Using Lemmas 3.2 and 3.3, given an instance of 3-partition S = {n,:

1 < i< 3m} with bound B we can find words w and v such that v € w@ iff S has a
3-partition. Thus we can reduce 3-partition to the above problem. I

IV. NP COMPLETE LANGUAGES AND THEIR REPRESENTATIONS

Each of the NP complete problems from Section III has the form: given a word
and a simple language, is the word contained in the language? In this section we will
exhibit fixed languages that contain within them encodings of one of the problems
from the previous section. Thus we will convert the problem of membership in which
both the word and the language are variable, into the problem of membership in a
fixed language. Our basic technique is demonstrated in our first lemma.

LEMMA 4.1. Given words v and w over some Jinite alphabet X not including the
symbols $ and ¢, the following are equivalent:

i) wev®
(i) (Bv¢)'w € {$x¢x: x € Z*)®and |w| =k |v],
(iii) (Bv¢)*w® € {$x¢x®:x € Z*|® and |w|=k|v| (where w® indicates the
reverse of the word w),
(iv) v*w € U,e:(3x)®and |w|=k |v|.

Proof. Obviously (i) = (ii), we simply shuffle k copies of $v¢v by collecting the
prefixes $v¢ in the front and shuffling the suffixes v to form w. We show that
(ii)= (i) as follows. Since v and w do not contain the letters $ and ¢, (Sve)we
{$x¢x: x € Z*}® implies that ($v¢)*w € @%_, $x,¢x, for some Xy X € Z*. Thus
(Bv¢)“ € @i, $x,¢x/, where x/ is a prefix of x, for i 1 <i < k. Let x;=x!x}' for all
i and assume that x{ is not null for some i. Then 3"%_, |x,| + |x!| > Yk |x!| which
implies that k [v| > |w|. Therefore each x/ is null. It follows that x;=v for all i:
1 i<k, and thus w € v®

The proof that (i) < (iii) is very similar to (i) <> (ii). (i) = (iv) is obvious, since if
w € v®, $v8*w € ($v)¥*). To show that (iv)= (i) we note that if v*w € ($x)® for
some x, then the prefix $v of v*w must be a prefix of $x. Further, 0*w has

k +18’s, hence v*w € ($x)@. Thus since |w| = k |v|, v must equal x, and w must
arise from shuffling the remaining k copies of v. |

THEOREM 4.1. The languages {Sw¢w: w € {a, b, ¢} *}®, {Swew®: w € {a, b, c}*}9,
and U ve(a.5.0)+($x)® are NP complete.

[

ITERATED SHUFFLE 351

Proof. This follows from Theorem 3.2 and Lemma 4.1. |

In the languages of Theorem4.l, w is a word of a three-letter alphabet.
Corollary 4.1 (proven later) shows that two letters suffice.

In Theorem 4.2 we will employ our techniques for converting a variable language
membership problem into a fixed language membership problem to the problems
considered in Lemma 3.2.

THEOREM 4.2. The languages {ab"cde"f:n>0}® and {a"*'b"c"d":n>0}® are
NP complete.

Proof. We claim that given natural numbers B, n;,..., 1, the following conditions
hold:

1) @effHme im de"if <
w, = [1", ab™c)(d’e’f*)™ € {ab"cde"f: n > 0}®.
(2) ()" € @™, crd"i <
w, = ([T3, a"*'b")(cEd®)™ € {a"*'b"c"d": n > 0}°.

The forward implications are obvious, we need only select the sets L,=
{ab"cde™f: 1< i< 3m}and L, = {a"*'b"c"d": 1 <i< 3m} from {ab"cde"f: n >0}
and {a"*'b"c"d":n>0} and shuffle them together as proscribed in w,
and w,, respectively. To prove the reverse implication for (1), assume that
w, € @'_, ab%icde*if for some k,,..., k, € N. Since w, contains 3m a’s, [= 3m. Using
Lemma 3.1(i) iteratively, we can show that (k,,..., ;) is a permutation of (n,,..., n3,,)
and (d’¢®f*)" € @;™, de*if, which establishes the result. The reverse implication for
(2) is proved in a similar manner using Lemma 3.1(iii).

