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A FAST ALGORITHM FOR MULTIPROCESSOR SCHEDULING OF
UNIT-LENGTH JOBS*

BARBARA B. SIMONSt AND MANFRED K. WARMUTH?#

Abstract. An efficient polynomial time algorithm for the problem of scheduling n unit length jobs with
rational release times and deadlines on m identical parallel machines is presented. By using preprocessing,
a running time of O(mn?) is obtained that is an improvement over the previous best running time of
O(n* log log n). The authors also present new NP-completeness results for two closely related problems.
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1. Introduction. We present an efficient polynomial time algorithm for the problem
of scheduling n unit length jobs with rational release times and deadlines on m identical
parallel machines. The question of how the requirement that the jobs all have the same
length affects the problem was first answered in [ 10], where a polynomial time algorithm
with time complexity O(n’log n) is presented for the single machine case. An alterna-
tive algorithm with the same time complexity was subsequently obtained by [1]. Finally,
an algorithm with time complexity O(n log n) for the single machine case was presented
in [5].

In the multimachine case, the only previously known polynomial time algorithm
has a worst-case running time of O(n’loglog n) [11]. We improve this running time
to O(mn?) by doing some preprocessing before the jobs are actually scheduled. This
speedup is obtained by generalizing to an arbitrary number of machines the notion of
“forbidden regions,” which was developed in [5].

If different integer job lengths are allowed, then by a simple reduction from 3
PARTITION [4], determining whether or not a schedule exists is strongly NP-complete,
even if m=1 and all release times and deadlines are integers. If m is arbitrary, then
there is a similar reduction in which all jobs are released at time 0 and have the same
integer deadline.

We strengthen the above NP-completeness result by allowing only a small number
of integer job lengths:

(A) Three integer job lengths (1, 3, and g for some integer q), m machines, integer
deadlines, but only one overall release time;

(B) Two integer job lengths (1 and q), m machines, integer release times and
deadlines.

2. An overview. The algorithm, called BOUNDED_REGION, has two major
sections. The first, called the BACKSEQUENCE Algorithm, is the preprocessing
section. It determines a set BR of regions in which only a bounded number of jobs
can be started in any feasible schedule. The actual scheduling of the jobs is done by
SCHEDULE (BR). This procedure schedules jobs as early as possible subject to the
restriction that the regions of BR are not violated. Below is a top level description of
the algorithm.
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ALGORITHM BOUNDED_REGION.
Begin
Read input;
BR:= BACKSEQUENCE;
If BACKSEQUENCE returns failure condition then HALT in failure;
Call SCHEDULE (BR);
end BOUNDED_REGION.

3. Definitions. We shall assume that there is a set J of njobs, J(1), J(2), - - -, J(n),
and a set M of m machines. Each job J(i) has a nonnegative integer processing
requirement, p(i), a nonnegative rational release time, r(i), and a nonnegative rational
deadline, d (i), with d(i) = r(i)+ p(i). When we speak of a job J(i) being released by
time f, we mean that r(i) =t If job J(i) is started at time ¢, then it is finished at time
t+p(i) and occupies the interval [1, 1+ p(i)). A schedule SCH for a problem instance
J and M is an assignment of a nonnegative start time s(i) and a machine m(i),
0=m(i)=m—1, for each J(i) € J such that the following conditions hold.

(1) No job is started before its release time or finished later than its deadline,
i.e., s(i)=r(i) and s(i)+p(i) =d(i).

(2) No two jobs overlap, i.e., if job J(i) is started at time ¢ on machine m(k),
then no other job assigned to m(k) is started in the interval [¢, t+ p(i)).

Note that in our definition of schedule preemption is not allowed, that is, once a
job has begun execution it cannot be interrupted and consequently must run until it
is completed.

Except for the section on NP-completeness, in which p(i) is allowed to assume
one of several integer values, we shall assume that p(i) = 1. For this case a schedule
consists of a sequence of start times, where a sequence S for n jobs and m machines
is a nondecreasing list of n nonnegative start times with the additional constraint that
for i> m the ith start time of the sequence is at least one unit greater than the (i — m)th
start time. This constraint guarantees that no more than m jobs are being processed
simultaneously. We say that such a sequence S is of length n, i.e., |S|=n. If S is a
sequence with |S|=n, then S;,, 1=i=n, denotes the ith start time counting forward
from the beginning of the sequence. Likewise, S’ denotes the ith start time counting
backward from the end of the sequence. Note that S;=S""'""" for 1=i=n, and that
S; is the ith smallest and S’ is the ith largest start time of S. Given a problem instance
J and M, a sequence S of length n is an r-sequence if there exists a 1-1 mapping s
(written s(i) instead of s(J(i))) from jobs to elements of S -such that r(i)=s(i).
Similarly, a sequence S of length n is a d-sequence if there exists a 1-1 mapping s
from jobs to elements of S such that s(i) = d (i) — 1. The aim is to produce an rd-sequence
of length n for the set of n jobs, namely, a sequence for which there exists a 1-1
mapping s such that r(i)=s(i)=d(i)—1.

Given a schedule SCH for a problem instance J and M, then the sorted list of
start times is clearly an rd-sequence. For the opposite direction, assume the m machines
are numbered 0,1, - -, m—1. Given an rd-sequence of length n for J, the jobs in J
can be assigned start times in SCH by applying the following Earliest Deadline Rule
first to S, then S,, then S;, and so on: the unscheduled job with the smallest deadline
from among all jobs released by time S; is started at time S; on machine i mod m.

4. Bounded and forced regions. If the release times are integers, the deadlines
rationals, and the processing requirement one unit, then it is possible to construct a
schedule in linear time if one exists [3], [7]. (Recall that our definition of schedule is
an assignment of start times and machines to jobs.) A simple reduction from sorting
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shows, however, that the construction of an rd-sequence requires (}(n log n) time. This
time bound is attained by the Earliest Deadline Algorithm [8], which constructs an
rd-sequence as well as a schedule for that sequence directly from the problem instance
in O(n log n) time. The Earliest Deadline Algorithm computes start time S; by setting
S; to be the minimum of the release times of the unscheduled jobs and S;_,,+1, for
i> m. It then uses the Earliest Deadline Rule to select the job that is assigned start
time S; and machine i mod m.

This approach fails if arbitrary rational release times and deadlines are allowed.
Intuitively, this happens for two reasons. First, jobs may be released during the time
that other jobs are already running. (Note that this can be avoided if the release times
are integers, since this implies that the start times can be constrained to be integers.)
Second, there may be a set of jobs all of which are released on or after some release
time, say r(j), and have deadlines less than or equal to some deadline, say d (i), such
that the jobs in this set fill up almost the entire interval between r(j) and d(i). If “too
many” jobs are started just before r(j), then these jobs will extend into the interval
[r(j), d(i)), and there will not be enough space in which to schedule all the jobs from
the set. Consequently, it is necessary to bound the number of jobs that start less than
one unit prior to r(j). In the single machine case, it may be necessary to construct a
forbidden region in which no job can start. Such a region has length no greater than
one and has a release time as its right endpoint [5]. The m machine case becomes
more complex because there can be up to m such intervals, each interval having a
different length and a different restriction on the number of jobs that can start in its
interior, but having the same release time as its right endpoint.

A region is defined to be an interval, either opened at both ends or closed at both
ends. The length of a region is always no greater than one and can equal one only if
the region is an open interval. The BACKSEQUENCE Algorithm computes regions
in which at least k jobs must start in any rd-sequence. Because each job runs for one
unit of time, this implies regions in which at most m —k jobs are allowed to start in
any rd-sequence. We refer to such a region as a k-forced start region and an (m—k)-
bounded start region, respectively. We also say that k (respectively, m — k) is the degree
of the k-forced (respectively, (m —k)-bounded) start region. If the region [a,B]is a
k-forced start region, then the region (8 —1, @) is an (m —k)-bounded start region.
Note that if more than m —k jobs start in the region (8 —1, @), then“k jobs cannot
start in the region [a, B]. (We require that the parameter k always lies in the range
from one to m.) Lemma 0 below follows directly from the definitions of forced and
bounded regions. _

LemmA 0. If [a, B] is a k-forced region, then (B—1, a) is an (m —k)-bounded
region.

