[G
. Acta Informatica 27, 81-95 (1989) lm@%

© Springer-Verlag 1989

Scattered Versus Context-Sensitive Rewriting

Jakob Gonczarowski! and Manfred K. Warmuth 2%

! Department of Computer Science, Hebrew University, Jerusalem 91904, Israei
2 Department of Computer and Information Sciences, University of California at Santa Cruz,
Applied Sciences Building, Santa Cruz, CA 95064, USA

Summary. We study the relationship between scattered and context-sensitive
rewriting. We prove that an extended version of scattered grammars produces
exactly the context-sensitive languages. Also unordered scattered context
languages are a proper subset of scattered context languages, and unordered
scattered rewriting with erasing does not generate all scattered context (and
thus not all context-sensitive) languages.

1. Introduction

One of the major topics of Formal Language Theory is the study of the genera-
tive power of rewriting mechanisms. The context-free mechanism, where one
rewrites a single symbol at each rewriting step, has been extended in several
ways. One such extension rewrites a given consecutive subword into another
. string; examples are context-sensitive and type-0 grammars. For context-sensi-

“tive grammars, one requires the replacement string to be at least as long as
the string to be rewritten. An alternate way requires that the word to be rewritten
is a scattered subword of the sentential form. Scattered context grammars, intro-
duced in [4], are of this kind. There, one requires each symbol in the scattered
word to be rewritten into at least one new symbol. A general study of adjacent
versus nonadjacent rewriting was performed in [11]. The generative power and
the computational complexity of languages where a fixed (but arbitrary) number
of symbols is rewritten at each derivation step, was investigated in [5-7] and
[2]. Both the cases have been considered where the symbols to be rewritten
are either required to be adjacent or allowed to be scattered. In both cases
there is no restriction to the identity of the symbols to be rewritten; there
is only a restriction on the number of symbols to be rewritten simultaneously

* Part of this research was done while this author visited the Hebrew University and was supported -
by the Leibniz Center

Offprint requests to: J. Gonczarowski

82 J. Gonczarowski and M.K. Warmuth

(this is termed “symbol-freeness” in [11]). In [3], a particular unordered scat-
tered language was shown to be NP-complete. .

It is known that each scattered context language 1s € ;
inverse containment is, however, a major open problerq. In Sect. 3, we atteltn;;t
to shed light on this problem by showing that a relaxatlog of scatt(?red con et 1
grammars is equivalent to the context-sensitive ones; we just require the to af
lengths of the replacement strings to be at least as large as tl}e number tc:
symbols to be rewritten (note that some symbols may be rewritten into the
empty word). Other variations of scattered context grammars were already
shown to generate all contex

rammars with appearance checking [1]. .
® In Sect. 4, we show that the non-uniform membership problem for unordered

ontext-sensitive. The

scattered context languages (see, e.g., [13]) is in NP (we recall that no erasing

productions are allowed). It follows.that the problem is NP-complete as it was
shown in [3] that there exists a particular unordered scattered context language
for which non-uniform membership is NP-complete.

We also show that unary unordered scattered context languages are in P
by simple dynamic programming. Then we prove the decidability of the member-
ship and emptiness problems for unordered scattered context languages with
erasing, via a reduction to vector addition system reachability [9, 12]. As a
consequence, we solve two open problems (see, e.g., [13]) for the study of rewrit-
ing mechanism: (i) there are context-sensitive languages which are not unordered
scattered context with erasing, (i) there exist scattered context languages which
are not unordered scattered with erasing.

The paper is concluded by a summary.

2. Basic Notions and Definitions

We assume the reader to be familiar with basic Formal Language Theory, as,
€.g., in the scope of [8] and [13]. Some notions need, perhaps, an additional
explanation. An alphabet X is a finite set of symbols. A word w is a finite
sequence of symbols, and {w| stands for its length. The empty word is denoted
by 4. A language is a set of words. The reflexive and transitive closure of a
language X is denoted by the Kleene Star and is written as X*; X* denotes
X-X* We will identify a singleton set {a} with its element a whenever this
does not cause confusion. The cardinality of a set X is denoted by # X.