Now using this claim along with Lemma 3.2, we see that we can reduce an
instance of 3-partition to a question of membership in the language
{ab"cde"f:n>0)® or {a"*'b"c"d":n>0}®. Hence these languages are NP
complete.

The language {a"*'b"c"d": n > 0}® is an interesting borderline case. The extra “a”
provides the minimal amount of asymmetry needed to determine the number of words
from {a"*'b"c"d": n >0} shuffled in forming a word from {a"*'b"c"d": n > 0}®. We
could easily replace the extra “q” with a special marker $, i.e., the language
{$a"b"c"d":n>0}® is also NP complete. On the other hand, the corresponding
symmetric language {a"b"c"d": n > 0}® reduces to (abcd)®, which we will show can
be recognized in deterministic polynomial time (Theorem 5.1).

Owing to their simple structure, the languages from Theorem 4.2 are of central
importance in obtaining results on the power of the operation of iterated shuffle, when
used in conjunction with other basic language operations. We will consider the
complexity of various classes of languages generated by taking the closure of the
finite languages under subsets of the operations shuffle, iterated shuffle, union,
concatenation, Kleene star, intersection, intersection with a regular ‘'set, non-erasing

Y|

352 WARMUTH AND HAUSSLER

homomorphism, and inverse homomorphism, denoted ©, ®, 4, -, *M, MR, h, h~ ",
respectively. Thus all our language classes will be contained in NP. On the other
hand, without iterated shuffle the languages generated are always regular, since the
regular languages are closed under all of the remaining operations.

Our next theorem gives numerous sets of operations which can be used to generate
NP complete languages from finite sets. The examples of NP complete languages
given will include some of those given above, along with a few variations on these
languages, including {$(ad)"(bb)"(cc)"(dd)": n> 1)®, {ab"cd"ef"g: n>0}® and
{@ab"(cd)"e™f: n> 0}®. It can be easily demonstrated that these languages are NP
complete using the techniques from Theorem 4.2. Before giving the theorem, we prove
a few useful technical lemmas.

LEmmA 4.2. Forany k> 1, (a,a, -+ a,a,)®Ma,a, --- a8, (@,a, - a,a,)°=
{(@,@)" - (a,@)": n>1}.

Proof. This result follows from a simple counting argument involving the ratios
of overbarred and nonoverbarred letters in any word in the given intersection. The
essence of the argument is given in the proof of Corollary 3.1 part f of [6], so we will
not repeat it here.

LemMa 4.3. Let = {a,,.,a,,,,} for some k>0 and let h:Z* > Z* be the
homomorphism defined by h(a)=a,, h(ay,,)=ay, h(ay) =aya,;_, for
1<i<k and h(ay,,)=aya,,, for i:1<i<k. Let Li=h7'((a, - @,)®N
a,(Z—{a,})* and let L, = {ayaja;aia; --- ay,_,a%ay, - n>0}. Then L, =L,.

Proof. First, assume that we are given w=a,d%a, - Q1A Qy s EL,.
h(w) = a,(a,a,)"(@,a;) - (dzk—zdzk—l)(dede—l)"de = (@,@)""" . (@51 @)"!
€ (@, -+ ay)® Hence we h™((@, --- a,,)®). Obviously, w € a,(X — {a,})*, hence
we€L, ThusL,cL,.

Now, assume that we are given w=a,xEL,. Since h(a,) =a,,
h(x) € a, -+, © @}, a, -+ a,, for some n > 0. a, and a, are the only letters in
% — {a,} whose images under / begin a, or a,. Since h(a,) = 4,a, and h(a,) = a,a,,
there must exist m: 0<m < n such that x =ajya;y, where h(y)Eaq, --- a ®
O, a; - @, O@=ra, - @y However, since y € (Z— {a,})* a, occurs in
h(y) only if a, occurs in y, in which case a, occurs immediately proceeded by a,,
because h(a,)=a,a,. But every occurrence of a, in h(y) is proceeded by some
occurrence of @, and thus no @, can occur in h(y). This implies that n — m = 0,
ie, x=aja;y and AK(y)Eaq,-- ay O @/, a;--+a,. In this case yE
(£ —{a,,a,,a,})* and a, and as are the only letters in X — {a,,a,,a;} whose
images under 4 begin with a; or a,. Hence we can repeat the above argument.
Continuing in this manner, it is apparent that x=aja,---a%a,,,,, and thus
WEL, Hence L,=L,. I

