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1. Introduction 

Valiant has recently introduced a new complexity-based model of learning from 
examples and illustrated this model by exhibiting and analyzing several learning 
algorithms for classes of Boolean functions [59, 601. In this paper we extend 
Valiant’s model to learning concepts defined by regions in Euclidean n-dimensional 
space E”, n 2 1. The general techniques we develop lead to new results in Boolean 
domains as well. Our methods are based on the pioneering work of Vapnik and 
Chervonenkis [6 I-631 on the distribution-free convergence of empirical probability 
estimates and its application to the theory of pattern recognition. These methods 
provide a unified treatment of some of Valiant’s results, and extend previous results 
of Pearl [50, 5 I] and Devroye and Wagner ([ 151, see also [ 141) along with our 
results from [lo]. 

In learning a class C of concepts (e.g., subsets of E”) from examples, a single 
target concept is selected from C and we are given a finite sequence of points in 
E”, each labeled “ 1” if it is in the target concept (a positive example) and “0” if it 
is not (a negative example). This set is called a sample of the target concept. A 
learning function for C is a function that, given a large enough randoml:y drawn 
sample of any target concept in C, returns a region in E” (a hypothesis) that is with 
high probability a good approximation to the target concept. More precisely: 

(1) We let P be a fixed probability distribution on E” and assume that examples 
are created by drawing points independently at random according to P. 

(2) The error of a hypothesis is taken to be the probability that it disagrees with 
the target concept on a randomly drawn example, that is, the error is just the 
probability (according to P) of the symmetric difference between the hypothesis 
and the target concept. 

(3) We demand that for a large enough sample size we get a hypothesis with 
arbitrarily small error with arbitrarily high probability, no matter which concept 
from C we are trying to learn. The bounds on the sample size must be 
independent of the underlying distribution P. 

This notion of learning is formalized in Section 2. A class of concepts with a 
learning function that satisfies (3) is called uniformly learnable. Condition (3) is 
formalized by demanding that the hypothesis has error greater than E with proba- 
bility at most 6 for small t and 6, uniformly for all concepts in C. The smallest 
sample size that achieves this for all distributions and all target concepts in C is 
called the sample complexity of the learning function. This general definition of 
uniform learnability imposes no restrictions of feasibility or even computability of 
the learning function; these considerations are postponed until Section 3. 

In Section 2 (Theorem 2.1) we give necessary and sufficient conditions on a class 
of concepts C for the existence of a learning function satisfying (3). This result is 
based directly on the work of Vapnik and Chervonenkis [61-631; following [29], 
we have simplified some of their more general arguments to obtain sharper bounds 
on the sample complexity of functions satisfying (3) in the special case we consider. 
We have also added lower bounds for the sample complexity. 

Our characterization of learnability uses a simple combinatorial parameter called 
the Vapnik-Chervonenkis (VC) dimension of the class C of concepts [29].’ We 
show that there is a learning function satisfying (3) if and only if the VC dimension 
of C is finite. Moreover, if C does have finite VC dimension d then there is a 

’ This parameter is called the capacity of C in [61] (named after a similar notion from [ 131) and S(C) 
in [17]. 
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learning function for C, uniformly achieving error no more than t with probability 
at least 1 - 6, using sample size m(c, 6) = max(4/E log(2/6), 8d/c log( 13/t)). In fact, 
any function from samples into the class C that always gives hypotheses consistent 
with the sample is a learning function for C and has sample complexity bounded 
by YM(~, 6). Applications of this result in Euclidean domains are given. We also give 
an example in a Boolean domain where this result gives significantly better bounds 
on the sample complexity than the simpler counting arguments used in [lo] 
(Example 2.4). 

In Section 3 we introduce considerations of computational feasibility, investigat- 
ing the implementation of learning functions by computationally efficient /earning 
algorithms. 

We study two types of learning algorithms. One type works for all domains of 
Euclidean dimension n > 1 and for each n, learns concepts in a class C, G 2E”, or 
C’, C 210,‘1’ in the Boolean case. For example, a pattern recognition algorithm that 
finds linear separators might be used to learn the class C, of all half-spaces in E” 
for each y2 2 1 (see Example 3.1.2). 

For the other type of learning algorithm, the domain is fixed, but the “com- 
plexity” of the target concept may vary. For example, the domain may be E* and 
the class of target concepts C may be all convex polygons. Since the VC dimension 
of C is infinite, no algorithm can define a uniform learning function for C in the 
sense defined above. However, there are efficient learning algorithms for C if we 
allow the sample size to depend on the number of edges in the target concept, a 
natural measure of target complexity (see Example 3.2.2). 

These two types of learning algorithms lead to two notions of feasible (but 
nonuniform) learnability for concept classes: polynomial learnability with respect 
to domain dimension, in which the sample size is allowed to grow polynomially in 
the Euclidean dimension of the domain, and polynomial learnability with respect 
to target complexity, in which the sample size is allowed to grow polynomially in 
the complexity of the target concept. In both cases we insist that the sample size 
also be polynomially bounded in the inverses of the error and confidence param- 
eters E and 6, and that the learning algorithm run in time polynomial in the sample 
size. These notions of polynomial learnability, both closely related to the model 
introduced in [59] and elaborated in [36] and [52], are discussed in Sections 3.1 
and 3.2, respectively. 

The main result of Section 3.1 gives a characterization of polynomial learn- 
ability with respect to domain dimension. We show that the concept classes C,,, 
n 2 1, are polynomially learnable if and only if the VC dimension of C, grows 
polynomially in n and there exists a polynomial time probabilistic algorithm for 
finding a consistent hypothesis in C, for any sample of a target concept in C, 
(Theorem 3.1.1). As a corollary, we get a result of Natarajan [48] that in the 
Boolean case, the concept classes C,, C 2’“~‘i”, n 2 1, are polynomially learnable if 
and only if log 1 C,, 1 grows polynomially in n and there exists a polynomial time 
probabilistic algorithm for finding a consistent hypothesis in C, for any sample of 
a target concept in C, (Corollary 3.1.3). Related results are given in [30]. We give 
several examples that illustrate these results. 

In Section 3.2 we give a sufficient condition for polynomial learnability with 
respect to target complexity based on the principle of preferring the simpler 
hypothesis, usually called Occam’s Razor (Theorem 3.2.1). Essentially, this result 
shows that if we can efficiently produce a hypothesis that explains (i.e., is consistent 
with) the sample data, and is sufficiently more compact than the sample data, then 
we can feasibly learn. In this sense the result may be interpreted as showing a 
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relationship between a kind of data compression and learning (see also [55] and 
[651). 

We use this result to study learning in concept classes that are formed .by taking 
either finite unions or finite intersections of a fixed base class of finite VC 
dimension. For example, convex polygons are defined by finite intersections of 
half-planes. We show that classes of this type are polynomially learnable with 
respect to target complexity whenever there is a polynomial-time algorithm for 
finding a consistent hypothesis in the base class (Theorem 3.2.4). In obta:ining this 
result, we employ the greedy algorithm for set cover to obtain a sufficiently simple 
explanation of the sample data. We do not attempt to find the simplest explanation, 
as this is, in general, NP-hard. 

Finally, we note that this paper is mostly self-contained in that complete proofs 
for all the probabilistic and combinatorial lemmas are provided. However, we have 
relegated many of them to the Appendix. We close with a brief overview of this 
Appendix. 

Section Al extends the notion of an t-transversal for a class of regions R G 2E” 
introduced in [29]* to arbitrary probability distributions on E”. For a fixed 
distribution, an E-transversal for R is a finite set of points N G E” such that every 
region in R of probability at least E contains at least one point in N. Se:ction A2 
uses the notion of an c-transversal to provide the primary machinery for 
Theorem 2.1, following [29] and [62]. 

In Section A3 we briefly explore the more general problem of learning “stochas- 
tic” target concepts, that is, concepts in which the classification of each point in 
the domain is defined probabilistically rather than deterministically. This is a fairly 
standard assumption in the pattern recognition literature (e.g., [ 161). Here we 
provide some sufficient conditions for learning such concepts derived directly from 
results in [61]. These results can also be viewed in te-ms of a strengthened notion 
of an e-transversal. Finally, we discuss the relationship between the problem of 
learning stochastically defined target concepts and some recent extensions of 
Valiant’s learning model that allow misclassifications in the training examples 
[4, 34, 39, 58, 601. 

Notation. SAT denotes the symmetric difference of sets S and T, and 1 S 1 the 
cardinality of S. For S L X, Z, denotes the indicator function for S on X, that is, 
Is(x) =1 if x E S, Is(x) = 0, otherwise. X” denotes the m-fold Cartesian product 
of X. Elements of X” will be denoted by barred variables, for example, 7 or 7. We 
assume X denotes (x, , . . . , x,) where x, E X, 1 5 i I m, when m is clear from the 
context, and similarly for other barred variables. If P is a probability distribution 
on X, then P” denotes the m-fold product probability distribution on X”. Natural 
logarithms are written “ln”, all other logarithms are base 2. Z denotes the integers 
and Z+ the positive integers. 

2. Learnability 
We use the following notions of learning functions and learnability. 

Definitions. A concept class is a nonempty set C G 2x of concepts. In this paper 
it is assumed that X is a fixed set, either finite, countably infinite, [0, l]“, or E” 
(Euclidean n-dimensional space) for some n 2 1. In the latter cases, we assume 
that each c E C is a Bore1 set. For 3 = (xl, . . . , x,) E X”, m 2 1, the m-sample of 

2 What we call an e-transversal is called an c-net in [29]. Here we have loosely borrowed some terminology 
from [ I 1, page 65 ] to avoid confusion with the topological notion of an e-net used in [6 l] and elsewhere. 
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c E C generated by 2 is given by sam,(x) = ((x,, ZJx,)), . . . , (x,, 1,(x,,,))). The 
sample space of C, denoted SC, is the set of all m-samples over all c E C and all 
~~P,forallmr 1. 

AC,H denotes the set of all functions A: SC + H, where H is a set of Bore1 sets 
on X. H is called the hypothesis space. Elements in Hare called hypotheses. Usually 
we would like the hypothesis space to be C itself, but in some cases it is computa- 
tionally advantageous to allow A to approximate concepts in C using hypotheses 
from a different class H. A E AC,H is consistent if its hypothesis always agrees 
with the sample, that is, whenever h = A(( xl, al ) . . . , (xm, a,)) then for all i, 
1 5 i 5 m, ai = Zh(Xi). For any A E AC,H, probability distribution P on X, c E C, 
and .Z E X”, the error of A for concept c on 2 (with respect to P) is given by 
errorA,c,p(Z) = P(cAh), where h = A(sam@))). Thus, A’s error is measured as the 
probability of the region that forms the symmetric difference between the target 
concept and A’s hypothesis, which is just the probability that A’s hypothesis will 
be inconsistent with the target concept on a randomly drawn point (with respect 
to P). When c and P are clear from the context, we refer to P(cAh) simply as the 
error of h. 

Let m(c, S) be an integer-valued function of e and 6 for 0 < t, 6 < 1 and P be a 
probability distribution on X. A E A C,H is a learning function for C (with respect to 
P) with sample size m(t, S) if for all 0 < t, 6 < 1 and for all c E C, P”‘(‘,‘)( W) 5 6, 
where W = (3 E X”‘(‘,‘) : error,+,,(X) > E 1. If A is defined in such a way that W is 
not measurable for some c E C, then we require that there exist a measurable IV’ 
such that WG W’ and Pmcf,‘)( W’ ) 5 6. Essentially, we insist that using a randomly 
drawn sample of size m(e, S) of any target concept in C, A produces, with probability 
at least 1 - 6, a hypothesis in H with error no more than t. If such an A exists, we 
say that C is untformly learnable by H under the distribution P. 

Finally, we say A E AC,H is a learning function for C with sample size m(t, 6) 
only when A is a learning function for C with respect to P with sample size m(c, 6) 
for all probability distributions P on X. The smallest such sample size m(E, 6) is 
called the sample complexity of A. If such an A exists, we say C is uniformly 
learnable by H. When we say “C is uniformly learnable,” we mean that C is 
uniformly learnable by H for some hypothesis space H. 

