
Computing on an Anonymous Ring

HAGIT ATTIYA AND MARC SNIR

Hebrew University, Jerusalem, Israel

AND

MANFRED K. WARMUTH

University ofcallfornia, Santa Cruz, California

Abstract. The computational capabilities of a system of n indistinguishable (anonymous) processors
arranged on a ring in the synchronous and asynchronous models of distributed computation are
analyzed. A precise characterization of the functions that can be computed in this setting is given. It is
shown that any of these functions can be computed in O(r?) messages in the asynchronous model. This
is also proved to be a lower bound for such elementary functions as AND, SUM, and Orientation. In
the synchronous model any computable function can be computed in O(n log n) messages. A ring can
be oriented and start synchronized within the same bounds.

The main contribution of this paper is a new technique for proving lower bounds in the synchronous
model. With this technique tight lower bounds of O(nlogn) (for particular n) are proved for XOR,
SUM, Orientation, and Start Synchronization. The technique is based on a string-producing mechanism
from formal language theory, first introduced by Thue to study square-free words. Two methods for
generalizing the synchronous lower bounds to arbitrary ring sizes are presented.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture
and Design-distributed networks; C.2.5 [Computer-Communication Networks]: Local Networks-
rings; F. 1.1 [Computation by Abstract Devices]: Models of Computation-relations among models;
F. 1.2 [Computation by Abstract Devices]: Models of Computation-paralellism; F. 1.3 [Computation
by Abstract Devices]: Complexity Classes-relations among complexity measures; F.4.2 [Mathematical
Logic and Formal Languages]: Grammars and Other Rewriting Systems-parallel rewriting systems

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Communication complexity, coordination, distributed algorithms

1. Introduction

In this paper we study the complexity of computations on a distributed network of
processors with a ring topology. In a distributed computation each processor starts
with some initial state; it proceeds by sending messages to its neighbors, receiving

A short version of this work appeared in Proceedings of the 4th Annual ACM Symposium on Principles
ofDistributed Computing (Minacki, Canada, Aug. 5-7). ACM, New York, 1985, pp. 196-203.
The work of M. Warmuth was supported by the United States-Israel Binational Science Foundation,
grant 2439/82, and the Office of Naval Research grant N00014-86-K0454.
Authors’ present addresses: H. Attiya, Department of Computer Science, Tel Aviv University, Tel Aviv
69978, Israel; Marc Snir, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY
10598; M. Warmuth, Department of Computer Science, University of California, Santa Cruz, CA
95064.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1988 ACM 0004-541 l/88/1000-0845 $01.50

Journal of the Association for Computing Machinery, Vol. 35. No. 4. Oct. 1988, pp. 845-875.

846 H. ATTIYA ET AL.

messages from them, and updating its state accordingly, until it halts in a final
state. The complexity of a computation is the number of messages sent by all
processors in the worst case.

We are interested in problems in which the final state of each processor depends
on the initial states of all the processors; when the computation halts, each processor
has some “global information” on the initial configuration. Any such computation
problem has at least linear complexity: each processor has to receive a message. If
the activity of the processors is coordinated correctly, then any computable problem
can be solved with a linear number of messages. Assume, for example, that the
ring has a unique distinguished processor, the ring leader. The leader initiates a
message; each processor appends to this message its own initial state and forwards
the message; the leader receives back a message describing the entire ring; this
message is forwarded around the ring. Each processor now has a complete descrip-
tion of the initial ring configuration and can compute the required answer locally.

A leader can be chosen whenever the initial configuration has a distinguished
processor (the configuration is “centered,” in the terminology of Angluin [11). For
example, if the processors have distinct labels, then the processor with the largest
label can be elected as leader using O(n logn) messages [5, 8, 121; Q(nlogn) is also
a lower bound for election [4, 7, 121.

In this paper we consider the situation in which no such distinguished processor
exists-the processors are identical (anonymous ring). Some problems cannot be
solved in this setting; for example, there is no way to break symmetry so as to
choose a leader deterministically [11. We investigate problems that can be solved
deterministically on an anonymous ring, but where symmetry affects the cost of a
solution.

The typical problems considered are those in which there are (0, 1) initial states
and processors reach a final state that is a Boolean function of the initial states,
such as XOR or AND. Another problem, which is specific to the ring, is that of
orientation. We assume that processors can tell their left from their right; however,
their notions are not necessarily consistent. We want to orient the ring consistently,
that is, have processors agree on what is left and what is right.

Since all problems can be solved with a linear number of messages with suitable
coordination, information transfer arguments yield only trivial linear lower bounds;
nonlinear lower bounds are obtained by taking into account the cost of achieving
coordination. In a distributed computation on an anonymous ring the main
problem is that of symmetry breaking: The state of a processor after few steps of
the computation depends only on the initial configuration in a small neighborhood
of that processor. If each neighborhood is replicated many times in the initial
configuration, then whenever a processor sends a message, many other processors
do so; “superfluous” traffic cannot be avoided. Tight lower bounds will be obtained
by building “symmetric” initial configurations with many repetitions of local
patterns; efficient algorithms are obtained by detecting symmetries as fast as
possible.

All processors can acquire complete information on the initial ring configuration
with a total of O(n2) messages: Each processor initiates a message containing its
state, and these messages are forwarded n times. For the synchronous model, a
classical election algorithm is modified to obtain an algorithm that enables each
processor to acquire complete information on the initial ring configuration with a
total of O(n log n) messages. A similar algorithm is used to orient a ring in O(n log n)
messages. In the context of synchronous computations we also consider the problem
of start synchronization: We assume that processors may “wake up” at arbitrary

Computing on an Anonymous Ring 847

times; their clocks, however, are running at the same speed. The start synchroni-
zation algorithm presented enables all processors to reset their clocks simultane-
ously using O(n log n) messages. These results are presented in Section 4.

In Section 5 we present the first lower bounds: In the asynchronous model, at
least Q(n2) messages are required to compute many elementary functions, in
particular AND. As an interesting corollary we find that if input values are not
unique, then extremum finding requires O(n*) messages in anonymous rings (this
result was proved independently by Itai [9]). Note that O(nlogn) messages are
sufficient when inputs are distinct. An s2(n2) lower bound on number of messages
is also proved for orientation.

The rest of the paper is dedicated to the synchronous lower bounds. In Section
6 the general lower bound technique is presented. Using it we prove that 0(n log n)
is a lower bound on the complexity of many elementary problems, such as
computing XOR and orienting the ring. Section 7 is dedicated to extensions of the
results to arbitrary ring lengths.

We conclude, in Section 8, with a discussion of the results.

2. Definitions
Consider a system of n processors, named 1, . . . , n, arranged on a bidirectional
ring. Every processor i has communication channels with its two direct neighbors
on the ring, Ze$(i) and right(i). The processors need not be oriented consistently;
it is possible either that left(i) = i - 1 and right(i) = i + 1, or that left(i) = i + 1
and right(i) = i - 1.’

An algorithm specifies the behavior of each processor, modeled as a state
machine. The initial state of the processor is its input value. Two computation
models are treated:

In the synchronous model all processors start the computation simultaneously
and proceed in lock step (we later relax the assumption of simultaneous start).
Message transfers and state transitions are clock driven: At each cycle a processor
may send a message to its left neighbor and to its right neighbor, depending on its
current state. Next the processor accepts messages sent by its neighbors, moves to
a new state, and possibly halts, as a function of its previous state and the value of
the communications from left and right. The computation terminates when all
processors have halted; the state of a processor when it halts is its output.

In the asynchronous model the transmission of a message incurs an unpredictable
but finite delay. Messages sent on a link are received in the order in which they are
sent. State transitions are message driven: A processor receives one message at a
time; whenever it receives a message, it possibly sends messages to its neighbors,
moves to a new state, and possibly halts. A conceptual “start” message causes the
first state transition at each processor.

We consider the case in which processors are indistinguishable; the indices are
not available to the processors, and they all run the same algorithm. This is an
anonymous ring. In a labeled ring, the indices are available to the processors, so
that each may run a distinct algorithm.

The following notation is used:
The orientation of processor i is D(i): D(i) = 1 if right(i) = i + 1, D(i) = 0 if

right(i) = i - 1; D = (D(l), . . . , D(n)) is the ring orientation. The ring is clockwise
oriented if D(i) = 1 for all i, counterclockwise oriented if D(i) = 0 for all i. The

’ Here and throughout the paper processor indices are taken modulo the ring size n; i and n + i indicate
the same processor.

848 H. ATTIYA ET AL.

ring is oriented if it is clockwise or counterclockwise oriented. A ring is oriented iff
i = feft(right(i)) for every processor i on the ring.

A processor does not “know” its orientation; D(i) is not an input of the algorithm.
The initial input state of processor i is Z(i); Z = (Z(l), . . . , Z(n)) is the ring input;

R = (D(l), Z(l), . . . , D(n), Z(n)) is the initial ring confguration.
The output state of processor i when the computation halts is O(i); 0 =

(O(l), * * a, O(n)) is the ring output.
A problem II is a mapping that assigns to each initial configuration R a set II(R)

of ring outputs, the set of correct solutions for R. An algorithm A solves the problem
II if a computation of A started on a configuration R ends with a ring output that
is a correct solution for R, whenever such a solution exists.

Most problems we consider consist of computing a function f: A computation
started with input Z ends with each processor in state f(Z). For each initial
configuration there is a unique correct solution. In the orientation problem each
processor is required to orient its communication channels so that the whole ring
becomes oriented. Formally, each processor computes a Boolean output, so that if
the processors with output 1 switch their left and right connections, then the ring
becomes oriented, either clockwise or counterclockwise. There are two correct
solutions for each initial ring configuration: either O(i) = D(i) for each i (counter-
clockwise orientation), or O(i) = D(i) for each i (clockwise orientation).