LEMMA 4.4. Let A=3U (8}, where $ & Z. Then for any L < 4%, if (L N $X*)®

Wi

ITERATED SHUFFLE 353

is NP complete, then there exists an alphabet I and a non-erasing homomorphism
h: A* - I'* such that (h(L N (4* — Z)))® is NP complete.

Proof. Let I'=A4U {¢}, where ¢ € 4. Let h be the homomorphism defined by
h(3)=1¢$ and h(@)=a for a€ X. Let T=(h(LN(A* —Z*)))®N¢*4*. Since all
nonempty words in 4* — X+ contain an occurence of $ and 4 is non-erasing, T'=

m=0 ¢"(LNSI*P.

Now assume that there is a deterministic polynomial time algorithm for 7. Since
weE (LN $Z*)® if and only if ¢"w€E T for some m:0 < m<|w|, we can easily
convert this algorithm into a deterministic polynomial time algorithm for
(L N$Z*)®. Since this language is NP complete, it follows that 7 is NP hard [3].
Since T is obviously in the class NP, it follows that T is NP complete. Finally, since
T is NP complete, it follows that (h(L N (4* — X£*)))®is NP complete. [

THEOREM 4.3. There exists a finite alphabet X such that the closure of the class
of finite languages in X* under each of the following sets of operations contains NP
complete languages:

(1) {®NR},
(2) any set in {®}X{O, }X{MNhh™'} or (®)X{N}X{hh™'} and
{®, h, h1).
Proof. (1) This follows from the fact that ({$, abed}®N $a*b*c*d*)®=
{$a"b"c"d": n > 0}®. (See Theorem 4.2 and comments following.)
(2) For each of the nine sets of operations listed we give an example of an NP

complete language generated from finite sets using these operations. Detailed
verification of the examples is left to the reader.

i {®, N}
(a- (abed®Ma® - b® - c®. d®® = {a"*'b"c"d": n > 0}®.

i) {® O,N}
(8 © (aabbccdd)y®) N ($aabbecdd) (Gabbécdd)®))® = {$(aa)™(bb)"(cé)"(dd)":
n > 1}® This follows using Lemma 4.2.

(i) {®} X {O, -} x {h~"}.

Let X ={a,b,c,d,e, f, g} and let k: Z* > {ZU {$}}* be the homomorphism defined
by k(a) =$a, k(b) = ba, k(c) = b¢, k(d) = dc, k(e) = de, k(f) = fe and k(g)=f. Let
O be an operator in {(), -} and let L = $CI(abédef)®. Since every word in L contains
exactly one occurrence of $, any word in k~'(L) must contain exactly one occurrence
of a. Since every word in L begins with either $ or @ and no word in the range of k
begins with @, every word in k~'(L) must begin with a. Thus k= '(L)=k""(L)N
a(X —a)*. Let h be a homomorphism which is identical to k except that h(a) =a.
Since & and k are identical on X — {a}, it is easily verified that k= '(L) N a(Z —a)* =
h~'((abedef ®) N a(Z — a)*. Hence k~'(L) = h~'((@bédef)®) N a(X — a)*. Since h
is identical to the homomorphism given in Lemma 4.3 with a, b, c..., corresponding to

by

354 WARMUTH AND HAUSSLER

a, a,, a,..., respectively, it follows that k~'(L)= {ab"cd"ef"g: n>0}. Hence
(k~'(L))® is the NP complete language {ab"cd"ef"g: n > 0}e.