Example 2.1. Consider the problem of learning concepts such as the concept 
of “medium build,” defined (for men) as having weight between 150 and 185 
pounds and height between 5’4” and 6’0”. By looking at a finite database of 
randomly chosen men that gives their weight, height, and classification (medium 
build or not), we want to form a rule that approximates the true concept of medium 
build, and we want our approximation to be accurate independently of the 
underlying distribution on height-weight pairs (height and weight values are not 
assumed to be independent). This type of learning problem is formalized and 
solved as follows: 

Let X be E2 and C be the set of all axis-parallel rectangles, that is, products of 
intervals on the x-axis with intervals on the y-axis. Let P be any probability 
distribution on E2. A simple algorithm to learn a concept c E C is the following. 
Keep track of the minimum and maximum x and y coordinates of any positive 
example. Let I’, r’, b’, t ’ denote these four values, respectively. After drawing a 
number of examples, predict that the concept is h = [I ‘, r’] x [b’, t ‘I. If no 
positive examples are drawn, let h = 0. Call the learning function defined by this 
algorithm A. 

We claim that A is a learning function for C with sample complexity at most 
4/t ln(4/6). 
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Assume the concept c to be learned is the product of the intervals [/, Y] on the x 
axis and [b, t ] on the y axis. Since A’s hypothesis h is always contained in c, if 
P(c) C t, then eYYoyA,,:p of any sample of c is always less than t. Otherwise, we 
define four minimal side rectangles within c that each cover an area of probability 
at least t/4: 

left = [/, x] x [6, t], where x = inf(x:P([I, X] x [b, t]) 2 c/4) 

and right, bottom, and top are defined similarly. If the sample size is m, the 
probability that a particular side rectangle contains no example is at most 
(1 - t/4)“‘. The probability that some side rectangle contains no example is bounded 
by 4 times this quantity. This latter quantity is smaller than 4ePmtf4, so if the sample 
size nz is at least 4/e ln(4/6), then with probability at least 1 - 6 we draw an example 
in each of these four side rectangles. If this occurs, then the probability of the 
region given by the symmetric difference of A’s hypothesis and c will be less than 
6, thus bounding the error of the hypothesis. Since this bound is independent of 
the particular distribution P, the claim follows. 

This example readily generalizes to n-dimensional rectangles for n > 2, with a 
bound of 2n/t ln(2n/6), on the sample complexity. 

It is not clear even in two dimensions how to generalize the above example to 
other types of concepts, for example, circles, half-planes or rectangles of arbitrary 
orientation. To show that these classes are also uniformly learnable, we use a 
concept first introduced in [62]. 

Definition. Given a nonempty concept class C C 2x and a set of points S c X, 
II&S) denotes the set of all subsets of S that can be obtained by intersecting S with 
a concept in C, that is, II&S) = (S fl c: c E C). If II,(S) = 2’, then we say that S 
is shattered by C. The Vapnik-Chervonenkis (VC) dimension of C is the cardinality 
of the largest finite set of points S c X that is shattered by C. If arbitrarily large 
finite sets are shattered, the VC dimension of C is infinite. 

Note that the empty set is always shattered, so the VC dimension is well defined. 
The following additional notation will also be useful. 

Definition. For any integer m 2 0, II,(m) = max( 1 II&S) I) over all S C X of 
cardinality m. 

Using this notation, the VC dimension of C can be defined as the largest integer 
d such that II,(d) = 2d, or infinity. 

Example 2.2. Let X be the real line and let C be the set of all intervals (open or 
closed) on X. Then given any set S consisting of two points x1, x2 E X, we can find 
concepts cl, c2, c3, c4 E C such that cl n S = (x, ), c2 n S = {x2), c3 n S = 0, 
and c4 n S = S. Hence, S is shattered by C. However, if S consists of three points 
xl I x2 I x3, then there is no concept c E C that contains xl and x3 but not x2, 
and hence S is not shattered. Thus the VC dimension of C is 2. 

More generally, let X be the real line and let C be the set of all unions of up to s 
intervals for some fixed s L 1. If S consists of points x1, . . . , .X~~, where X, I Xi+,, 
1 I i < 2s, then it is easily verified that S is shattered by C. However, if S consists 
of points xl, . . . , xzs, xzs+, , where X; 5 Xi+, , 1 I i 5 2s, then no concept in C 
contains xl, x3, . . . , x2,7+1 without also containing a point in x2, x4, . . . , ;c2c2s. Thus 
S is not shattered and hence the VC dimension of C is 2s. 

Generalizing in a different manner, let X be E” for some n I 1 and C be the set 
of axis-parallel rectangles on X as in Example 2.1 above. It is easily verified that if 
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S consists of the 2n points at the centers of the faces of the unit n-cube, then S is 
shattered by C. However, if S consists of any 2n + 1 points, then consider the 
smallest closed axis-parallel rectangle R that contains the points of S. Since R has 
only 2n faces, there must be some point x E S such that either x lies in the interior 
of R, or x lies on the face of R along with another point of S. Hence, any concept 
in C that includes all the other points of S must include X. Thus S is not shattered 
by C and therefore the VC dimension of C is 20. 

Example 2.3. Let C be any finite concept class. Then since it requires 2d distinct 
concepts to shatter a set of d points, no set of cardinality larger than log ] C ] can 
be shattered. Hence, the VC dimension of C is at most log 1 C 1. 

Vapnik and Chervonenkis [63], Dudley [ 171, Wenocur and Dudley [66], Assouad 
[6], and Haussler and Welzl [29] give numerous additional examples of concept 
classes of finite VC dimension. For example, the VC dimension of half-spaces and 
balls of E” is n + 1. In general, whenever C is of finite VC dimension, then Ck, the 
set of all Boolean combinations formed from at most k concepts in C, is also of 
finite VC dimension [ 171. Thus, for example, since the set Ck of convex k-gons in 
E” for fixed k > n is formed by k-fold intersections of half-spaces, Ck is of finite 
VC dimension for any finite k (see Example 3.2.2). Wenocur and Dudley [66] also 
prove more general results that imply, for example, that the concept class formed 
by the set of all half-spaces bounded by polynomial curves of fixed degree also has 
finite VC dimension (see Example 3.1.3). On the other hand, the set of all finite 
unions of intervals, like the set of all open sets or all Bore1 sets, obviously has 
infinite VC dimension. 

Definition. A concept class C G 2x is trivial if C consists of one concept, or two 
disjoint concepts cl and c2 such that cl U c2 = X. 

It is clear that a sample size of one is the most that is required to learn C when 
C is trivial. 

We can now state the main result of this section. 

THEOREM 2.1. Let C be a nontrivial, well-behaved 3 concept class. 

(i) C is untformly learnable tfand only if the VC dimension of C is finite. 
(ii) Ifthe VC dimension of C is d, where d < ~0, then 

(a) for 0 < E < 1 and sample size at least 

any consistent function A: Se -+ C is a learning function for C and 
(b)4 for 0 < e < $ and sample size less than 

max e In i, d(1 - 2(t( 1 - 6) + 6)) , 

no function A: Se + H, for any hypothesis space H, is a learning function 
.for C. 

3 This is a relatively benign measure-theoretic assumption discussed in Section A 1 of the Appendix. 
4 This lower bound has recently been improved [20] to max(( 1 - t)/t In l/6, (d - 1)/32c) for e I $ and 
6 5 & which asymptotically meets the upper bound of (a), except for an O(log l/t) factor. 
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The proof will be given in a series of lemmas and theorems, most of which are 
given in the Appendix. We first observe that if (ii)(a) holds then the “if” part of(i) 
follows. This is because we can always produce a consistent function that maps 
from SC into C by simply well-ordering the concepts in C and choosing for each 
sample in S, the first concept that is consistent with this sample. In this section we 
are not concerned with the computability of A. Similarly, if (ii)(b) holds, then the 
“only if” part of(i) follows. This is because the second lower bound of (ii)(b) grows 
arbitrarily large with d for appropriate choice of t and 6. Hence, we need only 
establish (ii). The proof of (ii)(a) is given in Section 2 of the Appendix. Here we 
give only the following proof: 

PROOF OF (ii)(b). Let C be a nontrivial concept class of finite VC dimension d, 
0 < E < i, and m = max(( 1 - c)/cln l/6, d( 1 - 2(~( 1 - S) + 6))). We must show 
that any learning function for C must use sample size at least m. We begin with 
the first term of the lower bound, considering two cases for C. 

Case 1. C contains two distinct concepts cl and c2 that have a nonempty 
intersection. 

Let A be a learning function for C and let a E cl n c2 and b E c2 - cl. Let P be 
the probability distribution such that P(b) = c, P(a) = 1 - t, and P(x) = 0 for any 
other point x E X. With respect to this distribution, we can effectively replace X 
with the set (a, b), C with ((a], {a, b]], and H with the four subsets of (a, b], 
modifying A accordingly. (C may contain other subsets of X as well, but this would 
only make the learning problem harder.) 

It is easily verified that if the sample size m is less than l/(-ln(1 - c))ln(1/6), 
then the probability of drawing the point a each time is greater than 6. Since 
1 /(-ln( 1 - t)) > ( 1 - t)/t for all 0 < t < 1, this holds for m 5 (1 - c)/c ln( l/6). We 
can divide the possible learning functions for C into four types, depending on how 
they respond to an m-sample in which each point is a. Since both concepts in C 
contain a, all examples of the sample will be positive. If the learning function 
responds by producing the hypothesis (a), then for this sample it has error t if the 
target concept is (a, b}. If it responds (a, b}, (b], or 0, then, because E < jr, it has 
error at least E if the target concept is (a). In any case, there is a concept in C such 
that the probability that A produces a hypothesis of error at least t with sample 
size m is greater than 6. By decreasing the probability of a slightly and increasing 
the probability of b by the same amount it follows that the previous statement also 
holds for error strictly larger than t instead of error at least E. We conclude A 
cannot be a learning function for C with sample size m < (1 - c)/t ln( l/6).. 

Case 2. C contains at least two disjoint concepts cl and c2 such that cl U 
c2 # x. 

Let a E X - (c, U c2) and b E cl. Given any learning function A for C, we let 
the distribution P be defined as above in Case 1 and replace X by {a, bj, C by 
I(b), 01, H by 2’a,b1, and modify A accordingly. The remainder of the analysis 
is the same, except that we consider the case when A receives a sequence of 
negative examples, all of the point a. 

This completes the verification of the first term of the lower bound. 
For the second term of the lower bound, note that since C is nontrivial, the VC 

dimension d of C is at least 1. There must exist a set & of d points in X that are 
shattered by C. Let the probability distribution P on X be uniform on these points 
and 0 everywhere else. With respect to this distribution, we may replace X.with & 
and C with 2xd. 
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Suppose we draw a sequence X E X” and 1 different points are observed in this 
sample. For each of the 2’ possible labelings of X, there are 2d-’ concepts consistent 
with this labeling. Whatever the hypothesis of the learning function, for every point 
of X not observed in X, it will be correct for exactly half these concepts. Thus, the 
average error of the learning function on 2 over all concepts in C is at least 
(d - 1)/(2d) I (d - m)/(2d). This implies that the average error of the learning 
function over all X E X” and all concepts in C is at least (d - m)/(2d). Hence, 
there must be a concept with average error at least (d - m)/(2d). To make the 
frequency of m-sequences in which the error on this concept is greater than E at 
most 6, the error can be greater than t (i.e., 1) on at most 62” of the m-sequences, 
and must be at most c on the remainder. Hence, the average error can be at most 
t( 1 - S) + 6, which gives the second part of the lower bound. 

Combined with the proof of (ii)(a) given in the Appendix, this completes the 
proof of Theorem 2.1. Cl 

The above theorem shows a significant gap in the inherent sample complexity 
of learning problems: depending on whether or not the VC dimension of a concept 
class C is finite, either C is uniformly learnable with sample size O( l/t log( l/(&))) 
or C is not uniformly learnable at all. Furthermore, if C is uniformly learnable, 
then there exists one sample size proportional to the VC dimension of C that any 
learning algorithm for C must use, and another sample size proportional to the VC 
dimension of C that is sufficient for any consistent algorithm using hypothesis 
space C. Hence, the sample complexity of learning C is linear in the VC dimension 
of C in a strong sense. 

It also has immediate consequences for several well-known pattern recognition 
algorithms. For example, since the VC dimension of half-spaces in E” is n + 1, the 
sample complexity of the classical perceptron learning algorithm (see, e.g., [ 161) is 
at most max(4/c log(2/6), 8(n + 1)/c log( 13/c)), that is, at most this many examples 
are required to achieve error at most t with probability at least 1 - 6, independent 
of the underlying distribution governing the selection of examples. (Here we assume 
that one random sample of an unknown half-space is drawn and the algorithm 
cycles through this sample until it finds a hyperplane that correctly separates the 
positive from the negative examples.) Since 6 appears only in a log term, this 
implies that good linear separators can be found with very high probability from 
relatively small random samples. Furthermore, the same bound applies to any 
learning algorithm for half-spaces that produces consistent hypotheses that are half- 
spaces, for example, the Ho-Kashyap algorithm or linear programming [ 161 (see 
also Example 3.1.2 below). 