Our cost function will be either the number of messages sent or the number of
bits sent, for some binary encoding of the messages. Lower bounds will be on the
total number of messages sent, and algorithms will be analyzed by counting
the total number of bits sent. All bounds are on worse case complexity.

In order to measure symmetry in a configuration, the following definitions are
introduced: The k-neighborhood (k 2 0) of a processor i consists of the orienta-
tion and the input values of the 2k + 1 processors i - k, i - k + 1, . . . , i + k,
relative to the orientation of processor i. Let R be a ring configuration. On a
clockwise-oriented ring the k-neighborhood of processor i is represented by the
string Z(i - k), . . . , Z(i + k); on a general ring it is represented by the string
D(i - k)Z(i - k), . . . , D(i + k)Z(i + k), if processor i is oriented clockwise
(D(i) = 1) and by the string D(iZ(i + k), . . . , D(i - k)Z(i - k) if processor i
is oriented counterclockwise.

For given ring configuration R and k-neighborhood u let g(R, a) be the number
of processors that have the k-neighborhood U. SZ(R, k), the symmetry index
function of R, is defined to be

SZ(R, k) = ming(R, a),

where the minimum is taken over all U'S that are k-neighborhoods of some
processor in R. That is, SZ(R, k) is the minimum positive number of occurrences
of any k-neighborhood in R. This function measures the amount of symmetry in
the configuration. If some input value occurs at a unique processor, then SZ(R, k)
= 1 for each k. At the other extreme, if all processors have the same initial state
and orientation, then SZ(R, k) = n for each k.

The symmetry index function SZ(R,, . . . , R,, k) of a set of configurations
RI,..., R, is defined to be the minimum positive total number of occurrences of
any k-neighborhood in all the configurations R, , . . . , Rj; that is,

SZ(R,, Rj, k) = min C g(Ri, a),

i=l

Computing on an Anonymous Ring 849

where the minimum is taken over all u’s that are k-neighborhoods of a processor
in some configuration R,.

Letw=Z(l),..., Z(n) be an input in a clockwise-oriented ring; let B = Z(i - k),
. . .) Z(i + k) be the string representing the k-neighborhood of processor i. There is
a one-to-one correspondence between occurrences of that neighborhood in the ring
and cyclic occurrences of u in o; c cyclically occurs in o if it occurs in some cyclic
shift of w. A similar correspondence exists for nonoriented rings. Let w = D(l)Z(l),
. . .) D(n)Z(n) be the initial configuration of such ring; let uI = D(i - k)Z(i - k),
. . .) D(i + k)Z(i + k) and c2 = D(i + k)Z(i + k), . . . , D(iZ(i - k). Then there
is a one-to-one correspondence between occurrences of the k-neighborhood of
processor i in the ring and cyclic occurrences of uI and u2 in w.

3. Functions that Are Computable on an Anonymous Ring

We first characterize the functions that can be computed distributively on an
anonymous ring. Note that all functions computable on an asynchronous ring can
also be computed on a synchronous ring, because synchronous execution is a
special case of asynchronous execution. Conversely, we can simulate a synchronous
computation on an asynchronous ring using local synchronization: Each processor
sends at each cycle synchronization messages to both neighbors; a processor
proceeds from the simulation of one cycle to the simulation of the next cycle only
after it has received synchronization messages from both neighbors. We, therefore,
restrict our attention in this section to the synchronous model. We prove impos-
sibility results for algorithms that solve problems on oriented rings; these impossi-
bility results apply, a fortiori, to general, nonoriented rings.

LEMMA 3.1. Let R, and R2 be two initial ring configurations, P, be a processor
in R, , and P2 be a processor in R2 (the rings are not necessarily oriented). Assume
that PI has the same k-neighborhood in R, as P2 has in R2. Then the state of P,
after k cycles of a synchronous algorithm A on input R, is identical to the state of
P2 after k cycles of A on input R,.

PROOF. By induction on k. 0

3.1 KNOWLEDGE OF RING SIZE. We first remark that knowledge on the size of
the ring is necessary for algorithms operating on anonymous rings.

THEOREM 3.2. Let J (0, l]* + (0, 1) be a nonconstant function. There is no
distributed algorithm that computes f correctly on clockwise-oriented rings of
arbitrary large size.

PROOF. Let A be a synchronous algorithm that computes f on clockwise-
oriented rings. Consider a ring input lo where the answer is 0, and a ring input I,,
where the answer is 1. Assume that A terminates in no more than T cycles on both
configurations. Consider now a clockwise-oriented ring with input

The input Z is obtained by concatenating 2T + 1 copies of lo, followed by an
arbitrary string X, followed by 2T + 1 copies of I,. There is a processor in the first
segment that has the same T-neighborhood as a corresponding processor in the
ring with configuration lo. This processor will halt and output 0. Similarly, some
processor in the second segment will output 1. Hence, the algorithm fails for some
input on any oriented ring of length larger than (2T + l)(1 lo 1 + 1 I, I). 0

850 H. ATTIYA ET AL.

Any algorithm must have at least a bound on the ring size. For some simple
functions the algorithm must “know” exactly the ring size.

THEOREM 3.3. There is no SUMalgorithm that works correctly on two different-
sized oriented rings.

PROOF. Given a SUM algorithm, consider two configurations with all inputs 1,
on two oriented rings with different sizes. For any k all k-neighborhoods are
identical in both configurations. Thus, the algorithm will output the same answer
for both. IJ

A similar argument proves that an XOR algorithm cannot operate correctly on
both even- and odd-size rings.

We henceforth assume that algorithms depend on the ring size n. The algorithms
given in this paper depend uniformly on n; the lower bounds are valid for
nonuniform algorithms as well.

Even on a ring of fixed size n it is not possible to compute every func-
tion distributively. If two processors on rings of size n have the same Ln/2J-
neighborhood, then they have the same k-neighborhood for any k. It follows, by
Lemma 3.1, that the output of a synchronous algorithm at a processor is uniquely
defined by the Ln/2Jneighborhood of that processor. This implies that a problem
can be solved distributively only if one can associate with each initial configuration
R a correct solution 0, so that the value of O(i) depends only on the Ln/2J-
neighborhood of i in R. Conversely, we show in the next section that a processor
can compute its Ln/2J-neighborhood, and hence compute any function of that
neighborhood. Thus, the last condition is also sufficient.

As a particular case of this general argument we have the following theorem:

THEOREM 3.4. Letf: S” + T. Then:

(i) There exists an algorithm that computes f on a clockwise-oriented ring of size
n #f is invariant under cyclic shifts of the inputs.

(ii) There exists an algorithm that computes f on any ring of size n @f is invariant
under cyclic shifts and reversals of the inputs.

3.2 ORIENTATION. We show in the next theorem that even length rings cannot
be oriented distributively. The gist of the argument is that a deterministic algorithm
cannot break symmetry in an initial configuration in which half of the processors
are oriented in one direction and the other half in the reverse direction, and achieve
an asymmetric orientation as output.

THEOREM 3.5. There is no orientation algorithm that works correctly for even-
length rings.

PROOF. Given a synchronous orientation algorithm that works correctly on a
ring of length 2n, consider the configuration that consists of two oriented half rings
(see Figure 1). Formally, we have

right(i) = i + 1 (and left(i) = i - l), for i= l,...,n,

whereas

right(i) = i - 1 (and left(i) = i + l), for i=n+ 1,...,2n.

The processors i and 2n + 1 - i have the same Ln/2J-neighborhoods so that they
halt with the same output. Therefore, the processors i and 2n + 1 - i either both

Computing on an Anonymous Ring 851

n+l

FIGURE I

switch their orientation or both preserve their original orientation. However,
processors i and 2n + 1 - i have reverse initial orientations, so that i should switch
its orientation iff 2n + 1 - i does not switch its orientation. Cl

The orientation problem can, therefore, be solved only for odd-length rings. An
argument similar to that given in the proof of Theorem 3.2 shows the following:

THEOREM 3.6. There is no algorithm that solves the orientation problem for
rings of arbitrarily large size.

4. Algorithms

4.1 THE ASYNCHRONOUS MODEL. We first show that any problem that can be
solved on a ring, can be solved using O(n*) messages; if the inputs are Boolean,
then one bit messages are sufficient. This is true even if the ring is not oriented.
We present an algorithm that solves the input distribution problem. This is the
problem of distributing to each processor P the input value and orientation of all
processors, relative to the location and orientation of P on the ring. At the end of
the computation, each processor holds a string that describes its Ln/21-neighbor-
hood. This information is sufficient to compute locally the solution to any problem
that can be solved distributively. Hence, input distribution is the “hardest” problem
to solve distributively on a ring. By Theorem 3.2 it is necessary to assume that n
(the ring size) is known. The algorithm that solves this problem is trivial:

Each processor P first sends, in both directions, a message consisting of its input
value and of a bit indicating the port label (e.g., 0 is sent to left(P) and 1 is sent to
right(P)). Next, P forwards the following Ln/2J-1 messages it receives from left(P)
to right(P), and the following Ln/2J-1 messages it receives from right(P) to left(P).

Each processor may reconstitute its Ln/2&neighborhood from the messages it
receives. Note that the algorithm needs n(n - 1) messages if n is odd. When n is

852 H. ATTIYA ET AL.

even, n(n - 1) messages can be achieved by the following refinement: A processor
forwards n/2 - 1 messages that were initially sent left and n/2 - 2 messages that
were initially sent right.

If the ring length is odd, then this input distribution algorithm can be used to
orient the ring: processors pick an orientation in accordance with the majority of
individual orientations.

4.2 THE SYNCHRONOUS MODEL. A simple adversary argument shows that Q(n)
messages are needed to compute any nonconstant function. Indeed, consider two
input configurations differing at one processor only, such that the corresponding
outputs differ. Then each of the remaining y1- 1 processors must receive a message
in at least one of the two computations; otherwise, it will have the same output in
both computations.