Definition. A scattered context (SC) grammar G is a quadruple (X, P, S, 4>,
where

— 2 is its finite alphabet,

— A< 2 is its terminal alphabet,

— Se2\ A4 is its start symbol,

— P is a finite set of productions of the form

(Ala AR Ak)_’(yb LR yk)’
where A;e 2\ 4 and y;e2*, and | y;| = 1,for 1Zi<k.

G is an extended scattered context (ESC) grammar if the latter constraint is
relaxed to |y, ...y |=k. O

t-sensitive languages, such as scattered context

T e e - - —— - ————

—— e ———

.

—

‘Scattered Versus Context-Sensitive Rewriting - 83

Definition. A context-sensitive (CS) grammar is a quadruple (X, S, A, 4), where
2, S, and 4 are as above, and P is a set of productions of the form x—y,
where x, yeZ* and |y|=|x|. O. ‘

We chose this particular way of defining CS grammars to keep our notation
as simple as possible. It is easily seen that this definition of CS languages is
equivalent to the other standard ones (see, e.g. [13]).

Definition. Derivations in a grammar G are sequences of words, such that each

word is obtained from the previous one by the application of one production

from the grammar:

— A CS derivation may rewrite a word zxz' into a word zyz' if x>y is a
production.

— An SC or ESC derivation may rewrite a word zq 4,2, A,25...2,—1 Ax 2y
into zo ¥, 21 Y222+ Zk— 1 Y2k if (445 ---s Ay = (V15 ..., ¥i) is a production.

- If D is a'derivation of a word yeZX* from a word xeX* in the grammar G,

. .. E 3 i
then we write x= Y.
The language of a grammar G=(Z, P, S, 4) is the set

L(G)={we4*: S%w}.

A sentential form (of G) is a word y, such that S % y. O

For a given grammar class G, the uniform membership problem is the following
problem:

Input: A word w and a grammar GeG.
Question: Is weL(G)?

The non-uniform membership problem is defined similarly. It is, however, required
that the grammar G (and thus also L(G)) is fixed (i.e. not part of the input).

Definition. A vector addition system (VAS) is a pair V={Q, s), where §eNj
for some n>0, and Q is a finite set of vectors in Z". A vector reZ" is reachable
(by V) if there is a sequence of vectors, g, .., §.€Q, such that

-

r=§+ql+...+qm,
and
§+q,+...+4;eNg, forall 1Sism. [

84 J. Gonczarowski and M.K. Warmuth

3. The Equality of ESC and CS
| ontext languages

In this section we prove the equality of the extended scattered €

and the context-sensitive languages.

itive if and only if it is extended scattered
] text-sensitive if an
1. A language L is con

Theorem

context.

is also CS, we observe that the lengths
ry ESC language 1s a ,
Proof. To prove that eve

b . i ESC derivation are nondecreasing. Hence, the
of the senteml:,l,efrc;rt?j vlvrér?inis an upper bound on the work space. It follows
l;n%t::soé tll::,gguages can be recognized in linear space, and are thus CS [10].
;t arlemains to show that every CS language is also ESC.

Let G=(Z,B S, 4) be a CS grammar. To prove that L(G) is also ESC,
we will simulate a derivation in G as follows. Each step will effect a cyclic
shift of the sentential form until the symbol(s) to be rewritten appear at the
left end of the shifted sentential form. Then, the symbols are rewritten by erasing
them from the left and putting the right-hand sides of the production at the
right end of the shifted sentential form. The step is completed by cyclically
shifting in the same direction, until the sentential form appears in its natural
order. - '

In the construction we use three markers; the left marker L precedes the
leftmost position at which a production can be applied; the middle marker M
follows the rightmost such position, and the right marker R marks the right
end of the whole sentential form. (Later on, we shall see that we can eliminate
the markers). Every sentential form in the ESC derivation will thus be of the
form

LzMxR,

where xz is a sentential form of the CS derivation that we want to simulate. o

The left marker will guarantee that always the leftmost symbol is rewritten.
Otherwise, some symbols will occur to the left of L; but the productions guaran-
tee that those symbols will never be rewritten.