Since the above bound is O( l/c(log( l/6) + n log( l/E))), for small t it is signifi- 
cantly better than the O( l/~‘(log( l/F) + nlog(n/t))) bound given in [51] (eq. 29) 
derived directly from [ 151 and [62]. However, the latter bound is more robust in 
that with this sample size, an accurate estimate of the true error of any half-space 
that is hypothesized can be obtained from its observed rate of disagreement with 
the target. This may be necessary in cases where no half-space is consistent with 
the sample data, for example, because of noise in the data, or because the target 
concept is not a half-space. In a recent overview paper, Devroye [ 141 discusses 
further applications of results of this type, derived from the original work of Vapnik 
and Chervonenkis, to a variety of other pattern recognition methods. In Appendix 
A3 we indicate how the bounds given by Vapnik [61] on the relative deviation of 
empirical estimates from true probabilities provide an alternate analysis in cases 
where the hypothesis does not fit the training data exactly. This analysis gives 
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smaller required sample sizes when the observed rate of disagreement between 
target and hypothesis is small. 

Other general techniques for obtaining distribution-free learning results for the 
case when the hypothesis space is finite, for example, for learning problems in 
Boolean domains, have been described in [lo] (see also [61]). In analogy with 
Theorem 2. I(ii)(a), we have the following result. 

THEOREM 2.2 [ 10, 6 11. Let C C 2x be anyfinite concept class. Then for sample 
size greater than l/t/n( 1 C//6), any consistent function A: SC + C is a learning 
function for C. 

PROOF. Let P by any probability distribution on X and c be any target concept 
in C. Any hypothesis h E C with error greater than t will be inconsistent with an 
m-sample of c unless all examples in it land in the region outside the symmetric 
difference of h and c, a region of probability less than 1 - c. The probability of this 
occurring for a particular h E C is at most (1 - t)” I e-‘“. So the probability of it 
occurring for any h E C is at most ] C ] eetm. If m 2 l/c ln( ] C I/S), then this 
probability is at most 6. Hence, since A produces consistent hypotheses in C, for 
this sample size the probability that A’s hypothesis has error greater than e is less 
than 6. Cl 

Theorem 2.l(ii)(a) can also be used to obtain bounds of the type given in the 
above result, since the VC dimension of C is at most log ] C ] for finite C. However, 
in many cases Theorem 2.2 is easier to apply than Theorem 2.1 (you do not need 
to calculate the VC dimension of C) and yields slightly better bounds on the sample 
complexity. Its proof is also considerably simpler. On the other hand, in some 
cases merely counting the number of different possible concepts is too crude a 
measure to use in estimating the sample complexity of a learning algorithm. 

Example 2.4. Consider the case of pattern recognition with linear separators 
on Boolean domains: Let X = (0, 1)” and C be the class of concepts on X defined 
by linearly separable Boolean functions on n variables (i.e., intersections of half- 
spaces with the Boolean n-cube) [25, 421. In [46], it is shown that 2”(“-‘)“2 I ] c’] 
5 2”*. So by applying Theorem 2.2 we cannot show that C is uniformly learnable 
with a sample size that is better than O(l/t(n’ + log(1/6))). In fact, since half- 
spaces in E” have VC dimension n + 1, the VC dimension of C is at most 
n + 1 and thus by Theorem 2.1, C is uniformly learnable with sample size 
0( l/c(n log( l/t) + log( l/6))) by any consistent learning function. For fixed E and 6 
this is a reduction in the sample complexity bound from O(n2) to O(n). 

3. Polynomial Learnability and Occam’s Razor 
In this section we examine the computational feasibility of learning various concept 
classes. Part of this involves looking at how learning functions can be implemented 
as algorithms that take samples and return hypotheses. However, to be useful, a 
theory of learning algorithms must start with a somewhat broader notion than that 
of a learning function as given in the previous section. 

First, learning algorithms are often defined for domains of arbitrary Euclidean 
dimension. For example, the techniques for finding linear separators discussed in 
the previous section work for any dimension. It is best to think of such a technique, 
that is, the technique of finding a hypothesis with linear programming or that of 
cycling through the data with the perceptron algorithm, as a single learning 
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algorithm that works for the class of half-spaces in any Euclidean dimension. In 
this way we can focus on how the sample size required for learning and the 
computational efficiency of the hypothesis-producing procedure are affected as the 
dimension of the domain increases. Because the sample size required grows with 
the domain dimension, this type of learning result is not uniform in the strong 
sense defined in the previous section, where the sample size was bounded only in 
terms of the accuracy and confidence parameters e and 6. 

Another type of nonuniform learning is also of interest in a computational theory 
of learnability. As an example, consider again the algorithm for learning axis- 
parallel rectangles. In Euclidean dimension 1, this reduces to an algorithm for 
learning intervals on the real line. Without increasing the dimension of the domain, 
this algorithm can be generalized to learn target concepts that are unions of intervals 
of the real line (see Example 3.2.1 below). Since the VC dimension of the class C 
of all finite unions of intervals on the real line is infinite, Theorem 2 shows that C 
is not uniformly learnable. Nevertheless, the algorithm in Example 3.2.1 is a very 
practical learning algorithm. Given a relatively small sample of any target concept 
defined by a union of a small number s of intervals, it produces, with high 
probability, a hypothesis with small error, independent of the distribution. It does 
not learn C uniformly because the sample size needed grows with s. 

The above example shows that it is not only useful to parameterize learning 
algorithms and learnability results by the dimension of the domain, but also by 
some natural measure of the syntactic complexity of the target concept, in this case 
the number of intervals used to define it. Both of these considerations are empha- 
sized in [36] and [52] in the investigation into the learnability of Boolean functions. 
We treat both of these issues formally in the next two subsections. The consequences 
of introducing syntactic complexity into an abstract theory of learnability have 
recently been explored independently from our work in [8] and [41]. 

Before proceeding, we note that the efficiency of a learning algorithm in a real- 
valued domain will depend on which of the standard computational models is 
adopted. We can choose either the logarithmic cost model, in which real numbers 
are represented in finite precision and operations on them are charged time 
proportional to the number of bits of precision, or the uniform cost model, in 
which real numbers occupy one unit of space and standard operations of addition, 
multiplication, etc. take one unit of time (see [ 11). We deem it unwise at this point 
to attempt to dictate which model is correct for the study of computational 
learnability, so we shall leave this aspect of our basic model unspecified. Our 
theorems hold in either model, but specific examples are occasionally model- 
dependent. 

3.1 POLYNOMIAL LEARNABILITY WITH RESPECT TO DOMAIN DIMENSION. For 
the purposes of computation, we must assume some representation for the hy- 
potheses produced by a learning algorithm, and in addition, we may assume some 
representation for the target concepts. Usually the class of target concepts and 
hypothesis space are the same and the same representation is used, but this is not 
always so (see, e.g., [36]). 

Definition. For each n 2 1 let X,, be a learning domain, which in this section is 
either E”, [0, 11” or (0, 1)“. For computational purposes, we assume that points in 
X,, are represented as n-tuples in a standard way. Let C, C 2xn be a class of target 
concepts on X, and let H, c 2xn be a hypothesis space. We assume that H, is well- 
behaved and that both 0 and X,, are members of H,. 
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Let there be associated with ((X,, H,)),,, a set of representations for concepts 
in each H,, n 2 1, given in some representation language. We assume only the 
following properties of this language. 

(1) Each string in the representation language uniquely represents a concept in H,, 
for some y1 L I, and each such concept has a representation in the language. 

(2) The language is in P, that is, there is a polynomial-time algorithm to decide if 
a string is in the language or not. 

(3) There is a polynomial-time algorithm that, given a string Y in the language and 
a point x E X,, for some n 2 I, decides if x is in the concept represented by Y 
or not. 

Let there be a similar representation associated with ((X,,, Cn)jnZl. 
By C we denote 1(X,, C,)],,i, along with its representation, and by H we denote 

((X,, H,,)],,, , along with its representation. We use the term concept c/ass to refer 
to C and also to refer to individual sets C,,. We say that a concept c is in C if 
c E U C,. Similar conventions are adopted for H, except that, following established 
convention, H is referred to as the hypothesis space. 

Refining the learnability definitions from the previous two sections, we now give 
a definition of polynomial learnability with respect to the dimension Y,! of the 
domain. Because in this definition a learning algorithm implements a function 
from samples to hypotheses, we call this the functional model of polynomial 
learnability. 

Definition. Let C and H be defined as above. We say that C is polynomial/y 
learnable (poly-learnable) by H if there exists a polynomial-time algorithm A that 
takes as input a sample of a concept in C, outputs a hypothesis in H, and has the 
property that for all 0 < c, 6 < 1 and n 5: 1 there exists a sample size m(t, 6, n), 
polynomial in l/c, l/6, and n, such that for all target concepts c E (Zn;?, and 
all probability distributions P on X,, given a random sample of c of size 
m(t, 6, n) drawn independently according to P, A produces, with probability 
at least 1 - 6, a hypothesis h E H, that has error at most E (i.e., a hypothesis h 
such that P(hAc) zz 6). The smallest such m(t, 6, n) is called the sample 
complexity of A. 

If C is poly-learnable by C, then we say C is properly poly-learnable. Cl 

Essentially this definition requires that the algorithm A define for each n 2 1 a 
learning function for C,, by H,, and that the sample complexity and computation 
time for A be polynomial in the appropriate parameters. A similar definition of 
polynomial learnability is used in [56]. 

In the above definition the computation time of the learning algorithm is 
measured as a function of input length. It is also possible to allow the computation 
time to depend explicitly on the accuracy and confidence parameters t and 6. Since 
this, and other extensions of the above model, are allowed in the definition of 
polynomial learnability in [52] and [59], we now introduce a second model of 
polynomial learnability, which we call the oracle model (see also [3] and [36]). 

In the oracle model the learning algorithm receives the parameters c, 6, and n as 
input and has access to an oracle EX() that with each call returns a point in X, 
drawn independently at random according to a fixed distribution P, along with a 
label 0 or 1 indicating whether or not the point is in a fixed target concept c E C,,. 
Each oracle call takes unit time. After some time A halts and outputs a hypothesis 
in H,. In addition to allowing A access to t, 6, n, and an oracle for examples, we 
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also allow A to be randomized, in the sense that A can in unit time flip a fair coin 
to decide its next move. An algorithm of this type will be called a (randomized) 
oracle algorithm. 

Definition. We say that C is polynomially learnable (poly-learnable) by H in 
the oracle model if there exists a (possibly randomized) oracle algorithm A that 
has the property that for .a11 0 < E, 6 < 1 and n 2 1 there exists a time bound’ 
L(t, 6, n), polynomial in l/e, l/6, and n, such that for all target concepts 
c E C,, and all probability distributions P on X,,, A runs in time T,(E, 6, n) 
and produces, with probability at least 1 - 6, a hypothesis h E H, that has error 
at most t. 

The functional and oracle models of polynomial learnability are shown to be 
equivalent in [30], along with another variant of the oracle model in which there 
are two probability distributions on the domain X, and two oracles, one for positive 
examples of the target concept and one for negative examples (e.g., [36] and [52]). 
However, if randomized oracle algorithms are allowed, the latter proof of equiva- 
lence also requires the assumption that H, includes (x) for every x E X,. Because 
of this close relationship between the models, we use the term poly-learnable to 
mean polynomially learnable in any one of these models, and similarly for properly 
poly-learnable. 

The results of Section 2 show that a number of interesting concept classes are 
properly poly-learnable. In the following examples we can assume any of the 
standard representations for the concepts. 

Example 3.1.1. Define C by letting C, be the class of all axis-parallel rectangles 
in E”. Then the algorithm given in Example 2.1, extended appropriately to arbitrary 
dimension n, has the property that given any sample of size 2n/cln(2n/6) of a 
target concept that is an axis-parallel rectangle in E”, it produces a hypothesis that 
is an axis-parallel rectangle in E” and, with probability at least 1 - 6 this hypothesis 
has error at most c, independent of the distribution. Since, in addition, the time 
required to compute the hypothesis is polynomial in the length of the input (the 
algorithm merely computes the smallest and largest value of coordinate i among 
all positive examples for each 1 5 i I n), this shows that C is properly poly- 
learnable. Note that using the fact that the VC dimension of C, is 2n (Example 
2.2) and that the algorithm always returns a consistent hypothesis in C,,, this result 
can also be derived directly using Theorem 2.l(ii)(a). 

Example 3.1.2. Define C by letting C, be the class of all half-spaces (open or 
closed) in E”. We can find a hypothesis in C’, consistent with a sample of a concept 
in C, by finding a hyperplane separating the positive from the negative examples. 
This problem can be reduced to a linear programming problem in n + 1 dimensions 
in which each example forms a constraint. Thus using a polynomial-time algorithm 
for linear programming, e.g., Karmarkar’s algorithm [33], we have a polynomial- 
time algorithm that always produces a consistent hypothesis in C,. Since the VC 
dimension of C, is n + 1, Theorem 2.l(ii)(a) shows that the function defined by 
any such algorithm is a learning function for C, by C, using sample-size polynomial 
in l/t, l/6, and n. Hence, C is properly poly-learnable. 

Note that in this case Megiddo’s technique for linear programming [44] would 
not suffice because its time complexity grows exponentially in the dimension of 

5 When the domain is real-valued and the logarithmic cost model is adopted, we also let the time bound 
depend polynomially on the length of the longest example returned by the oracle. 
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the linear programming problem (see, e.g., [40]). The perceptron algorithm and 
related pattern recognition techniques will also take exponential time to produce a 
separating hyperplane in some cases [25]. On the other hand, the polynom:ial-time 
bound for Karmarkar’s algorithm holds only in the logarithmic cost model. It is 
still an open problem to determine if the class of half-spaces is poly-learnable by 
any hypothesis space in the uniform cost model. 

Example 3.1.3. Let k be any positive integer constant and define C by letting 
C, be the set of all half-spaces in E” defined by surfaces of degree at most k, that 
is, regions of the form p(x,, . . . , x,) 2 0 or p(x,, . . . , x,) > 0 for some k-degree 
polynomial p. For k = 1, C,, is just the class of half-spaces given in Example 3.1.2. 
For k = 2, C,, contains n-dimensional half-spaces, balls, and all other types of half- 
space regions defined by quadratic surfaces. As in Example 3.1.2, a consistent 
hypothesis for any sample of a concept in C,, can always be found by linear 
programming. In this case the dimension of the linear programming problem is 
O(nk), which is polynomial in n for fixed k. Furthermore, the results of [66] (also 
of [ 131) imply that the VC dimension of C,, is O(nk) as well. (This also follows 
from the fact that surfaces of degree k in II dimensions can be represented as 
hyperplanes in an O(n’) dimensional space.) Hence, again using Karmarkar’s 
algorithm, C is properly poly-learnable. 

EXUF??pfe 3.1.4. Let k be any positive integer constant and define C by letting 
C,, be the class of concepts on {O, 1)” defined by k-DNF formulas. Th.ese are 
Boolean formulas in disjunctive normal form (i.e., a disjunction of terms, each 
term a conjunction of literals) in which each term contains at most k literals. 
Valiant gives a learning algorithm which shows that C is properly poly-learnable 
[59, 601. This result also holds for the dual class defined by k-CNF formulas. 
However, by a simple counting argument, ] C, ] 5 2((2n)“). Hence, by Theorem 2.2, 
any algorithm that always produces a consistent k-DNF (k-CNF) hypothesis (and 
in particular, the algorithm given by Valiant) defines a learning function for C,, by 
C,, with sample size 0( l/c(nk + log(1/6))) (the sample size used by Valiant’s 
algorithm). Hence, any such algorithm that runs in polynomial time can lbe used 
to show that C is properly poly-learnable. 

All of these examples rely on two basic properties of C. The first is that each 
class C,, has finite VC dimension and the VC dimension grows only polynomially 
with n, so that by Theorem 2.1, learning is possible with a reasonably small sample 
size. In Example 3.1.4 this is guaranteed by the fact that log ] C,, ] grows polyno- 
mially in n. The second is the existence of an efficient algorithm for producing 
consistent hypotheses in C’, from samples of target concepts in C,,. Using the 
techniques of [30], [47], [48], and [52], we can cast these requirements in the form 
of a characterization of proper polynomial learnability. 

Definition. Let C = ((X,,, Cn))n,,, along with some representation. A random- 
ized polynomial hypothesis finder (r-poly hy-fi) for C is a randomized polynomial 
time algorithm that takes as input a sample of a concept in C and for some y > 0, 
with probability at least y produces a hypothesis in C that is consistent with this 
sample. We refer to y as the success rate of the r-poly hy-ti. 

THEOREM 3.1.1. For any concept class C = ((A’,,, C,,))ntl, C is proper/y poly- 
learnable if and only if there is an r-poly hy-ji for C and the VC dimension of C,, 
grows only polynomially in n. 
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PROOF. For the “if” part, assume that the VC dimension of C, is bounded by 
p(n) for some polynomial p and that we are given an r-poly hy-fi for C with success 
rate y. Let A be a randomized oracle algorithm defined as follows: 

On input (c, 6, n), A calls the oracle EX() for 

max 4 8p(n) !log;, - log2 
t E 6 

random examples of the target concept c E C, drawn according to some distribution 
P on X,. Let Q be the resulting sample of c. Then A repeats the following: 

(1) simulate the r-poly hy-fi on Q 
(2) check if the output of the r-poly hy-fi is consistent with Q until either a 

consistent hypothesis is found or the number of repetitions exceeds 1 /y ln(2/6). 

In the first case, A returns the hypothesis found. In the second case A returns 
some default hypothesis in C,. 

It is easily verified that the running time of A is polynomial in l/t, l/6, and n 
(and, if we are using the logarithmic cost model, in the maximum size of any 
example returned by the oracle). Furthermore, A fails to produce a hypothesis of 
error at most t only if it is forced to return the default hypothesis, or it returns a 
hypothesis that is consistent with Q but has error greater than 6. Since the success 
rate of the r-poly hy-li is y, A is forced to return the default hypothesis with 
probability at most 

(1 - 7) l/“tlnm ( f.z.p 2 

( 1 
-Ini = s. 

2 

By Theorem A2.2, the probability that any hypothesis in C,, that is consistent with 
Q has error greater than t is at most 6/2. Thus A returns a hypothesis that is 
consistent with Q but has error greater than E with probability at most 6/2. Hence, 
A produces, with probability at least 1 - 6, a hypothesis that has error at most t 
and therefore C is properly poly-learnable. 

For the “only if” part, note first that by Theorem 2.l(ii)(b), any learning 
algorithm for C must use a sample size that grows linearly in the VC dimension of 
C,,, and hence if the VC dimension of C, is not polynomial in ~1, then C is not 
poly-learnable by any hypothesis space H. To show that C being poly-learnable 
implies that there is an r-poly hy-fi for C, we use a construction from [52]. 

Let A be a learning algorithm for C in the functional model and let m(c, 6, n) be 
a polynomial in l/t, l/6, and n such that given m(t, 6, n) random examples, A 
produces a hypothesis that has error at most t with probability at least 1 - 6 for 
any c E C,, and any P on X,,. Using A, we define an r-poly hy-fi B for C with 
success rate + as follows: 

Suppose that B is given a nonempty sample Q of some concept c E C,, for 
some n 2 1. Let P be the distribution on X, that is uniform on all the points 
of X,, that appear in examples in Q, and 0 elsewhere. Let m be the number of 
examples in Q, E = l/(m + l), and 6 = i. B determines n and then produces 
a sample Q’ of size m(c, 6, n) by drawing points from X,, independently 
according to P and labeling them with the same labels they had in Q. B then 
simulates the learning algorithm A on Q ’ and returns the output of A. 
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It is easily verified that B is a polynomial-time algorithm. Since 6 = i and B 
produces a sample of the target concept c of size m(~, 6, n) independently drawn 
according to the distribution P, by our assumptions on the learning algorithm A, 
B’s simulation of A produces a hypothesis that has error at most E with respect to 
c and P with probability at least $. Since every point of X, that appears in Q has 
probability at least l/m according to P, any hypothesis that is not consistent with 
Q has error greater than t. Hence, B produces a hypothesis that is consistent 
with Q with probability at least i. Therefore B is an r-poly hy-li for C with success 
rate at least f. 0 

As a corollary of Theorem 3.1.1, we also obtain a useful characterization of 
proper polynomial learnability in the Boolean case. 

LEMMA 3.1.2 [48]. Assume that X,, = (0, 1)” and C,, C 2xn for each n I 1. Then 
the VC dimension of C,, grows polynomially in II if and only if log) C, 1 grows 
polynomially in n. 

PROOF. For all n 2 1, let q(n) be the VC dimension of C,. Since C,, = 
II,(X,,), Proposition A2.1 shows that ] C,, ] 5 (2n)q(n) + 1 = 2nq(n) + 1. Thus when 
q(n) grows polynomially, log ] C, ] grows polynomially. On the other hand, if 
] C ] 5 2p(n) then no subset of X, of cardinality larger than p(n) can be shattered 
by >n, and hence q(n) I p(n). Thus when log ] C,, ] grows polynomially, q(n) grows 
polynomially. Cl 

COROLLARY 3.1.3. For any concept class C = {({O, 1 j”, Cn))nz,, C is properly 
poly-learnable I! and only if there is an r-poly hy-fi for C and log I C, I grows 
polynomially in n. 

PROOF. Follows directly from Theorem 3.1.1 and Lemma 3.1.2. •i 

This characterization is useful both for showing classes to be properly poly- 
learnable, as demonstrated in Examples 3.1.1 to 3.1.4 above, and for showing that 
they are not properly poly-learnable unless RP = NP, as demonstrated im [52]. 
Here RP is the class of languages accepted by randomized polynomial-time 
algorithms (see, e.g., [22]) and NP is the class of languages accepted by nondeter- 
ministic polynomial-time algorithms. The negative results are obtained by reducing 
a known NP-complete problem to the problem of finding a hypothesis in C that is 
consistent with a given sample, or to the following decision problem: 

Definition. For any concept class C, the consistencyproblem for C is the problem 
of determining if there is a concept in C that is consistent with a given sample. 

Clearly, if there is an r-poly hy-li for C, then the consistency problem for C is 
solvable by a randomized polynomial-time algorithm. (Here we use the assurnption 
that the representation language for C is in P and there is a polynomial-time 
algorithm to check for any given c in C and point X, if x E c.) Hence if RP # NP, 
then when the consistency problem for C is NP-hard, Theorem 3.1.1 shows that C 
is not properly poly-learnable. 

Results in [52] show that in the Boolean domain, when C consists of concepts 
represented by either DNF expressions with at most k terms or CNF expressions 
with at most k clauses for some fixed k 2 2 (called k-term DNF and k-clause CNF 
concepts, resp.), or by Boolean threshold functions (i.e., all concepts of the form 
(x E (0, 1)“:a . x 2 y), for some a E (0, 11” and integer y > 0, where . denotes 
the inner product), then the consistency problem for C is NP-complete, and hence 
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it is unlikely that C is properly poly-learnable. However, they also show that 
k-term DNF concepts can also be represented by k-CNF expressions, and k-clause 
CNF concepts can be represented by k-DNF expressions. Hence, by the result 
given in Example 3.1.4 above, in either of these cases C is poly-learnable by a 
larger hypothesis space H (as was first shown in [52]). Since the class of concepts 
represented by Boolean threshold functions is contained in the class of linearly 
separable Boolean concepts, by Example 3.1.2, this is true for Boolean threshold 
concepts as well. 

Results in [45] show that when C,, is the set of all concepts on E” defined by the 
union of two half-spaces, the consistency problem for C is NP-complete. This result 
holds in both the uniform and logarithmic cost models. Hence it is unlikely that C 
is properly poly-learnable.6 

To the best of our knowledge, it is unknown if this class is poly-learnable by any 
hypothesis space H. 

Haussler et al. [30] give an analysis of the more general case when C is poly- 
learnable by H for distinct C and H, with an appropriately generalized definition 
of hypothesis finder. 

3.2 POLYNOMIAL LEARNABILITY WITH RESPECT TO CONCEPT COMPLEXITY AND 
OCCAM’S RAZOR. We now turn to learnability results of the second type men- 
tioned above in the introduction to this section. Here the learning domain is fixed 
to a single space X, but the class C G 2x of concepts is graded according to some 
concept complexity measure. For simplicity, we consider only the case when 
concepts in C are learned by hypotheses in C, although the definitions are easily 
extended to allow a distinct hypothesis space H. 

Definition. Let X be a learning domain that for this section is either a finite set, 
a countably infinite set, or equal to E”, for some fixed n. Let C c 2x be a well- 
behaved class of concepts on X and let size be a function from C into Z’. The 
function size will be called a concept complexity measure. Let there also be 
associated with C a set of representations for concepts in C given in some 
representation language. As in the definition at the beginning of the previous 
section, we assume that there is a function from the set of representations in the 
language onto C, that the language is in P, and that given x E X and a string in 
the language, we can decide in polynomial time if x is in the concept represented 
by the string. 

By C we denote (X, C), along with the function size and the representation for 
C. We use the term concept class to refer to C as well as to C. We say a concept c 
isinCifcEC. 

In analogy with the definition of polynomial learnability in the functional model 
defined in the previous section, we make the following definition: 

Definition. Let C be defined as above. We say that C is (properly) polynomially 
learnable (poly-learnable) if there exists a polynomial-time algorithm A that takes 
as input a sample of a concept in C, outputs a hypothesis in C, and has the property 
that for all 0 < t, 6 < 1 and s 2 1 there exists a sample size m(t, 6, s), polynomial 
in l/c, l/6, and s, such that for all target concepts c E C with size(c) I s, and all 
probability distributions P on X, given a random sample of c of size m(t, 6, s) 
drawn independently according to P, A produces, with probability at least 1 - 6, a 

6 A. Blum and R. Rivest have recently sharpened this result to the Boolean domain [9]. 
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hypothesis h E C that has error at most t. The smallest such m(~, 6, s) is called the 
sample complexity of A. 

Since we only deal with the case of C poly-learnable by C, we drop the adjective 
“properly” in this section. As in the previous section, there is also an oracle model 
of polynomial learnability in this case. In fact, the notion of polynomial learnability 
can be defined for situations when the size of the domain grows with a parameter 
n as in the previous section, and for each C,, there is also a concept complexity 
measure (see [30] and [36]). 

Below we give a few examples to illustrate the notion of polynomial learnability 
with respect to concept complexity. But first we introduce some useful definitions. 

Definition. Let C C 2< be a concept class. By U(C) we denote the closure of C 
under finite unions, that is, 

U(C) = {Cl u * * * U C,:S 2 1 and ci E C, 1 I i 5 sj. 

Similarly, I(C) denotes the closure of C under finite intersections. 
Let us assume that there is a standard representation associated with concepts 

in C. This induces a standard representation for U(C) in which the concept c = 
Cl u ..* u c,, where ci E C, 1 % i I s, is given as a concatenation of the represen- 
tations of the ci’s. The standard concept complexity measure for U(C) is the 
function size : U(C) + Z+ defined by letting size(c) be the smallest s such that 
c= Cl u 0-e U c,, where c, E C, I I i 5 s. When we say “let C = (X, U(C))“, 
where C has some standard representation, we assume the standard representation 
and concept complexity measure for U(C). The class I(C) is treated similarly. 

Example 3.2.1. Let C = (X, U(C)), where X is the real line and C is th,e set of 
intervals on X. Consider the following learning algorithm A for C. 

Given a sequence of examples of a target concept c in C, sort them in increasing 
order according to the value of their points. Partition this ordering into 
alternating segments of positive and negative examples, that is, a run of 
consecutive negative examples, followed by a run of consecutive positive 
examples, etc. For each segment of positive examples form the closed interval 
with endpoints consisting of the smallest and largest points in the segment. 
Return the hypothesis h that is the union of these intervals. 

It is easily verified that algorithm A always returns a hypothesis h that is consistent 
with the examples of c and consists of a union of the fewest possible nurnber of 
intervals. Hence, size(h) 5 size(c). In Example 2.2 above, we calculated the VC 
dimension of the class C, of all concepts c in C such that size(c) I s to be 2s. 
Hence, by Theorem A2.2, for any distribution P on X, given 

4 2 16s 13 
max -log;, -log-- 

6 c t 

independent random examples of c drawn according to P, with probability at least 
1 - 6, every hypothesis in C, that is consistent with all of these examples has error 
at most t. Since A returns a consistent hypothesis in C, and runs in polynomial 
time, it follows that C is poly-learnable. 

Example 3.2.2. Let C = (X, I(C)), where X = E2 and C is the set of half-planes. 
In this case the concept class I(C) is the set of (possibly unbounded) convex 
polygons. In [ 191 an algorithm is developed that, given any m-sample of a 
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convex polygon, will construct in time O(m logm) a convex polygon that is 
consistent with the sample and is formed by intersecting the minimal number of 
half-planes, that is, a consistent hypothesis h such that size(h) is minimal. 

As above, let Cl, be the class of all concepts c in C such that size(c) 5 s, that is, 
polygons formed by intersecting at most s half-spaces. It is easily verified that the 
VC dimension of C, is 2s + 1: First check that 2s + 1 points evenly spaced on the 
unit circle can be shattered by C,. 

Then note that for any set S of 2s + 2 points, 

(1) either one point lies in the convex hull of the other points, in which case, since 
concepts in C, are convex, no concept in C, contains the other points without 
containing this point, or 

(2) the points of S form the vertices of a convex polygon with 2s + 2 edges, in 
which case the subset of S consisting of every other point in the clockwise 
ordering of these vertices cannot be obtained by intersecting S with the 
intersection of less than s + 1 half-planes. 

Hence, 2s + 2 points cannot be shattered and thus the VC dimension of C, 
is 2s + 1. 

Again by Theorem A2.2, this implies that for any distribution P on X and any 
c E C,, given 

( 

4 2 16s+ 8 
max -log;, -log13 

t t c ) 
independent random examples of c drawn according to P, the algorithm of [ 191 
produces a hypothesis (in C,) that, with probability at least 1 - 6, has error at most 
E. Thus C is poly-learnable. 

Note that in both of the above examples, the VC dimension of the entire concept 
class (i.e., all unions of intervals or all convex polygons) is infinite. Hence, it does 
not suffice to merely find consistent hypotheses. In these cases we provided an 
algorithm with the stronger property that it finds consistent hypotheses with 
minimal complexity, and then used the fact that the VC dimension of the class C, 
of hypotheses of complexity at most s grows only polynomially in s. This is a 
concrete case where it is provably sufficient to employ the principle of always 
preferring the simplest hypothesis that explains the data, usually called Occam’s 
Razor. 

However, there are simple examples where this strategy does not work because 
of the computational difficulty of producing consistent hypotheses of minimal 
complexity. Let C = (X, U(C)), where X = E2 and C is the set of all axis-parallel 
rectangles. Given a set of points in E2 labeled with O’s and l’s, it is NP-hard to 
determine the smallest s such that the set of l-labeled points can be covered by s 
axis-parallel rectangles, where none of these rectangles contains a O-labeled point 
[43]. Any learning algorithm for C that always produces hypotheses of minimal 
complexity could be used to solve this problem. Hence, finding a hypothesis of 
minimal complexity is NP-hard in this case. 

To address the cases when it is not feasible to find the simplest hypotheses, we 
show that it suftices to settle for simpler rather than simplest hypotheses, that is, it 
suffices to produce hypotheses that are significantly simpler than the sample data 
itself. 

Definition. Let C = (X, C) be a concept class with concept complexity measure 
size. Let A be a polynomial-time algorithm that, given a sample of a concept in C, 
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produces a consistent hypothesis in C. For every s, m 1 1, let Sc..,,m denote the 
set of all m-samples of concepts c E C such that size(c) I s. Let C:‘, C C 
denote the A-image of Sc.,,, that is, the set of all hypotheses produced by A 
when .4 is given as input an m-sample of a concept c E C with size(c) I s. 
We call C&,, the effective hypothesis space of A for target complexity s and sample 
size m. We say A is an Occam algorithm for C if there exist a polynomial p(s) and 
a constant a, 0 I o( < 1, such that for all s, m z 1, the VC dimension of C$ is at 
most p(s)m”. 

In this version of Occam’s Razor, the VC dimension of the effective hypothesis 
space C& measures how well the Razor is applied by a learning algorithm A. By 
allowing the hypothesis space of an Occam algorithm to grow with both target 
complexity and sample size, we make the search for a consistent hypothesis easier. 
On the other hand, we show that by restricting the VC dimension of this hypothesis 
space as above we guarantee polynomial learnability. 

THEOREM 3.2.1. Let C be a concept class with a given concept complexity 
measure. 

(i) If there is an Occam algorithm for C, then C is poly-learnable. 
(ii) Let A be an Occam algorithm for C with effective hypothesis space C$,, for 

target complexity s and sample size m. Then 

(a) ifthe VC dimension of Cf, is at most p(s)m” for some polynomial’ p(s) I 
1 and 0 TS cx < I, then A is a polynomial-time learning algorithm for C 
using sample size 

(b) if the VC dimension of C& is at most p(s)(logm)’ for some polynomial 
p(s) 2 2 and 1 I 1, then the same result holds with the second term of the 
bound replaced by 

2/'4p(s) 

( 

log8(2/ + 2)‘+‘p(s) 
c E i 

‘+I 

PROOF. Since part (i) follows from part (ii)(a), it s&ices to prove part (ii). The 
result follows if we can show that 

2111,;m(2m)2-‘“‘2 5 6, (*) 

since by Theorem A2.1, for any target concept and distribution, the left side of this 
inequality is a bound on the probability that there is any hypothesis in C& of error 
greater than t that is consistent with a random m-sample of this target. For part 
(a), using Proposition A2.1 (iii) and the fact that p(s) > 1, to prove (*) it suffices 
to show that 2(2em/(p(s)m”))P’“‘” a2-rm’2 < 6. For part (b), using p(s) 2 2 and - 
Proposition A2.l(ii), to prove (*) it sufhces to show that 2(2m)p’““1”g”“2-‘““2 5 6. 
These calculations are given in Lemma A2.5 in Appendix A2. 

In some ways Theorem 3.2.1 can be viewed as showing a relationship between 
learning and data compression. 

Example 3.2.3. Let C = (X, C), where X is some countable domain, C G 2x, 
and for all c E C, size(c) is the number of bits needed to represent the concept c 
in some fixed representation language. For example, X could be the set of words 
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over a finite alphabet and C the class of languages represented by regular expres- 
sions, or X could be (0, 1)” for some large n and C = 2x might be all Boolean 
concepts on X represented by DNF expressions, decision trees, etc. 

Let A be a polynomial-time algorithm that, given any m-sample of a concept 
c E C that can be described in s bits, produces a hypothesis in C that “explains” 
(i.e., is consistent with) the sample and is described in at most p(s)m” bits, for 
some polynomial p(s) and 0 5 o( < 1. For fixed s, this amounts to a kind of data 
compression on the sample. 

Let C& be the effective hypothesis space of A for target complexity s and sample 
size m. Since ] C&, ] 5 2p(S)m”, the VC dimension of C& is as most p(s)m”, and 
hence A is an Occam algorithm for C. Thus Theorem 3.2.1 shows that A is a 
learning algorithm for C with reasonably small sample complexity when (Y is not 
close to 1. 

As demonstrated in the above example, Theorem 3.2.1 shows that efficient data 
compression via hypothesis generation is sufficient for learning. Numerical bounds 
on sample complexity of Occam algorithms like the ones in that example that are 
slightly better in some cases than those given in Theorem 3.2.1 are derived in [IO], 
using a simpler argument, akin to that given in Theorem 2.2 above. 

We now use Theorem 3.2.1 to demonstrate the learnability of many concept 
classes of the form (X, U(C)) and (X, I(C)) for C of finite VC dimension, including 
the case when C is the class of axis-parallel rectangles discussed above. 

Definition. Let C = (X, C) be a concept class along with some representation 
as described above. A polynomial hypothesisfinder for C is a polynomial algorithm 
that, given a sample of a target concept in C, returns a hypothesis in C that is 
consistent with the sample. Note that, in contrast to the previous section, we do 
not consider randomized hypothesis finders here. The consistency problem for C 
(or C) is the problem of determining if there is a concept in C that is consistent 
with a given sample over X. 

As in the previous section, given our assumptions on the representation for C, 
the existence of a polynomial hypothesis finder for C implies that the consistency 
problem for C is in P. 

LEMMA 3.2.2. If C has finite VC dimension and the consistency problem for C 
is in P, then for any finite set S c X, the sets of n,(S) can be listed in time 
polynomial in the cardinality of S. 

PROOF. Assume S = {xl, x2, . . . , x,,,). The size of n,(s) is polynomial in m by 
Proposition A2.1. To produce a list L of Il &S) we proceed as follows. Initialize L 
to the one element list consisting of just the empty set. This corresponds to the 
case m = 0. Now by induction, assume that the list L = n,( (xl, x2, . . . , xi)) has 
been produced for some i, 0 5 i < m. L is updated to the list II& (xi, x2, . . . , 
x;+~ )) as follows. For each element T of L, test the sets T and T U (xi+! 1 for 
membership in II& (xl, x2, . . . , x,+~ 1). Since the consistency problem for C is in 
P, this can be done in polynomial time by creating the appropriate samples and 
checking if there is a concept in C that is consistent with them. Now replace the 
element Tin L with either one or both of these sets, according to the outcome of 
this test. (Note that it is possible that T E TI& (xi, x2, . . . , xi 1) but T @ nc( (xl, x2, 
. . . , xi+] I).) The time for each complete update of the list L is polynomial since 
by Proposition A2.1 the size of L remains polynomial in m. Hence, the entire 
procedure is polynomial time. 0 
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LEMMA 3.2.3. Let C G 2x be a concept class offinite VC dimension d 2 1. 
Foralls~lletC,=(U~~‘=,ci:c~EC,1~i~s~(resp.,C,=(~~~,c,:ciEC: 
1 5 i 5 s]). Then for all s 2 1, the VC dimension of C, is less than 2dslog(3s). 

PROOF. The proof is analogous to that of Lemma 4.5 of [29], which gives a 
slightly weaker bound. We consider only the case for unions. The case of intersec- 
tions is treated similarly. 

Clearly we may assume s 2 2. Consider a finite set S c X with ] S ] = m 2 1. By 
Proposition A2.l(i), ] Ilc(S) ] 5 ad(m). Every set in II,(S) is of the form lJfzl Si, 
with S’i E IIc(S), 1 I i 5 S. This shows that 

I &#> I 5 ( I &(s> I Y 5 (@‘d(m))s. 
If (@&m))s < 2”, then S cannot be shattered by C, and the VC dimension of C, is 
less than m. Thus by Proposition A2.l(iii) it suffices to prove that (em/d)d” < 2’” 
for m = 2dslog(3s), which is equivalent to log(3s) < 9s/(2e). If the last inequality 
holds for some value of s, then it holds for all larger values as well. It is easy to 
verify it for s = 2. 0 

THEOREM 3.2.4. Let C = (X, C) be a concept class and associated representation 
such that there exists a polynomial hypothesis finder for C and C has finite VC 
dimension. Then C’ = (X, U(C)) (resp., C” = (X, l(C))) is polynomially learnable. 

PROOF. We consider only the case C’ = (X, U(C)), the other case being similar. 
Let S be the set of points in an m-sample of a target concept c in C’. Our strategy 
will be to find a hypothesis consistent with S that is formed from the union of 
relatively few concepts in C, that is, not many more than size(c). This problem 
can be formulated as a set cover problem. The set to be covered is the set of 
positive points of S and the sets allowed in the cover are the elements of II&S) 
that contain only positive points. To find the smallest set cover is NP-hard [21] 
and remains NP-hard for simple geometric versions such as covering with rectangles 
[43]. Fortunately, there is a simple greedy algorithm [32, 491 that produces a cover 
using at most s ln( p) + 1 sets, where s is the minimum number of sets needed for 
any cover and p is the size of the set to be covered: pick the set that covers the 
largest number of points; after this, pick the set that covers the largest nu:mber of 
points that have not been covered previously, and so forth. 

Since the sets of B=(S) can be listed in polynomial time (Lemma 3.2.2), the 
largest set that contains only positive points can be found in polynomial time. 
Given this set, by labeling the other points negative we can use the polynomial 
hypothesis finder for C to produce a hypothesis in C that includes only these points 
of the sample. By deleting these points and then iterating this procedure, we obtain 
a greedy cover for the positive examples in S expressed as the union of concepts in 
C, which we use as a hypothesis. Call this algorithm A. 

We have shown that A is polynomial time and that given any m-sample of 
a concept c in C’ with size(c) I s, A produces a consistent hypothesis h for 
this sample with size(h) 5 sin(m) + 1. Hence, the effective hypothesis space 
C$, of A for target complexity s and sample size m contains only hypotheses 
such that size(h) I sin(m) + 1. By Lemma 3.2.3, the VC dimension of C;“, is 
O(slog(m)(logs + loglogm)). Hence, A is an Occam algorithm for C’ and thus by 
Theorem 3.2.1, C’ is polynomially learnable. 0 

Example 3.2.4. Let C’ = (X, U(C)), where X = E” for some fixed ~1 and C 
is the set of axis-parallel rectangles on E”. Then C’ is poly-learnable by 
Theorem 3.2.4 (see Examples 2.1 and 2.2). 



Learnability and the Vapnik-Chervonenkis Dimension 951 

Example 3.2.5. Let C’ = (X, U(C)) and C” = (X, I(C)), where X = E” for 
some fixed n and C is the set of half-spaces defined by surfaces of degree at 
most k for some fixed k (see Example 3.1.3). Then C’ and C” are poly-learnable 
by Theorem 3.2.4. 

4. Summary, Open Problems, and Further Research 

We have shown that the VC dimension is a useful combinatorial parameter in the 
context of Valiant’s model of learnability by using it to give necessary and/or 
sufficient conditions for various types of learnability. Although we have distin- 
guished between feasible and infeasible learning problems, we have not attempted 
to provide tight bounds on the number of examples and the computation time 
needed for various learning problems. A more relined analysis for some cases is 
given in [20], and in [64], where the parallel computational complexity of learning 
is investigated. However, considerable further research remains to be done in this 
area. In particular, there may be interesting general trade-offs between the sample 
size required for learning and the computational effort required to produce a 
consistent hypothesis that are yet to be discovered (see [ 121). 

These issues are important if this theory of learnability is to find useful applica- 
tions, for example to learning problems arising in Artificial Intelligence [26-28, 
37, 56, 601. In many of the Al models of learning from examples the domain is 
defined by n multivalued attributes that can range from Boolean to real-valued. 
Attributes whose values are organized into certain types of hierarchies are also 
used. These domains tend to have a structure that is roughly intermediate between 
the Boolean domains considered in [37] and the continuous domains considered 
here. The techniques we have described in this paper are easily applied to these 
domains, and generally give better results than the simple counting argument of 
Theorem 2.2 [28]. More complex learning problems in which the domain consists 
of a set of labeled graphs representing descriptions of visual scenes and the target 
classes are defined by certain types of first-order formulas (e.g., Winston’s “arch” 
concept in a blocks world domain [67]) are considered in [26] and [60]. The 
application of the results given here to learning methods that use connectionist or 
neural network representations is discussed in [7]. 

As for other research directions, AI applications also bring up the question of 
incremental learning, in which individual examples are processed one at a time 
and only the current hypothesis is maintained and updated [31, 421. They also 
bring up the issues of misclassification in the examples and the possibility of 
stochastically defined target concepts, discussed in Section A3 of the Appendix, 
and the possibility of combining random examples with other types of information, 
for example, the various oracles and queries discussed in [2], [3], and [59]. 

Another important issue is that of the representation chosen for hypotheses. In 
Section 3 we prove a number of results on learning algorithms that represent their 
hypotheses in the same form that the target concept is represented. This is line for 
the positive learnability results. However, for negative learnability results, one 
would often like something stronger, something that shows that the concept class 
is not polynomially learnable by any hypothesis space of the type described in 
Section 3.1. Using results from [24] on poly-random collections, it can be shown 
that there are concept classes C = (( (0, 1 I”, C,,)),,, with the VC dimension of C,, 
growing only polynomially in n that are not polynomially learnable in this strong 
sense, given the existence of l-l one-way functions [53]. Given more specific 
cryptographic assumptions, Kearns and Valiant have shown that such “strongly 
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hard to learn” classes include the class of all concepts represented by Boolean 
formulas of size bounded by a fixed polynomial in y1 [35]. In [53] a notion of 
reduction among learning problems is developed that, in conjunction with the 
above result, implies that regular languages (represented by deterministic finite 
state automata) are also probably “strongly hard to learn.” 

Finally, we note that here we have only considered the problem of learning 
indicator functions of sets. Other variants of the model will be required to handle 
the problem of learning real-valued target functions. This problem is addressed in 
[ 171, [ 181, [23], [54], and [61] from a purely statistical point of view. A compre- 
hensive overview of methods that have been proposed for generalizing the VC 
dimension to classes of real-valued functions are contained in [ 181. These results 
should be combined with considerations of computational complexity at some 
point, laying the groundwork for a more general computational learning tl~eory.7 

We close with a few concrete open problems: 

(1) Let C = (((0, ll”, G)LI, where C, is the class of concepts represented by 
n-term n-variable DNF expressions. Is C polynomially learnable by H for any 
hypothesis space H as defined in Section 3.1? This is a variant of one of the 
problems posed in [59]. 

(2) Can we, perhaps by allowing probabilistic Occam algorithms in analclgy with 
the r-poly hy-E’s of Section 3.1, obtain a converse of Theorem 3.2.1(i)? (I.e., 
does learnability with respect to target complexity imply the ability to etficiently 
find simple hypotheses?) 

(3) Can Theorem 3.2.4 be extended to C = (X, A(C)), where A(C) is the closure 
of C under finite unions, intersection and complement, and concept complexity 
is measured as the length of the smallest expression for c E A(C)? For example, 
if X = E” for some fixed n and C is the set of half-spaces, then concepts in 
C = (X, A(C)) can be represented as (small enough) unions of simplices, and 
from this is can be shown that C is poly-learnable using Theorem 3.2.4.. 

Appendix A 

A 1. Definition qf Well-Behaved Classes and t-Transversals 

For Theorem 2.1 to apply, we require that the concept class C have some additional 
properties related to measurability, beyond the assumption that all sets in C are 
Borel. The properties we need are related to the following definitions, which will 
be used in the proof of Theorem 2. I (ii)(a) given below. 

Definition. For any class of regions R c 2x, probability distribution 1’ on X, 
and t > 0, let Rp., = {r E R : P(r) > 6 1. N L X is an c-transversal for R (with respect 
to P) if N contains a point in every r E Rp,, . 

This definition of an E-transversal generalizes the notion of an t-net from [29] to 
arbitrary probability distributions. (We changed the notation here to avoid confu- 
sion with the topological notion of an t-net used in [6 1 J and elsewhere.) 

Example A 1.1. If X is the interval [0, I], P is the uniform distribution and R 
is the set of closed intervals in X, then the set of all points ck, for natural numbers 
k in the range 0 I k 5 l/t, is an c-transversal for R for any t > 0. In fact, R has an 
c-transversal of this size for any distribution P on X. On the other hand, if R is all 
open sets, then clearly there are no finite c-transversals for R with respect to the 
uniform distribution. 

‘Some small progress along these lines in [28a]. 
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We are concerned with the probability of drawing an t-transversal for a class of 
regions R by independently drawing random points from X. In particular, we need 
to measure the probabilities of the following events. 

Dejinition. For any m L 1 and t > 0, Q? denotes the 
set of all X E X” such that the set of distinct elements of X does not form an 
E-transversal for R with respect to P, that is, such that there exists r E Rp,, with -- 
7 rl r = 0. Jf” denotes the set of all Xy E X2m, where x, y E X”, such that there 
exists r E Rp,,, whereZnr=0and I(i:yiEr, 1 ~i~m)l >tm/2,thatis,no 
element of r occurs in the first half of the sequence, but elements of r occur with 
frequency at least cm/2 in the second half. 

In our learning application, the class of regions R will be formed by taking 
symmetric differences between hypotheses in a hypothesis space H C 2x and a 
fixed target concept c C X, that is, we have R = (hAc : h E H). Each of these regions 
in R represents the set of points in X that are counterexamples to a hypothesis 
h E H for the target concept c, that is, the error region of that hypothesis. Thus, 
if the sequence of points in a sample is an c-transversal of R, then the sample 
contains counterexamples to every hypothesis that has error greater than E. 

Definition (Shai Ben-David). H is well behaved if the sets Q? and J;?” 
defined above are measurable for every class of regions R = (hAc: h E H) for 
any Bore1 set c, t > 0, m z 1 and distribution P on X. 

An example of a hypothesis space H that is not well behaved is the following 
(see [66]). Let X be the closed interval [0, I] and let X be well-ordered such that all 
prefixes of the well-ordering are countable.g Let H consist of all suffixes of the well- 
ordering, including the empty set. Note that every set in H is the complement of a 
countable set, hence, it is a Bore1 set. Let the target concept c be 0, so that R = H 
and P be the uniform distribution. It can be shown that in this case J?’ is not 
measurable for all 0 < t < 1, even for m = 1. Hence, H is not well behaved. 

This example also shows that the well-behaved condition is required for 
Theorem 2.1: It is readily verified that the VC dimension of H is 1, yet Theorem 
2.l(ii)(a) fails for C = H. To see this, let P be the uniform distribution on X, let 
the target concept c be 0 as above, and consider the following learning function A: 
Given any finite sequence of examples (all necessarily negative), form the hypothesis 
consisting of the largest (by set containment) suffix in H that contains no point 
from the sequence of examples. Clearly, A is consistent. However, since the target 
concept is 0 and A’s hypothesis always has measure 1, A is not a learning function 
for H with respect to P for any sample size. Theorem A.3 of [6 l] (described below 
in Proposition A3.1) also fails for this case. 

On the other hand, virtually any concept class that one might consider in the 
context of machine-learning applications will be well behaved. Proofs of good 
behavior for most common concept classes can be derived by showing that they 
satisfy Dudley’s condition of universal separability [7a, 541 (this notion is called 
countably S-coverable in [7a]; see the appendix of [54] for a discussion of other 
approaches). 

Definition. A hypothesis space H C 2x is universally separable if there exists a 
countable subset HO of H such that each set h in H can be written as the pointwise 
limit of some sequence of sets in HO, that is, for all h E H there is a sequence hl, 

’ The existence of such a well-ordering requires the Continuum Hypothesis. 
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h . . . in Ho such that for every x E X, there exists y1 such that for all i L n, 
x2; hi if and only if x E h. 

Classes of rectangles, half-spaces, etc. can easily be shown to be universally 
separable (see exercises 4, 5 and 7 in chapter II of [54]). 

LEMMA Al. 1 (Shai Ben-David). If H is universally separable, then H is well 
behaved. 

PROOF. Fix a Bore1 set c and let R = (hAc : h E H). It suffices to show that the 
sets c and Jzm are Bore1 sets. We show this for Q?, the argument for Jf” being 
similar. 

Since H is universally separable, R is universally separable. Let T be a countable 
subset of R such that every set in R is the pointwise limit of a sequence of sets in 
T. Let yl, y2, . . . be a decreasing sequence of strictly positive real numbers 
converging to 0 and let cl, t2, . . . be a decreasing sequence of strictly positive real 
numbers converging to t. For every i, j 2 1, let 

Ti,j = (t E T: there exists r E R with P(r) I c; and P(tAr) % rj)a 

We claim that 

Q: = ,i ji ), (2 E x*:2 n t = 01, 

and hence, c is a Bore1 set. 
To see this, note that if X is in the right hand set above then X O t = 0 for some 

t E Ti,j where ti - “/j > t. For any such t we have t E R and P(t) > E. 
Thus X E z. On the other hand, if X E QY, then there exists i 2 1 such that 
X n r = 0 for some r E R with P(r) 2 ti. Since there is a sequence of sets 
in T that converge pointwise to r, for every j 2 1 there is a set t in T with 
P(tAr) 5 yj and X O t = X O r = 0. Thus, X is the right hand set above. 0 

Although Lemma Al. 1 is useful in proving that most common hypothesis spaces 
are well behaved, it is not always sufficient. For example, if X = [0, I.] and 
H = 1 lx) :x E Xl, then H is well behaved but not universally separable. 

We are now ready to proceed with Section A2: 

A2. Proof of Theorem 2.1 (ii)(a) 
For the next two lemmas let R G 2x be a fixed nonempty class of sets and P be a 
distribution on X such that QT and Jz” are measurable for all m 2 1 and t > 0. 
The proofs of these lemmas are analogous to those of Lemma and Theorem 2 of 
[62]. Using Proposition A2.5, they generalize Lemmas 3.4 and 3.5 of [29] to 
arbitrary probability distributions. 

LEMMA A2.1. For any t > 0 and m 2 2/c, Pm(Qy) < 2P2”( J,‘“). 

PROOF. We show that P2m( Jf”) > iP”‘(QY). By Fubini’s theorem (see, e.g., 
[571) 

P2m( Jf”) = S XZm ZJ:m(Xl . . . ~2m) dP2” = ZJ:-(2, J) dP” dP” 

and this is 
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since QY c x’“. For each X E (2:” let r,+ be a region in R,>,< such that X n r = 0. Let 
K?‘” be the set of all Xy E X2m, where X, J E X” and 1 (i:yi E r;)l I tm/2. 
Obviously, Jf” 1 K,2” and thus 

ZKz’“(T, ~7) dP’” dP’“. 

For each 3 E Q:“, the inner integral is just the probability that an event with 
probability at least t occurs with frequency at least cm/2 in m independent Bernoulli 
trials. This probability is greater than i for any m 2 2/t: For 2/t 5 m < 8/c this 
can be shown by a case analysis using the exact formula for the binomial distribu- 
tion; for m L S/t, this is easy to prove by applying Chebyshev’s inequality. Hence 

P2”‘( Jf’“) > 
s 

1 dp’” = ; f”n(Qy), 
iEQy 2 

Cl 

LEMMA A2.2. P2”‘( Jf”) I II,(2m)2-‘“/2 for all m 2 1 and c > 0. 

PROOF. For each j, 1 5j 5 (2m)!, let cj be a distinct permutation of the indices 
1 >-.., 2m. It is clear that 

P2”‘( Jf”) = S ,~Zm Zp(T) dP2m = S x2” IJy(u, (2)) dP21n 

for all permutations aj. Hence 

Thus, it suffices to show that 

& 'F'! zJtm(Uj(T)) 5 rIR(2m)2-fm/2, 
. J I 

for all X E X2”. 
Consider a fixed X E X2”. Let S be the set of distinct elements of X that appear 

in X. For each permutation “j(X) in Jf” there is a subset T of S that is a witness to 
the fact that g,(X) E J?’ in the sense that there exists r E Rp,, such that T = r n S, 
all occurrences of members of T appear in the second half of u,(k) and there are 
at least cm/2 such occurrences. However, for a given T, this can occur in only a 
small fraction of all permutations of X. In particular, if there are I occurrences of 
members of Tin 3, then T is a witness for at most a fraction 

(;“) m(m - 1) a.. (m - I+ 1) ( 2-, < 2-rm,2 
1:“)=2m(2m- 1) . . . (2m-l+ I)- - 

of all permutations of 3. Since 1 S 1 5 2m, there are at most II,(2m) distinct subsets 
T of S induced by intersections with regions r E R, and, hence, at most IIR(2m) 
distinct subsets induced by intersections with r E Rp.,. Thus, there are at most 
IIR(2m) distinct witnesses. It follows that 

& ‘F’! I.&u,(T)) 5 IIR(2m)2-‘“/2. 
‘J 1 

0 

The above two lemmas can be combined to give an upper bound on the 
probability of not getting an t-transversal for a class R of regions in terms of the 
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function II,(m) (see [29]). To apply this to learning we need to use regions that 
form the symmetric differences between the target concept and the various possible 
hypotheses. The following lemma is useful. 

LEMMA A2.3. For any m 2 1, c C X, and H C 2x, II,,(m) = n,(m), where 
R = (hAc: h E H]. 

PROOF. For any subset t E X, let t ’ denote the complementary subset X - t. 
The following holds for any h, , hz E H and for any S, c C X: 

h, n S= hZ II SO h, n C’ II S= h2 n C’ n S and 
h;ncnS=h;ncnS 

ti ((h; n C) u (h, n c’)) n S = ((h; n C) u (hZ n d)) n S 
w (h,Ac) n S = (h,Ac) r-7 S. 

This implies that ] II,,(S) ] = ] II, ] and the lemma follows. 0 

THEOREM A2.1. Let H he any nonempty well-behaved hypothesis space con- 
tained in 2x, P be any probability distribution on X and the target concept c be any 
Bore1 set contained in X. Then for any t > 0 and m 2 I, given m independent 
random examples of c drawn according to P, the probability that there exists a 
hypothesis in H that is consistent with all of these examples and has error greater 
than c is at most 

PROOF. Let R = (hAc: h E H). Each region in R represents the symmetric 
difference between the target concept c and a hypothesis h E H. A hypothesis h 
has error greater than t only if its symmetric difference with c has probability 
greater than E. Hence, if the points from the examples that are drawn form an t- 
transversal for R, every hypothesis in H that has error greater than E will have an 
example drawn from its symmetric difference with c. Since this implies -that the 
hypothesis is inconsistent with the example, no such hypothesis will be consistent 
with the entire sample. Hence, there exists a hypothesis in H that has error greater 
than c and is consistent with all the examples only if the points of the examples do 
not form an t-transversal of R. 

Since H is well behaved and c is a Bore1 set, the sets Q? and J:” defined from R 
are measurable. If m 2 2/t, then, by Lemmas A2.1 and A2.2, the probability that 
the points drawn in the In random examples do not form an t-transversal for R 
with respect to P (i.e., the probability of QY) is less than 

By Lemma A2.3, nR(2m) = II,,(2m), hence, the probability of not getting an 
t-transversal for R is less than 

If I I m < 2/t, then 2II,,(2m)2-““/’ > 1, and the bound holds trivially. f7 

We now bound II,,(m) using the VC dimension of H. 

Definition. For all d 2 0 and m 2 0, +Jrn) = cc0 (:“) if m 2 d, and 
ad(m) = 2”‘, otherwise. 
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(i) If the VC dimension of H is d, where d 2 0, then II,,(m) I ad(m) 
for all m 2 0. 

(ii) a&m) I md + 1 for all d L 0 and m 2 0. +&m) I md for all d 2 2 
andm 2 2. 

(iii) @d(m) 5 2(md/d!) 5 (em/d)dfor all m 2 d > 1. 

PROOF OF PART (i). A short inductive proof of part (i) above can be found in 
[6], along with its history of independent discoveries. We sketch the proof for 
completeness, using the notation from [29]. 

We show that for any set S with 1 S ] = m and any family F of subsets of S that 
has VC dimension d, ] F ] 5 +.d(m). Letting F = II,,(S) for arbitrary S C X, we 
obtain the result. 

The assertion is trivially true for d = 0 and any m 2 0, since 1 F 1 = 1 in this 
case. It is also trivially true for m = 0 and any d 2 0. Assume the assertion is true 
for all m I 0 when F has VC dimension at most d - 1, and for m - 1 when F has 
VC dimension d, where d 2 1 and m 2 1. 

Consider a particular set S with I S I = m and a family F of subsets of S of VC 
dimension d. Choose any point x E S. Let 

F-x= (f- (x):fE F) 

and 

F(“) = (j-E F:x e.1; f U (x) E FJ. 

Note that both F - x and F(“) are families of subsets of S - (xl and that 1 F 1 = 
1 F - x 1 + 1 F(“)I . (In mapping J to f - lx) for each f E F, pairs of the 
form {f; f U (xl) map to the same set. These are correctly accounted for by adding 
I F(“)I .) Obviously F - x has VC dimension at most d; hence, by assumption, 
1 F - x 1 5 +d(m - 1). We show that I;(-‘) has VC dimension at most d - 1 and 
hence, 1 F(‘) I 5 @‘d-l (m - 1). 

Let A be a subset of S - lx) that can be shattered by F(-‘). Then it is easy to see 
that A U lx) can be shattered by F: For A ’ c A there is an f E F(-‘) with A ’ = 
A rlj Since x @1; A ’ = (A U (xl) fl f and A ’ U (x-1 = (A U {xl) fl (.fU (XT)), where 
bothfand f U lx) are in F. It follows that A U lx) can be shattered by F. Since the 
VC dimension of F is d, we must have 1 A U {xl 1 I d, so 1 A 1 I d - 1. Thus Fcx) 
has VC dimension at most d - 1. 

It follows that 1 FI 5 @d(m - l)‘+ @‘d-I(m - 1). It is easily verified that 
+&.,(m - 1) + @(,(m - 1) = @d(m) ford, m > 1, so this completes the induction. 

PROOF OF PART (ii). This part is easily verified. 

PROOF OF PART (iii). The second inequality clearly holds for d = 1. To show 
that it holds for d I 2 we use Stirling’s Approximation [38, p. 11 I]: 

md 2m” 
2zc zdd ‘e-” 

The proof of the first inequality of Part (iii) is analogous to the proof of a similar 
bound given in [6 I, p. 1661 (see also [ 171). It is by induction on m and d: 

If d = 1, @d(m) = m + 1 5 2m, so the result follows. If m = d > 1, @d(m) = 2”. 
Observe that for d > 1, 2 I (1 + l/(d - l))d-’ by the binomial theorem. Thus, 
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using induction on d we obtain 
d-l 

2d-I 
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(by the above observation) 

d-1 (d _ 1)&l 

(d - I)! 
(by ind. hyp.) 

dd 
=2/!> 

which verities the result for the case m = d > 1. 
Now assume m > d > 1. Since @d(m) = iP&l(m - 1) + @d(m - l), it suffices to 

show that 

2 (m - l)d-’ + 2 (m - l)d ( 2 & 
(d - l)! d! - d!’ 
w d(m - l)d-’ + (m - l)d I md 
H (d + m - l)(m - l)d-’ 5 md 
*(d+m- 1) md 

(m- 1) 5 (m - l)d 

@I +--&(1 +-&)d. 
The last inequality follows from the binomial theorem. 0 

From this proposition, it follows that whenever the VC dimension of H is finite, 
then II,f(m) grows only polynomially in m. Since the negative exponential term in 
the bound of Theorem A2.1 eventually dominates the polynomial IIH(Z!m), this 
shows that the probability that there exists a hypothesis of error greater than t that 
is consistent with an m-sample goes very rapidly to zero for large m. ‘We now 
estimate the sample size m required to make this probability less than 6. 

LEMMA A2.4. If 

, then 2@d(2m)2-‘“‘2 5 6. 

PROOF. By Proposition A2.l(iii), @d(2m) I (2em/d)d, thus it suffices to show 
that 2(2em/d)d I 62’“/2, which is equivalent to cm/2 2 dlog(2emld) + log(2/6). 
The first of the two bounds on m implies cm/4 2 log(2/6). Thus, it suffices to show 
that tm/4 1 dlog(2emld). With q = 4d/t and t = 2e/d, this inequality is expressed 
as m 2 qlog(tm). If this inequality holds for some value of m, it will also hold for 
larger values; so suppose m is equal to the second bound in the statement of the 
theorem. We need to show that 2q log( 13/e) 2 q log(2qt log( 13/t)), which is equiv- 
alent to 1 32/(2qtt2) = 1 32/( 16et) 2 log( 13/t). Again, if the latter inequality holds 
for some value of l/c, it will also hold for larger values. The inequality is easily 
verified for t = 1. Cl 

THEOREM A2.2. Let H be any well-behaved hypothesis space of finite VC 
dimension d contained in 2x, P be any probability distribution on X and the target 
concept c be any Bore1 set contained in X. Then for any 0 c 6, 6 < 1, given 

4 28d 13 
m 2 max -log;, 

E T ‘og, 
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independent random examples of c drawn according to P, with probability at least 
1 - 6, every hypothesis in H that is consistent with all of these examples has error 
at most t. 

PROOF. This follows directly from Theorem A2.1, Proposition A2.1, and 
Lemma A2.4. 0 

Part (ii)(a) of Theorem 2.1 follows directly from the above theorem. Cl 

Now, in order to complete the proof of Theorem 3.2.1, we close this section with 
the following lemma: 

LEMMA A2.5 

(4 Zf0<~,6< l,O~cu< l,kz 1 and 

m = max(:logi, (FlogFr’-O’), 

(b) 
then 2(2em/(km”))k”~2-‘“f2 5 6. 
If 1 I 1 and the second term of the bound on m above is replaced by 

8(2l + 2)‘+‘k 
t 

then 2(2yn)k(‘o~m)‘2-fm/2 5 6. 

PROOF. We first prove part (a). To simplify expressions in the proof, we let q = 
4k/t and t = 2e/k. Using the first bound on m as in the proof of Lemma A2.4, it 
suffices to show that cm/4 2 km”log2(em/(km))“, that is, ml-” L qlog(tm’-*). 
Again, we suppose that m is equal to its second bound, since the inequality only 
improves as m increases. We must show 

2qlog f L qlog(2qilog f)) 

which as in Lemma A2.4 is equivalent to 13’/( 16ec) 2 log( 13/e) and this holds for 
all 6 5 1. 

For part (b), we let q = 4k/c as above and r’+’ = 2q(21 + 2)‘+‘. Using the first 
bound on m as in the proof of Lemma A2.4, it suffices to show that m L 
2q(logm)‘+‘. Again, we suppose that m is equal to its second bound, since the 
inequality only improves as m increases. We must show 

2’+‘q(logr’+‘)‘+’ e 2q[log(2’+2q(logr’+‘)‘+‘)]‘+‘. 

Canceling 2q and removing the I + 1 powers gives 

2 log r’+’ 2 log(2’+2q(logr’+‘)‘+1) = log ( ‘+‘(&r’(logr’l’)‘+‘) 2q(21 + 2) 

= log(r’+‘(& logr’+‘r’) = logr’+’ + log((logr)‘+‘). 

This inequality reduces to r 2 logr, which certainly holds. 0 

A3. Generalizations 
A more general result than that of Theorem A2.1 above is needed if our learning 
model allows for the possibility of misclassification in the examples given to the 
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learning function. This possibility is considered in several recent papers on Valiant’s 
learnability model [4, 34, 39, 58, 601. When misclassifications are present, it may 
not even be possible to find a hypothesis that is consistent with all of the examples. 

This can also occur when the target concept is not in the hypothesis space used 
by the learning algorithm, or more generally, when the target concept itself is 
defined stochastically, as is a common assumption in the pattern recognition 
literature (e.g., [ 14, 161). Here both the distribution on the learning domain X and 
the target concept c C X are replaced by a single distribution on X x (0, 1) which 
gives the probability of drawing any given example (x, a), where x EI X and 
a E (0, 1). For any given x E X it is possible that both (x, 0) and (x, 1) will have 
positive probability, so the “target concept” will not in general be representable as 
a subset of the learning domain X. 

The notion of a stochastic target concept can be used to model the case in which 
there is a (deterministic) underlying target concept and a fixed distribution on the 
learning domain, but the random examples received by the learning algorithm are 
modified by an additional random process that may change the instance points 
and/or their classifications, as in [4], 1391, and [58]. However, here the action of 
this secondary “noise” process is allowed to depend on the nature of the example 
it intercepts (e.g., it may be more apt to change the classification of examples that 
are “close to the border” of the underlying target concept). On the other hand, 
stochastic target concepts cannot be used to model the adversarial noise processes 
considered in [34], [58], and [60]. 

In the standard pattern recognition approach, the goal of the learning algorithm 
is to find a (deterministic) hypothesis that is a good appproximation to the stochastic 
target concept. When the stochastic element of the target concept is due .to noise, 
this means finding a hypothesis that will, with high probability, agree with random 
examples generated by the composition of two random processes: the random 
process generating examples of the underlying target concept and the random noise 
process. However, Angluin and Laird [4] have argued that in some situations where 
noise is present in the training examples it is more appropriate to try to find a 
hypothesis that is a good approximation of the underlying target concept, that is, 
a hypothesis that with high probability will agree with random (“noise-free”) 
examples of the underlying target concept, as in the definition of learning we have 
used in previous sections of this paper. They also exhibit a simple learning situation 
in which these goals are incommensurate. 

In this final section we give some generalizations of the results of the Iprevious 
section that apply when learning stochastic target concepts. Here we take the 
standard pattern recognition approach, showing that certain deterministic hy- 
potheses will be good approximations to stochastic target concepts with high 
probability. However, the results we give are quite general, and can also be used 
indirectly in other approaches (see, e.g., [34, Theorem 71; generalize by replacing 
the Chernoff bound used with Corollary A3.1 below). The results are all relatively 
straightforward corollaries of a theorem of Vapnik [6 1, Theorem A.3, page 1761. 

Definition. Let P be any probability distribution on X, and X = (xl, . . ,I , x,,) E 
X”, m 2 1. For any measurable Y C X, by F<(Y) we denote the empirical estimate 
of P(r) based on the sample X, that is, 
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PROPOSITION A3.1 [61]. Let R c 2x be a class of regions of X with suitable 
measurability properties, P be any probability distribution on X, m 1 1, 1 < q 5 2, 
and x > 0. If .% E X’” is chosen randomly according to P’“, then the probability that 
there exists r E R, P(r) # 0, such that 

P(r) - -k(r) , x 
P(r)“” 

is less than 

Because the proof is lengthy, we do not sketch it here. The measurability 
properties required are similar to those given in our notion of well-behaved classes. 
We note only that it employs techniques similar to those used in [62], which form 
the basis of Lemmas A2.1 and A2.2 given above. A useful corollary of this result 
is the following: 

COROLLARY A3.1. Let R, P and m be as in Proposition A3.1, and 0 < t, y 1. 1. 
If ,T E X” is chosen randomly according to P”, then the probability that there exists 
a region r E R with P(r) > t such that 

P?(r) 5 (1 - y)P(r) 

is less than 

PROOF. I 
(1 - r>P(rh 
when P(r) > 

>et q = 2 and x = r&. Note that x > 0. For any r ER, if&(r) % 
then P(r) - pi(r) 2 yP(r), hence, (P(r) - &(r))/JP(r) 2 rm 
0. If P(r) > t, then rm > y& = x. Hence, by Proposition A3.1, 

the prodability that there exists r E R such that P(r) > E and &r) 5 (1 - r)P(r) 
is at most 

which is 

811R(2m)exp q . 
( ) 

0 

This result generalizes one of the Chernoff bounds that is frequently used in 
papers on learnability in discrete domains [4, 5, 34, 36, 39, 52, 601. Also note that 
in terms of c-transversals, letting y = i it shows that the probability of not getting 
in m random draws an c-transversal in which each region r of R with P(r) 2 E is 
hit with frequency at least P(r)/2 is at most 811R(2m)exp(-tm/l6). Using Propo- 
sition A2.l(i), this is comparable to the bound given in [26, Theorem 3.61 on the 
probability of getting any t-transversal. 

We can adapt Corollary A3.1 for application to the problem of learning stochastic 
target functions as follows: 

Definition. Let X be a learning domain and H G 2x be a hypothesis space. As 
usual we assume that each h E H is a Bore1 set. Let Y = X x (0, 11 and P be a 
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distribution on Y. We denote by disagree(h) the set of all points in Y that disagree 
with h, that is, disagree(h) = ((x, a) E Y: x E h and a = 0 or x $J h and a = 11. 
The error of h (with respect to P), denoted er(h), is P(disugree(h)). IFor any 
J E Y” we denote by eFj(h) the empirical estimate of er(h) based on j, that is, 
eFj(h) = Pj(disugree(h)). 

In analogy to Theorem A2.1 above, we have 

THEOREM A3.1. Let H, P, and Y be us above, where H has suitable measurability 
properties, m 2 1 and 0 < t, y 5 1. 

(i) Zfp E Y” i s c h osen randomly according to P”, then the probability that there 
exists a hypothesis h E H with er(h) > E such that 

e?;(h) i (1 - r)er(h) 

is less than 

8KI,,(2m)exp * . 
( ) 

(*I 

(ii) If the VC dimension of H is d, then for any 0 < 6 < 1, the quantity (*) is at 
most 6 for any sample size m greater than 

PROOF. For part (i), let R = (disagree(h): h E HJ. We claim that II,(m) = 
II,(m) for all m L 1. The argument is similar to that used in the proof of Lemma 
A2.3. Choose any S c Y with 1 S 1 = m. Let T = (x E X:(x, a) E S for some a E 
(0, 11). Since II,(S) is maximal when 1 T 1 = m, we assume this is the case. It is 
clear that for any h,, h2 E H, hl n T = h2 fr T if and only if disugree(h, ) n S = 
disugree(h*) n S. From this it follows that II,(m) = II,(m). The result then follows 
directly from Corollary A3.1. 

The calculation of the bound in part (ii) is similar to the calculation in 
Lemma A2.4, using Proposition A2.l(i) and (iii). 0 

Letting y = t, the above result shows that if a learning algorithm takes a :random 
sample J of size 

max 32,n! 
( 

64d,,E 
e 6’ E E ) 

and only entertains hypotheses h E H with empirical error e$(h) 5 t/2, then the 
probability that it returns a hypothesis h with actual error er(h) more than c is at 
most 6. This is true for any stochastic target concept. By letting y = 1 and res,tricting 
ourselves to deterministic target concepts chosen from H, we can use Theorem 
A3.1 to show that any consistent function A: SH + H is a learning function for H 
using sample size 

max 8,,! 

( 

L!$‘6 

t 6’ t t )- 

Thus, Theorem 2.1 (ii)(a) is almost a special case of Theorem A3.1, but for the fact 
that its simpler proof yields slightly better constants. 
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