The AND function can be computed with a linear number of messages: A
processor with initial state zero sends a message in both directions and halts (in
state zero). A processor with initial state one waits for Ln/2J cycles. If it receives a
message during that period, it then forwards it and halts in state zero. If by cycle
Ln/21 the processor has not received any message, it halts in state one. The total
number of messages sent is O(n).

All algorithms in this section have a similar flavor: They may “deadlock” in
symmetric configurations where all processors are waiting for messages and no
message is outstanding; the processors detect such situation and break the deadlock
by counting the number of cycles since last message arrival. The main use of
synchronism is to provide an upper bound on message arrival time.

A2.1 Input Distribution Algorithm. Not every function can be computed in a
linear number of messages (see Section 6). We show that O(nlogn) messages are
always sufficient to solve a problem on a synchronous ring of size n if a distributed
solution exists. An algorithm that solves the input distribution problem using
O(nlogn) messages in the worst case is presented in this section. We describe the
algorithm assuming the ring is oriented; later we extend the algorithm to non-
oriented rings.

In a ring where processors have distinct labels, a leader can be selected using
O(n logn) messages [5, 8, 121. The leader is selected to be the processor with
maximum label. The selection algorithm processes by rounds: Initially each pro-
cessor is active. At each round the remaining active candidates that are neighbors
exchange and compare labels, whereby a fixed proportion of them are disqualified,
and become passive (two active processors are neighbors if there is no other active
processor on an arc connecting them). After O(logn) rounds, each requiring O(n)
messages, only one leader remains. Once a leader is selected, it can collect the
inputs on the ring and rotate the information to the remaining processors.

Our input distribution algorithm uses a similar approach. Since labels do not
preexist, we create them during the computation: We label an active processor P
with the string of inputs of the processors on the segment starting from the previous
active processor at the left of P and ending at P.

In the first phase of a round the active processors use these labels to perform
comparisons. Each active processor sends its label in both directions. Passive
processors forward these messages. An active processor is disqualified if it receives
a label that is greater than its label (in lexicographic order) or if both labels it
receives are equal to its label. This phase takes n cycles and 2n messages. If a
processor wins in this phase, then at least one of its neighbors loses. It follows that

Computing on an Anonymous Ring 853

at least one-third of the active processors are disqualified in this phase, and the
total number of rounds is at most log,.,n.

In the second phase of a round the remaining active processors collect their new
labels: Each active processor sends an empty message to its right. A processor that
receives such a message appends to it its own input and, if it is passive, forwards
the augmented message. After n cycles and n messages, each active processor has
computed its label. At each phase of each round, each processor receives at least
one message.

There is, however, no guarantee that the labels used for leader election are
distinct. The algorithm may deadlock in a symmetric configuration where all active
processors have the same labels, in which case no active processor is left at the next
round. Since the algorithm is synchronous, the processors can detect that such an
event occurred by waiting a sufficiently long time: A processor detects a deadlock
situation if it does not receive any message during the n cycles of the second phase
of a round. At this point we are in a situation in which the initial configuration is
periodic, and each active processor holds a copy of that period. Since the ring size
is known, each processor can reconstruct the entire initial configuration from this
period.

Termination when only one active processor is left is handled in the same way:
The processor competes against itself and is eliminated at the next round.

We give a formal description of the algorithm in Figure 2. The symbol & denotes
string concatenation; cyclic-shift is the function that cyclically shifts characters in
a string one position to the left. The algorithm uses at most n(3 log,.,n + 1) messages
and runs for n(2 log,.5n + 1) cycles.

It is easy to modify the last algorithm so as to use only one-sided communication.
Thus, any problem that can be solved on a unidirectional ring can be solved
synchronously in O(n log n) messages.

The messages used in the last algorithm may require a linear number of bits; it
is possible to replace them with “zero content” messages, using time to encode
information. If there are k different types of messages, then we replace each cycle
by k subcycles and represent a message of type i sent at cycle t by an empty message
sent at cycle k(t - 1) + i.

4.2.2 Orientation Algorithm. In order to apply the previous algorithm to arbi-
trary rings, we first have to orient the ring. By Theorem 3.5 this is not possible, in
general, if the ring has even length. However, a weaker result is sufficient for our
purposes. A ring is said to be quasi-oriented if either the ring is oriented, or the
ring orientation alternates, that is, successive processors on the ring have opposite
orientations. In this section we present an algorithm that quasi-orients an arbitrary
ring, using O(n log n) bit messages and O(n log n) cycles.

It is easy to modify the input distribution algorithm so as to work on a ring with
alternate orientation: One runs two computations simultaneously, one for each
direction. Processors participate in one computation and forward messages of the
other computation. At the end, neighbors exchange information. Hence, the quasi-
orientation algorithm and the input distribution algorithm for oriented rings can
be combined into an input distribution algorithm that works for rings with arbitrary
orientation. This algorithm can also distribute the initial relative orientation of
each processor.

Note that a quasi-oriented ring of odd length is oriented; a quasi-orientation
algorithm orients rings of odd length.

FIG. 2. Input distribution algo-
rithm.

854

active := true;
label := input;
done := false;
repeat { do one round }

k%i,“,”
ase - elimination }

then begin

H. ATTIYA ET AL.

send label to left and right;
wait(n-1);
winner := label 2 each message received

and label > at least one message received
end

else { passive processors }
for i := 1 to n do forward message;

{ second phase - label creation }
if active and winner

then begin
send nil to right;
wait(n-1);
label := (message received)&input
end

else begin
done := true;
for i := 1 to n do

if received M
then begin

active := false;
done := false;

end
until done;

send M&input to right
end

{ broadcast result}
if active

then begin
send label to right;
halt
end

else for i :=l to n do
if received M

then begin
label := cyclic-shift(M);
send label to right;
halt
end

The quasi-orientation algorithm is similar to the input distribution algorithm. It
proceeds by rounds, each taking a linear number of cycles and messages and each
disqualifying a constant fraction of the active processors. When the elimination
procedure “deadlocks,” the pattern of active processors is such that the ring can be
quasi-oriented in one more pass.

An active processor P is an endpoint if the first active processor to the left of P ,
is oriented differently from P. Endpoints define segments. A segment consists of
consecutive processors on the ring, starting with an endpoint that is oriented
clockwise and ending with the next endpoint (that is oriented counterclockwise).
Each active processor is contained in some segment (see Figure 3). Each round has
two phases. The first phase determines which active processors are endpoints. At

Computing on an Anonymous Ring
-

855

FIG. 3. 0, passive processor; 0, active processor; 0, endpoint;
8, processor active at next round.

the start of this phase each active processor sends distinct messages to its left and
to its right. An active processor is an endpoint if it receives from its left a message
sent to the left. This phase uses n cycles and at most 2n messages.

In the second phase eliminations are made. One endpoint is selected from each
odd-length segment to stay active for the next round, and the remaining active
processors become passive. At the start of this phase endpoints send messages to
their right. A processor that receives two messages simultaneously (this happens
only in the middle of a segment of odd length) sends a reply to one of the endpoints
of its segment. This endpoint stays active.

It is easy to see by induction that the number of passive processors between two
active processors is even at the end of each round. This is true initially, when all
processors are active. Assume it holds true at the start of a round. Then each even-
(odd-) length segment contains an even (odd) number of active processors. It
follows that the number of active processors eliminated in each segment is even,
so that the claim holds at the end of the round. The same argument also implies
that the number of active processors decreases at least by a factor of 3 at each
round.

The second phase uses at most 19 messages and requires n cycles. The
computation will halt after at most 1 + log3n rounds.

The algorithm was designed so that each processor receives at least one message
at each round, except the last one (this is the reason messages are sent in both
directions in the first phase of a round). Hence a processor can detect, by waiting
a sufficiently long time, whether the computation has halted at the previous round.

856 H. ATTIYA ET AL.

The computation may stop for two reasons:

(1) No endpoints were found at the first phase of a round. Then all the active
processors left from the previous round have the same orientation; they can
orient the ring.

(2) Ail segments had even length; hence no new active processor was selected at
the second phase of a round. Then any two neighboring endpoints have reverse
orientation and are at odd distance one from the other; all even processors that
are endpoints have the same orientation, and so do all odd processors that are
endpoints. Hence, the even processors can be oriented consistently and so can
the odd processors, resulting in an alternate orientation.

The orientation algorithm is described in Figure 4. It uses at most n(2 log,n + 4)
cycles and at most 3.5n(log3n + 1) messages.

4.2.3 Start Synchronization. Algorithms in this section were written under the
assumption that processors start simultaneously. We now drop this assumption.
We assume that the processors were all originally idle. A processor awakes either
spontaneously or when receiving a message. The transitions are henceforth deter-
ministic.

We show that the start synchronization problem can be solved in O(n logn)
messages: We give an algorithm such that, if each processor starts running the
algorithm at a (possibly) different time, then O(nlogn) cycles and messages after
the first processor has started, all processors will halt simultaneously. By prefixing
the synchronization algorithm to an algorithm that assumes simultaneous start, we
obtain an algorithm that solves the same problem but does not require simultaneous
start.

The synchronization algorithm will synchronize all processors to the time of the
earliest starting processor(s). It uses the same basic framework as our input
collection algorithm. We run a leader-choosing algorithm, which chooses the
earliest running processor. We assume that each processor keeps a count of the
number of cycles that have lapsed since it awoke. An active processor is a local
maximum if its count is ahead of the count of its neighbors and strictly ahead of
the count of at least one neighbor. At most, two-thirds of the active processors
survive after each round. If no local maximum is found, then all active processors
have the same count and, thereby, are synchronized.

A difficulty arises when neighboring active processors exchange their counts:
While the message containing the count travels, the value of the count changes.
This can be remedied by having each passive processor increase the count it
forwards by one.