To avoid premature termination of the rewriting process in the middle of
a cyclic shift, we use a new alphabet, ’; a sential form can only be rewritten
into symbols from X if there are no symbols between M and R, ie. if the
sentential form is not presently shifted. At this stage, to avoid further applications
of “shifting” or “simulating” productions, L is replaced by E. The detailed
construction follows. ,

Let 2'={A4": AeX} and {S,E, L, M, R} be alphabets of new symbols. If
xeX2*, then we denote by x’ the word in 2'* obtained by replacing each AeX
by A'. Let

H={ZuZ'U{S,L,M,R}, P, 5, 4U{E, M, R}>

be the ESC grammar where P’ consists of the productions described below.

. Scattered Versus Context-Sensitive Rewriting _ 85

For each production S — y in G, there is an initial production
(S) - (Ly MR).

We now simulate the application of a CS production A4,...4,—y (where
Ay, ..., A eX) to a sentential form x A, ... A, z of G. This sentential form is repre-
sented as '

Lx' A, ... A,zZ MR

in H. We first shift the sentential form circularly to its left, using the shifting
productions

(L, A, M, R)—>(4, L, M, A’'R), forall A'eX’,
obtaining the sentential form '
| LA, A7 Mx'R.

Then we api)ly the s.imulating prodﬁction B
(L, Ay, ..., Ay, M,R)—>(4, ..., 4, L, M, y'R),
obtaining the sentential form
Lz’ Mx'y'R.

Note that |y’| =k, because of the constraint on CS productions. It follows that
the simulating productions also satisfy the ESC constraints. Then the sentential
form is shifted on, using the shifting productions, until we obtain the sentential
form

LMx'y'Z R.

To complete the simulation of the CS derivation step, we “shift” the markers,
using the marker production

(L, M, R)— (4, L, MR).
This produces |
Lx'yzZM R,

and we can now simulate the next CS production or terminate the simulation
of CS derivation steps. - _

A derivation in the grammar H terminates by replacing each symbol A’
by the corresponding symbol 4; this is achieved by first entering the termination
phase, using the termination phase production

(L) —(E),

86 | J. Gonczarowski and M.K. Warmuth ‘

and then the renaming productions
(E, A’, M)—> (A, AE, M) forall Ael.
‘P’ will consist of all the productions defined above. It follows easily from
the construction of H that
is exactly one simulating pro

grarIx:I(r)nratrl.le converse containment we shall prove by induction that if Lz’ Mx'R

. is a sentential form of H, then xz is a sentential form of G. This is certainly
true after the first derivation step. For the induction we distinguish between
the application of shifting, marker, and simulating productions. Assume that
we apply a shifting production to the indicated occurrence of 4’ in the sentential
form

duction for each original production from the CS

Lz A'z, Mx'R.
‘We obtain the sentential form
zy Lz, Mx' A'R.

If z} #+ 4, then the sentential form, and in particular z);, can never be rewritten

to a terminal string, because L (and, later, E) always appears as the leftmost -

component in a production. Therefore, to successfully derive words in L(H),
shifting productions can only be applied when z;, = 4, i.e. we obtain from

LA'Z Mx'R
the sentential form
Lz Mx'A'R,

and the induction hypothesis holds for shifting productio'n's.i
Assume that the marker production is applied to the sentential form

Lz Mx'R.
Then we obtain
zZLxMR,

and z' must be 1 for the same reasons as above. The induction hypothesis
is thus trivially preserved by an application of the marker production.
Simulating productions have to rewrite a contiguous subword immediately
following L, for the same reasons. Moreover, the right hand side of the produc-
tion is inserted to the left of R. Hence, the induction hypothesis holds also
for simulating productions, which completes the induction.
Assume that we have obtained the sentential form

LZ Mx'R.

for all weL(G), wEMReL(H); observe that there -

. Bl S s N e £ e g -

Scattered Versus Context-Sensitive Rewriting : 87

Applying the production (L) — (E), we obtain
Ez Mx'R.