(iv) {®h~'N}
Let X and & be defined as in (iii). Let j: £* - Z* be the homomorphism defined by
lla)=a, I(x)=4 for x€X—{a}. Then (h '((@bedef)®)NI~'(@)® =
(h~'((@bcdef ®) M a(Z — {a})*)® = {ab"cd"ef"g: n > 0}®, again using Lemma 4.3.

v) {® hh"}.
Again let X' and h be defined as in (jii). Using Lemmad.3, it follows that
(h~'((abedef)N a(Z — {a})*)® = {ab"cd"ef"b: n>0}® which is NP complete.
Hence by Lemmad4.4 there exists a non-erasing homomorphism [such that
(I(h~"((@bcdef)®) N (Z* — (£ — {a})*)))® is NP complete. However, 1~ ' ((@bcdef)®)
S (Z* — (2 —{a})*), hence (I(h~'((abcdef)®)))® is NP complete.

(vi) {® h,N}. Let X={a,b,c,d} and 4 =2 U {$}.
Let L = (8, aabbccdd)® M {$aabbeedd, aabbecdd)®. Using Lemma 4.2, it is easily
verified that (L N$Z*)® = {$(ad)"(bb)"(cc)"(dd)": n > 1}®, which is NP complete.
Hence by Lemma4.4 there exists a non-erasing homomorphism 4 such that
(A(L N (4* —Z*)))® is NP complete. However L € A4* — X*, hence (h(L))® is NP
complete. -

(vii) {®} x{O, -} X {h}.
Let X = {a,b,c,d,e, [} and let h: Z* - (£ U £)* be the homomorphism defined by
h(a) = aa, h(b) = b, h(c) = cd, h(d) = d, h(e) = e, h(f) = . Let O be an operation in
A®, -} Let L = (h(aO(bce)®T f))®. To prove that L is NP complete we intersect it
with the regular set R =a*(ab*c)*(dc)*(d’e*f*)*f* and observe that L MR =
L' MR, where L' = {@ab"(cd)"e"ff: n>0}®. It suffices to show that L' "\ R is NP
complete. To do this we use the following equivalence combines with Theorem 3.1:

Im

dSm (I—[ab""c) (dc)m8—3m(d368f3)mf'3m ELI 1ff (d3er3)m € é deny:
; i=1

i=1

This completes the proof of Theorem 4.3. 1

The results of Theorem 4.3 are summarized in Table I. For each pair of operations
in the set -, "R, (O,M, h,h~" an indication of the complexity of the languages
generated using these operations in conjunction with iterated shuffle is given. The
entry in the row and column for operations O, and O, indicates the complexity of the
closure of the finite sets under the operations ®, O,, and O,. The entry “c” denotes
the fact that the corresponding language class contains NP complete languages, while
the entry “.2*” denotes the fact that all languages of this class can be recognized in
deterministic polynomial time. (The latter results are obtained in Corollary 5.1 in
Section V.) The entry “?” denotes the fact that it could not be shown that the
corresponding language class contains NP complete languages nor that it is contained
within .%°. We leave it to the interested reader to extend the results of Theorem 4.3 to

[ETIRERT

ITERATED SHUFFLE 355

TABLE 1
Operations . NR ® N h h!
. 2 c ? c c c
NR c c c c c
® 7 c c c
N 7 c c
h 7 c
h! P

@ Jantzen [7] recently proved this class to be in .7

include language classes that can be described using the operations union, Kleene
star, or any other interesting operation that does not involve cancellation.

In most of our NP completeness results up to this point, we have relied on
alphabets of size three or larger. It is obvious that with the alphabet X = {a},
Theorems 3.1 and 3.2 do not hold, and that all languages generated from a* using the
operations considered above, excluding 4 and A~ are regular. The case in which X
has just two elements remains unexplored. The possibility remains that there is some
sort of complexity gap between alphabets of size two and three in the context of some
of our iterated shuffle results. The following indicates that this is not the case.

LEMMA 4.5. Given the alphabet A = {a,,...,a,} we define the homomorphism
h: A* > {ab}* as h(a;)=a'*'b’. Then for any languages L, L, = A* we have
(i) weLPiffh(w)e (L))
(i) weL, OL,iff h(w)€ h(L,) © h(L,),
(iii) weL,-L,iff h(w)Eh(L),) - h(L,),
(iv) weL,+L,iff h(w)€ h(L,)+ h(L,),
v) weL,NL, iff h(w)€ h(L,) N h(L,).