We say that an (m — k)-bounded start region is correct if there is no rd-sequence
for the problem instance in which more than (m—k) jobs start in the region. If a
sequence or schedule has no more than m—k jobs started in an (m —k)-bounded
region, we say that the (m — k)-bounded region has been avoided. If more than m—k
jobs are scheduled to start in a (m — k)-bounded region, then we say that the (m —k)-
bounded region is violated. The terms correct, avoided, and violated are defined similarly
for k-forced regions.

Forced and bounded regions always come in pairs. The reader should bear in
mind that we are concerned only with the number of jobs that actually start on all m
machines in such a region (as opposed to those that have started earlier and are already
running in the region). For reasons that will become apparent later, a k-forced region
has a release time at its left endpoint and an (m —k)-bounded region has a release
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time as its right endpoint. Bounded regions are open intervals and forced regions are
closed intervals.

4.1. How to avoid bounded regions. We distinguish between two modes of con-
structing sequences. In the hackward mode we select the latest possible start time by
scanning backward starting from a deadline. In the forward mode we select the earliest
possible start time for each job by scanning forward starting from a release time.
BACKSEQUENCE constructs n sequences using the backward mode starting from
each of the deadlines. At the end of each iteration, BACKSEQUENCE uses information
from the sequences it has constructed to create a new set of up to m bounded regions.
It then calls procedure ADD, which computes additional bounded regions implied by
those already constructed. Finally, forward sequencing is used in the procedure
SCHEDULE to construct the schedule for the problem instance.

Let S be a sequence, |S| = v. The subroutine NEXTFORWARD (S, BR, ¢), given
below, returns the smallest start time S° such that S°=1¢, S°= S’ 1=i=y, and all the
bounded regions of BR are avoided by the start times of S|S°, where | denotes
“appended to.” Note that if S’=S|S° then §" =S"", for 1=i=uv+1. Similarly, the
subroutine NEXTBACKWARD (S, BR, ¢) returns the largest start time S, such that
So=t, So=S,, for 1=i=v, and all the bounded regions of BR are avoided by S,|S.
We use both procedures iteratively to construct sequences that avoid all bounded
regions of BR. For examples of how bounded regions are avoided, see Figs. 3 and 4
in §11.

SUBROUTINE NEXTFORWARD (S, BR, t) (*returns minimum start time S°=¢
such that the bounded regions of BR are avoided *)
(0) Let |S|=1;
if v<m then S™:=t—1; (* This prevents S™ from being undefined *)
(1) $°:=max (t,S', S™+1); (* This guarantees that S|S° is a sequence *)
(2) process the bounded regions of BR in order of nondecreasing left endpoints:
let R be the next bounded region of BR, let m —k be the degree of R, and let
B —1 and «a be the left and right endpoints, respectively, of R;
if m—k=v then
if S" *e(B—1,a) then S°:=max {S°, a}; (* S° is increased by the minimum
amount such that the (m — k)-bounded region (8 —1, a) is avoided *)
(3) return (S°).

SUBROUTINE NEXTBACKWARD (S, BR, t) (* returns maximum start time Sy =t
such that the bounded regions of BR are avoided *)
(0) Let |S|=0; .
if v<m then S,,:=t+1; (* This prevents S,, from being undefined *)
(1) So:=min (1, S;, S,, —1); (* This guarantees that S,|S is a sequence *)
(2) process the bounded regions of BR in order of nonincreasing right endpoints:
let R be the next bounded region of BR, let m —k be the degree of R, and let
B —1 and « be the left and right endpoints, respectively, of R;
if m—k=v then
if S,,_x€(B—1, @) then Sy:=min (S,, B —1); (* S, is decreased by the minimum
amount such that the (m — k)-bounded region (8 —1, a) is avoided *)
(3) return (S,). "

LEMMA 1. Let S be a sequence with |S|= v in which all bounded regions of BR are
avoided. Then NEXTFORWARD computes the minimum start time S°=t such that
S|S° is a sequence and the bounded regions of BR are avoided.

(LRI
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Proof. Clearly, S°= t. Since S is a sequence, S°= S' implies that S°= S 1=sisv
Because S°=S™+1 for v=m, it follows that S|S° is a sequence. The regions are
processed according to nondecreasing left endpoint; consequently, S° is never assigned
a value that violates a region that has been previously processed. (We could have
processed the bounded regions by right endpoint instead of left endpoint, as long as
the approach was used consistently throughout the processing of the bounded regions.)
Since S°is increased only if it falls within an (m — k)-bounded region already containing
m — k jobs, and since S° is increased the minimum amount required to avoid the region,
S is the minimum start time greater than or equal to ¢ that avoids the bounded regions
of BR. a

LEMMA 2. Let S be a sequence, with |S| = v, in which all the bounded regions of BR
are avoided. Then NEXTBACKWARD computes the maximum start time Sy=t such
that So| S is a sequence and the bounded regions of BR are avoided.

The proof is similar to the proof of Lemma 1.

5. Computing bounded regions by sequencing backward. Without loss of generality,
assume that the jobs are sorted by release times and renamed, so that (1) = r)z.---=
r(n). In addition, let d'(1), - -, d'(n) be the set of deadlines listed in sorted order
so that d'(1)=d'(2)=---=d'(n). Note that r(i) remains the release time for J(i)
but that d'(i) is almost certainly not the deadline for J(i). We call i the index
of J(i).

Let =(i, j) be the set of jobs with index less than or equal to j and deadlines less
than or equal to d'(i), 1=i, j=n, and let n;:=|Z(j, j)|. Note that all jobs in (i, j)
have release times that are at least as large as r(j). The BACKSEQUENCE Algorithm
(presented below) iteratively constructs a set of n sequences, SE [i], 1=i=n,and a
set of bounded regions BR. SE [i] corresponds to deadline d'(i), and the jth iteration
(1=j = n) corresponds to processing job J(j) with release time r(j). At the end of the
jth iteration SE [i] contains ny start times for the jobs 2(i, j). All these start times are
at most d'(i)—1 and are as late as possible subject to the constraint that all bounded
regions already constructed are avoided. (Details are given in Theorem 1.) Since no
job of 2(i, j) is released before r(j), the algorithm stops in failure if SE [i], < r(j) for
some i during the jth iteration. Also, if r(j)<SE[i], and SE [i], —r(j)<1, for some
i, then some job(s) of =(i, j) must be started in the interval [r(j), d'(i)—1). This
constraint triggers the creation of a bounded region with right endpoint r(j). The
bounded region guarantees that not too many jobs are started just prior to r(j) such
that they are running in the interval [r(j), d'(i)] and interfering with the scheduling
of 2(i, j).

SUBROUTINE BACKSEQUENCE
Initialize all sequences of SE[1..n] and BR to J;
(* SE [i] is the sequence ending at deadline d'(i) *)
(1) For j=1to n do (* Update SE [i] so that it contains precisely n; start times *)
Begin for loop
(2) For all i, 1=i=n, such that d'(i)=d(j) do
(* d(j) is the deadline of the job with release time r(j) *)
begin
(* since each value of i corresponds to a different list, the order in which the
d'(i)’s are processed is irrelevant *)
So:= NEXTBACKWARD (SE [i], BR, d'(i) —1);
SE [i]= So|SE[il;
end;

Vil fi i1
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(3) For 1=k=m do f, =0
For1=i=n do
S '=min (fi, SE [i]);
(4) If f<r(j), then declare “‘infeasibility”” and halt;
(5) For k=1to m do
If fi —r(j) <1 then
BR:= BRU {the (m — k)-bounded region (f, —1, r(j))}.

End for loop;
Return BR;
End BACKSEQUENCE.

For the correctness proof below we use the notation BR [j] to denote the set BR after
the jth iteration of the global for loop of step (1). Examples of both the construction
of the sequences and the creation of the bounded regions by BACKSEQUENCE are
given in Figs. 1 and 2 in § 11.

THEOREM 1. Let j be between one and n. The following statements are true at the
completion of the processing of the jth iteration of the global for loop of BACK-
SEQUENCE.

(i) If BACKSEQUENCE does not halt in failure, then SE [i], = r(j) for all i such
that SE [i], is not empty, and there is no d-sequence for 2(i, j) in which all regions of
BR [j — 1] are avoided whose kth smallest start time is larger than SE [i],, 1=k =|SE [i]|.