It is easy to see that the renaming productions operate only between E and
M; hence, x'=24, and the only outcome of the derivation of a word in L(H)
can be the word

zEMR.

Since Lz’ MR is a sentential form in H, z is a sentential form in G, by the
said above. Hence, zEMReL(H) implies that zeL(G). It follows that

L(H)=L(G)-{EMR}

. is an ESC language.

To show that L(G) (i.e. without the markers) is also an ESC language, we
use Lemma 1.2 from [4]: o

Lemma. If LcE"*, C is a symbol not in =, and H is an SC grammar with
L(H)=L-C, then there is an SC grammar H with L(H)= L.

Proof Outline. Let H=<Z, P, S, E). Let H={ZUZ U, P, S, A\{C}), where
F={A4: AeZ}
&={[4, B]: A, BeX}

are sets of new symbols.

We split each derivation into two parts. In the first part, arbitrary component
rules can be applied to the rightmost symbol in a sentential form. In the second
part, only chain rules can be applied to the rightmost symbol. Throughout
the first part, the rightmost symbol in each sentential form occurs barred. This
is achieved by adding, for each production

(Al’ Az, ceey A,,)-—>(W1, Wa, ooty Wn)
the production

(Al, Az, ...,_A_;)“")(Wl, Wi, oens WA_)

. where w,=wA. ,

In the second part of a derivation, we use a symbol pair at the end of

" the sentential form; the pair shows the two symbols at the end of the original

sentential form in H. The production switching from the first part to the second
part of a derivation is given below. Let 4, B, De2. Let

(A, Ay, ouny A) > (Wy, W, ...; Wy 1, WDB)€EP.
Then we add the production
(AI’ Az, ooy Z)"’(Wl, Wa, ooy Wp—-1, W[D, B]).

88 J. Gonczarowski and M.K. Warmuth

From this point on the sentential form is terminated by a symbol pair, as
desired. To simulate rewriting the second symbol to the right, but not the right-
most symbol, we add, for each production

(A, Agy ooy Ay, A)) > (Wy, Wy, ..., W, y, wD)€EP,
the production
(Al', Ayy ooy Ay y, [An, BI) > Wy, Wy, ..., w,_y, w[D, B]).
To rewrite only the rightmost symbol, we add for the production
(Ay, Agy ey Ap_1, A) > Wy, Wa, ...y Wy, B)
the new production
(44, Ayy ...y Ay, [D, A1) > (W, Wy, ..., Wy, [D, B]).
To rewrite both symbols, we add for the production
(A1, Azs oor Ancgs Ap) > Wy, War ooy Woy, B)
the production
(A4, Ay, ..., [An-1, A,]) > Wy, Wy ..., wLD, B]),

where w,_; =wD. Finally, the rightmost pair in the derivation is resolved by
a production of the form

([D, C])—(D), forall Din A\{C}.

The detailed correctness proof of this construction is left to the reader.
We return to the proof of Theorem 1. It is easy to see that this lemma

holds also for ESC grammars. Applying it three times, for R, M and E, we
~obtain an ESC grammar H with

L(H)=L(G).

This completes the proof of the theorem. O

Omitting altogether the restriction on the number of symbols in the right

hand side of an ESC production (i.e. for the production
(A19 LERARS] Ak)_)(xla sy xk)a

the length, |x, ... x|, can be arbitrary), we obtain erasing scattered (ASC) gram-
mars. With those grammars, one can simulate the application of erasing homo-
morphisms. It follows that the resulting family of languages is RE (the set of
recursively enumerable languages), because every RE language is the image
of a CS language under some erasing homomorphism. Hence, the membership
problem is undecidable for these languages. It turns out, however, that the

e i Wb

S AR A A e

Scattered Versus Context-Sensitive Rewriting ‘ 89

same problem is decidable for the case where there is no ordering imposed
on the apphcatlon of the individual component rules within a production. ThlS
will be proven in the next section.

4. Unordered Scattered Context Grammars

An unordered scattered context (USC) grammar is a quadruple (Z, P, S, 4), with
the same components as an SC grammar. However, a production (4, ..., 4;)
— (1, ..., y;) is applied by permuting the 4; and the y; under the same (arbitrary)
permutation o, and rewriting with the production

(Aa(l)s cees Aa(k))"()’a(l), cees ya(k))'

as in the SC case defined above. . ' ’

Extended (EUSC) and erasing (AUSC) unordered scattered grammars are
defined similarly.

In [3] it was already shown that there is a particular USC language for
which the non-uniform membership problem is NP-complete, We complement
this result by showing that the non-uniform USC membership problem is in
NP, by establishing polynomial bounds on USC derivation lengths. '

We examine the complexity of USC rewriting.

Theorem 2. Non-uniform USC membership is in NP.

Proof. We establish a polynomial bound on derivation length using the methods
from Lemma 4.2 in [7]. Let G=(Z, P, S, 4) be a USC grammar, and let weA*.
We will prove that if weL(G), then there is a derivation of w from S in G
of length polynomial in |w|. The width of the derivation is bounded by |w|,
since G is nonerasing. The theorem follows then.

Let D be any derivation of w from S. To prove that there is a derivation
of w from S of bounded length, we partition D into “blocks”, as in [7]. A
block is a maximal subderivation of D, such that only productions of the form

(Al’ sy Ak)—)(Bls ---aBk)

~ are used in the block, and |B;|=1 for 1<igk.

Clearly, there are at most |w| blocks. It suffices, therefore, to construct for
each block B an equivalent block B’ (i.e. B’ starts and ends with the same
words as B), of polynomial length. Since the productions are unordered, we
can apply them to the commutative images of the sentential forms in B. However,
to be able to reconstruct a derivation on words from a derivation on commuta-
tive images, we must also keep track of the respective symbols in the last word
of B which are derived from the particular occurrences of symbols in B. This
is achieved by replacing each symbol A4 in B by the twin [A, B], where B is
the symbol in the last word of B derived from that occurrence of A. The symbols
in the last word in B will thus be replaced by twins of the form [B, B] only.

90 ‘ J. Gonczarowski and M.K. Warmuth

We obtain a derivation B over the USC grammar G with alphabet
@={[4, B]: A, BeZ}
and productions

: F={([A1’ Bl], LR [Ak= Bk])_)([cb Bl]’ R] [Cka Bk]):
(Ay, ..., A) = (Cy, ... Ck)eP}.

The Parikh mapping Y associates each word over @ with its commutatlve image,
its' Parikh vector. Let y: &* - N¥® be defined as follows. Let {7, ..., 744} be
a fixed but arbitrary ordering of @. Then

Y (r)=(,...,0,1,0,...,0),

where the only 1 appears in position i, and

Y(xy)=y(x)+y¥(y), forall x, yed*.

We can now define a derivation relation on Parikh vectors. Let X, yeNg'®.
Then % directly derives y if there is a production

(Tcil, b)_)(njl’ **t]k)EP

such that:
— X—y(m;,, ..., m;) is nonnegative, and
- .)-; X— '//(Tcu’ . 7'C,k)+l/1(7'th, seey }k)

The derivation relatlon is defined as the transitive closure of the direct deriva-
tion relation.

Let Ay, ..., An, By, ..., B,eX. Similarly as in Lemma 4.2 from [6] it can
be shown that there is a derivation of B,...B, from A4,...4, in G if and only
if there is a derivation of the Parikh vector Y([B;, B,]...[B,, B,]) from
Y([A4;; B,]...[4,, B,)), of the same length. It remains thus to present an equlva-
lent Parikh vector derivation, of polynomlal length to show that there is a
block B’ of polynomlal length.

Let thus B be the Parikh vector derivation obtamed from B by applying
Y to each sentential from in B. If n is the width of B, then n=|w|, and the
total number of Parikh vectors over twins is at most (n+1)**, which is polyno-
mial in |w|. Eliminating duplicates in B, we obtain an equivalent Parikh vector
derivation B’ of length <(n+1)**, and thus also a derivation B’ of B, ... B,
from A, ... A, of the same length. Hence, the theorem follows. []

We contrast Theorem 2 with the observation that EUSC membership is
polynomial for unary languages. This is a direct corollary from the following
simple lemma for vector addition systems; we note that in derivations of unary
words, sentential forms can be permuted freely, and denvatlons can thus be
represented by Parikh vector derlvatlons

Lemma 3. Let V={Q, §) be a fixed VAS, such that, for all vectors in Q, the
sum of their components is nonnegative, and let v be an input vector the components

CRRS S]

Scattered Versus Context-Sensitive Rewriting 91

of wich appear in unary notation. Then the question whether vV is reachable by
V can be decided in polynomial time.

Proof. We construct the set of all those non-negative vectors, reachable from
§, whose sum of components is at most |V| (|| denotes the sum of components).

Let R={$}. Then, for each GeQ, we iterate on all the vectors 7eR; if G+7
1s a non-negative vector and is not yet in R, and if |§+F7|<|V|, then we add
G+7 to R. This process is repeated until R does not change any more. The
above process is polynomial in |V|: Let v=(i, ..., i,). (Recall that the dimension,
n, is fixed.) Then there are at most (|¥|+1)" choices for vectors in R, which
is polynomial. [J

Lemma 3 yields the following result.

Corollary 4. EUSC membership is polynomial for unary languages if the grammar
is fixed. [

Theorem 5. M embersth is decidable for AUSC.

Proof Let G=(Z, P, S, 4) be a AUSC grammar, and let we4*. To prove that
it is decidable whether weL(G), we reduce AUSC membership to VAS reachabil-
ity. Since the latter problem is decidable [9, 12], the theorem holds.

The vectors of the VAS should represent the Parikh vectors of sentential
forms, and a derivation would correspond to a “legal” sequence of the Parikh
vectors of the sentential forms in the derivation (i.e. each vector would be
obtained from its predecessor by one addition of a vector in the VAS). A Parikh

vector characterizes the communtative image of a word. Unfortunately, if x Zw
in a AUSC, then permutations of x do not necessarily derive w as well. Abstract-
ing to Parikh vectors will thus cause loss of crucial information. To remedy
this deficiency, we encode the final word w into the grammar, and we derive
the empty word A instead of deriving w. Note that now

x=w ifand only if 'y

for all permutations x’ of x, since unordered grammar productions can be applied
without respect to the order of occurrence of symbols in sentential forms.

In detail, we replace each symbol A€ X by a triple [i, 4, j]. These components
indicate that [i, 4, j] is to derive the (possibly empty) subword of w from position
i to position j—1. Performing the standard regular-intersection construction
(see, e.g., [8]) we obtain from G the AUSC grammar

G=(Z, B[S, |w+1],{ P,
where
2={[i,A,jl: 1Zi<j<|w|+1, and 4eZ},

and, for each production (4, ..., 4) = (x, ..., x,)€P, P contains all the produc-
tions obtained by replacing each component rule 4, — x;, as follows:

92 J. Gonczarowski and MK. Warmuth

If x,= A, then we replace it by a rule from the set
{li, A, i] > A: 1SiS|w|+ 1}

If x,=a and ae4, and a occurs in w in positions iy, ..., i,, then replace
the component rule 4, — x; by a rule from the set

{[i, Al’ i+ 1] — A iE{il, ceey im}}"

Otherwise, if x,=B,...B,,, where m=1 and By, ..., B,€X, we replace 4,— Xx,
" by a rule from the set :

{[iO’ Al’ im] - [iO’ Bls ll] [ila BZ’ iz] [im—b Bmim]:
1SipSiy S Sig S W+ 1)

It is straightforward to see that weL(G) if and only if 1eL(G).

We now construct from G a VAS V={Q, V) and a homomorphism ¢, such
_ that ¢(x) is reachable by V if and only if x is a sentential form of G. The
VAS analog of a production involves two steps: First, the symbols in the left
hand side of the production must be “subtracted” from the vector, and then
the symbols in the right hand side must be added. These steps must be synchro-
nized such that no other addition or subtraction step can be applied in between.

To achieve the desired synchronization, we proceed as follows. Let ¢ be-
a Parikh mapping for Z, let y be a Parikh mapping for P. The VAS V has
dimension 4 %+ 4 P+ 1. The first # X components of a vector correspond to
the letters of £. The next # P components correspond to the productions of
P; a nonzero component will indicate the production the left hand side of which
was just applied. This component will be zeroed after the right hand side of
that production was applied as well. The last component is either 1 or 0. A
zero indicates that we have applied a left hand side and we are to apply a
right hand side.

We denote vector concatenation by x. Then the start vector is

v=y([1, S, |w|+1]) x (0,0, ..., 0, 1).
Q contains two vectors for each production

7'[=(C1, Y Ck)_)(yl, AR .Vk)

in P: The left hand vector is

(—¢(Cy...C) x x(m) X (=1).

We first note that no two left hand vectors can be added in succession because
the last component becomes zero after applying one such vector. The occurrence
of 1 in the position of 7 in y(r) guarantees that, as the next step, the correspond-
ing right hand vector must be applied:

Y(yy ..) X (—x (@) x (1).

b el S B e G et et e i AR e R S R e
hxﬂ;@mgw/ﬂ%‘ﬂ;g@gaﬂ s R SR e H S A "

Scattered Versus Context-Sensitive Rewriting : 93

Let ¢ be the homomorphism defined by
- 9)=¥(x)x(,0, ..., 0, 1).

It is straightforward that ¢ satisfies the requirements, i.e., for all xeZ, x is
a sentential form of G if and only if ¢(x) is reachable by V. It follows that
AeL(G) if and only if ¢(A) is reachable by V. The theorem follows from the
decidability for reachability in VAS. [J

Note that the above proof method cannot be generalized to ASC grammars;
there, the order of occurrence of the symbols to which a production is applied
is relevant. Parikh vectors can thus not be used, as they do not keep track
of that order.

Corollary 6. Emptiness is decidable for AUSC grammars.
Proof. Let. G be a AUSC grammar. We réplace every terminal symbol in G

‘by the empty word, obtaining a new AUSC grammar G,. However, L(G)+

if and only if 1€L(G,). By Theorem 5, this is decidable, and the corollary fol-
lows. [

We define a new decision problem that will be used to distinguish ordered

scattered rewriting from erasing unordered scattered rewriting.

Definition. Let G be a fixed grammar with terminal alphabet 4, and let ac4.
The padded non-uniform membership problem for G (and a) is defined as follows:

Input: A word we(4\{a})*.

Question: Is there a word
acw,a*w,...w,a"

in L(G), where w=w; w,...w,. [
Theorem 7. The family of AUSC languages does not contain all SC languages.

Proof. We shall construct an SC grammar which generates the padded version
L, of an undecidable language, L. The proof will proceed by contradiction,
assuming that L, is a AUSC language. It will be proven that L must then
also be AUSC, which is a contradiction to the decidability of AUSC membership,
as shown in Theorem 5.

Let U be a universal Turlng machme Since ASC is exactly the family of
all recursively enumerable languages (see Sect. 3), computations of U can be
simulated by some fixed ASC grammar H, such that a word w is accepted
by U if and only if weL(H). Obviously, the membership problem for L(H)
is undecidable.

Pad the ASC grammar H into an SC grammar H, by replacing each compo-
nent erasing production B — / by the production B — a, where a is a new terminal
symbol. Then w is in L(H) if and only if there is a word obtained from w

by padding with occurrences of a, which is in L(H,).

94 : J. Gonczarowski and M.K. Warmuth

Let us assume on the contrary that there is a AUSC grammar G, such
that L(G,)=L(H,). Replacing each occurrence of a in a production by the empty
word, we obtain the AUSC grammar G. Obviously, weL(G) if and only if w
is accepted by the Turing Machine U, and thus membership for L(G) is undecid-
able. This is a contradiction to Theorem 3.

It follows that the language L(H,) is an SC language but not a AUSC lan-’
guage. [

The following open problems from [13] are implied by this theorem:

Corollary 8. The family of USC languages is a propér subset of the SC languages,
and AUSC is a proper subset of ASC (=RE). :

Proof. It can easily be seen that the families of USC and AUSC languages
are subsets of the families of SC and 1SC languages, respectively. Given a (eras-
ing or non-erasing) USC grammar, G, one can construct, for every scattered
production, all the possible permutations of component rules. The resulting
SC grammar, H, clearly satisfies that L(H)=L(G). The properness follows from
. Theorem 7 and its proof. [’

Corollary 8. The family of AUSC languages does not contain all CS languages.

Proof. Immediate from Theorem 7, as all scattered context languages are context-
sensitive. [

5. Summary

We have carried on the investigation into the generative power of scattered
context grammars, and have obtained the following classification results (here,
L(X) denotes the family of X languages):

~ L(ESO)=L(CS),

— L(USC) is a proper subset of L(SC) -and L(AUSC) is a proper subset of
L(1SC) o o
— L(SC) (and thus also L(CS)) is not a subset of L(AUSC) . .

— L(USC) is in NP (and, by [DW], contains NP-complete languages).

The two problems that remain open are
— the equality of L(CS) and L(SC), and
— the inclusion of L(AUSC) in L(CS).

References

1. Cremers, A.B.: Normal Forms for Context-Sensitive Grammars. Acta Inf. 3, 59-73 (1973)

2. Dahlhaus, E., Gaifman, H.: Concerning 2-Adjacent Context-Free Languages. Theor. Comput.
Sci. 41, 169—184 (1985)

3. Dahlhaus, E., Warmuth, M.K.: Membership for Growing Context-Sensitive Languages is Polyno-
mial. J. Comput. Syst. Sci. 33, 456472 (1986)

4. Greibach, S., Hopcroft, J.: Scattered Context Grammars. J. Comput. Syst. Sci. 3, 233-247 (1969)

5. Gonczarowski, J., Shamir, E.: Pattern Selector Grammars and Several Parsing Algorithms in
the Context-Free Style. J. Comput. Syst. Sci. 30, 249-273 (1985) ‘

" G, such
Lhe empty
‘only if w
» undecid-

USC lan..

n:

‘ anguages,

'languages
°n a (eras-
- scattered
- resulting
lows from

juages.

‘€. context-

"scattered
ults (here,

subset of

973)
:or. Comput.

res is Polyno-

-247 (1969)
Jgorithms in

Scattered Versus Context-Sensitive Rewriting 95

6. Gonczarowski, J., Warmuth, M.K.: Applications of Scheduling Theory to Formal Language
Theory. Theor. Comput. Sci. 37, 217-243 (1985)

7. Gonczarowski, J.,, Warmuth, M.K.: Manipulating Derivation Forests by Scheduling Techniques.
Theor. Comput. Sci. 45, 87-119 (1986)
8. Harrison, M.A.: Introduction to Formal Language Theory. Reading, MA: Addison-Wesley 1978
9. Kosaraju, S.R.: Decidability of Reachability in Vector Addition Systems. Proc. 14th ACM Symp
on Theory of Computing (1982), pp. 267-281
10. Kuroda, S.-Y.: Classes of Languages and Linear Bounded Automata. Inf. Control 6, 131-136
(1963)
11. Kleijn, H.C.M.,, Rozenberg, G.: Context-Free Like Restrictions on Selective Rewriting. Theor.
Comput. Sci. 16, 237-269 (1981)

12.-Mayr, EW.: An Algorithm for the General Petri Net Reachability Problem. SIAM J. Comput.

" 13, 441-460 (1984)
13. Salomaa, A.: Formal Languages. New York: Academic Press 1973

Received December 15, 1987 / June 13, 1989