Proof. (iii}—(v) follow from the fact that k& is a code, ie., the function
h:4* > {a, b}* is injective. For parts (i) and (ii), it is obvious that if w € L then
h(w) € (h(L,)y® and if we L, O L, then h(w)€ h(L,)® h(L,), we need only
shuffle images of letters in 4 as units. For the reverse implications we use

Lemma 3.1(iii) iteratively to “decode” a word in the range of 4 formed by shuffling
smaller words from the range of &. |

The “shuffle resistant” code defined in the above theorem can be used to reduce the
size of the alphabet required for our results.

COROLLARY 4.1. Theorems 3.1, 3.2, 4.1, 4.2 and the parts of 4.3 not involving
the operations h and h™' hold for X = {a, b}.

Proof. This follows directly from Lemma 4.5. 1

il

356 WARMUTH AND HAUSSLER

For example, the NP complete language {ab"cde"f: n>0}® can be transformed
into the NP complete language {a’b(a’b®)"a’ba’b*(a®h®)"a’b®: n>0}® using
Lemma4.5. |

V. LANGUAGE CLASSES CONTAINED IN P

In Section IV, we have presented a variety of NP complete languages, each of
which had the form L® for some language L. In each case there is a strong structural
relationship between the language L and the language {ww:w € £*}. Each of the
languages exhibits some kind of unbounded pairing or repetition along with markers,
which in the simplest case reduces to counting as in {ab"cde"f: n > 0}. Hence there
are NP complete languages among the iterated shuffles of linear languages. In
Theorem 5.1 we consider the complexity of languages obtained from the iterated
shuffle of regular languages.

THEOREM 5.1. For any regular R, the language R® can be recognized in deter-
ministic polynomial time.

Proof. Let us suppose we are given a finte automaton A for the language R with
k states, possibly nondeterministic, but without A-moves. To recognize a word
w € R®, we imagine that we begin with a pile of pebbles placed in the start state of 4.
Each time we read a letter / from w, we must find a state g of 4 which has one or
more pebbles in it, such that g maps with letter / to some state ¢’ in the automaton 4.
Upon finding such a state g, we remove a pebble from g and place it in q’. We claim
that w € R® iff there is a way to move some initial pile of pebbles while reading w
such that when we are finished, all the pebbles are in a final state. This follows since
the movement of each pebble contributes one word from R, which is shuffled with the
words obtained from moving the other pebbles.

We will determine if w & R®, for w+# A, by computing all possible final pebble
configurations for w. If |w|=n then we need to start with at most n pebbles in the
start state. At any given time as we are reading a letter of w, there are at most n
pebbles in any given state. Since 4 has k states, the number of possible intermediate
pebblings of the automaton A is less than n*. Hence, we can keep track of all possible
pebble configurations of 4 as we read w. Each time we read a letter from w we revise
our list of possible configurations using O(n*) time. Thus our total time is
O(n - n*) = O(n**"), which completes the proof. i

COROLLARY 5.1. For any finite alphabet, the closure of the finite languages in
Z* under any set of operations in {®} X {+, ¥, h, h ="} is contained in .7, the
class of all languages recognized in deterministic polynomial time.

Proof. The following calculation rules are easily verified. For any languages L, T,
L., L, Z* and homomorphisms k,: £* — A* and h,: 4* - Z*,

ITERATED SHUFFLE 357

(i) Lo+ T®P=(L+T®°=(L+ TG
(i) (L*)°=(L®)*=(L®®=LSC,
(iii) (ﬂ:'(:l L(?)® = ﬂff:l L?,
(iv) (h;'(L®))®=h; '(L®), and
() (A,(L®)®= (hy (L))

Using these rules, we can easily find a representation for any language in any of the
above classes in which the applications of the operation ® do not appear nested.
Hence the result follows from Theorem 5.1, using the elementary closure properties of
the class 2. I

Following Jantzen [6], we make the following definitions:

DEeFINITION. Given a finite alphabet Z, we define the language class Shuf, as the
closure of the finite languages over X under the operations +, (), and ® and the
language class SE; as the closure of the finite languages over X under the operations
+,+, % (), and ®.