(ii) All regions of BR[j] are correct and are no more than one unit in length.

(iii) Allregions of BR [ j] are avoided by SE [i] for alli such that SE [i], is not empty.

Proof. The proof is by induction on j. Let j = 1. Then clearly SE [i], = r(j) for all
i such that SE[i], is not empty (which in this case is all i such that d'(i)=d(1)).

Otherwise, BACKSEQUENCE would have halted at step (4). Furthermore, any d- .

sequence could not have the last job in the sequence start later than SE [i], =d'(i) — 1.
Since BR[0]=(J, there are no bounded regions for SE[i], to avoid. This proves
condition (i) for the base case.

If BR [1] =&, then conditions (ii) and (iii) also follow. So assume that BR [1] # .
Then f;—r(1)<1 in step (5), where fi=d(1)—1 (since SE[i],=d'(i)—1 for d'(i)=
d(1)). Thus, [#(1), f,] is a 1-forced region, which by Lemma 0 implies the correctness
of the (m —1)-bounded region (f;—1, r(1)). Note that the latter region is of length no
greater than one, since otherwise we would have f; <r(j), once again causing the
algorithm to halt at step (4). This proves the correctness of (ii) for the base case.
Finally, BR [1] is avoided since SE [i], ZSE [1], = r(j) for all nonempty SE [i], which
proves the correctness of (iii).

Assume the lemma holds for j'—1; we now prove it holds for j'.

(i) If SE[i] is unchanged in iteration j’, then j'g 2(i, j'), i.e., d(j')>d'(i) and
by the induction assumption (i) holds for j = j'. Otherwise, it follows from the induction
assumption together with Lemma 2 that the value of S, computed by NEXTBACK-
WARD is at least as large as the smallest feasible start time for SE [i]. Furthermore,
if one of the other start times of SE [i] were not to satisfy condition (i), then we would
have a contradiction to the induction assumption that was made for j'—1. Finally,
since by (iii) all regions of BR[j'—1] are avoided by SE [i] after iteration j'—1, it
follows from Lemma 2 that (i) holds for j=j'.

(ii) Let (fix—1, r(j)) be an (m — k)-bounded region. Because of the way bounded
regions are constructed, we have r(j)=fi, fi—r(j)<1, and r(j)—(fri—1)<1l. In
addition, for some i, SE[i];=SE[i],=- - -=SE[i]x =fx. (Note that r(j)=SE[i],.)
Consequently, by condition (i), [r(j), f] is a k-forced region, which implies by Lemma
0 the correctness of the (m — k)-bounded region (f; —1, r(j)).
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(iii) By induction we know that all regions of BR[j'—1] are avoided by SE[i]
after iteration j'—1 for nonempty SE [i],. From Lemma 2 we know that if a new start
time is computed in step (2), it avoids the regions BR [j'=1]. Thus, SE[i] avoids
BR[j'—1] after iteration j'. Now, any new regions added to BR [j'] have their right
endpoints at r(j'). But by step (4) of BACKSEQUENCE, the values of SE [i] are at
least as large as r(j'). Consequently, these new regions are also avoided by SE [i]. ]

Assume BACKSEQUENCE does not halt in failure. Consider the sequence SE[i]
after the completion of BACKSEQUENCE. As the following 1-machine example
illustrates, the sequences SE [i] are not necessarily d-sequences for (i, n). Let r(1) =
1.2, d(1)=4, r(2)=1, and d(2)=2.5. Then SE [2]={2, 3}. But if J(2) is started at
either time 2 or time 3, it will not be completed by its deadline. However, the sequences
SE [i] are r-sequences for 2(i, n), as the following trivial algorithm demonstrates. If
J(j)e2(i, n), ie., if d'(i)=d(j), then schedule job 4(j) at time S, computed in step
(2) of BACKSEQUENCE during the jth iteration of the global for loop. Clearly, J(j)
will start no earlier than r(j) in any of the SE[i] that is updated in step (2), since
otherwise BACKSEQUENCE would have halted in step (4).

CoROLLARY 1. For all bounded regions created by BACKSEQUENCE, (8 -1, a)
is an (m — k)-bounded region if and only if [, B] is a k-forced region.

Proof. If [a, B] is a k-forced region, then by Lemma O, (B—1, @) is an (m —k)-
bounded region. So suppose that (8—1, «) is an (m — k)-bounded region. Since all
bounded regions are created in step (5) of BACKSEQUENCE, it follows that for some
value of i, SE [i] has k jobs starting in the region [, B]. By condition (i) of Theorem
1, it follows that it is necessary for k jobs to begin in the region [a, B]. Hence, [, B]
is a k-forced region. 0

COROLLARY 2. If BACKSEQUENCE does not halt in failure, then after the jth
iteration of the global loop, SE [i] does not violate any bounded regions of the final set
of bounded regions computed by BACKSEQUENCE.

Proof. By (iii) of Theorem 1, SE[i] avoids BR [j]; because BACKSEQUENCE
does not halt in failure, SE [i]; = r(j). Since all bounded regions computed at iteration
j or later have a right endpoint no greater than r(j), SE[i], as it is computed at the
jth iteration, avoids all of BR [n]. 0

COROLLARY 3. If BACKSEQUENCE halts in failure, then there is no rd-sequence
for the problem instance.

Proof. If the algorithm halts in failure for i=i* j=j* then it follows from
BACKSEQUENCE together with Theorem 1 that r(j*)>fi=SE[i*],= S, (as com-
puted in step (2) of BACKSEQUENCE). Combining the fact that all jobs in (i*, j*)
have release time at least r(j*) together with the correctness of (i) of Theorem 1, we
get that there is no rd-sequence for S(i*, j*) and hence for the entire problem
instance. 0

6. Regions may imply additional regions. If two bounded regions overlap and
together cover an interval of length greater than one, then they imply a new bounded
region. We call the set of regions created by BACKSEQUENCE original regions.

LEMmMA 3. Let (B —1, @) be an original (m — k)-bounded region, andlet (B'—1, a’)
be an original (m —k')-bounded region such that B —1< a'<B'<a. Then [a',B] is a
(k+ k')-forced region, (B—1,a') is an (m—k~— k')-bounded region, and both regions
have length less than 1.

Proof. Note that the (m —k)-bounded region (B—1, @) strictly contains the k'-
forced region [a’, B']. By Corollary 1, [@, 8] and [«’, B'] are k- and k'-forced regions,
respectively. Since B'<a, [a, 8] and [a’, B'] do not overlap. B—1<a' implies that

VgL b |
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B —a'<1. Therefore, [a’, B] is a (k+ k’)-forced region that, by Lemma 0, implies the
(m —k—k')-bounded region (B —1, a') (see Fig. 4).

To prove that the regions are well defined, we must show that k+ k'=m. Assume
for contradiction that k'> m — k. Then it follows from BACKSEQUENCE that at the
completion of the iteration in which the (m — k’)-bounded region (8'—1, a’) is created
there is some value I such that there are at least k' elements of SE[I] within the
interval [a’, B']. But then at least one of these start times will violate the (m — k)-
bounded region (B —1, «). (Since a > a’, we know that the (m —k)-bounded region
(B—1, @) is computed prior to the processing of release time a’.) Therefore, at least
one value of SE[I] will be set to B—1. But (B—1)<a’, so BACKSEQUENCE will
declare infeasibility and halt. Consequently, the region (B8'—1, ') would not have
been declared. Finally, the fact that a' lies between B8 —1 and B trivially implies that
the regions (8 —1, a’) and [a’, B] have length less than one. 0

The bounded regions implied by Lemma 3 are computed by the subroutine
ADD (BR), presented below. Note that the only overlapping regions that are examined
by ADD are regions that are in the set BR.

SUBROUTINE ADD (BR) (* Computes the additional bounded regions implied by
Lemma 3 ¥)

ADDITIONAL:=&:

For all pairs of original bounded regions (8 —1, a) and (B8'—1, a’) of BR such that
(B—1, a) is an (m—k)-bounded region, (B'—1, a’) is an (m —k’)-bounded-region,
and B-1<a'=r(j)<B'<a do

ADDITIONAL:= ADDITIONALU {the (m —k —k’)-bounded region (8 —1, a’)}.

BR:=BRUADDITIONAL;
end ADD.

We call the set of regions created by ADD additional regions. It follows from the
statement of Lemma 3 together with ADD that additional bounded regions are precisely
those bounded regions that Lemma 3 proves correct. Note that to incorporate ADD
into the algorithm, we need only add the following instruction to the global for loop
of step (1) of BACKSEQUENCE.

(6) Call ADD (BR);

A more efficient routine for computing the regions implied by Lemma 3 called
FASTADD is given in § 8.

Remark. It is easy to see that Theorem 1 and Corollaries 1, 2, and 3 still hold
after the insertion of step (6) in BACKSEQUENCE. Observe that when an additional
bounded region (B —1, r(j)) is created, all entries in the sequences SE[.] are at least
r(j). Thus, the additional regions are never violated when they are created, and they
are avoided during later iterations in the same manner that the original regions are
avoided.

An obvious question is whether or not the additional regions are necessary. As
Figs: 3 and 4 in § 11 demonstrate, NEXTFORWARD might return a start time that
violates an additional bounded region if the additional bounded regions are not
incorporated into the algorithm. Consequently, the resulting sequence is not a d-
sequence. Figure 4 in § 11 is an rd-sequence that does not violate the additional

I IRII
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bounded region. Thus, additional bounded regions are necessary if BACKSEQUENCE
is used to create the regions that are used to construct r-sequences.

7. Producing the final schedule. In this section we show how to produce an
rd-sequence and a schedule using the set of regions created by BACKSEQUENCE
and ADD.

SUBROUTINE SCHEDULE (BR) (* constructs an rd-sequence by iteratively com-
puting the earliest possible start time and then assigning a job to the newest start time *)
S=J;
For i=1to n do

(1) Let r be the minimum release time of all unscheduled jobs;

(2) S;:= NEXTFORWARD (S, BR, r); S:= S|S;;

(3) Use the Earliest Deadline Rule to select the job that starts at time S; on

machine i mod m;

end SCHEDULE.

LEMMA 4. SCHEDULE produces an r-sequence in which all bounded regions are
avoided.

Proof. The selection of r in step (1) guarantees that there is always some
unscheduled job that has been released by the time returned by NEXTFORWARD.
In addition, by Lemma 1 all bounded regions are avoided. 0

Let S be a sequence, and let J(i) be the job that is assigned start time S; by the
Earliest Deadline Rule. We say that J(i) is in slotj of sequence S. We also say that
slot j contains J (i) in sequence S. When speaking of slots, we shall omit the sequence
name if the reference is unambiguous.

LEMMA 5. Let S be the r-sequence produced by SCHEDULE, and let Sy=—co. If
some job in the schedule produced by SCHEDULE is completed after its deadline, then
there exist v, w, i, and j such that

(1) The jobs in slots v,v+1,- -, w consist exactly of the set 2(i, j);

(2) S,+1>d'(i), i.e., some job of S(i, j) is finished after its deadline;

(3) Sy 1 <r(j)=S,.

Proof. Let X be the job in S that is finished later than its deadline and is in the
largest numbered slot, say w, of all such jobs. That is, d(X)=d'(i) for some i, and
S, +1>d'(i). It follows from the choice of X that all jobs with deadlines no greater
than d’(i) are in slots numbered no greater than w.

If all jobs in slots 1 through w have deadlines no greater than d'(i), then by setting

=1 and j = n, we get that conditions (1)-(3) of the lemma are satisfied. Otherwise,
let v—1 be the largest numbered slot less than w that contains a job with deadline
greater than d’(i). Let r be the minimum release time of the jobs in slots v through
w, and let j be the maximum such that r= r(j). Note that 2(i, j) consists of all jobs
with release time at least r(j) and deadline at most d'(i). Since S is an r-sequence, it
follows that r(j)=S,. Furthermore, since slot v—1 contains a job with a deadline
larger than the deadlines of the jobs in slots v through w, it follows from the Earliest
Deadline Rule that none of the jobs in slots v through w was available at time S,_;.
Therefore, S,_; < r(j)=S,, and condition (3) of the lemma is proved. All the jobs in
slots v through w are in 2(, j), i.e., they must have deadlines at most d’(i) (from the
choice of v) and release time at least r(j) (from the choice of j). Also no jobs of Z(i, j)
are scheduled in slots 1 through v—1, since they are not yet released. Similarly, no
jobs of 2(i, j) appear in slots w+1,- -, n: the jobs of (i, j) have deadlines at most
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d’'(i), and thus they would be late if they were scheduled in slots w+ 1 through n; but
w is the last slot with a late job. This shows that condition (1) holds, and completes
the proof of the lemma. 0

LeEmMMA 6. If v, w, i, j are chosen as in Lemma 5 with the additional constraint that
n; is minimal, then the following condition holds:

(4) If a job from slots v through w starts at its release time, then it starts at S,,.

Proof. Assume that Lemma 5 holds for v, w, i, and j, with n; being minimal, and
that condition (4) does not hold. In other words, there is some slot v’, v <v'=w, such
that the job in slot v’ has release time S,.. Let j° be maximum such that r(j')=S,.
Now conditions (1), (2), and (3) of Lemma 5 hold for v', w, i, and j’, and n; <n,.
This contradicts the minimality of n;. ]

For the remainder of this section we assume that S is the sequence constructed
by SCHEDULE and that some job in the schedule produced by SCHEDULE is
completed after its deadline. Let v, w, i, and j be chosen to satisfy Lemmas 5 and 6.
Recall that SE [i] corresponds to deadline d’(i) and that the jobs in (i, j) all have
deadlines less than or equal to d’'(i).

To simplify the notation, let F,_,., denote S,, 0= g = n. Then the relevant start
times in S for the jobs in X(i, j) are F,, F,, -, F, instead of S,,S,.;, ", S,.
Condition (3) of Lemma 5 now states that F,<r(j)=F,. (Recall that Sy= —0.)

We compare the start times F, to the start times of the sequence SE [i] computed
by BACKSEQUENCE in iteration j. Again for the sake of notation, let B, =SE [i],
after iteration j, 1=k =n,;. It follows from the construction of SE [i] and from the
fact that BACKSEQUENCE did not halt at step (4) that r(j)=B,=B,=---=B,, =
d'(i)—1.

LEmMmMA 7. F,=B,, 1=q=n,.

Before we prove Lemma 7, observe that since its correctness implies that F, =
B, =d’'(i)—1, we get an immediate contradiction to the assumption that job X, which
is scheduled in slot w in S, is finished later than its deadline of d’(i). Therefore,
Lemmas 4 and 7 imply the following theorem.

THeOREM 2. SCHEDULE produces an rd-sequence and a schedule.

Proof of Lemma 7. Assume q is the minimum value such that F, > B,. Since the
value of F, is assigned either in step (1) or in step (2) of NEXTFORWARD and there
are three different possible assignments for step (1), we break the analysis into four
cases.

Case 1. F,=F,_, (§°:= §"instep (1) of NEXTFORWARD). Since condition (3)
of Lemma 5 implies that F,> F,, we have in this case that g>1. But F,> B,=B,_,
leads to F,_,> B,_,, and this contradicts the minimality of g.

Case2. F,=F,_,,+1 (§°:=8"+1instep (1) of NEXTFORWARD).If g—m=1,
then F,_,,=B,_,,= B, <F,=F,_,,+1. This implies that B, — B,_,, <1, which contra-
dicts the fact that SE [i] is a sequence (Lemma 2).

If g—m <1, then by condition (3) of Lemma 5, F,_,, = F,<r(j). Now, F,> B,
and F,=F,_,+1 imply that B,<r(j)+1. Since r(j)=B,=---=B,<r(j)+1,
[r(j), B,]1is a g-forced region and (B, —1, r(j)) is an original (m — q)-bounded region.
Since B,—1<F,—-1=F,_,, and since F,<r(j), we have that F,_,,, F,_+1," ", Fo
start in the (m — g)-bounded region (B, —1, r(j)). Therefore, there are m —q+1 start
times in the (m —q)-bounded regibn (B;—1,r(j)), and this region is violated by S.
This contradicts Lemma 4, which states that the sequence produced by SCHEDULE
does not violate any bounded regions.

Case 3. The job started at F, in S has release time F; (8°:=t and t = r = mini-
mum release time of all unscheduled jobs when NEXTFORWARD is called by
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SCHEDULE). By condition (4) of Lemma 6, q can only be 1. Therefore, when
NEXTFORWARD is called, all jobs of 2(i, j) are unscheduled. Thus, r= F,=r(j).
Now the assumption that F,> B, implies B, <r(j), contradicting condition (i) of
Theorem 1.

Case 4. F, received its final value in step (2) of NEXTFORWARD (to avoid
violating a bounded region). This implies both that there exists an original p-bounded
region (B — 1, F,) and that S has p start times within that region. These start times are
F, p,Fype1s s Fpur. If g>p, then Fo, =B, ;=B =" -=B,<F,. This
implies that SE [i] violates a bounded region, which contradicts Corollary 2.

Assume that g =p which implies that B —1<F,_, <r(j). Recall that (B-1,F,)
is a p-bounded region. Since all By, By, -, B, lie within [r(j), B,], (B,—1,r(j)) is
an original (m — q)-bounded region. Combining inequalities, we have g —1<r(j) <
B, < F,. Therefore, the conditions of Lemma 3 hold, with a = F,, m—k=p, B'=B,,
a'=r(j), and k'=q. Thus, (B—1,r(j)) is a (p—q) additional bounded region. We
know that the interval [r(j), F,) contains g — 1 start times from S, namely F,, - - -, F,_y,
and that F,<r(j). Because the p-bounded region (8 -1, F,) contains p start times
from S, it follows that (8 —1, r(j)) contains p — g +1 start times from S, which violates
the additional (p — q)-bounded region (8 —1, r(j)). ]

COROLLARY 4 (to Theorem 2). There is no rd-sequence that has a qth smallest time
smaller than the qth smallest time of the sequence S produced by SCHEDULE, 1=qg=n.

Proof. Suppose for contradiction that S’ is an rd-sequence with start times

'Sy, -+,S,, and let g be the minimum value such that S, <S,. As in Lemma 7,
we analyze the four cases for the assignment of the value of S,.

Case 1. S,=S,_,. This is contradicted by S, = S, 1=8,<S8,.

Case?2. ¢>mandS,=S,_,+1.Again we get a contradiction since S, = Sh-m=
S, <S,=8,_,+1 implies that S;<S;_.+1.

Case 3. S, is the minimum release time of all the jobs in slots g through n in S.
None of the jobs in slots g through n in S can be scheduled in slots 1 through g of
S’ since S}, < S,. But this is impossible since it is not possible to place n—q+1 jobs
in slots g+1 through n of S".

Case 4. There exists a k-bounded region (8 —1, S,) and there are k jobs starting
in (8—1, S,) in S..It follows from the definition of g that S, =S4 =Sk =" "=
S, <S,, and hence (B -1, S,) is violated by S’, contradicting the assumption that S’
is an rd-sequence. 0

In particular, Corollary 4 implies that the output of SCHEDULE has minimum
makespan over all schedules that observe the release time and deadline constraints.

8. An O(mn®) implementation of BACKSEQUENCE. We first indicate how to
speed up the running time of ADD. For each value of j for which BR (j) has been
computed by BACKSEQUENCE, only the largest of each of the (at most) m regions
is recorded in step (5). Thus, the total number of regions is O(mn). If (B—1,r(j)) is
an original k-bounded region, then all possible additional regions that are implied by
(B -1, r(j)) can be computed in O(mn) time. However, since there might be m original
regions computed by BACKSEQUENCE for r(j), the running time could be O(m’n?)
for the entire algorithm. This can be avoided by methodically checking for overlapping
regions. ,

Let B-REGION be an mxn array. When an original (m— k)-bounded
region (f, —1,r(j)) is created by BACKSEQUENCE, set B-REGION (m —k, j)=
fi—1, 1=k=m. Note that B-REGION (m—1, j)=B-REGION (m—=2, j)=- =
B-REGION (0, j).

[RUCETRTTI]
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SUBROUTINE FASTADD (j) (*j is the j-value that has just been processed by
BACKSEQUENCE *)
(1) g=j—1; (* start by comparing with B-REGION (*, j—1) *)
(2) while ¢>0 and 0<r(q)—r(j)<1 do (* B-REGION (*, q) is the next one to
check *)
(3) Compute K and W such that:
(3a) K :=minimum value of k such that B-REGION (m —k, q) <r(j);
(3b) W :=minimum value of w such that B-REGION (m—w, j)<r(q)—1;
(4) If K and W are both defined then (* the necessary condition for additional
bounded regions *)
for k:= K downto 1 do
If fin_w_xy—1>B-REGION (m—k,q) then replace the (m—W-—k)-
bounded region (f(m-w-x)—1,r(j)) with (B-REGION (m—k, q), r(j))
(* update f(,,—w-x) because of additional region *)
(5) q:=q—1; (* compare with the next set of regions *)
end while statement;
end FASTADD.

LEMMA 8. The total amount of time required by all the calls to FASTADD is O(mn?).

Proof. There are O(n) calls to FASTADD. For each call to FASTADD there are
at most O(n) iterations of the while loop with each iteration requiring O(m) time for
step (3) and O(m) time for step (4). O

The speedup of FASTADD depends on the following observation.

*) If (8 —1, @) is both an (m — k)-bounded region and an (m — k')-bounded region,
for k' =k, then the (m —k’)-bounded region is redundant.

The correctness of (*) follows immediately from the definition of bounded regions
and implies that the (m —k’)-bounded region can be discarded.

LemMMA 9. The additional bounded regions created by FASTADD are correct.
Furthermore, all additional bounded regions created by ADD that are not created by
FASTADD are redundant. ,

Proof. Lemma 3 implies that any (m— W — K)-bounded region created by FAST-
ADD for k=K is correct. Since B-REGION (m —k, q) = B-REGION (m - K, q) for
k=K, it follows that B-REGION (m—K, q) <r(j) implies that B-REGION (m —
k,q)<r(j), k=K. Since B-REGION (m— W, j)<r(q)—1, the conditions of Lemma
3 hold for k = K, and therefore the (m — W — k)-bounded regions created by FASTADD
are correct. By (*) any bounded region implied by B-REGION (m —w, j) for w= W
is redundant. The definition of W implies that there are no additional regions created
by B-REGION (m —w, j) for w> W. 0

We remind the reader that ALGORITHM BOUNDED_REGION, referred to
below, is the main procedure that is presented at the beginning of this paper.

THEOREM 3. The running time of ALGORITHM BOUNDED_REGION is
O(mn?).

Proof. We first show how to implement SCHEDULE in O(mn log n) time. Steps
(1) and (3) of SCHEDULE cost only O(n log n) overall to implement. To implement
step (2) efficiently, we make m sorted lists of bounded regions with each list containing
no more than n regions as follows. For 0= k=m —1, sort the O(n) k-bounded regions
by their left endpoints, with ties being broken by the right endpoint. This takes
O(mn log n) time. The ordered lists of regions are examined in step (2) of NEXTFOR-
WARD starting from the 0-bounded regions and ending with the (m —1)-bounded
regions. A pointer associated with each list of regions denotes the region most recently
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examined. This pointer is updated to the next region on the list whenever a slot is
moved through a region. If the start time of S° is increased because of a k-bounded
region, step (1) of NEXTFORWARD guarantees that all start times that are sub-
sequently computed will be at least as large as S°. Therefore, once the start time of a
slot is moved through a region, that region will never again have to be examined.
Consequently, the total number of times that all regions are examined by NEXTFOR-
WARD is O(mn), and each region is examined in O(1) time.

We now show that BACKSEQUENCE can be implemented in O(mn?) time. This
is easy to verify for all but the calls to NEXTBACKWARD. Note that we have already
shown how to implement ADD efficiently (Lemma 9). When we use the same technique
as was used to implement step (2) of SCHEDULE, all calls associated with SE [i] can
be processed in O(mn) time. Note that the bounded regions are created according to
the sorted right endpoint, which is the order required by NEXTBACKWARD. For
each of the n sequences SE [i] the list of bounded regions needs to be scanned only
once. Thus, BACKSEQUENCE has running time O(mn?). O

9. NP-completeness results. The NP-completeness proofs are reductions from the’
following problem that has been shown to be strongly NP-complete in [6]."

1/1/1 SCHEDULING.

Instance: Set T of triplets that are to be executed in the time interval [0, 3f), with
|T| = t. A triplet consists of three unit-length jobs, each of which has an integer release
time that is at most 3f—1.

Question: Is it possible to schedule f triplets of T on one machine in the time
interval [0, 3f) such that all 3f jobs are started no earlier than their release times?

For the sake of completeness of this paper we present an alternative reduction
for the 1/1/1-scheduling problem to that given in [6].

THEOREM 4. 1/1/1 scheduling is strongly NP-complete.

Proof. The reduction is from the strongly NP-complete 3-partition problem [4].

3-PARTITION.

Instance: A multiset Q of 3m natural numbers {n;: 0=i=3m— 1} and a natural
number B, with .7 ' n; = mB.

Question: Can Q be partitioned into m 3-element multisets Q;, Q,,* * *, Qm such
that the numbers in each Q; sum to B?

Given an arbitrary instance of 3-partition as defined above, we assume without
loss of generality that n,_, =n,, for 1=p=3m—1. We define Q' to be the set of all
possible combinations of three elements of Q that sum to B. Each triple of numbers
(n;, n;, ny) of Q' corresponds to a triplet of jobs (J(i), J(j), J(k)) with release times
i, j, and k, respectively. Let T be all such corresponding triplets of jobs. The instance
of 1/1/1 scheduling consists of T and the interval [0, 3m), with f=m.

Note that |T| < (3m)* and r(i) =3m -1, for all jobs of T. Thus, even with a unary
encoding of the release times this reduction is polynomial.

Given a solution to the 3-partition problem, it is easy to produce a schedule for
the 1/1/1-scheduling problem. Each Q; in the solution to the 3-partition instance
corresponds to a triplet of 7. We simply schedule the jobs in the corresponding triplets
at their release times. The resulting sclzedule maps the jobs onto the start times
{0,---,3m—1}.

! The definition of 1/1/1 scheduling given in [6] uses deadlines instead of release times as is done here.
However, the definitions are symmetric.
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Given triplets Ty, - - -, T,, and a one-processor schedule SCH of the corresponding
3m jobs onto {0, - +,3m—1}, we have

3m-—1

Z n; = Z Y ny,=mB.

k=1 J(i)eTy
Since no job starts before its release time and since n,_; = n,, it follows that

Y nyz Y n@p=B forl=k=m
J(i)e Ty J(i)eTy
We conclude that ¥, ;). 1, N5y = B, for 1=k=m, and thus the m sets {n.): J(i)e T}
constitute a solution to the instance of 3-partition. 0

PrOBLEM A. Instance: m identical machines and n jobs, each job having a release
time of 0, an integer deadline, and length 1, 3, or g, for some integer q.

Question: Does there exist a valid schedule for the set of jobs?

THEOREM 5. Problem A is strongly NP-complete.

Proof. Let T={T(i):0=i=t—1} and f be an instance of 1/1/1 scheduling.
Denote the triplet T(i) as (T(i, 1), T(i, 2), T(i,3)), and the release time of T(i, j) as
r(i, j). Without loss of generality we assume that r(i, 1) <r(i, 2) <r(i, 3). (If r(i, j) =
r(i, k), then one of these release times can be increased by one since the jobs are
identical.)

The corresponding instance of Problem A consists of t machines, numbered
0,1, —1, and the following set of jobs (see Fig. 5 in § 11):

(1) A set of filler jobs F = UT '1 Y F(i). The subset F(i) contains t— [i/4] filler
jobs F(i, j) each of which has length one such that d(F(i, j))=i1=j=
t—[i/4].

(2) A set of chain jobs C = Uile ' C(i). The ith chain C(i) corresponds to the
triplet T(i). It contains 3f+2 chain jobs C(j, j), 1=j=3f+2, each of which
has length g =4t such that

d(C(i, j))=4i+jq for1=j=r(i,1)+1,
=4i+jg+1  for r(i, 1) +1<j=r(i,2)+1,
=4i+jq+2 for r(i,2)+1<j=r(i,3)+1,
=4i+jq+3 for r(i,3)+1<j=3f+2.

(3) A set of interval jobs I ={I(j): 1=j=3f} each of which has length 1, with
d(I(j))=(j+1)g—1. I(j) corresponds to the interval [j—1,j) in the 1/1/1
schedule.
(4) A set of pusher jobs P={P(i): 1=i=t—f} all of which have length 3, and
deadline (3f+2)q — 1. The pusher jobs correspond to the unscheduled triplets.
Let T’ be a solution to the instance of 1/1/1 scheduling, that is, T" is a subset of
f triplets of T for which there exists a schedule SCH,,,/, on one machine with all jobs
appearing in the interval [0, 3f). We construct a schedule SCH, for the corresponding
instance of Problem A. (See Fig. 5in § 11.)
Machine i, 0=i=1t—1, contains 4i filler jobs in the interval [0, 4i). The chain
C(i), for 0=i=t—1, is scheduled on machine i. We distinguish between two cases:

Case T(i)¢ T'. Job C(i, j), for 1=j=3f+1, is scheduled on machine i finishing
at 4i+ jg. The only exception is the last chain job C(i,3f+2) of C(i). It finishes at
4i+(3f+2)q+3 instead of three time units earlier so that a pusher job can be scheduled
in the interval [4i+(3f+1)q, 4i+(3f+1)q+3) on machine i
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Case T(i) e T'. Inthis case three interval jobs of length 1 are scheduled on machine
i instead of one pusher job. Without loss of generality we can assume that T(i, 1)
precedes T(i,2) and T(i,2) precedes T(i,3)in SCH,,,/,, since r(i, 1) <r(i,2)<r(i3).
Otherwise, we could swap the jobs of T(i) to make them appear in the above order.

Assume that T(i, 1), T(i,2), and T(i,3) are scheduled in the intervals [j—1, j),
[k—1, k), and [I—1, I), respectively, in SCH, ,,,,. Schedule the interval jobs I(j), I(k),
and I(]) on machine i such that they finish at times 4i +jg +1,4i+ kg +2,and 4i+ g +3,
respectively. Schedule the chain jobs of C(i, r) on machine i such that they finish at
the following times:

4i+rq for1=r=j,
4i+rg+1 forj<r=k,
4i+rqg+2 for k<r<3f+2,
4i+rq+3 forr=3f+2.

This completes the construction of SCH,. Note that all jobs of the instance of A are
completed before or at their deadlines.

To show the reverse, suppose we are given a schedule SCH, for the instance of
A. We want to show that SCH, determines a subset T’ of f triplets of T such that
there exists a schedule SCH,,;,, for T’ on one machine in the interval [0, 3f).

CraMA. (i) Thejobs C(i, 1),for0=i=1t—1,arescheduled ondifferent machines
in SCH,. Without loss of generality, assume C(i, 1) is scheduled on machine i

(ii) The filler jobs are scheduled in SCH, such that the interval [0, 4i) of machine
i is occupied with filler jobs and C(i, 1) is scheduled on machine i such that it finishes
at 4i+q, 0=i=r—1.(See Fig. 5in § 11.)

(iii) All jobs of the chain C(i) are scheduled on the machine i in SCH4. The job
C(i,j) can have one of at most four different finishing times in SCH4: 4i +jg, 4i +jq + 1,
4i+jq+2, or 4i+jq+3.

(iv) Machine i, 0=i=t—1, contains either three interval jobs of length one, or
one pusher job of length 3.

(v) The set T'={T(i): machine i in SCH, contains interval jobs} is a solution
of the instance of 1/1/1 scheduling. Assume SCH , is normalized, where by normalized
we mean that no interval job can be moved to the right by swapping it with the chain
job or interval job that is following it on the same machine. Then I(j), for 1=j=3f,
is scheduled in the interval [jg, (j+1)g—1) in SCH,. We can construct a schedule
SCH,,,/, for T as follows. If I(j) is the kth interval job on machine i, 1= k=3, then
schedule job T(i, k) in the interval [j—1,j) of SCH, ;.

Proof of (i). Assume two jobs C(k, 1) and C(k’, 1), k<k', are scheduled on the
same machine in SCH,. Since chain jobs have length g, the earliest time both jobs
can finish is time 2q. This contradicts the assumption that there is a feasible schedule
for Problem A since, for 0=i=t—1, d(C(i,1))=d(C(t—1,1))=4(t—1)+q<2g.

Proof of (ii). The job C(0, 1) has to start at time 0 and finish at its deadline gq.
Assume 1=j=4. Then, since |F(j)|=1t—1, and the jobs of F(j) have deadline j, the
intervals [j—1,j) of machines 1 through t—1 of SCH, must be occupied with the
filler jobs of F(j). This implies that C(1, 1) is started at time 4 in SCH, and finished
at its deadline 4+ g. Simple induction on j implies that the jobs of F(j) are scheduled
on machine [j/4] through ¢ and that C(i, 1) starts at 4i and finishes at its deadline 4i + q.

Proof of (iii). We define the lexicographic order = on the tuples (i, j) as follows.
If i <t—1, then (i, j) immediately precedes (i+1, j); otherwise, i=t—1 and (t—1, j)
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immediately precedes (0, j+1). We use this lexicographic order to do an induction
on the index tuple (i, j) of C(i, j).

The base case that (iii) holds for (i, j)=(¢—1, 1) follows from claim (ii). Assume
that (iii) holds for all jobs C(i, j) such that (i, j)=(i’, j'). Let (i*, j*) be the next tuple
after (i, j') in the lexicographic ordering. By induction we know that machine i is
busy in the interval [4i+(j—1)q+3,4i+jq), for (i, j)=(i’, j'), since it is executing
C(i, j). In particular, all machines i such that i# i* are busy in the interval [4i*+
(j*—1)g+3,4i*+(j*—1)g+4). Since d(C(#*, j*))=4i*+j*q+3, we conclude that
C(i*, j*) has to be executed on machine i*. Clearly, C(i¥*, j*) has to be completed
by its deadline, since SCH, is a valid schedule. The fact that C(i*, j*) has to be
finished at time 4i*+j*q or later follows by induction, since C(i*, j*—1) is finished
at time 4i*+ (j*—1)q or later. This completes the proof of (iii).

Proof of (iv). From (i) and (iii), we know that machine i of SCH, receives 4i
filler jobs of length 1 and 3f+2 chain jobs of length g. The deadlines of the pusher
jobs and interval jobs are no greater than (3f+2)qg—1. Therefore, the last job on
machine i, for 0=i=t—1, is the chain job C(i,3f+2). Since d(C(i,3f+2))=
4i+(3f+2)q+3, it follows that there are exactly three units available on machine i
for interval and pusher jobs. This gives us 3¢ time units for interval and pusher jobs
on all ¢ machines. Since there are 3f interval jobs of length 1 and ¢ — f pusher jobs of
length 3, we conclude that each machine i of SCH, contains either three interval jobs
or one pusher job.

Proof of (v). Assume SCH, is normalized and assume by contradiction that I(})
is an interval job that is scheduled in the interval [lg, (I+1)g—1), for some [ <j. If
I(j) is scheduled on machine i, then by (iii), it has to be scheduled between the chain
jobs C(i,I) and C(i,I+1) in the interval [4i+1q, 4i+Iq+3). Since d(C(i,l+1))=
d(C(t—1,1+1))=(I+2)g—1=d(I(j)), we can move I(j) past C(i, [+1) as follows.
Iteratively swap I(j) with the interval jobs between I(j) and C(i, [+1), and finally,
swap I(j) with C(i, [+1). The fact that I(j) could be swapped with a chain or interval
job to its right contradicts the fact that SCH, is normalized. We conclude that [ =
and that I(j) is scheduled in the interval [jg, (j+1)g—1) in SCH,.

To complete the proof of (v), we need to show that the constructed schedule
SCH,,,,, is a valid schedule for T’, that is r(i, k)=j—1, for 1=k=3. By (iii), we
know that I(j) is scheduled between C(i, j) and C(i, j+1) in the interval [4i+ jq, 4i +
Jjq t+3) on machine i. Since k —1 interval jobs are scheduled before I(j) and 3 — k after
I(j) on machine i, it follows that I(j) is executed in the interval [4i + jg + k—1, 4i + jq +
k) on machine i. This implies that d(C(i, j+1))=4i+(j+1)g+k and therefore by
the definition of the deadlines of the chain jobs, we have r(i, k)+1<j+1, which is
equivalent to r(i, k) =j — 1. This completes the proof of Claim A and the theorem. 0

In Problem B instead of having jobs of length 3 as in Problem A we have arbitrary
integer release times as well as arbitrary integer deadlines.

PrOBLEM B. Instance: m identical machines and n jobs, each job having a re-
lease time and deadline that are arbitrary integers, and having length 1 or g, for some
integer q.

Question: Does there exist a valid schedule for the set of jobs?

The reduction for B is similar to the reduction for A. The jobs of length 3 in the
reduction of A are replaced in B by an additional set of jobs R, all of which have
length 1 or q.

THEOREM 6. Problem B is strongly NP-complete.

Proof. In Problem A the length-3 jobs were used to guarantee that either three or
zero interval jobs were scheduled on a machine. In the latter case the machine received
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a pusher job of length 3. In the reduction below the same set of jobs is used as in
Theorem 5 except that the length-3 pusher jobs are replaced by R.

The slack A(J) of job J is defined to be the difference d(J)—r(J)—p(J). The
jobs of R have release time at least (3f+2)q. Thus, for any machine i, 0=i=t—1, in
a valid schedule all jobs of R follow all other jobs. The set R consists of the following
sets of jobs:

(1) A setof framejobs A={A(i): 0=i=1t—1}, with r(A(i))=(3f+t+3)g+4i+3,

d(A(i))=r(A(i))+ g, and p(A(i)) = q. Note that A(A(i))=0.

(2) A set of glider jobs G = U:=1 G(i), with G(i) ={G(, j): j#t—i,0=j=t-1},

r(G(i, j)) = (3f +2+j)q+4i, d(G(, j))=r(G(i, j)) +q+3, and p(G(i, j)) =
g. Note that A(G(i, j)) =3.

(3) A set of early jobs E={E(i):0=i=t—1}, with r(E(i))=3f+2)q+4i,

d(E(i)=Q@f+t—i+3)q+4i+3, and p(E(i))=gq.

(4) A set of late jobs L={L(i): 0=i=t—1} with r(L(i)) = r(E(i))+3, d(L(i)) =

d(E(i))-3, and p(L(i)) = q.
(5) A set of stuffer jobs U={U(i): 1=i=3(t—f)}, with r(U(i)) =(3f+1+3)q,
d(U(i))=@3f+t+4)q—1, and p(U(i)) =1.
The jobs of R can be scheduled such that A(i), G(i), E(i), and L(i), for 0si=1-1,
appear on machine i in one of the following two ways. (See Fig. 6 in § 11.)

Case 1. E(i) starts at (3f+2)g+4i on machine i. E(i) is followed by G(i, 1),
G(i,2), -, G(i,t—i—1), L(i), G(i, t—i+1),- - -, G(i, 1), three stuffer jobs, and A(i).

Case 2. L(i) starts at (3f+2)q+4i+3 on machine i. L(i) is followed by G(i, 1),
e G t—i-1), E(i), G(i,t—i+1),- -+, G(i, t), A(i).

Since |U|=3(t—f), case 1 occurs exactly ¢—f times and case 2 occurs f times.

To show that R has to be scheduled as outlined above, we prove the following
claim (see also Fig. 6 in § 11). Note that the jobs of R have the same function as the
pusher jobs of the previous reduction.

CrLaim B. For 0=i=1t-1, (i) Machine i receives t+2 jobs of length g of R. The
last job of R of length g on machine i is A(i).

(ii) The vth job of R of length g on machine i starts either at time (3f+2+
v—1)g+4i or no more than three time units later. The job G(i, j), for j#t—i, 1=
j=t, is the (j+1)st job of R of length g on machine i.

(iii) The jobs E(i) and L(i) share the first and (¢ —i+1)st position of the length
q jobs of R on machine i.

" (iv) The first job of R is an early job on eactly (¢ —f) machines, and a late job
on the remaining f machines. In the case where the first job on machine i is E(i), the
start time for E(i) is (3f+2)q+4i, and three stuffer jobs are scheduled before A(i).
In the case where the first job on machine i is L(i), L(i) begins at (3f+2)q+4i+3.

Proof of (i). Since all frame jobs A(i) start at (3f+t+3)g+4i+3 and run for
g =4t units of time, exactly one of the ¢ frame jobs has to be scheduled on each of
the ¢ machines. In statement (iii) of Claim A (of the reduction for problem A), it was
shown that the last job not in R on machine i finishes either at (3f+2)q+4i or no
more than three time units later. Thus, if machine i were to run more than t+2 jobs
of R of length g, then the (¢+3)rd job could not be finished earlier than time
(3f +t+5)q +4i. Since all deadlines of the jobs of R are smaller than (3f+ t+5)q, we
conclude that each machine runs at most ¢ +2 jobs of R of length g. Because R contains
1>+ 2t jobs of length g and there are ¢ machines, each machine receives exactly #+2
jobs of R of length gq.

From part (iii) of Claim A, we know that the first job of R of length g on machine
i can start no earlier than (3f+2)q+4i. Thus the (#+2)nd such job can start no earlier
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than (3f+t+3)q+4i. By a simple induction, it can be shown that this implies that
A(i) is scheduled on machine i.

Proof of (ii). Since r(G(i, j))=(3f+j+2)q+4i and A(G(i, j)) =3, the second
part of statement (ii) is implied by the first part. To prove the first part, note that by
statement (iii) of Claim A the first job of length g of R can start no earlier than
(3f+2)q+4i. Additionally, by statement (i) above, machine i receives t+2 jobs of R
of length g, with the last such job starting at time (3f+t+3)g+4i+3.

Proof of (iii). By (i) and (ii) above, we know that every job of E and L is scheduled
as the first or (t —i+1)st job of R of length g on some machine i. It is easy to see that
the first and tth job of R of length g of machine 0 are E(0) and L(0). No other job
of E and L is released early enough to be the first, and no job of E or L has a deadline
large enough to be the (f+1)st job of machine i By a simple induction it can be
shown that E(i) and L(i) are the first and the (z—i+1)st jobs of R of length g on
machine i

Proof of (iv). If L(i) is the first job of machine i, then by (ii) above, it must start
at its release time of (3f+2)g+4i+3. In this case, no stuffer jobs can be scheduled
on machine i.

If L(i) is the (t—i+1)st job on machine i, then by (ii) above it must finish at its
deadline of (3f+t—i+3)q+4i This implies that E(i) is started at its release time of
(3f+2)g +4i and that no more than three stuffer jobs can be scheduled in the interval
[(3f+t+3)g+4i, (3f+t+3)g+4i+3). Since there are 3(t—f) stuffer jobs of length
1, E(i) must be the first job of R on at least t —f machines.

Using arguments similar to the reduction of Problem A, the existence of 3f interval
jobs implies that there are at least f machines whose last job finishes later than
(3f +2)q +4i. We conclude that exactly ¢ — f machines start with a job from E (i), and
the remaining f machines start with a job from L(i).

This completes the proof of Claim B. It follows from the proof for Problem A
that the f machines starting with a job from L(i) will contain the interval jobs. 0

10. Open problems. (1) We conjecture that ALGORITHM BOUNDED_REGION
can be modified to obtain a running time of O(mn log n). We have already shown
that SCHEDULE runs in O(mn log n) time. It is also possible, using a technique of
[5] to avoid computing the additional regions. This technique determines whether or
not start times being computed by BACKSEQUENCE might violate a newly computed
bounded region by comparing the start times mod 1. If the answer is determined to
be yes, then the start times are decremented accordingly. It can be shown that this
process will not cause a feasible problem instance to be incorrectly designated infeasible.
It is also straightforward to show that this precomputation corresponds to the additional
regions.

In [5], it was shown that the running time for the single machine version of this
problem is O(nlog n). This running time was obtained by eliminating the need to
compute all sequénces for those jobs with deadline at least as great as the deadline of
the job whose release time is currently being processed. We believe that similar
techniques should work for the general problem, but we have not been able to solve
the problem of how to capture the notion of different degrees of boundedness, i.e.,
the fact that we have regions with restrictions on the number of jobs that can start
within them.

(2) Can the NP-completeness proofs be made tighter, or are there polynomial
time algorithms for the more constrained problems? In particular, what can be said
about variations of Problems A and B in which there is only a single machine or there
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are a constant number of machines. There ia polynomial time algorithm for the single

machine version of Problem B [2], but we have been unable to generalize the algorithm

to the case where the running time of a job is one of two arbitrary integers, as opposed -
to being either one or an arbitrary integer.

11. Figures. We use the example below to illustrate the BOUNDED_REGION

Algorithm.
Example m=2, n="7. The release time and deadline of a job are listed as an

ordered pair after the job: _
A(0,4.4), B(0.2,2.2), C(0.3,2.3), D(0.5,1.8), E(1.6,3.4), F(2.4,3.6), G(2.4, 4.0).

The table constructed for the above example is given in Fig. 2. In column j we
list only those entries that are changed in iteration j.

BR[1]=((1.6,2.4), D) BR[2]=((1.6,2.4), (2,2.4))

BR[3]=((1, 1.6), D) BR[4]=((-0.2,0.5), @) -
BR[5]=((-0.2,0.3),2) BR[6]=((—0.7,0.2),(0.0,0.2)) S
BR[7]=((-0.7,0.0), &) =

FIG. 1. The original bounded regions computed by BACKSEQUENCE.

release

tmes F ¢ E D C B A -
deadlines 2.4 | 2.4 1.6 0.5 0.3 0.2 0.0

D 1.8 0.8

B 2.2 1.2 1.0

C 23 1.3 [1.0%2| 0.3

E 3.4 2.4 | 2.4 | 1.4 |1.0*

F 36 | 2.6 26|16 | 1.6 | 06 7

G 40 | 30| 30|20 (16" | 1.0 ]| 06

A 44 | 3.4 34 | 24| 24|14 1.0*| 0.4

1 was 2.0
2 was 1.3
3 was 1.2
4 was 1.4
FI1G 2. The sequences computed by BACKSEQUENCE.
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0 — bounded 22 24
-0.7
1 — bounded 0.3 1.6 -
0.5
time —¢ t + } + t
-1 0 1 2 3 4
LA [ 8 [ €& T 6 1]
o [ ¢ T+ 7] |
0.5 1.5 2.5 3.5 -
F1G 3. Output of SCHEDULE (BR), where BR consists only of original regions.
0 - bounded additional ~ ~0202
0 — bounded 02 2:4
-0.7
1 — bounded 0.3 16 z
0.5 =
time + $ } } } } =
-1 0 1 2 3 4
1.2 2.2 2.4 3.4
B | ¢ ||l F T a 1]
02 | D [ E | G |
0.5 1.5 1.6 2.6 3.6

F1G. 4. The final rd-sequence produced by SCHEDULE (BR), with additional regions included in BR.

1234 5... 16 20 24 28 -
L0 C(0,7) l
£ C(1,1) ]
é 2 C(2,1)
3 [TT1 C(3,1) ]
Filler jobs of length 1
The beginning of a schedule for m=4 _
Gaps for interval jobs Gaps for
A pusher jobs -
— 1 —
C T : T '11 ! q I —
li | l‘ — [ lIJ | lI I [T 1
[T 1
| I L I'1 JL I |
C(.,1) C(.,2) C(.,3f+1) C(.,3f+2)

Outline of SCHAfor m=5

F1G. 5. SCH,.
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Gaps for stuffer jobs

[emoro ] eon [ eo2 [ coa Jeworo] a0 |
Reduction of [emorctn [ e | e Jemorun | coa [ am |
Problem A [e@or@] c2n Je@ora] 623 [ c2e [ A2 |
[e@ortd [E@ort@ | 632 | 63 [ 6@a | Ad) |

Outline of SCHy form=4

F1G. 6. SCHy.

The bounded regions computed at each iteration of the for loop of BACK-
SEQUENCE are listed in Fig. 1. The first entry in the ordered pair is the 1-bounded
region, the second is the 0-bounded region. The symbol J is used when there is no
bounded region.

Figure 3 shows how NEXTFORWARD avoids the original bounded regions. For
the purpose of illustration, we ignore the additional regions. Observe that if only the
original bounded regions listed above are used, C is completed later than its deadline,
so the sequence is not a d-sequence. This follows because BR [4] and BR [6] satisfy
the conditions of Lemma 3 and hence create the additional 0-bounded region (—0.2, 0.2).
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