We give a formal description of this algorithm in Figure 5.
Let P be a processor that wakes up earliest. Then all processors are alive when P

count is equal to Ln/2J. This implies that the counts of distinct processors are apart
by at most Ln/2J. Let round k consist of the cycles in which processors forward
messages that were initiated by active processors when their count was equal to
2kn. Since all messages reach their destination in n cycles at most, the last remark
implies that distinct rounds do not overlap.

When a round ends, all processors that received a message from a local maximum
are synchronized with it. If one processor receives a message during a round, then
all do. If no processor received a message during a round, then no local maximum
was detected at the previous round, and all processors are synchronized. This
implies the correctness of the algorithm.

Computing on an Anonymous Ring

done := false
active := true;
repeat { do one round }

857

{ first phase - select endpoints }
if active

then begin
send message LEFT to left;
send message RIGHT to right;
wait(n-1);
if not received LEFT from left

then begin
active := false;
marked := true
end

end
e*=dzegk trieq=sive I

for i:=l to n do
if received message then

begin
done := false;
marked := false;
forward message
end

end;

{ second phase - eliminate }
if active

then begin
send message 0 to right;
wait(n-1);
if not received 1

then begin
active := false;
marked := true
end

end

el=for \ rz;;‘n do

if received message
then begin

marked := false;
if received 0 from left and right

then send 1 to right
else if message = 1 or first message received

then forward message
end

until done;

{ active processors orient processors of same parity }
if marked

then begin,
send 0 to right;
message-count :=l
end

else message-count := 0;
repeat forever

if received message M
then begin

message-count := message-count+l;
if M=l and M received from right

then switch orientation;
forward a;
lf message-count = 2 then halt

end

FIG. 4. Orientation algorithm.

858 H. ATTIYA ET AL.

{ Initially all processors have count = -1
and are not active }

if wakes up spontaneously
then begin

count := 0;
active := true;
message-count := 0;
send count to left and to right
end;

repeat forever
begin
count := count+l;
If count mod 2n = 0

then if no message was received in last 2n cycles
then halt

else if active
then send count to left and to right;

If count mod 2n # 0
then if received message M

then if not active
then begin

forward M+l;
rnu;t := max (M+l,count)

else { active }
begin
message-count := message-count+l;
count := max (M+l, count);
if message-count = 2

then If not local maximum
then active := false
else message-count := 0;

end
end

FIG. 5. Synchronization algorithm.

During a round at most 2n messages are sent. The number of active processors
decreases at each round by one-third at least, so that the total number of rounds is
at most 1 + log,,,n. The total number of messages sent is at most 24 1 + log,.,n).

4.2.4 Bit Complexity of Start Synchronization. In the synchronization algo-
rithm it is possible to replace arbitrary messages by bit messages, with a constant-
factor increase in time and message complexity. Note that each processor knows,
upon receiving a message, to which round it pertains. This determines the clock
count of the processor that originated the message at the time the message was
sent. The only required information is the time that has elapsed from the issuing
of the message to its reception, that is, the distance separating the sender from the
receiver. This distance can be computed by sending two messages: first a message
traveling at speed 1 and next a message traveling at speed :: The first message is
forwarded at each cycle, whereas the second message is delayed one cycle by each
forwarding processor. The distance between sender and receiver equals the differ-
ence between the reception time of these two messages.

When this protocol is used, the number of cycles required for a communication
between two active processors is bounded by 2n. We modify the algorithm so that
3n cycles are dedicated to each round (an active processor sends a message only
when its count is equal to 3kn); active processors send messages using the method
described above, and passive processors merely forward messages. The algorithm
will require no more than 3n log,.5n cycles and 4n log,.jn messages.

Computing on an Anonymous Ring 859

5. Lower Bounds for the Asynchronous Model

5.1 THE GENERAL THEOREM. In this section we give O(n2) asynchronous lower
bounds for simple functions such as AND, as well as for orienting the ring. A
general lower bound technique is first introduced: We define pairs of initial
configurations with certain parameterized properties and then show that the
existence of such a pair for a particular problem implies that a certain number of
messages (which depends on the parameters of the pair) must be sent. Note that
message complexity always means the number of messages sent in the worst case
over all possible asynchronous computations.

The same method works for the synchronous case (next section), but a stronger
property of the pair is required and the proofs are more involved.

Definition. Let a! be a constant and ,f3(.) be a function. Two initial conligura-
tions R, and R2 of length n are an CY, ,l3 fooling pair for a distributed algorithm if
the following conditions hold:

(5a) For any output configurations 0, and O2 obtained by running the algorithm
on initial configurations RI and R2, respectively, there exist two processors,
P, and P2, such that P, has the same cu-neighborhood in RI as P2 has in RZ
but W’d f OzV’2).

(5b) The symmetry index function of R, is bounded by p, that is,

WRI, k) 2 P(k),

for 0 5 k 5 (Y (see definition at the end of Section 2).

For example, clockwise-oriented rings with inputs Zr = 1 n and Z2 = 1 n-‘O are a
fooling pair for any algorithm that computes the AND function, with (Y = Ln/2J -
1 and P(k) = n for every 1 5 k I n. Indeed, processor Ln/21 has the same
cy-neighborhood in both configurations; yet its output in the first configuration is
1 and in the second 0, and all processors in the first configuration have the same
k-neighborhood for any k.

THEOREM 5.1. Let RI and R2 be input configurations of length n that are a
fooling pair with parameters LY and p for an asynchronous algorithm A. Then A
uses at least Ca=0 P(k) messages on RI in the worst case.

PROOF. In the asynchronous model an adversary can manipulate the delays of
the communication channels. We use an adversary that “synchronizes” the com-
putation, thus keeping the ring configuration as symmetric as possible. The
adversary schedules arrivals of messages in successive cycles so that all messages
sent at cycle i are received at cycle i + 1. The schedule is formally defined as
follows: All processors execute their initial state transition at cycle 0; no message
is received at this cycle.

At cycle i + 1 each processor that has not halted receives successively all messages
sent at cycle i by its left neighbor and next receives successively all messages sent
at cycle i by its right neighbor, in the order in which they were sent.

As in Lemma 3.1, a simple induction shows that the state of a processor at the
end of k cycles depends only on the k-neighborhood of the processor.

Consider the computations of A on RI and RZ using the above adversary. Let T
be the first cycle in which no message is sent in the first computation. No message
arrival, and hence no state transition, occurs at cycle T + 1 and at any subsequent
cycle. Hence, the computation must have terminated at the end of cycle T; at least

860 H. ATTIYA ET AL.

one processor has sent a message at each cycle t of the computation on R,, for
Ost<T.

Look at processors PI and Pz. Assume T 5 CY. Since P, and P2 have the same
T-neighborhood, PI and Pz halt with the same output in both computations;
a contradiction. Hence T > LY.

Assume processor Q sends a message at cycle k of the computation on R, . Then
any processor with the same k-neighborhood also sends the same message. By
condition (5b), there are P(k) such processors. Hence, at least P(k) messages are
sent at cycle k, for 0 5 k 5 (Y, and the claim follows. Cl

5.2 LOWERBOUNDEXAMPLES

5.2.1 Computing AND. As mentioned before, the oriented rings with input
configurations II = 1” and I2 = I”-‘0 are a fooling pair for any algorithm that
correctly computes the AND function, with (Y = Ln/2J - 1 and P(k) = n, for any
k. Theorem 5.1 implies that any algorithm computing AND will send at least
Cl’E~‘-’ n = n . Ln/21 messages on I, in the worst case.

By distinguishing cycles in which transmissions occur in both directions from
cycles in which transmissions occur in one direction only, one can improve the
lower bound for AND to n(n - 1) messages, which is tight. Since AND computes
the minimum of a set of (0, 1) values, this implies the following:

COROLLARY 5.2. Any asynchronous algorithm for computing the minimum of
all inputs on a ring requires at least n(n - 1) messages in the worst case, when the
inputs are not necessarily distinct.

(This result was proved independently by Itai [9].) This is an interesting contrast
to the case in which all inputs are distinct, and the minimum can be computed in
O(nlogn) messages [4, 5, 8, 121.

Theorem 5.1 can be used to obtain an L?(n’) lower bounds on the number of
messages required to compute any function fi (0, 1)” + (0, 1) with the property
that f(0, . . . , 0) # f(1, . . . , 1). Indeed, if f(1”) # f(0rn~2’1Ln~2J), then 1” and
Orn’211Ln’2’ are a fooling pair for any algorithm that computes1; with CY = L(n - 2)/
4J and p(.) = n; iff(On) #f(0rn~211Ln~2J), then 0” and Or~~2’1Ln~2’ are a fooling pair
with the same parameters. As f(0”) # f(1”) one of these two alternatives must
hold.

5.2.2 Orienting the Ring. We have shown that processors on a ring need @n’)
messages to agree on an identical Boolean output whenever the agreement problem
is nontrivial (e.g., whenever processors are not allowed to agree on the same value
for the all-zeros configuration as for the all-ones configuration). We now show that
Q(n’) messages are required for the processors to agree on a consistent orientation.
To prove this lower bound, we use Theorem 5.1. Remember that the notion of
neighborhood includes the relative orientations of processors.

THEOREM 5.3. Any asynchronous algorithm for orienting a ring requires at least
ft(n’) messages in the worst case.

PROOF. We look at two initial configurations of odd length n = 2m + 1 (even-
length configurations cannot be oriented by Theorem 3.5). The first conhguration
R, is the clockwise-oriented ring. In the second configuration R2, processors 1, . . . ,
m are clockwise oriented (right(i) = i + 1, for i = 1, . . . , m) and the processors
m + 1, 2m + 1 have the reverse orientation (right(i) = i + 1, for i =
m+ l,..., 2m + 1) (see Figure 6).

Computing on an Anonymous Ring 861

FIGURE 6

Processors rn/41 and r3n/41 have opposite initial orientations in RZ. The algo-
rithm always produces an oriented ring, and. thus these processors always halt with
distinct outputs in RZ. Hence one of them has an output that is distinct from
the output of processor 1 in configuration R,. Moreover, all three processors
have the same LY = L(n - 2)/41neighborhood. Hence condition (5a) is satisfied
for that particular value of LY. Clearly, R, satisfies condition (5b) with /3(r) = n
for all Y. Thus, R, and RZ are a fooling pair for the orienting algorithm, with
CY = L(n - 2)/4J and /3(r) = n.

We apply Theorem 5.1 and obtain an n L(n + 2)/4J lower bound for orienta-
tion. 0

A more refined analysis can be applied in order to raise the last lower bound by
factor of 2. An Q(n’) lower bound quasi-orientation (on even rings) can be obtained
in a similar manner.

5.2.3 Random Functions. Functions with linear or even subquadratic message
complexity are rare: “almost all” functions have quadratic complexity.

THEOREM 5.4. The probability that a random computable Boolean function on
n variables has message complexity rn2/4 on oriented rings is less than 2’-(2”‘2/n).

PROOF. Define two input configurations to be equivalent if one is a cyclic shift
of the other. This partitions the input configurations into equivalence classes. Each
class has size at most n, and every computable function is invariant on each class
(Theorem 3.4).

Let I be a configuration with n/2 contiguous ones. It is easy to see, using
Theorem 5.1, that, iff(l) #J(1 “), then at least n*/4 messages are sent on input 1’
by any algorithm that computesJ

Let s be the number of equivalence classes that contain a configuration with
n/2 contiguous 1’s. If a computable Boolean function can be computed in fewer
than n*/4 messages, then it has the same value on all these classes. This happens
with probability ~2’~“. There are 2”12 strings starting with n/2 ones; each equiva-
lence class contains at most n of these strings. Hence s 2 (2”“/n), and the bound
follows. Cl

6. Lower Bounds for Synchronous Rings

6.1 THE GENERAL LOWER BOUND TECHNIQUE. The synchronous algorithms
presented in this paper and the election algorithm of [7] exhibit a powerful feature

862 H. ATTIYA ET AL.

of synchronous systems, in which time can convey information. In Section 4 we
traded message arrival time for message content. Moreover, even the nonarrival of
a message was in itself informative. However, observe the following intuitive fact:
A cycle in which no message is received advances the computation only if there is
some other computation in which a message is received at this cycle. The lower
bound argument presented in this section uses this observation.

Consider the computations of an algorithm A running on two initial conligura-
tions RI and RZ. A cycle is active if some message is sent in at least one of the two
computations at this cycle. We reline Lemma 3.1 to apply to active cycles.

LEMMA 6.1. Let A be a synchronous algorithm running on two configurations
R, and RI. Let PI and P2 be two processors in R, and RZ, respectively, with the
same k-neighborhood. Then P, and P2 are in the same state after k active cycles of
the computations of A on the respective input configurations.

PROOF. A simple induction on k. Cl

As in the previous section we want to build a fooling pair with many symmetries.
Again we assume that we have two configurations, with two processors having the
same (large) neighborhood, that should reach different output states. However, we
cannot settle for only one symmetric configuration, as in the asynchronous case:
The computation may proceed, with few messages, on the asymmetric conligura-
tion, and processors will cheaply detect the symmetric configuration by noticing
that no messages are generated. (Think about the asynchronous lower bound and
the synchronous algorithm for AND.)

The definition of a fooling pair for the synchronous model is modified to ensure
that no neighborhood occurs infrequently in both configurations.

Definition. Two initial configurations RI and R2 of length n are an (Y, p fooling
pair for a synchronous algorithm A if the following conditions hold:

(6a) There exist two processors, P, in R, and P2 in Rs, such that P, and P2 have
the same a-neighborhood and the output of P, in the computation of A on
R, is different from the output of P2 in the computation of A on RZ.

(6b) The symmetry index function of the set of configurations R, , RZ is bounded
by p, that is, SZ(R,, RZ, k) 2 P(k) for any 0 5 k I (Y.

THEOREM 6.2. Let R, and R2 be an LX, ,t3 fooling pairfor a synchronous algorithm
A. Then A sends at least i C g=, P(k) messages on one of these two configurations.

PROOF. Let P, and P2 be the processors defined by property (6a). Let T be the
number of active cycles performed by the algorithm on the two configurations. If
T 5 (Y, then according to Lemma 6.1, P, and P2 are in the same state at the end of
the computation and output the same value; a contradiction. Thus T> (Y.

Let P be a processor that sends a message at the kth active cycle in one of
the two computations. By Lemma 6.1, any processor with the same (k - l)-
neighborhood sends a message too. However, by property (6b) such neighborhood
occurs at least /3(k - 1) times in configurations R, and R2. At least this number of
messages is sent in both computations at the kth active cycle. The total number of
messages sent in both computations is at least equal to C&, P(k). It follows that
at least i C&o /3(k) messages are sent in one of the two computations. 0

Computing on an Anonymous Ring 863

The two configurations of a fooling pair need not be distinct; a fooling pair may
be defined by two copies of one configuration R that fulfills (6b) (i.e., SZ(R, R, k)
= 2SZ(R, k) L /3(k)) and two distinct processors in that configuration that fulfill
(6a). Theorem 6.2 is still valid in such setting.

6.2 STRING CONSTRUCTION. Unlike the asynchronous case, the construction of
a synchronous fooling pair is a complicated task, and a special technique is required.
We build symmetric configurations by repeated applications of a word homo-
morphism.

The properties of languages obtained by repeated applications of word homo-
morphisms (DOL systems) have been studied by many authors (see [13-151). Our
results on the symmetry index function of such strings are most directly related to
the results in [6].

Let Z be a finite alphabet. Let h be a homomorphism from Z to Z*. We restrict
ourselves to the case 2: = (0, 1); however, the results can be generalized. We assume
that h fulfills the following two conditions:

(6~) Every word of length 2 occurs both in h’(O) and in h’(l), for some
constant c.

(6d) The homomorphism h is uniform; that is,] h(0) 1 =] h(1)] = d, with d L 2.

Note that if h is uniform then 1 hk(w) I = dk I w I.
We show that all strings w that are obtained by many repeated applications of h

contain the same (short) substrings, and that each (short enough) substring u occurs
e(1 w I/ 1 c 1) times in o, if it occurs at all. This is formally stated in the next
theorem.

THEOREM 6.3. Let h be a homomorphism that jiulftlls conditions (6~) and (6d).
Then there exist positive constants a and b (a = l/d’ and b = l/d”‘) such that the

following holds:

Zf c occurs cyclically in w = h k(p), and I (r (5 a I w I / I p 1, then (T occurs at least
blw’I/lal timesinanystringw’=hk(p’).

We first prove the claim for substrings of length 2.

LEMMA 6.4. Let h be a homomorphism that fulfills conditions (6~) and (6d).
Then any string of length 2 occurs at least dk-’ times in hk(0) and in hk(l), for
k 2 c.

PROOF. Let h”-‘(O) = cl . . . tn. Then n = dk-’ and h”(0) = hC(E, . . . en) =
h’(c,), . . . , h“(E,,). The claim follows since any string of length 2 occurs at least
once in each h’(t;). 0

In order to extend the lemma to strings of arbitrary length we prove that any
(short enough) string that occurs in h”(p) is obtained by repeated applications of h .
on a string of length at most 2.

LEMMA 6.5. Let h be a uniform homomorphism and let c be a string of length
I u 1 5 I w I/ I p I that occurs cyclically in w = hk(p). Then u is a substring of h’(a),
where I 7r I 5 2, and i = rlogd I u Il.

PROOF. Note that 1 w I/ 1 p] = dk; hence k 1 i. Since u occurs cyclically in hk(p),
it occurs (noncyclically) in hl‘(pp) = h’(hk-‘(pp)). Let a be a minimum length
substring of h “-‘(pp), such that u occurs in h’(r). Because 1 h’(0) 1 = 1 h’(I) I =
d’> Iul, 1~1 ~2. Cl

864 H. ATTIYA ET AL.

PROOF OF THEOREM 6.3. Assume that u occurs cyclically in w = h’(p) and that
1 g 1 ‘: 1 w l/(d” 1 p 1). According to the previous lemma u occurs in h’(r), where
17~1 I 2 and i = flogdlall. We have 1~1 I dk-‘; hence k - c - i 2 0. By
Lemma 6.4 r occurs at least dkmiec 1 p ’ 1 times in hk-‘(p ‘). Hence u occurs at
least dkmi-“(p’ 1 times in Zz’(/zk-‘(p’)) = w’. But dkvi-’ I p’ I 2 I o’ I/(d’+’ I u I).
Thus u occurs at least 1 w ’ (/(dC+’ 1 u 1) times in w ‘. 0

COROLLARY 6.6. Let pI and p2 be strings with I p1 I = I p2 I = s, and let Zi =
hk(pi), i = 1, 2, where h is a homomorphism that fulfills conditions (6~) and (6d).
Let f be a function such that f (I,) # f (Z,). Then any synchronous algorithm that
computes f on oriented rings of length n = sdk requires in the worst case

messages.

PROOF. Let R, and R2 be clockwise oriented rings with input configurations I,
and Z2, respectively. If A is an algorithm that computes 1; then the output of a
processor in R, is distinct from the output of a processor in R2 when A is run.
A k-neighborhood in Ri corresponds to a string of length 2k + 1 in Zi. Hence any
k-neighborhood that occurs in R, or in R2 occurs at least n/d’+‘(2k + 1) times
both in RI and in R2, whenever 2k + 1 5 n/sd’. This implies that RI and R2
are a fooling pair for A with 2a + 1 = n/sd” and P(k) = 2n/dc+‘(2k + 1). By
Theorem 6.2 algorithm A will send on one of these two configurations at least

messages. 0

6.3 L~WERBOUND EXAMPLES

6.3.1 Computing XUR. To apply Corollary 6.6 to XOR, we construct a
homomorphism h that fulfills conditions (6~) and (6d) so that the XOR function
obtains different values on hk(0) and on h “(1). Consider the following homo-
morphism:

h(0) + 011, h(1) + 100.

Any string of length 2 occurs in h2(0) and in h2(1). Note that hk(1) = h”(O) and
1 h “(0) 1 = 3 k = 1 h”(1) 1. The string h”(0) has an even number of l’s, whereas hk(1)
has an odd number of 1’s. Thus, XOR obtain different values on these two
configurations. This implies, by Corollary 6.6, that computing XOR requires at
least (n/54)ln(n/9) messages.

6.3.2 Orienting the Ring. Let h be the homomorphism defined by

h(0) + 011, h(1) + 001.

Any string of length 2 occurs in h2(0) and in h2(1). Let D = D(l), . . . , D(n) =
h “(0) be an orientation for a ring of odd length n = 3 k. We have h (0) = h(1) R and,
by induction, h k(O) = h k(1) R; that is, h “(0) is obtained from h k(1) by complementing
each bit and reversing the string. It follows that

hk(0) = h”-‘(O)h”-‘(l)h”-‘(1) = hk-‘(0)hk-‘(O)R hk-‘(0)R.

Computing on an Anonymous Ring 865

This implies that processor fn/61 (which is in the middle of the first third of the
ring) and processor [n/21 (which is in the middle of the second third of the ring)
have identical (In/61 - I)-neighborhoods in the ring defined by D, but opposite
orientations; their output in a computation that orients the ring is distinct.

Let u be a string of length 2k + 1 5 n/9 that occurs cyclically in D. By
Theorem 6.3, u occurs at least n/(27] G]) times in D. It is easy to show, using
Lemma 6.5, that GR also occurs in D and therefore occurs at least n/(27 1 D I)
times. Both strings define identical k-neighborhoods in D. Thus, each
k-neighborhood occurs at least 2n/(27(2k + 1)) times, whenever 2k + 1 5 n/9.
The ring with orientation D is a fooling pair for a synchronous orienting algorithm,
with 2a + 1 = n/9 and P(k) = 4n/(27(2k + 1)). Using Theorem 6.2, we get a lower
bound of

lc 4n >nlnn
2 Zk+,sn,q 27(2k + 1) - 2’7 9 ’

on the number of required messages.

6.3.3 Start Synchronization. When proving lower bound on synchronization,
an adversary controls the starting time of the processors. When a processor awakes,
it can send a message to its neighbor, and the neighbor then awakes; hence, an
adversary is allowed to schedule a processor to wake up at most 1 time cycle apart
from its neighbors.

With a (0, 1)-string w = E, , . . . , E,, we associate a starting configuration R, of
size n in the following way: A dummy processor 0 starts at cycle 0; If processor
i - 1 starts at cycle tieI, then processor i starts at cycle ti-1 + 1 if t; = 1, and at
cycle ti-, - 1 if ei = 0, for 1 I i 5 n. The resulting assignment of starting times is
valid for a ring provided that the starting cycle of the first and last processor differ
at most by 1.

Consider the previously defined homomorphism:

h(0) + 011, h(1) + 100.

Let m = 3 k and n = 4m. Let a0 = h”(0) and uI = h k(1). Note that h”(0) = hk(1).
Consider the following string:

w = uououI UI = hk(OOl 1).

We associate with w a starting configuration R,, as previously described. The
number of ones is not equal to the number of zeros in ao; hence t,, # 0. As
UI = a,,, the string uou~ul ul has equal number of ones and zeros; this implies
that t, = 0. Hence this is a legal scheduling.

Let A be a synchronization algorithm. We assume without loss of generality, that
the output of a processor is the number of cycles from its wakeup time. Processors
[m/21 and [3m/21 start at different cycles and hence must have distinct out-
puts. These processors have the same L m/2J-neighborhood. Each k-neighborhood
occurs at least 4m/27(2k + 1) times, whenever 2k + 1 5 m/9. This implies an
(n/54)ln(n/36) lower bound on the number of messages sent by A.

6.3.4 Random Synchronous Functions. In the previous sections we have seen
that some functions, such as AND, can be computed with linear number of
messages, whereas other functions, like XOR, have message complexity of
0(n log n) in the worst case. It turns out that the behavior of XOR is typical

866 H. ATTIYA ET AL.

of Boolean functions: “almost all” Boolean functions have message complexity
0(n log n).

THEOREM 6.7. Let n = 22k. The probability that a random computable
Boolean function on n variables can be computed on a ring of size n in less than
(n/64)ln(n/64) messages is bounded by

2 I -2”T/n

PROOF. Let h the homomorphism defined by

h(0) + 01, h(1) + 10.

Each string of length 2 occurs in h3(0) and h 3(1). Let u1 and u2 be strings of length
2” = &, and let wi = hk(aj), i = 1, 2. According to Corollary 6.6, iff(o,) #f(oz),
then at least

n ln n = n1,n
32 84 64 64

messages are needed to compute f: There are 2 G distinct strings of length &;
hence 2& distinct strings of length y1 are obtained by k applications of h. A
computable Boolean function can be computed in fewer messages than the above
bound only if it obtains the same value on all these strings. Using the same
argument as in Theorem 5.4 we find that this occurs with probability at most
2 I-2&/;/n

. 0

7. Lower Bounds for Arbitrary Ring Size
The lower bounds of the previous section are valid only for a sparse set of values
n. There is no simple way of extending these results to arbitrary n: Adding further
processors to a “good” configuration may destroy symmetry and thereby invalidate
the lower bound argument. In this section we give two methods for building strings
of arbitrary length with many repetitions of substrings. The first method is suitable
for the XOR problem; the second, which is an extension of ideas from [7], is
suitable for the orientation and start synchronization problems.

7.1 NONUNIFORM HOMOMORPHISMS. We use the following notation: Let u,
v E [w”. Then u > v if strict inequality holds in each coefficient, that is, ui > ui
fori= 1, n; u 2 v if ui L ui, for each i. The vector u is positive if u > 0, that
is,u,>Ofori= 1, n; it is nonnegative if u L 0. Similarly, a matrix is
positive(nonnegative) if all its coefficients are positive (nonnegative). The size of a
positive vector u is defined to be the sum of its coefficients; this is equal to its 1,
norm]u] =Ci]ui].

We associate with the string o its characteristic vector

a x0 = 0 b ’

where a is the number of zeros in o, and b is the number of ones. xw is a nonnegative
vector, and] xw] =] o I.

The homomorphism h is associated with the characteristic matrix

Ah = (Xh(O) Xhd

We have the following basic relation: If u = h(w), then

xv = Ah - xw.

Computing on an Anonymous Ring 867

Conversely, if u = Av, where u and v are nonnegative integer vectors and A is a
nonnegative integer matrix, then we can define strings w and u and a homomorph-
ism h such that A = A,,, u = xc, v = xw, and u = h(o). Thus we can relate the
behavior of iterated string homomorphisms to the behavior of iterated linear
mappings.

We intend to build a string of arbitrary size n that is obtained by D(log n) iterated
applications of a homomorphism, that is, build a nonnegative integer vector v of
size n such that v = A%, where k = D(log n) and u is integer and nonnegative. We
do this in the reverse: We find conditions on A so that A-’ maps integer vectors
into integer vectors; and we find conditions on A and II, so that Aeku is positive
after “many” (Q(log 1 u 1)) applications of A-‘.

These goals cannot be achieved with the matrix of a uniform homomorphism.
It turns out, however, that nonuniform homomorphisms that correspond to
positive nonsingular matrices are quasi-uniform; a homomorphism h is quasi-
uniform if there exists positive constants p, cl, and c2 such that

~1~’ I) hk(E) 1 % czCLk, (W
for any k, and t = 0, 1. This is sufficient to prove that substrings of length k occur
Q(n/k) times, if they occur at all.

LEMMA 7.1. Let A be a nonsingular matrix with integer positive coeficients.
Then

(i) The matrix A has two real eigenvalues P and Y such that CL > 1, and P > I u I.
(ii) If u is an eigenvector with eigenvalue t.~, then either u or -u are positive.

(iii) There exist positive constants cl, c2 such that

c,pklvI I lAkvl 5 c2pk Iv1

for any positive vector v.

PROOF. Let

The values of P and v can be found by computing the characteristic roots of A.
We have

a + d + J(a - d)2 + 4bc
CL, lJ = 2 3 (7b)

which implies (i).
If(:) is an eigenvector of A with eigenvalue P, then

(a - p)r + cs = 0 and br + (d - P)S = 0.

We get from eq. (7b) that P > a and P > d. Thus r > 0 iff s > 0, which implies (ii).
Let u = (ii;) be a positive eigenvector with eigenvalue CL. Let v = (Z;) be an

arbitrary positive vector, and let 1 v 1 = u1 + u2 = n. Then

n
V5

min(w, 242)
U.

As A is positive, it follows that

0 < Akv 5 n
min(ul, u2)

Aku = n
min(w, 242)

Pk~

868 H. ATTIYA ET AL.

so that

I

-

Conversely,

It follows that

A”v 2
max(,“,, uZ) Ak-‘” = max(u”,, u2) “-‘“’

and

jA”vI 2 ‘“’
max(w, a)

pk-‘n.

This proves (iii). 0

We assume henceforth that h is a homomorphism that fulfills conditions (7a)
and (6~); that is, h is quasi-uniform and any string of length 2 occurs in h’(0) and
in h”(l), for some c. The theorems that were proved for uniform homomorphisms
are essentially valid when uniformity is replaced by quasi-uniformity. We state the
claims and leave the simple modifications in the corresponding proofs to the reader.

LEMMA 7.2. Any string ?r of length 2 occurs at least cIpkPC times in hk(0) and
in h”(l),fir k 2 c.

LEMMA 7.3. Zf c is a string of length 1 (T 1 5 c]t.~~ that occurs cyclically in hk(p),
then u occurs in h’(r), where 1~ 1 I 2 and i = rlog,(1 u I/c,)l.

THEOREM 7.4. Let a = cI/(c2pc) and b = c:/(c2pc+‘). Then the following holds.
Zf u is a string of length 1 u 1 5 a 1 w l/l p 1 that occurs cyclically in w = hk(p), then
u occurs at least b 1 w ’ l/l (T 1 times in any string w ’ = hk(p ‘).

Let A be a positive, nonsingular 2 x 2 matrix. Let u be a positive eigenvector of
A with eigenvalue p > 1 such that 1 u 1 = n. Then Aeku is positive too for arbitrary
k. Assume 1 det(A) 1 = 1. Then A-’ has integer coefficients. If v has integer
coefficients, then A-% has integer coeflicients too. However, we cannot have a
vector u that both has integer coefficients and is an eigenvector of A. Nevertheless,
by choosing u to be a vector of size 1 u 1 = n, with integer coefficients, that is a
close approximation to an eigenvector of A, we can guarantee that Aeku is still
positive for large enough k. Thus we can build a positive vector of arbitrary size n
from a positive vector of size O(&) by repeated applications of A. The validity of
this construction is proved in the next theorem.

THEOREM 7.5. Let A be a 2 x 2 matrix with positive integer coefficients such
that 1 det(A) 1 = 1. Let w. be a positive eigenvector of A with eigenvalue p > 1 such
that 1 w. 1 = 1. Then there exist a constant c > 0 such that the following holds:

Zf u is a positive vector with 1 u 1 = n and 1 u - nwo 1 5 a, then there exists a k
such that v = A-“” is a positive vector and 1 v 1 5 c&&.

PROOF. Let A = det(A), with 1 A 1 = 1, and let p and v = A/p be the eigenvalues
of A, with P > 1. Let wI be a second eigenvector of A, independent of wo, such

Computing on an Anonymous Ring 869

that 1 wI 1 = 1. The eigenvalues of A-’ are p-’ and v-‘, and 0 < p-’ < 1 v-’ 1 = P.
w. and w, are eigenvectors of A-‘, with eigenvalues P-’ and v-‘, respectively.

There is a constant c’ (which depends only on w. and wl) such that for any
vectorw,ifw:=rwo+sw,,then 1~1 + IsI <c’IwI.Itfollowsthat

1 A-/‘w I = I rpdkwo + svWkw, I 5 c’pk I w I.

We have u = nwo + 6, where I 6 I 5 a. Thus

APku = nA-“w. + APka = npekwo + A-“6 1 npL-kwo - I AekS 1 ’
0 1

z npWkwo - c’pkI 6 I 1
0

2 npFk w. - c’pka 1
1 0 1 *

Thus, if w. = (/:), then v = Aeku is positive for

By inequality (7a)

n= lul LcIpklvI Z(~~~)~lVl.

The claim follows. Cl

Note that if

is the characteristic matrix of a uniform homomorphism, then a + b = c + d,
which implies (for positive integer matrices) that I det(A) (# 1. Thus, the last
theorem does not apply to uniform homomorphisms.

7.1.1 Computing XOR. We now apply the last theorems to XOR. Consider
the following homomorphism:

h(0) + 011, h(1) * 10.

Any substring of length 2 occurs in h’(O) and in h3(l), and det(Ah) = - 1. Let w
be a positive eigenvector of Al, of weight n, with eigenvalue P > 1. Let wl = (z)
be an integer vector of weight n nearest to w (in 1, norm); let w2 = ($;:I. Then
I w - wi I < 3, for i = 1,2, and both wI and w2 are positive. Let I, and Z2 be binary
strings with characteristic vectors wI and w2, respectively. I, and Z2 are strings of
length n, and the number of ones in I, differs by 1 from the number of ones in Z2;
XOR(Z,) # XOR(Z2). By Theorem 7.5, I, and Z2 can be obtained by repeated
applications of h on strings of length O(h). By Theorem 7.4, there exists positive
constants a and b such that every string u of length sa&z that occurs in I, or in Z2
occurs in I, and in Z2 at least bn/l u I times. It follows that every algorithm for
XOR sends at least

c bn
2k+lsaJ;; 2k = ‘@ log n,

messages in the worst case.

-

-

I

I

I

=

870 H. ATTIYA ET AL.

7.2 Two STAGE STRING CONSTRUCTION. In order to prove an O(n log n) lower
bound for orientation and start synchronization, we need to use another method
based on ideas of [7]. Strings are built in two stages. We first use a uniform
homomorphism h that fulfills conditions (6~) and (6d) to build a string w’ = P(O).
k is chosen such that 1 w ’ 1 = e(A). Next, each letter e in w ’ is replaced by a string
H(E) of length e(A), thus obtaining a string w = H(w’) of length n. Substrings
of length r’ occur !2(&/r’) times in w ‘. This implies that substrings of length
r =r’& occur a(&/~‘) = Q(n/r) times in w. The precise result is stated in the
next lemma.

LEMMA 7.6. Let h be a uniform homomorphism thatfuljZ1.s conditions (6~) and
(6d). Let H be an arbitrary homomorphism with

m 5 IWO)I, IH(l
Let u be a string that occurs cyclically in w = H(hk(0)) such that 1 (r 1 5
m(dk-’ - 2). Then c occurs in w at least

dk-c- I m

-
-
-

dk-C- 1 dk-C-1,

0

COROLLARY 7.7. Let h be a homomorphism that fuljZls conditions (6~) and
(6d). Let H be an arbitrary homomorphism with

m 5 H(O), H(1) I Am.

Let

IuI+2m

times.

PROOF. Let c ’ be the shortest cyclic substring of hk(0) such that u occurs in
H(CJ ‘). Then

so that

la’/ 5 dk-‘.

By Theorem 6.3 the number of occurrences of u’ in hk(0) is at least

1 a=- Ad” 1) b=i
3Xd”+’ .

Then any string u of length m 5 I u I 5 a (w 1 that occurs cyclically in w = H(hk(0))
occurs at least b 1 w l/l u I times in w.

We need to show that every string of length n can be obtained by a suitable
choice of the lengths of H(0) and H(1). This is done with the help of the following
lemma.

LEMMA 7.8. Let p and q be two positive integers such that (p, q) = 1. Then for
every n there exist integers r, s such that

rp + sq = n (7c)

Computing on an Anonymous Ring

and

871

Ir--sI sp+. (74

PROOF. The existence of numbers r, s that fulfill (7~) follows from elementary
number theory. Let r, s fulfill (7c), and assume that I r - s I > (p + q)/2. Assume
without loss of generality that r > S. The pair r’ = r - q and s’ = s + p also fulfills
(7c), and 1 r’ - s’ I < 1 r - s (. Thus, if we pick a pair r, s that fulfills (7~) and
minimizes the difference r - S, the pair satisfies (7d). 0

7.2.1 Orientation. Let w = cl - . . tn be a binary string with an even number
of ones. We associate with o two ring orientations D” and Db, defined by 09 =
e,@ *** Cl3 c;, and Df = 09. Both ring orientations fulfill the recurrence relation

D, = D;-, 63 ti, i=2 , . . . , n.

Sincee,@ . . . CT3 E,, = 0, we also have

D, = D,,@E,.

Also note that

D;-, = D; G3 cj.

Hence the values of D; and ti--ktl, . . . , Cj+k uniquely determine the k-
neighborhood of processor i in configuration D. It follows that each substring u of
length 2k in w is associated with two (possibly distinct) k-neighborhoods in D” and
Db; each cyclic occurrence of u in o contributes one occurrence of one these two
neighborhoods in D” and one occurrence of the second one in Db.

If

then

D; = Dj and G+s = EJ+I--s, s= -k+ 1, k,

D It.7 = 4-s, s = -k 3 **-> k.

This implies that processor i and processor j have reverse orientations but
identical k-neighborhoods in a ring with orientation D. Taking j = i - 1, we find
that processors i and i - 1 have distinct orientations and identical k-neighborhoods
in D” and Db when t, = 1 and Ei-k, . . . , Cj+k is a palindrome; a synchronous
orientation algorithm yields distinct outputs at i and i - 1 when run on this
configuration.

Assume that w has the following properties:

(1) Each string u of length I o I I an that occurs cyclically in w occurs at least
h/l u 1 times in w.

(2) w contains a palindrome with one at its center of length at least an.

Then SZ(D“, Db, k) z bn/(2k + l), for 2k + 1 5 an. Assume that the palindrome
in w is centered at location i. Then the four L(an - 1)/2Jneighborhoods of
processors i and i - 1 in D” and Db are all identical; processors i and i - 1 have
distinct outputs in the computation on D” and in the computation on Dh. Hence,
there is a processor P, in D” and a processor P2 in Db such that P, and P2 have the
same L(an - 1)/2J-neighborhoods in their respective configuration, but different
outputs. It follows that D” and Db are a fooling pair for any orientation algorithm,

872 H. ATTIYA ET AL.

with 2a + 1 = ay1 and P(k) = bn/(2k + 1); the orientation algorithm uses Q(n log n)
messages on at least one of these two configurations.

We proceed now to build a string w of arbitrary odd length n with the required
properties.

Let h be the homomorphism defined by

h(0) + 00100, h(1) + 11011.

Each string of length 2 occurs in h2(0) and in h*(l), so that h fulfills conditions
(6~) and (6d); h(0) and h(1) are both palindromes and, by induction, hk(0) and
hk(1) are palindromes. Let

o’ = h*“(O),

where

Let p be the number of zeros and q be the number of ones in 0’. One can show by
induction on k that

p = 52k -I- 32k 52k - 32k

2 ’ 4= 2 *

It follows that p is odd, q is even, (p, q) = 1, and h/l12 < q < p < &z/4. By
Lemma 7.8 we have integers r, s such that

p+q 52k JL
rp + sq = rl, and Ir-SI 5-=

2 2-T.

It follows that

max(r, s) 5 A +
&I

‘+ < 56.25&i,

and

min(r, s) I n
2P

- p+ > 1.754X.

If s is even, we replace s by s + p, which is odd, and r by r - q. We still have
rp + sq = n and 56.5& > r, s > 1.5&. Define

and let

H(O) = 0’ and H(1) = l”,

w = H(o’) = H(h*“(O)).

Then w has length ~1. By Corollary 7.7 any string g of length aI & 5 1 G 1 5 a2n
that occurs in w occurs at least b 1 o l/l u 1 times, for some positive constants aI,
a2, and b. We also have

w = H(h2k-‘(0))H(h2k-‘(O))H(h2k-‘(l))H(h2k-‘(0))H(h2k-‘(0)).

The string H(h2k-‘(0)) is a palindrome of length > n/6 with 1 at its center. Hence
o has all the required properties.

Computing on an Anonymous Ring 873

7.2.2 Start Synchronization. We prove an Q(n log n) lower bound for start
synchronization on rings of size n = 2m, for arbitrary m. We use the same
homomorphism h as in Section 6.3:

h(0) + 011, h(1) + 100.

Let

K= w ’ = h’“(O), and xw’ =

Then p = I3’“/21, q = L32k/2J, and Ip - q] = 1. We can, by Lemma 7.8, pick r.
and SO so that pro + qso = m = n/2 and] r. - so 1 I (p + q)/2 = 32k/2. Let rl =
r. + q and s, = so - p. Then pr, + qsl = m = n/2, &r/45 5 p, q 5 &/4, and
& 5 ro, rI, so, sI I 23&.

Let H(0) = 0’01~ and H(1) = O”ol .‘I. Let w = H(o’). The adversary associates
with w = tl, E,, a starting configuration Zw, as in Section 6.3: Processor i is
awakened one cycle later than processor i - 1 if Ei = 1 and one cycle earlier
if ti = 0. We have

xw =
r0 SO p (JO rI sI 4 *

Thus w contains m zeros and m ones, so that the starting configuration Z, is legal.
w can be rewritten as

H(h2k-‘(0))H(h2k-‘(1))H(h2k-‘(1)).

It is easy to check that the number of zeros in ZZ(h’l’-‘(1)) is not equal to the
number of ones in this string. The adversary forces any correct algorithm for start
synchronization to perform at least] H(h2/‘-‘(1)) l/2 = Q(n) active cycles on Z,.
From Corollary 7.7 it follows that there exist positive constants al, a2 and b such
that any string u of length

a,&5 lu.1 5 a2n

occurs in w at least bn/l u] times. The last two claims imply an Q(n log n) lower
bound on the number of messages sent.

8. Discussion and Conclusion
The results of this paper, together with the new results of Moran and Warmuth
[lo] and of Attiya and Mansour [2], characterize the possible complexity functions
associated with distributed computations in a ring. “Most” Boolean functions have
message and bit complexity e(n’) in the asynchronous model. Any nonconstant
function has bit complexity Q(n log n) [lo]. For any “nice” function fin the range
log n sf(n) 5 n one can define a family of Boolean functions with bit complexity
W.f (n)).

In the synchronous model “most” problems have message and bit complexity
O(n log n); it is possible to exhibit problems with complexity functions anywhere
in the range n to n log n [2].

The input distribution algorithm we gave for the synchronous model takes
0(n log n) bit messages and exponential time. If run synchronously, the input
collection algorithm that was given for the asynchronous model uses e(n’) bit

874 H. ATTIYA ET AL.

messages and linear time. This exhibits a trade-off between bits and time in the
synchronous model. The first algorithm uses a minimum number of bit messages,
whereas the second uses a minimum amount of time. It is easy to show, by
comparing the number of distinct configurations with the number of distinct
computations, that the time t and the number of bit messages m used by an input
distribution algorithm are related by t > (m/n)2’“““, for some positive constant c.
The synchronous input collection algorithm given in this paper does not achieve
this time bound.

The Q(n log n) lower bounds on synchronous computations for XOR, orienta-
tion, and start synchronization can be extended to labeled rings, where each
processor has a distinct label, under the same conditions as in [7]: the domain of
labels has to be large enough. Using Ramsey’s theorem, one reduces general
distributed algorithms to algorithms that depend only on input values, the relative
orientations, and the relative order of the labels; one next defines “label-producing
homomorphisms” that produce strings with symmetric configurations, in terms
of both the input values and the relative order of labels. The full details are given
in [3]. -

The lower bounds in the synchronous and asynchronous model are valid even
if not all processors are required to have an output. The lower bounds for AND in
the asynchronous model and XOR in the synchronous model are valid even if it
is only required that a nonempty set of processors output the correct answer,
whereas the remaining processors output a special “don’t know” symbol. The lower
bounds for orientation is valid even if it is only required that a nonempty set of
processors achieve a consistent orientation, whereas the remaining processors
output a “don’t know” symbol. The lower bound for start synchronization isvalid
even if it is only required that a nonempty subset of the processors output a one
simultaneously, whereas the remaining processors output zero, not necessarily
simultaneously.

The construction of strings with many symmetries used tools from the theory of
DOL languages [131. The homomorphism applied in the lower bound proofs had
to be repetitive in the sense that, if a subword u occurs in a word w defined by
iterating the homomorphism, then c has to occur Q(] w 1 /I u]) times in that word.
The conditions we placed on h ensured that h would be repetitive, but these
conditions can be weakened and one might be able to give tight conditions for
repetitiveness of a homomorphism. Note that, since every subword of w occurs
with high frequency, there can be at most O(k) different subwords of length k in
o, for any length k. Thus, our notion of repetitiveness is related to the notion of
subword complexity of a language as used in [6], which is the number of different
subwords of length k occurring in the words of the language.

We presented two methods for building strings of arbitrary length ~1: The first
uses a nonuniform homomorphism; it generates strings that are repetitive “in the
small”: Substrings u of length] u] I & occur Q(n/] u 1) times. The second method
uses two homomorphisms; it generates strings that are repetitive “in the large”:
Substrings c of length] u] E- & occur Q(n/] u I) times. The second method is a
generalization of the construction given in [7]. It is easier to use when one needs
only one string of a given length; we use it for the orientation and start synchro-
nization problems. When one needs to build several similar repetitive strings, the
second method cannot be used. Thus, the first method is needed for XOR. Both
methods illustrate the power of the use of iterated homomorphisms to create strings
with many repeated substrings.

Computing on an Anonymous Ring 875

ACKNOWLEDGMENTS. Our work benefited from discussions with many persons,
in particular, Gerhard Buntrock, Danny Dolev, Nati Linial, Shomo Moran, Ira
Pohl, and Eli Shamir.

REFERENCES

1. ANGLUIN, D. Local and global properties in networks of processors. In Proceedings of the 12th
Annual ACM Symposium on Theory of Computing (Los Angeles, Calif., Apr. 28-30). ACM, New
York, 1980, pp. 82-93.

2. A~IYA, H., AND MANSOUR, Y. Language complexity on the synchronous anonymous ring.
Theoret. Comput. Sci. 53 (1987), 169-185.

3. ATTIYA, H., SNIR, M., AND WARMUTH, M. Computing on an anonymous ring. Tech. Rep. UCSC-
CRL-85-3. Computer Research Laboratory, Univ. of California, Santa Cruz, Santa Cruz, Calif.,
Nov. 1985.

4. BURNS, J. E. A formal model for message passing systems. Tech. Rep. 91, Computer Science
Dept., Indiana Univ., Bloomington, Ind., 1980.

5. DOLEV, D., KLAWE, M., AND RODEH, M. An O(n log n) unidirectional distributed algorithm for
extrema-finding in a circle. J. Algorithms 3, 3 (Sept. 1982), 245-260.

6. EHRENFEUCHT, A., LEE, K. P., AND ROZENBERG, G. Subword complexity of various classes of
deterministic developmental languages without interactions. Theoret. Comput. Sci. 1 (1975),
59-75.

7. FREDERICKSON, G. N., AND LYNCH, N. A. Electing a leader in a synchronous ring. J. ACM 34, 1
(Jan. 1987), 98-l 15.

8. HIRSHBERG, D. S., AND SINCLAIR, J. B. Decentralized extrema-finding in circular configurations
of processors. Commun. ACM 23, 11 (Nov. 1980), 627-628.

9. ITAI, A. The circular extrema problem with nondistinct numbers. Unpublished manuscript.
10. MORAN, S., AND WARMUTH, M. Gap theorems for distributed computations. Tech. Rep. UCSC-

CRL-86-1, Computer Research Laboratory, Univ. of California, Santa Cruz, Santa Cruz, Calif.,
Jan. 1986.

11. PACHL, J., KORACH, E., AND ROTEM, D. Lower bounds for distributed maximum-finding algo-
rithms. J. ACM 31,4 (Oct. 1984), 905-9 18.

12. PETERSON, G. L. An O(n lg n) unidirectional algorithm for the circular extrema problem. Trans.
Program. Lang. Syst. 4, 4 (1982), 758-762.

13. ROZENBERG, G., AND SALOMAA, A. The Mathematical Theory of L Systems. Academic Press,
Orlando, Fla., 1980.

14. THUE, A. ijber Unendliche Zeichenreihen. In Videnskapsselskapets Skrifter. I. Mat.-naturv.
Klasse. Kristiania, Norway, 1906, pp. l-20.

15. THUE, A. iiber die Gegenseitige Lage Gleicher Teile Gewisser Zeichenreihen. Videnskaps-
selskapets Skrtjier. I. Mat.-naturv. Klasse. Kristiania, Norway, 19 12, pp. l-67.

RECEIVED AUGUST 1985; REVISED FEBRUARY 1987 AND JANUARY 1988; ACCEPTED JANUARY 1988

Journal of the Association for Computing Machinery, Vol. 35, No. 4. Oct. 1988.