The class SE, is the class of languages definable by the shuffle expressions of [12]
or the c-expressions of [8] over the alphabet X. In [6] Jantzen shows that
Shufy & SE;, |Z| > 2, and he gives a representation for an arbitrary L € Shuf; as

" M;(® N® for finite M;, N, X*. A language of the form R () S® for regular
sets R and S can be recognized in deterministic polynomial time by a simple
extension of the algorithm of the previous theorem. Thus we have

COROLLARY 5.2. For any finite alphabet X, the class Shuf; is contained in 7.

The complexity of the class SE; for |Z|> 2 remains open, as does the complexity
of any of the classes of languages generated by closure of the finite languages under
any subset of the operations +, -, *, (), and ® which includes both - and ®. We have
not found any NP complete ianguages in the class SE; for any X, nor have we been
able to exhibit deterministic polynomial time algorithms for any class of languages
containing the finite languages, and closed under - and ®. Our hypothesis is that such
polynomial time algorithms can be found, and indeed that SE; is contained in .7 for
any? Z.

ACKNOWLEDGMENTS

We would like to thank Andrzej Ehrenfeucht for numerous helpful discussions concerning this
material and Matthias Jantzen for suggesting several improvements on an earlier draft of this paper.

? Jantzen [7] showed recently that the closure of the finite languages under the operations +, -, *, and
® generates languages which are contained in . 7.

[N

358

1.

WARMUTH AND HAUSSLER

REFERENCES

T. Araki, T. KaGIMASA, AND N. ToKURA, Relations of flow languages to Petri net languages,
Theoret. Comput. Sci. 15 (1) (1981), 51-76.

. M. GAReY AND D. JonnsoN, Complexity results for multiprocessor scheduling under resource

constraints, SIAM J. Comput. 4 (1975), 397-411.

. M. GAReY AND D. JounsoN, “Computers and Intractability. A Guide to the Theory of NP

Completeness,” Problem SP 15, p. 224, Freeman, San Francisco, 1980.

. J. GIsHER, Shuffle languages, Petri nets, and context-sensitive grammars, Comm. ACM 24 9)

(1981), 597-605.

. M. JANTZEN, “Eigenschaften von Petrinetzsprachen,” Doctoral Disseration, Bericht Nr. IFI-HH-B-

64, Fachbereich Informatik, Universitat Hamburg, 1979.

. M. JANTZEN, The power of synchronizing operations on strings, Theoret. Comput. Sci. 14 (2)

(1981), 127-154.

. M. JANTZEN, Extending regular expressions with iterated shuffle, unpublished manuscript,

Fachbereich Informatik, Universitat Hamburg, 1982.

. T. KIMURA, An algebraic system for process structuring and interprocess communication, in

“Proceedings 8th Annual ACM Symp. on Theory of Computing,” pp. 92-100, 1976.

. W. F. Ocpen, W. E. RiDDLE, AND W. C. ROUNDS, Complexity of expressions allowing

concurrency, in “Proceedings, Sth ACM POPM,” Tucson, Arizona, pp. 185-194, 1978.

. W. E. RIDDLE, “Modelling and Analysis of Supervisor Systems,” Ph. D. thesis, Computer Science

Dept., Stanford University, 1972.

. A. C. SHAW, System design and documentation using path expressions, in “Proceedings, Sagamore

Computer Conference on Parallel Processing,” pp. 180181, IEEE Computing Society, 1975.

- A. C. SHAW, Software description with flow expression, IEEE Trans. Software Engrg. 3, SE-4

(1978), 242-254.

. G. Srurzki, Descriptional complexity of concurrent processes, unpublished manuscript, Department

of Mathematics and Computer Science, Clarkson College of Technology, Potsdam, New York,
1980.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium

