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The 8-puzzle and the 15-puzzle have been used for many years as a domain for testing 
heuristic search techniques. From experience it is known that these puzzles are "difficult" 
and therefore useful for testing search techniques. In this paper we give strong evidence 
that these puzzles are indeed good test problems. We extend the 8-puzzle and the 15- 
puzzle to an n xn board and show that finding a shortest solution for the extended puzzle 
is NP-hard and is thus believed to be computationally infeasible. 

We also sketch an approximation algorithm for transforming .beards that is 
guaranteed to use no more than a constant times the minimum number of moves, where 
the constant is independent of the given beards and their side length n. 

The studied puzzles are instances of planar relocation problems where the reacha- 
bility question is polynomial but efficient relocation is NP-hard. Such problems are 
natural robeties problems: A robot needs to efficiently relocate packages in the plane. 
Our research encourages the study of polynomial approximation algorithms for related 
robotics problems. 

I. Introduction 

For over two decades the 8-puzzle and the 15-puzzle of Sam Loyd [1959] have been a labora- 
tory for testing search methods. Doran and Michie used these games in their general problem- 
solving program, called Graph Traverser [Doran & Michie, 1966]. Pohl used the 15-puzzle in 
his research on bi-directional search and dynamic weighting [Pohl, 1971; Pohl, 1973; Pohl, 
1977]. Gaschnig described the 8-puzzle as "...simple, convenient to manipulate, yet exhibiting 
interesting phenomena that hypothetically hold for a broader class of subjects..." [Gaschnig, 
1979]. Recently Korf used these puzzles as examples for the method of solving search prob- 
lems by building Macro-Operators [Korf, 1985a] and as examples for IDA* search a/gorithm 
[Korf, 1985b]. Judea Pearl used the 8-puzzle throughout the first half of his book on heuristics 
as one of the main examples [Pearl, 1984], Also, in the last decade, when learning algorithms 
have started to blossom, some of the empirical tests of these algorithms were performed on the 
8-puzzle and the 15-puzzle [Politowski, 1986; Rendell, 1983]. 

The main reasons for selecting these problems as workbench models for measuring the 
performance of searching methods are: 
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1) There is no known algorithm that finds a shortest solution for these problems ef~ciently. 
2) The problems are simple and easy to manipulate. 
3) The problems are good representatives for a class of problems with the goal of finding a 

relatively short path between two given vertices in an undirected graph. 
4) The size of the search graph is exponential in the length n of the side of the board, even 

though the input configurations can be described easily by assigning a location for each 
tile (there are n 2 tiles ). 

5) The search graph can be specified by a few simple rules. 

Certainly, if there existed simple efficient algorithms for finding a shortest solution for 
these problems, then heuristic approaches would become superfluous. Thus we need to give a 
convincing argument that no such algorithm exists. This is accomplished by using complexity 
theory an approach suggested by Goldberg and Pohl [1984]. We show that finding the shortest 
solution for a natural extension of the 8-puzzle and the 15-puzzle is N-P-hard. Thus unless 
P=NP, which is considered to be extremely unlikely, there is no polynomial algorithms for 
finding a shortest solution. Of course, since the number of distinct configurations in the 8- 
puzzle and the 15-puzzle is finite, theoretically (and practically for the 8-puzzle) one can find 
shortest solutions for all the possible inputs by analyzing the whole search graph. To get prob- 
lems of  unbounded size we extend the problem to the n xn checker board and call the puzzle 
of  that board size the (n2-1)-puzzle. O'he tiles numbered one through n2-1 occupy all but one 
square which is empty, that is it contains the blank ale:) The 8-puzzle and the 15-puzzle are 
the (n 2---1)-puzzle, where n is 3 and 4, respectively. The same natural extension to the n • 
board was used by Lichtenstein and Sipser for analyzing the complexity of Go [-Lichtenstein & 
Sipser, 1978] and by Fraenkel et at. for analyzing the complexity of Checkers ~FraenkeI et al., 
1978]. 

The aim of the (n2-1)-puzzle is to find a sequence of moves which will transfer a 
given initial configuration of an n ><n board to a final (standard) configuration. A move con- 
sists o f  sliding a tile onto the empty square from an orthogonally adjacent square. We will 
show that the following decision problem, called nPUZ, is NP-complete: 

INSTANCE. two n xn board configurations and a bound k. 
QUESTION. iS there a solution for transforming the first (initial) configuration into the second 
(final) configuration requiring at most k moves? 

The pebble games of Komhauser et al. [Korhnhauser, Miller & Spirakis, 1984] can be 
viewed as a direct generalization of the (nZ-1)-puzzle : Let G be a graph with n vertices and 
b <n pebbles numbered 1 , . . .  ,b. The distinct pebbles (which correspond to the non-blank 
tiles o f  the (nZ-1)-puzzle) must always be on different vertices. A move consists of sliding a 
pebble along an edge of the graph to an adjacent unoccupied vertex. They address the question 
of  reachability, i,e. whether a final configuration of the pebbles is reachable from an initial 
configuration using any legal sequence of moves. It was shown that the general reachability 
problem can be decided in polynomial time. In the case of (n 2-1)-puzzle the graph is of a 
very restricted form (the n xn planar grid) and the number of pebbles (non-blank tiles) b is one 
less than the number of vertices. Note that for the (nZ-1)-puzzle reachability is easy to 
decide as well. 

In this paper we are concerned with the complexity of reaching the final configuration 
from the initial configuration in a small number of moves. The following version of the deci- 
sion problem nPUZ for general graphs was considered by Goldreich [Goldreich, 1984]: 
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INSTANCE. a graph of n vertices and two configurations of the pebbles 1 , . . .  ,n-1 on the 
graph and a bound k. 
QUESTION. is there a solution for transforming the first configuration into the second 
configuration requiting at most k moves? 

Goldreich gave a very elegant reduction for showing that the above decision problem is 
NP-complete [Goldreich, 1984]. In the first part of the paper we show that nPUZ is NP- 
complete as well. Note that now the graphs are of a very restricted form. For each length of  the 
side of the board there is only one square-shaped grid graph and this graph is very symmetric, 
Intuitively we cannot encode any "hardness" into the structure of such graphs and is not 
surprising the NP-completeness reduction given in this paper is much more involved than the 
Goldreich's reduction for general graphs. 

In the puzzle tiles need to be relocated on the planar grid. The relocation task, even 
without the specific rigid rules of the game, is the essence of the NP-hardness of nPUZ. We 
consider a relocation procedure on graphs which is different than the one considered by 
Kornhauser et al. [Komhauser et al., 1984] and is again related to (n2-1)-puzzle. In this 
relocation procedure elements that reside in vertices of a graph are shipped to other vertices. 
The shipping process is done step by step along a path in the graph. Assume that the path con- 
sists of the vertices (v 0, v t, �9 ' ' , vt). If at the beginning of step i the procedure is at vi-1 in 
which there are some elements, then at the end of this step (the beginning of the next step) the 
procedure is at vl. When the procedure moves along the edge (vi-1 ,vi) it may ship some of the 
elements from vi-1 into vt. We first show the Intractability of a relocation problem on planar 
graphs. This problem, called the REL problem, is less restrictive and easier to prove NP. 
complete: 

INSTANCE. A planar directed graph G (V,E) where each e e E has capacity zero or two, a set X 
of elements, and an initial and final configuration. A configuration specifies the location of 
each element of X at the vertices of V. 
QUESTION. Is there a relocation procedure that ships the elements of X from their initial 
configuration to their final configuration such that the procedure moves along each e~E 
exactly once (the shipment is along an Eulerian path) and it never ships along each edge more 
elements than allowed by the capacity of the edge? 

The nPUZ and REL problems can be viewed as robotics problems: A robot needs to 
efficiently relocate objects in the plane. In the case of nPUZ the objects have a simple shape. 
The relocation of arbitrarily shaped objects through areas with arbitrary boundaries, is of much 
higher complexity. Hopcroft et al. have shown that in that case the question of reachability is 
already PSPACE-complete [Hopcroft, Schwartz & Sharir, 1984]. 

The NP-completeness proof of nPUZ will simulate the simpler proof for REL. The 
graph is mapped onto the board of the puzzle problem. The vertices and edges will correspond 
to certain areas of the board. The elements and the capacities are encoded by the arrangements 
of tiles in these areas in the start and final configuration. 

Since finding the shortest solution is NP-hard we would like to know how close the shor- 
test solution can be approximated in polynomial time. In the second part of the paper we show 
that finding a solution that is any fixed additive constant away from the optimum is also NP- 
hard. However we have positive results for approximating the optimum by a multiplicative 
constant. In this paper we are only concerned with proving that such a constant exists. The 
given proof would lead to a rather high constant. We discuss how the constant may be optim- 
ized. It is an open problem to find the polynomial approximation algorithm with the best 
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possible constant. Note that this type of algorithm finds reasonable solutions even if n is large 
(around 100) and there are no pathological cases as there are for search methods. The research 
based on search methods only addresses the cases of n =3,4 and no bounds are given as to how 
the length of the heuristic solution is related to the length of the optimum solution. 

As suggested by Ramer and Pohl [Ratner, 1986; Ratner& Pohl, 1986], we recommend a 
combined approach for solving search problems: Use an approximation algorithm whose solu- 
tion has a provable worst case bound and then do local optimization of the approximate solu- 
tion, employing AI search methods. 

This paper is outlined as follows. In Section 2 we describe a special symmetric version 
of the satisfiability problem, called 2/2/4-SAT, which is shown to be NP-complete in the 
Appendix. Section 2 also contains the basic definitions and properties of (n2-1)-puzzle used 
throughout the paper. In Section 3 we reduce 2/2/4-SAT to REL and in Section 4 we give a 
similar reduction for nPUZ. In the last section we describe the approximation algorithm for 
nPUZ. 

We suggest to apply our approach to other puzzles, like the Rubik's cube, which are also 
used extensively as examples in the M-literature. Recently, search methods have been devised 
for finding the shortest solution for the n >ol xn Rubik's cube, which are computationally feasi- 
ble for the case of n =2 and n =3 [Fiat et al., 1989]. Is the problem of finding a shortest solution 
for the nxn• Rubik's cube NP-hard? Are there polynomial time approximation algorithms 
for n xn xn Rubik's cube that approximate the optimal solution by a multiplicative constant? 

Is there an approximation algorithm (off by only a multiplicative constan0 for the pebble 
game on general graphs considered by Komhauser et al. [Korhnhauser, Miller & Spirakis, 
1984]? As for more general relocation problems we would like to know whether there are 
approximation algorithms (off by a multiplicative constant) for the following setting: Given a 
planer graph where packages reside at the vertices (cities), and a truck that can carry at most c 
packages. Each package has an initial and a final city. The aim is to relocate the packages 
with the truck using the shortest possible route. Approximation algorithms have been found 
for special cases of this problem: the Traveling Salesman Problem and the Vehicle Routing 
Problem (with one vehicle) [Lawler et al., 1985]. 

2. Basic Definitions 

The classical NP-complete problem is the satisfiability problem: given a boolean formula in 
conjunctive normal form, does there exist a truth setting that satisfies the formula. We use a 
simple symmetric version, called 2/2/4-SAT, in the reductions for REL and nPUZ. This ver- 
sion is shown to be NP-complete in the Appendix. 

2/2/4-SAT: 
IN~A~CE. A set U of m variables and a collection C of m clauses over U such that each 
clause c ~ C has exactly four literals (I c I = 4) and each u ~ U appears in all clauses of C 
exactly 4 times, twice negated and twice unnegated. 
Qu~TIoN. Is there a truth assignment for U such that each clause in C has exactly two true 
literals? 

In the rest of this section we give the main definitions and basic facts of (n2-1)-puzzle 
that are needed throughout the paper. The puzzle is played on an n xn checker board. There 
are n 2 distinct tiles on the board; one blank tile and n2-1 tiles numbered from 1 to n2-1. 
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Each of the n z square location of the board is occupied by exactly one tile. An instance of 
(nZ--1)--puzzle consists of two board configurations B1 (the initial configuration) and B2 

(the final configuration). A move is an exchange of the blank tile with a tile located on an 
horizontally or vertically adjacent location. The goal of (n2-1)-puzzle is to find a short 
sequence of moves that transforms B~ to B2. nPUZ is the corresponding decision problem. 
The question is whether, for given B 1, B 2 and k, the configurations can be transformed into 
each other in at most k moves. 

Given a sequence that solves an instance of nPUZ by moving B1 to B2 in at most k 
moves, then the same sequence solves any instances in which the tiles (other than the blank 
tile) of both configurations are renumbered in the same way. Thus the set of possible solutions 
for the instance of nPUZ is determined by the relative location of the tiles in B x and B 2. 

Not every two configurations are reachable from each other. The configurations can be 
described as a permutation: For any tile t let ~(t) be the tile that resides in the same location in 
B 2 as the tile t in B 1. This permutation can be decomposed into cycles, where a cycle is a 
sequence of tiles ( t l , "  �9 ,tq) s.t. t~ appears inB1 on the same location as t(i+l)modq in B2. A 
cycle is called even if  its size is even. Reachability can be characterized using the parity of the 
cycles. 

THEOREM 1. Let B 1 and B 2 be configuration in which the blank tile is at the same location. 
Then B 1 and B 2 are reachable iff their permutation has an even number of even cycles. 

A proof of  this theorem can be found in [McCoy & Berger, 1972]. It is easy to construct 
the permutations and check reaehability in 0 (n o) time. The above theorem implies that if two 
configurations that are the same except for two non-blank tiles which are swapped, then the 
configurations are not reachable. The following fact is easily checked and left as an exercise: 

FACT 1. There is an algorithms that transforms any two reachable configurations into each 
other, never using more than p (n) = q n 3 moves, where q is a constant independent of the size 
of the board n. The running time to the algorithms is proportional top (n). 

Let 11 and 12 be two locations on the board and assume the blank tile is to be advanced 
from 11 to 12 in the minimum number of moves. Consider a rectangle of locations s.t. 11 and 12 
are in opposite comers. One way to achieve the minimum number of moves is to move from 
11 along one of  the two orthogonal angles of the rectangle. The (Manhattan) distance 
between the two locations, denoted by d(lt,12), is the minimum number of moves required to 
move the blank tile from one location to the other. Note that this notion of distance is different 
from the Euclidean distance. 

The distance of a tile x in two configurations B t and B 2 is the distance between the two 
locations of x on the board and the distance between two configurations B1 and B 2, denoted by 
d (B 1,8 2), is the total distance of 311 non-blank tiles. 

Let S be a sequence of moves that transforms B 1 to B 2. Using the notion of distance we 
can partition the moves as follows. Assume we are to move a non-blank tile x. Let m/n be the 
smallest distance o fx  from its final location in B2 in all previous and current configurations. If 
after the move the distance of x to its location in B2 is m/n- l ,  then this move is a 
necessary move, otherwise it is an unnecessary move. Clearly the total number of necessary 
moves is equal to d(B1,Bz) and this is a lower bound on the number of moves required to 
transform B i to B 2. 
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3. Relocation in a Graph Via an Eulerian Path 

In this section we prove that relocating elements that reside in vertices of  a planar graph via an 
Eulerian path is NP-complete (the problem REL). We present REL in this paper because the 
NP-completeness reduction from 2/2/4-SAT to REL is very similar to the reduction to our goal 
problem nPUZ. In nPUZ tiles must be relocated following the rules of the puzzle. The relo- 
cation problem for planar graphs captures the hard core of nPUZ. It allows us to ignore the 
rules of the puzzle for a moment. 

THEOREM 2. REL is NP-complete. 

PROOF. Let U={u~, u2 ," �9 �9 u,,} be a set of variables and C={cl, c2 ," ' �9 cm} be a set of 
clauses defining an arbitrary instance of 2/2/4-SAT. From this instance we will construct an 
instance of REL. Such an instance is a graph G(V,E) with capacities (zero or two) for each 
eeE, a set X of elements, an initial configuration (called B 1), and a final configuration (called 
B 2). First we start with the description of the graph and later we define the configurations. 

The graph (Figure 2) consists of  5m+2 vertices and 12m-3 edges. The vertices are 
divided to four groups. The first group is built up from m diamonds of four vertices and four 
edges of capacity 2 each. The i-th diamond which is shown in Figure 1 corresponds to the 
variable ul. This diamond contains the vertices: topi, nul, botl, and h-ill. 

The second group is the single vertex TC (stands for truth collection). The third group is 
the single vertex FC (stands for false collection). The fourth group consists of rn vertices. 
The i -th vertex of  this group, called nci, corresponds to the i-th clause in the boolean formula 
of the 2/2/4-SAT instance. 

/ \  / \  

bot~ @ 

Figure 1: The i -th diamond in B 1 and B 2. 

The directed edges connecting the vertices and the capacities of the edges are specified 
in Figure 2. Two edges of capacity 2 are outgoing from each diamond, one to TC and one to 
FC. Two edges of  capacity zero are ingoing to each diamond (except for the first one), one 
from TC and one from FC. There is only one ingoing edge ( (ncm ,top 1) ) to the first diamond. 
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Similarly, two edges of capacity 2 are directed into each clause vertex ncl, one from TC and 
one from FC. Two edges of capacity zero are leaving from each clause vertex (except for 
ncm), one to TC and one to FC. Only one edge ((ncr.,topl)) of capacity zero is leaving the 
last clause vertex (ncm). 

nul nUl 

r 

I1U2 ~ 2  

r- -~ : t , . . ,~  . . . . . . . . . . . . .  

hUm ~ n'um 

:ddgg: : : :  c~'apacity 2capacity 0 

IlCm 

Figure 2: The graph of the REL instance. 

To complete the definition of the instance of REL we need to specify the set elements X 
and the initial and final locations of the elements in the graph. The set X consists of 8m ele- 
ments. Recall that in 2/2/4-SAT each variable occurs twice negated and twice unnegated. 
There is an element for each of the four occurrences and these elements are called literal ele- 
ments: hi,1 and hi,2 correspond to the two appearances of ul in C,  and hi,3 and hi,4 correspond 
to the two appearances of ~ in C . The remaining 4m elements n ~ ,  nt,6, hi,7 and n~,s are 
called filler elements. The fillers are required for technical reasons in the nPUZ reduction. 
For this reduction they are not needed. However, we add them to the instance of REL make 
both reductions similar. 
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In B 1 the literal elements are located in the diamonds as specified in Figure 1, the pair 
nl,1, hi,2 is in nui and the pair ni,3, nl,4 is in ~'al. In B2 these elements are in the vertices that 
correspond to the clauses. The four elements that are associated with the four literals of the i - 
th clause appear in vertex nci. In B1 the fillers ni,5, hi,6, ni,7 and nl.s are located in topi. In 
B 2, hi,5, tli .6 are located in nul and nl,7, nl,s are located in ~ i .  All the remaining vertices con- 
tain no elements. This completes the definition of the instance of REL and the following two 
claims complete the proof of the theorem. 

CLAIM 1. I f  there is a truth assignment f : U ) { T,F  } that satisfies the 2/2/4-SAT instance 
then there is a relocation procedure along an Eulerian path that shifts B 1 to B 2. 

PROOF. The proof is constructive. First we ship all the nld elements that correspond to true 
literals from their vertices in B 1 to the TC vertex. This collection is done by the following pro- 
cedure. 

PROCEDURE SHIFT 1. 
for i : = l  to m do begin 

if f (ui ) = T then 
move along (topi ,nui) with hi,5 and hi.6; 
move along (nul,boti) and (boti,TC) with ni.1 and ni,2; 

else 
move along (topi ,h-~i) with nla and hi,s; 
move along (~i ,bot i)  and (boti,TC) with nt,3 and nl,4; 

if i ~ rn then move along (TC,topi+l) ; 
end. 

When the above loop is finished, then the vertex TC contains 2m literal elements. Each dia- 
mond contributes exactly two elements. The two elements from the i-th diamond are either 
ni,t and hi.2 (from nul) or ni.3 and hi,4 (flom h--ui). The two literal elements that are in TC were 
replaced by the fillers ni.5 arid nl,6 or by nl.7 and ni,g from topi. 

The next step drops the 2m literal elements that are in TC into the ncj vertices they 
belonged to in B2. As mentioned above, these 2m elements correspond to the 2m true literals. 
Since the truth assignment f solves the 2/2/4-SAT instance, it follows that two literal elements 
from each clause vertex nc: in B2 are now in TC. These elements are dropped into their 
clause vertices by the following Procedure Shift 2: 

PROCEDURE SHIFT 2. 
for j : = l  to ra do begin 

move along (TC ,ncj) with the two literal elements that 
are in nc j in B 2; 
ff j * m then move along (ncj ,TC) ; 

end. 

As a result of  the above procedure, each ncj vertex receives the two elements that correspond 
to the true literals of the i -th clause in the 212/4-SAT instance. 

Now we move along (nc,,, ,top1). From this point we do a second pass over the diamonds 
and the clause vertices repeating the two procedures Shift 1 and Shift 2 given above with slight 
modifications. In Shift 3 we collect all the rti.j elements that correspond to false literals into 
the FC vertex. This is done by traversing all the edges of the diamonds that have not been 
traversed in the first pass and by traversing all the edges that connect FC with the diamonds. 
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After Shift 3 the 2m elements that correspond to the 2m false literals are in FC. In the final 
procedure Shift 4 the algorithm drops the 2m literal elements from FC into the nc; vertices in 
which they appear in B2. Once the second pass is completed the arrangement of all elements 
in the graph is as prescribed in B 2. Observe that each edge is traversed exactly once and the 
number of elements moved through each edge always equals the capacity of the edge. 

CLAIM 2. If there is a relocation procedure that ships the elements from B1 to B 2 along an 
Eulerian path then there is a truth assignment f :  U----o{T,F } that satisfies the 2/2/4-SAT 
instance. 

PRooF. We need to ship the four literal elements from their initial locations in the i-th dia- 
mond to the clause vertices (the nc/) they belong to in B2. These literal elements must pass 
through bot~. There are only two edges (boti,TC) and (boti,FC) outgoing from botl. Both 
edges have capacity two. This means that when the procedure moves along (boti,TC) and 
(bot~ ,FC) it must carry two literal elements each time. Furthermore, the first time the pro- 
cedure ships two literals to botl they must be either the pair (ni.l,nl.2) or the pair (n~.3,nl,4). 
Now the procedure must continue to move along with these two literals. Thus, for each 
i, 1 < i _< m, the given procedure ships the pair (m,l,ni,2) along (bot~ ,TC) or along (boti ,FC). 

Let us define the truth assignment f :  U ;{T,F } as follows: 
f (us) = T if the procedure ships the pair (niA,ni,2) along (botl ,TC). 
f (u~) = F if the procedure ships the pair (ni,l,nl,2) along (boti ,FC ). 

Note that ff f (u i )=  T (respectively F) then the procedure ships the pair (n~.3,n~,4) along 
(boti ,FC ) (respectively (boti ,TC )). 

We proceed to show that the above truth assignment satisfies the requirements of the 
2/2/4-SAT instance. There are two ingoing edges to each ncj vertex, each of capacity, two. 
There is :~o way to ship elements from TC to FC or vise versa (see Figure 2). Thus the pro- 
cedures ships from TC exactly two literal elements to each of the ncj vertices. According to 
the definition of f these dements correspond to true Iiterals. The other two elements that 
arrive at each ncj vertices are from FC, which means that they correspond to false literals. 
This completes the proof of Claim 2 and Theorem 1. [] 

In the specification of REL we assumed that the capacities of the edges are either zero or 
two and that the graph is directed. It is easy to show that REL remains NP-complete if the 
graph is directed and all capacities are two: For each directed edge of capacity zero we locate 
two dummy elements at the beginning of the edge in B 1 and these dummies appear at the end 
of the edge in B2. Also notice that in the reduction of the above theorem the correct direction 
of the edges is implied by the relocation of the elements via an Eulerian path. Thus the 
undirected versions of REL are also NP-hard. It is an open problem whether there is a polyno- 
mial algorithm for REL if we only allow capacities zero or one. 

4. The Intractability of nPUZ 

In this section we give a reduction of the 2/2/4-SAT problem to the nPUZ problem that mim- 
ics the reduction given in the previous section. 

TIa~ORF2d 3. nPUZ is NP-complete. 

PROOF. The proof is divided into three subsections. In the first subsection we describe the used 
instance of nPUZ and in the last two subsections we give the two directions of the reduction. 
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4.1. The Instance of nPUZ 

The instance of nPUZ that is'constructed from a given instance of 2/2/4--SAT is similar to the 
instance of REL used in the previous section, We will map the graph of Figure 2 onto the 
board. The instance of  nPUZ consists of two n• board configurations B1 (the initial 
contignration), B 2 (the final configuration) and an integer k which is an upper bound on the 
number of moves that can be used to transform B 1 toB2. To simulate the graph of Figure 2 we 
have to capture the notions of vertices, edges, elements, relocation, moving along an edge and 
capacity of  an edge. Each vertex in the graph of Figure 2 corresponds to a square area of loca- 
tions (we call these areas nodes). Edges are identified as short sequences of thin horizontal 
and vertical stripes of locations that connect the nodes of the edge. Figure 3 gives a rough 
outline of how the graph of REL (Figure 2) is mapped onto the board. It shows all the loca- 
tions at which B 1 and B 2 might differ. The main difference is a 45 degree counterclockwise 
rotation. The bold line segments are stripes of locations on the board of width three. These 
stripes belong to edges of  capacity two. Similarly, the dashed lines are stripes of width one and 
belong to edges of capacity zero. All square areas (the nodes) are three locations wide except 
for ureas of FC and TC whose length of their side is 4m. The latter two nodes are called the 
large nodes and the remaining ones the small nodes. All pieces of Figure 3 (the stripes of the 
edges and the nodes) are composed of disjoint locations. 

Recall that we want to describe the two board configurations B 1 and B 2 of the instance 
of nPUZ.  Figure 3 shows all the locations at which B 1 and B2 might differ: in the stripes of 
the edges and the nodes. That is, every tile that lies outside the stripes and the nodes is in same 
location in B 1 and B 2. 

To complete the specification of Figure 3 we still need to give the lengths of the stripes. 
Each stripe is required to be at least 51. The basic length unit I is defined in terms of u which 
will be shown to be an upper bound on the number of  unnecessary moves used in the transfor- 
marion of  BI to B2 from a given truth assignment: l = u + 1 6 m + l  and 
u = 508m + 29m p (6) + 9m p (4m +3) (p is the polynomial given in Fact 1 of the previous sec- 
tion). It is easy to assign explicit locations to the all nodes and stripes of the edges such that 
the above specifications (summarized in Figure 3) are followed. This can be done s.t. the 
length of the longest stripe and the distance between any two nodes is at least 5l and the length 
n of the side of the whole board is 0 (ml). 

We now address how the 2/2/4-SAT instance is encoded in the two board configurations 
B t and B 2. Let U = {u i ,  u 2 , - .  ", u,, } be a set of variables and C= { c t ,  c 2 , " " ,  c,, } be a set 
of clauses defining an arbitrary instance of 2/2/4-SAT. Similar to the REL instance of the pre- 
vious reduction, the two occurrences of u~ correspond to the dements (here explicit tiles) hi,1 
and hi;. located in (the area of) nui of B 1. The two occurrences of ~ are responsible for the 
element tiles nl,3 and hi,4 in h--ui ofB 1. Again as in the instance o fREL ,  these 4rn element files 
(called literal tiles) are distributed among the nodes act in B 2. The area of nci receives the four 
literal tiles corresponding to the four literals of cl. Analogously, there are four fillers tiles ni,5 
to nt,s that are located in the node topi in B 1. In the final configuration B2 the filler tiles nl,5 
and hi,6 appear in nul and ni,7 and hi,8 appear in n'ui. 

We next describe the relative location of the tiles of the edges in B 1 and B 2. Recall that 
the edges of  capacity zero (zero-edges) are composed of stripes of width one. For any zero- 
edge in B 1 simply move all its tiles one step backward w.r.t, the direction of the edge (see Fig- 
ure 4). Observe that one tile leaves the edge at the tail of the edge and another tile is drawn into 
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Figure 3: The locations in which B 1 and B z might differ. 

the edge at the head of the edge. For the latter tile select any tile from the node that is adjacent 
to the head which is not an element tile. 

The relative location in B 1 and B 2 of the two-edges is more involved. We relocate the 
tiles of B 1 as prescribed in Figure 5 (The figure shows a right turn of a two-edge). Note that 
each tile (except for some tile in the comers of the edges) mbves one step backward w.r.t, the 
direction of the edge and some tiles also move one step sideways. Furthermore, three tiles 
move off the tail of the edge and the same number is drawn into the edge at the head. For the 
latter three tiles again select any three non-element tiles from the node adjacent to the head of 
the edge. 

It is easy to verify that during the construction of B z the number of tiles that leave and 
enter each node is the same. For example, six tiles leave nc,~ via the two adjacent heads of 
two-edges and one tile is drawn into ncm by the tail of the adjacent zero-edge. The imbalance 
of five tiles is compensated by the fact that nc~ receives the blank tile in B 2 together with four 
element tiles (which are in the diamonds in B 1). 
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Figure 5: The relative location of the tiles of a two-edge. 
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We have specified the exact relative location of the tiles of B 9 w.r.t. B 1 except for where 
the tiles of the nodes of B2 are located within the area of each node. Since the sizes of the 
nodes is negligibly small (dominated by our choice of l as shown later) the exact location of 
these tiles within the nodes of B 2 is not important and can be fixed arbitrarily. However, now 
it might be possible that B 2 is not reachable from B 1 (see Theorem 1). If so then we simply 
exchange two arbitrary tiles of ncm in B 2. Now the reachability of B 2 from B1 is guaranteed. 
Note that reachability between two configurations can be checked in time O (n 2) (use Theorem 
1). 

To complete the definition of the instance of nPUZ we set k to d(B1,B2)+u. It is easy 
to see that both boards (and k) can be constructed in time polynomial in m. Recall that the 
length of side of the board is 0 (m5). In the next two subsections we show that the instance of 
2/2/4-SAT has a solution fff B i can be moved to B 2 in at most k moves. 

4.2. Constructing a Solution to nPUS from a truth setting of 2/214-SAT 

For the first direction we assume that we are given a truth assignment f of the variables of U 
that satisfies the 2/2/4-SAT instance. We will move the board configuration B ~ to B 2 using a 
modification of  the four procedures Shift used in the reduction ofREL. The main modification 
is that moving along an edge is more involved in nPUZ than in REL. In nPUZ the empty tile 
moves along the stripes of the edge (possibly "carrying along" two element tiles) and while 
doing so rearranges the files in the stripes. For the case of a zero-edge the rearrangement is 
rather simple since no element tiles are carried along: rearrange the node at the tail of the edge 
s.t. the blank tile is at the location within the node that is adjacent to the tail of the zero-edge; 
then shift the tiles of the edge one step backwards as the empty tile traverses forwardly along 
the stripes of the edge (see Figure 4). 

For the two-edges the rearrangement of the tiles in the stripes is much more involved. 
After the two element tiles and the blank tile have been moved through the two-edge the rear- 
rangement will be as described in Figure 8. This rearrangement is achieved in two steps. First, 
rearrange the node adjacent to the tail of the edge such that the two element tiles x and y and 
the empty tile are positioned (within the node) in a straight consecutive chain and the empty 
tile is adjacent to the tail of the edge. See Figure 6 for details: the double bars denote the bord- 
ers to the nodes (one at the head and one at the tail of the stripe). 

OL-2 O"-I 1310 0[1 ~2 ~3 0[4 0~5 .... I~r-1 ~r O~r+l 

Y-2 Y-I YO Y1 Y2 73 74 ~r .... Yr-I Yr Yr+l 

C~r+2 at+3 

~r+2 ~r+3 

Yr+2 Yr+3 

Figure 6: The arrangement of a straight two-edge in B 1. 

In the second step the chain Ix, y ,  blank tile] is moved through the edge by alternately apply- 
ing the move sequences Su and Sa to the blank tile: 
Su := <left,lef t,up,right,right,right,down > ; Sd equals Su but up is exchanged with down 
and vice versa. Each of the seven-step sequences advances the chain be one step to the right. 
Figure 7 is produced from Figure 6 by applying Su, Sa, and again Su. 
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Figure 7: The arrangement after advancing by three steps. 

If we apply the seven-step sequences altematingly r+3 times we end up with the arrangement 
of Figure 8 (In the figure r is odd). 

or-1 ~o 

a.-2 %~ 
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~1 0~2 

c~ V2 
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~'3 ~4 ~'5 ~6 .... "t, [~,+, 

t~r+2 ~r+2 

x y 
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Figure 8: The arrangement of a straight two-edge in B2. 

Note that the relative location of the tiles of the edge between Figure 6 and 8 is given by (the 
horizontal part of) Figure 5. Thus moving along the edge as prescribed moves its tiles from 
their location in B 1 to their location in B 2. 

So far we have only shown how to move the empty tile together with two element tiles 
along a single stripe of capacity two (see figures 6 to 8). A two-edge might be composed of 
two stripes. The following sequence of moves results in a 90 degrees clockwise turn of the 
chain Ix, y ,  blank tile]: <left,left,down,right,right,up,leftclown,down,right>. This 
sequence produces the relative rearrangement of the comer given in Figure 5. After the rota- 
tion the chain is moved along the second stripe by alternating two rotated versions of Su and 
Sa. 

We still have to take care of some subtle details concerning the final arrangement of the 
edges and nodes. After an edge of capacity c (c=0 of c=2) is traversed, c+l  tiles are drawn 
one location across the border of the node into the head of the edge (see figures 4 and 5). At 
the completion of the traversal we first pull any c+l  files across the border. If the last c+l 
locations of the tail are not arranged as in B 2, then we temporarily enlarge the node size by one 
location in each direction so that the c+l  locations are included in the enlarged node area and 
then rearrange the tail as prescribed in B2. 

Similarly, the last time the empty tile leaves a node during the four procedures Shift the 
arrangement of the node has to be as in B 2. The nodes are completed in the following order: 
one of {nui,-fffi~} (l<i<_m), TC, the remaining nodes in the diamonds, the ncj ( l<j<m),  FC, 
nc,,. Observe that the last exit from each node except the nci nodes is via a two-edge. This fact 
will allow us to leave each of these nodes as given in B 2 (We used filler tiles to assure that the 
last exit from the topl is via a two-edge). 

The last exit from a node via a two-edge is done as follows. Begin moving the chain Ix, 
y ,  blank tile] outside of the node along the last outgoing two-edge but stop this process as soon 
as the chain has left the node (see Figure 7). Consider an enlarged node whose length of its 
side is increased by three that includes the node and the chain. Rearrange the enlarged node 
such that its area other than the beginning of the edge is as in B~ and the beginning of the edge 
is the same as before this final rearrangement except for a possible swap of x and y in the 
chain. Finally continue moving the chain along the two-edge as before. Observe the swap ofx 
and y might be necessary (see Theorem 1) to assure reaehability between the two 
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configurations of the enlarged node. The rearrangement caused by moving Ix, y ,  blank tile] 
through a two-edge is the same for all choices of x and y (in particular for [y, x ,  blank tile]). 

We next show how the final arrangement of the nc/ nodes ( l<j  <m) can be achieved. 
The last entry into a ncj node is via a two-edge from FC and the last exit via a zero-edge. 
Along the two-edge a chain Ix, y ,  blank tile] is shipped into ncj. If at the last exit ncj cannot 
be arranged as in B 2 then ignore all moves done for traversing the two-edge, swap the order of  
x and y in the chain and move the modified chain through the two-edge. Now nc/ can be 
arranged as inB2 (see Theorem 1). 

Finally, we need to show that nc,, can be arranged as in B 2. When nc~ is entered for the 
last time the whole board is arranged as in B 2 except for possible the area of  nc,~. Call this 
board configuration B .  Assume the board consisting only of the area of nc,,, in B cannot be 
rearranged as the node ncm in B 2. Then ncm can be arranged as in B 2 except for one swap. 
But this is not possible since we reached from B 1 a configuration identical to B 2 except for one 
swap and by the construction of the boards B 1 and B 2 are reachable from each other. 

The above completes the summary of the modifications to the procedures Shift that are 
needed. We next show that the modified procedures Shift require a total of  at most 
k = d(B 1,Bz)+u moves. 

First observe that all moves done while traversing a zero-edge are necessary moves since 
each move shifts a tile from its location in B I toward its location in B 2 (see Figure 4). How- 
ever the last move for each edge might not be necessary summing to at most 4 m -3  moves. 
Similarly, the seven-step sequences done when a chain was moved through a stripe of a two- 
edge consist of  necessary moves: The tiles of the stripe and x and y always move towards their 
final location in B z (see Figure 5). The only exception to this are up to three seven-step 
sequences at the beginning and the end of each two-stripe. Since the number of two-stripes is 
12m (see Figure 3) we follow that the total number of moves while lraversing a zero-edge and 
while executing seven-step sequence is at most d (B 1,B 2)+508m. 

All moves of the procedures Shift that we haven't accounted for yet occur while rear- 
ranging comers of two-edges and nodes (sometimes enlarged nodes). The number of comers 
of  two-edges is 4m and per rean'angement of such a comer of size 3x3 we spent at most p (3) 
moves (see Fact 1). There are 5m small nodes of size 3• which each are rearranged at most 5 
times each, once for each in- and outgoing edge and one final rearrangement. The node size for 
each such rearrangement is at most 6• Thus all rearrangements of the comers and the small 

nodes cost at most 29m p (6). 
The large nodes have size 4m and the total number of edges entering and leaving each 

of  these nodes is 4ra-2.  Furthermore, in FC up to m-1  swaps of  the element tiles of  a chain 
might be needed. The cost per rearrangement and swap is bounded by p(4m+3). Thus the total 
number of moves in the four Shift procedure is at most 
d (B 1,B 2)+508m + 29m p (6) + 9m p (4m +3) = d (B 1 ~ 2)+u = k. 

This completes this subsection in which we have shown that if there is a truth setting 
solving the instance of  2/2/4-SAT then B 1 can be moved to B 2 in atmost k moves. The next 
section completes the reduction. 

4.3. Constructing a Solution to 212/4-SAT from a Solution to nPUZ 

Let SOL be a sequence of at most k moves that transfers B 1 to B 2. We will show how to con- 
stract from SOL a truth assignment that satisfies the 2/2/4-SAT instance. Our method of proof 
is by showing that the blank tile and the element tiles are forced to move only along the edges 
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(except for negligible number of moves). Furthermore since k is not much larger than the 
number of necessary moves, this forces the number of tiles passing through each edge to be 
equal to the capacity of the edge, and it avoids a second move of tiles along an edge. Once we 
prove the above, we can eliminate the rules of the game. The instance of nPUZ corresponds to 
the instance o f  REL used in the reduction of the previous Theorem 2 (Claim 2). Also the solu- 
tion SOL translates to a solution of this REL instance. The reduction of Theorem 2 (Claim 2) 
shows how to construct a truth assignment to the instance of 2/2/4-SAT from the solution to 
the REL instance. 

Since SOL consists of at most k = d(BlCBz)+u moves, at most u unnecessary moves 
were done in SOL. This fact assures that during SOL the blank tile can only visit certain loca- 
tions on the n xn beard. Recall that the basic length unit l of the stripes is u+16m+l.  

DEFINITION 1. The vicinity of an edge is obtained by widening all the stripes of the edges by l 
locations on each side. That is, the vicinities of edges of  capacity c consist of stripes of width 
2l+c+1. The vicinity of a small node is the square of side length 2l+3 obtained by enlarging 
the small node by l locations on each side. The vicinity of TC (FC) is built in two steps. Let 
TC" (FC')  be the smallest rectangle that contains TC (FC and all in- and outgoing stripes of 
TC (FC ). TC '  and FC '  are the dotted rectangles of Figure 9. The vicinity of TC (FC) consists 
of the rectangle TC'  (FC')  enlarged by I locations on each side. Observe that all vicinities are 
disjoint since the length of the stripes of the edges and the distance between any two nodes is 
at least 51 (see Figure 10). 

LF_MMA 1. During SOL the blank tile is always in the vicinity of a node or an edge. 

PROOF. All locations outside the edges and the nodes contains the same tiles in B 1 and B 2. 
Any location L outside of  the vicinities is distance at least l+1 away from any location of an 
edge or a node. Thus for the blank tile to get to location L in SOL, 1+1 tiles were moved that 
are in the same location inB1 and B2, causing at least l+l  unnecessary moves. This is a con- 
tradiction since l + l > u .  [] 

We next aim to describe what corresponds to moving along an edge in SOL. To do this 
we partition the vicinities of edges into three segments and show that the blank tile cannot 
move backwards through any of  the segments. 

I)EFINITION 2. Let e be an edge going from its tail node n to its head node n '. We partition 
the locations of the vicinity of e into the three sets entry, center, and exit. The entry consists 
of  all locations that are at distance at most I from the vicinity of n. The exit is defined simi- 
larly, except n is replaced by n'.  The set of the remaining locaffons of the vicinity of the edge 
is called the center of the edge. 
Observe that the entry and exit of an edge consist of a stripe of length l and the center up to 
two stripes, each of length at least l (see Figure 10). 
LFAIMA 2. 1fin SOL the blank tile is located in the center of an edge, then the next node vicin- 
ity it will visit is the vicinity of  its head, node. I f  in SOL the blank tile is located in the vicinity 
of  a node, then the next center of  an edge it will visit belongs to an outgoing edge of the node. 

PROOF. It suffices to show that the blank tile cannot move backwards through the entry nor 
through the exit of an edge. We just show this for the enlry of the edge, the proof for the exit 
is identical. Assume that the blank tile moved backwards through the entry. Let 
Q = L I , . .  �9 ,L, be the sequence of locations of the entry that were visited by the blank tile 
when traversing the entry from the center to the vicinity of the tail node. Let Li,, �9 �9 �9 ,Li, be the 
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Figure 9: The vicinity of TC and FC nodes. 

subsequence Q s.t. Lij is the first location of Q that is distance j away from the border line 

between the center and the entry ( l<j~l) .  Each location Li~ of the subsequence is distinct and 

contains a different tile (denoted by tij) before the blank tile traversed Q. By the definition of 

the subsequence it follows that all tiles T = {tlj} traveled forward w.r.t, the direction of the 

edge when Lij was entered the first time in Q. If ti e was not an element tile, then the first move 

of the empty tile into Li e during Q must be an unnecessary move. Only element tiles can possi- 

bly travel in the direction of the entry by a necessary move�9 There are 8m such tiles and thus 
l -8m unnecessary moves were performed while traversing the entry of an edge backward. 
This is a contradiction since u >l-Sin. (Recall that l=d+16m+l. [] 

Traversing an edge in SOL corresponds to the blank tile traveling from the vicinity of  
the tail node to the vicinity of the head node through the center of the edge. We still need to 
show that each edge is traversed exactly once "carrying along" the right amount of element 
tiles�9 
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Figure 10: The vicinities around an edge (top~,'h~i). 

LEMMA 3. Each edge is traversed exactly once. 

PROOF. By the previous lemma and since the swipes of the edges are rearranged in B z it fol- 
lows that each edge must be traversed at least once. We first show that zero-edges are 
traversed exactly once. Consider the first sequence of moves of the blank tile through the entry 
of the edge. Let  Li, be the first location during this sequence that is distance j away from the 

border line between the vicinity of the tail node and the entry area. Define the files ti~ and T as 

in the previous lemma. When the locations Lij are visited the first time during the sequence 

then the l tiles of T are shifted backwards w.r.t, direction of  the entry. If there is a second 
sequence that moves through the entry then a second set T'  of I tiles are shifted backwards. 
The only tiles that can be shifted backwards in the entry area with necessary moves are the l '  
tiles of the zero-edge located in the entry area of the board B 1 and possibly dement tiles. The 
former tiles can only shift once backwards (see Figure 4) which amounts to l necessary moves. 
Each of the 8m element tiles may appear in both sets. This leaves 2l- l -16m > u tiles that 
were moved by unnecessary moves which is a contradiction. 

We are left to show that the two-edges are traversed exactly once. There are exactly two 
edges going into the each diamond (except for the first diamond, but since we assume that the 
blank tile in B 1 is located in this dianaond we can treat the first diamond as if there are two 
ingoing edges to it). These ingoing edges are zero-edges. Since the blank tile passes through 
these zero-edges exactly once (and through any edge at least once) it follows that the blank tile 
passes through all edges adjacent to the nodes of the diamond exactly once.. For each nci 
clause node there are two ingoing edges and two outgoing edges. The outgoing edges are 
zero-edges; hence the blank tile passes through the ingoing edges exactly once. [] 

L ~ h  4. When an edge of capacity c is traversed in SOL then number of element tiles that 
travel through the center while the blank tile moves through the edge is exactly c. 

PROOF. Let e be edge with capacity c. Execute SOL on B 1 but stop the sequence of moves 
right before the blank tile moves the first time from the entry area into the center area of e. 
Call the current configuration C1. Continue executing SOL (the blank tile is traversing e ) and 
stop SOL again right before the blank tile is moving into the vicinity of the tail node of e the 
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first time. Denote this second configuration by C2 and the subsequence of SOL that moves C 1 
to C2 by S. The lemmas 2 and 3 imply that in SOL the blank tile cannot move back to the 
center from the configuration C2. Thus the center in C1 (C2) must be arranged as in B1 (B2). 
From the definition of  B 1 and B 2 it follows that during the subsequence S of SOL, a total of 
c +1 dles are moved from the center into the entry and the same amount of tiles from the exit 
into the center (see figures 4 and 5). By Lemma 1 and by the definition of S, the blank tile 
never leaves the vicinity of the edge during SOL. Since the in- and outflow of dles into the 
entry area must be the same, the blank file together with exactly c tiles from the entry must 
travel through the center during S. 

Assume one of the c tiles, denoted by x ,  was not an element tile. Since the center is 
composed of one or two stripes of length at least l ,  die x traveled distance at least l while 
moving through the center. Let min be the distance of x from its location in B 1 to its location 
in B2. I fx  appears on an edge in B1 then min is at most 2 and if it appears in a node then min 
is at most 8m (the diameter of the large nodes). Thus the assumption that x is not an element 
tile leads to at least l -8m >u unnecessary moves, which is a contradiction. [] 

This completes the proof of Theorem 3, since we showed that each edge is traversed 
exactly once with the right number of element tiles. Thus the instance of nPUZ (summarized 
in Figure 3) corresponds to the instance of REL (see graph of Figure 2). The sequence SOL 
translates to a sequence of edge traversals in the graph the solves the instance of REL. It was 
shown in Claim 2 of the previous reduction how to construct a truth setting for the instance of 
2/2/4-SAT from a solution to the instance ofREL. [] 

COROLLARY 1. Finding a solution in the (nU---1)-puzzle that is an additive constant from the 
optimal solution is NP-hard. 

PROOF, Let r be the additive constant. We use the same reduction as above except l and u 
are both enlarged by r .  This guarantees even for solutions SOL of length at most k+r instead 
of at most k, lemmas 1, 2 and 3 are correct hence Lemma 4 holds. [] 

5. An Approximation Algorithm for the n2-1-Puzzle 

Since finding a shortest solution is NP-hard we would like to know how close a shortest solu- 
tion for the (nZ--1)---puzzle can be approximated. As shown in the previous section finding a 
solution that is an additive constant larger than the optimum is also NP-hard. 

In this section we sketch a polynomial algorithm that is guaranteed to produce a solution 
of length at most a constant times the length of the optimum (We first give a lower bound on 
the length of the optimum and then show that the approximation algorithm produces solutions 
of length at most a constant times the lower bound). Future research is needed to improve the 
lower bound and optimize the value of the multiplicative constant. The main purpose of this 
paper is to show that such a constant exists. As suggested by Ratner and Pohl [Ramer & Pohl, 
1986], once a solution has been found whose length is guaranteed to be "close" to the 
optimum, then search methods should be used to locally optimize the solution. 

5.1. A Lower Bound on The Number of Moves Required 

Throughout this section we will assume that B 1 is the start configuration, B2 the final 
configuration and opt the minimum number of moves for shifting B1 to B2. Also, whenever 
we write "approximation algorithm" we mean a polynomial approximation algorithm that 
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approximates the optimal solution by a multiplicative constant. For simplicity we assume that 
the blank tile resides in the same location in both configurations. The following lemma assures 
us that this assumption is valid. 

LEMMA 5. I f  there is an approximation algorithm where the blank tile is located in the same 
location in B 1 and B 2, then there is an approximation algorithm that does not assume that the 
blank tile is in the same location. 

PROOF. Let opt be as before and let d be the distance of the blank tile in B 1 and B z. Clearly, 
d <opt. Let AL= be the approximation algorithm for the case when the blank tile is located in 
the same location and let c be its multiplicative constant. The following algorithm transforms 
B 1 to B 2: Move the blank tile from its location in B 1 to its location in B 2 and then use ALl to 
produce the final configuration B~. Since the call to AL= requires at most c (d+opt) moves, the 
total number of moves is at most (2c +l)opt. [] 

From now on we assume that the blank tile is located in lbt in both configuration B 1 and 
B 2. We first proof a lower bound on opt which is the sum of two terms. The first term of the 
lower bound is the number of necessary moves d (B 1,B 2), which can be expressed as follows. 
Express B2 as a permutation ofB 1 (defined in Section 2), decompose the permutation into dis- 
joint cycles and let C be the set of all such cycles. For a cycle C e C, d (C) denotes the sum of 
the distances of adjacent locations on the cycle (If C has size one then d (C)=0). Also d (C) is 
the sum of d (C) over all cycles C e C. Clearly d (C) = d (B I,B 2) < opt. 

For the second term, let L be all locations at which B 1 and B 2 differ including the loca- 
tion of the blank file Ib,. Let the cost of a spanning tree of a subset of L be the total sum of all 
distances of the edges. The value of opt is clearly lower bounded by the cost of a minimum 
cost spanning tree of any subset of L. We choose a subset that contains Ibs and exactly one 
location from each cycle. Combining the above leads to the following lower bound theorem. 

THI~ORFaVl 4. opt is at least as large as the half the sum of all distances of adjacent locations 
on the cycles of B 1 and B 2 plus the cost of a minimum cost spanning tree of any set of locations 
containing lb, and exactly one location from each cycle. 

5.2. Sketch of an Approximation Algorithm 

We first give an outline of the algorithm: 
1. The algorithm finds a minimum cost spanning tree as described by the lower bound theorem. 
2. It then "maps" the spanning tree and the cycles onto the board as follows. The nodes are the 
locations at which lb, and the tiles of the cycles reside in the initial configuration. Any pair of 
nodes that are adjacent in the spanning tree or on a cycle is connected by one of the two possi- 
ble orthogonal angles. This angle of locations is called the edge connecting the two nodes. 
3. The blank tile traverses the nodes and edges of the spanning tree such that each edge is 
traversed exactly once in each direction. When an edge is traversed the first time the blank tile 
moves each tile encountered one step "backwards" (see Figure 4), The second traversal of the 
edge (in opposite direction) undoes the changes of the first. By the definition of the tree it fol- 
lows that the blank tile encounters at least one tile from each cycle during the traversal. When- 
ever during the traversal of the tree the blank is adjacent to a tile of new cycle, then the 
approximation algorithm "fixes" the cycle of that tile by rotating the tiles of the cycle along the 
edges of the cycle to their location in the final configuration (this is described in more detail 
below). After the cycle is fixed the traversal of the tree is continued. 
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Fixing a cycle: Let C = (to,t1 . . . . .  to-l) be the cycle to be fixed and h be the location at 
which tl resides in B 1. Assume the blank tile is adjacent to location lo. The blank tile first 
moves with to along (lo,ll), then with tl along (11,12), and so forth until to-2 is moved from lc-2 
to 1~-1. Secondly, the blank tile moves with the final tile t~-i from I~-1 to lo via the path 
lc-2, It-3. ' ' - ,lo. 

Call the locations of the nodes and edges of the spanning tree and the cycles the primary 
locations of the board. We now sketch how the blank tile (denoted by V) moves along a 
directed edge with some tile x. Assume on an edge the following tiles are in four adjacent 
locations: V, x,  al,  cr where the location on which V resides is closer to the tail of the 
edge. There are simple macros that arrange the tiles on the four locations to cr V, x,  a3, a2 
and then to a l ,  a2, V, x, a3. During the execution of such a macro the blank tile moves out- 
side of the four locations but the macros have the property that all tiles other than the ones in 
the four locations are at the same location before and after the execution of a macro. For lack 
of space we omit an exact description of the macros but their existence of is implied by 
Theorem 1. Each of them only requires a constant number of moves and advances x by 
exactly one location w.r.t, the direction of the edge. Applying the macros iteratively moves the 
blank tile and x along the edge. Observe that the tiles of the edges (the cq's) are shifted by 
exactly two locations backwards while moving the blank tile with x through the edge. All 
other tiles remain in the same location. This change is undone by moving backwardly through 
the edge with some other tile. In the above fix procedure each edge of the cycle is either 
traversed once in each direction or not at all. 

In general, the entire approximation algorithms consist of a sequence of macros and sim- 
ple shifts of the blank tile on primary locations. A small number of additional macros are 
needed to deal with the movement through the nodes. The blank tile only temporarily enters 
non-primary locations during the execution of the macros. Between macros all non-primary 
locations contain the same tiles as in the initial and final configuration. 

This completes a rough sketch of the approximation algorithm. There are two subtle 
problems that we still need to address. First, because of the reachability constraints of 
(n2-1)-puzzle, cycles of even size can only be fixed up to a swap of two tiles (Theorem 1). 

Second, a node Ii of the cycle might appear on an edge of the same cycle (see Figaro 11). 
While this edge is traversed, tj is moved by two locations away from I/. This may happen 
many times and t~ might be pushed "far away" from lj. Call the nodes of the cycle that appear 
on the edges of the cycle early nodes. 

To fix the first problem observe that by Theorem 1 the number of even cycles is even. 
When the first even cycle is fixed up to a swap, we can carry the swap along the spanning tree 
(possibly fixing odd cycles on the way) until we reach the next even cycle. Now this cycle can 
be fixed completely since we entered it with a swap. This process is iterated. The mention par- 
ity property guarantees that at the end of the whole traversal no swaps are left. Carrying a swap 
along is done iteratively using a macro of a constant number of moves that arranges three adja- 
cent location on an edge from V, a~, al ,  cr (where al and a2 are swapped) to cq, V, ct3, a2 
(where a2 and a3 are swapped). Again the existence of such a macro is implied by Theorem 1. 

To fix the second problem we modify the traversal of the cycle. For the description of 
the modification it is easier to denote a cycle by the sequence of location (i.e. the nodes) on 
which the tiles of the cycle reside. We first explain how the fixing process is done using the 
cycle (lo, " '  ,15) of Figure 11. Note that in this cycle the node 13 is early, i.e. it appears on the 
edge (lo,ll). To fix the cycle we begin moving to along the edge (10,/1). However we stop this 
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Figure 11: An (early) node of a cycle appears on an edge of the cycle. 

process right when to is at location 13. At this point the initial tiles of  the edge (lo,ll) including 
the tile t3 were shifted two locations backwards on the edge and the second location before 13 
contains t3 followed by the blank tile and then to in 13. We are now ready to fix the cycle 
(13,1b12) using the previous method (Note that to is in 13). At the beginning of this fixing pro- 
cess Of the smaller cycle the blank tile is adjacent to to in 13 and at the end the blank tile is 
again in the same location and the tiles to, ti and t2 are in their final location. Then move with 
t3 along the edge (13,/4) fixing the cycle (13,14,1s). Finally shift ts from 13 to lo. The total path 
of  the blank tile used for fixing the cycle of Figure 11 is given in Figure 12. 

lo 13 
A 

l l  

JFi 
*.y 
I5 

Figure 12: The path used to fix the cycle of  Figure 11. 

In general, the subcycles might again contain early nodes on their edges, Thus the fixing 
process might again split cycles. We will fix the subcycle of  the cycle in a depth-first-search 
fashion. Formally, let C = (/0,/1 . . . . .  lc-1) be the cycle that we are to fix and while traversing 
the path 10, �9 �9 �9 ,Ic-i let lj be the first early node that appears on some edge (ll ,li+1) of the cycle. 
Note that j > i .  We begin fixing the whole cycle by moving the blank tile around the cycle, at 
each point carrying along the proper tile. This process is stopped when tl is shifted onto lj 
while attempting to move with tl along (h ,/i+3. As above, the location before lj now contains 
the blank tile and one before that tj. As a next step we recursively fix (l i ,h+l, ' �9 ' ,lj-1). Recall 
that before this call tl resides in lj and after the call the tiles t i , . . .  ,t/-1 are at their final 
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location. We continue moving with tj along (lj,lj+l) fixing the cycle (lj,l)+l,l)+2,'.. ,to-l). 
Finally, we shift Ic-1 from lj to 10. Note that whenever a subcycle is fixed then this might 
cause nested calls for fixing subcycles. This completes the sketch of the algorithm. A more 
detailed description is given in [Ratner, 1986] and omitted here. 

It is easy to see by an induction on the size of the cycle that the recursive fixing pro- 
cedure is correct. The correctness of the whole algorithm follows now from the fact that dur- 
ing the traversal of the tree the tiles on the path from lbt tO the current location are shifted one 
step backwards. All cycles encountered so far are corrected in the sense that the tiles of  these 
cycles (that are not on the path) are rotated to their place inB2. Otherwise the current board is 
identical to B 1. 

The total number of moves used by the approximation algorithm is no more than a con- 
stant times the lower bound, since per node and per location of an edge of the tree and the 
cycles only a constant number of moves is required. The time to find a minimum cost span- 
ning tree is O (I C 12) [Prim, 1957]. Except for finding the spanning lree, the run time of the 
approximation algorithm is linear in the lower bound. Thus we conclude with the following 
theorem. 

THEOREM 5. There is a polynomial approximation algorithm for (n2-1)-puzzle that pro- 
duces a solution of length at most constant times the length of the optimum solution. 

5.3. Optimizations of the Approximation Algorithm 

We complete the paper by discussing various optimizations of  the sketched approximation 
algorithm: 
1. Observe each cycle contributed a location to the node set of  the minimum cost spanning 
tree. By modifying the standard minimum cost spanning tree algorithms [Prim, 1957] one can. 
choose the representatives of the cycles such that the cost of the produced tree is minimized 
[Ratner, 1986]. 
2. To fix the second problem (nodes occurred on edges) we broke the cycle into two cycles and 
recursively fixed each of the smaller cycles. A similar case is given in figures 13 and 14, 
where two edges of the cycle intersect on the board. We move to to the intersection point l ,  
then recursively fix the cycle (1,11,12) before continuing to fix the cycle (lo,lz,14). It turns out 
that splitting cycles using intersections between edges saves moves. 
3. Similar saving can be obtained when two different cycles intersect. 
4. In the above we observed that intersections of cycles result in shorter move sequences. The 
algorithm can embed the edges of the cycles and the spanning tree in the board s.t. a large 
number of intersections occur. 
5. There are other basic ways of fixing a non-intersecting cycle: For example move twice back- 
wards around the cycle with only the blank tile, and then once forwardly, at each point carry- 
~ng along one tile. 
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Figure 13: A cycle in which two edges intersect. 
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Figure 14: A shorter path that fixes the cycle of Figure 13. 

Acknowledgements 

We would like to thank Prof. Ira Pohl for suggesting to us that nPUZ might be NP-complete. 

The second author gratefully acknowledges the support of ONR grants N00014-86-K-0454 
and NOOO 14-85-K-0445. 

References 

Doran, J., Michie, D. (1966). Experiments with the graph traverser program. Proceedings of 
the Royal Society (A), 294 pp. 235-259. 

Fiat, A., Moses, S., Shamir, A., Shimshoni, I., Tardos, G. (1989). Planning and learning in 
permutation groups. Proceedings 30th IEEE Symposium on Foundation of Computer 
Science, to appear. 



The (n2-1)-Puzzle 135 

Fraenkel, A.S., Garey, M.R., Johnson, D.S., Schaefer, T., Yesha, Y. (1978). The complexity 
of checkers on an N by N board. ProceediNgs 19th IEEE Symposium on Foundation of 
Computer Science, pp. 55-64. 

Gaschnig, J. (1979). Performance measurement and analysis of certain search algorithms. 
Ph.D. Thesis, Carnegie-Melon University. 

Goldberg, A., Pohl, I. (1984). Is Complexity Theory of Use to AI? Artificial and Human Intel- 
ligence, Elsevier Science Publishers. 

Goldreich, O. (1984). Finding the shortest move-sequence in the graph-generalized 15-puzzle 
is NP-hard. Labaratory for Computer Science, MIT, unpublished manuscript. 

Hopcroft, J.]E., Schwartz, J.T., Sharir, M, (1984). On the complexity of motion planning for 
multiple independent objects; PSPACE_I-Iardness of the "Warehouseman's Problem". 
The International Journal of Robotics Research 3 pp. 76-88. 

Korf, R.E. (1985). Learning to Solve Problems by Searching for Macro-Operators. Research 
Notes in Artificial Intelligence 5, Pitman Advanced Publishing Program. 

Koff, R.E. (1985). Depth-first iterative-deepening: An optimal admissible tree search. 
Artificial Intelligence 27 pp. 97-109. 

Kornhauser, D., Miller, G., Spirakis, P. (1984). Coordinating pebble motion on graphs, the 
diameter of permutation groups, and applications, Proceedings 25th 1EEE Symposium on 
Foundation of Computer Science, pp. 241-250. 

Lawler, E.L., Lenstra, J.K., RinnooyKan, A.I-I.G., Shmoys, D.B. (1985). The Traveling Sales- 
man Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons. 

Lichtenstein, D., Sipser, M. (1978). Go is Pspaee hard. Proceedings 19th IEEE Symposium on 
Foundation of Computer Science, pp. 48-54. 

Loyd, S. (1959). Mathematical Puzzles ofSamLoyd. Dover, New York. 
McCoy, N.H., Berger, T.R. (1972). Algebra: Groups, Rings, and Other Topics Boston: Allyn 

and Bacon. 
Pearl, J. (1984). Heuristics. Intelligent Search Strategies for Computer Problem Solving. 

Addison-Wesley. 
Pohl, I. (1971). Bi-d~ectional search. B. Meltzer, D. Michie, eds. Machine Intelligence 6 

New York: American Elsevier, pp. 127-140. 
Pohl, I. (1973). The avoidance of (relative) catastrophe, heuristic competence, genuine 

dynamic weighting and computational issues in heuristic problem solving. Proceedings 
Third International Joint Conference on Artificial Intelligence. Stanford, CA. 

Pohl, I. (1977). Practical and theoretical considerations in heuristic search algorithms. B, 
Meltzer, D. Miehie, eds. Machine Intelligence 8 New York: American Elsevier pp. 55- 
72. 

Politowski, G. (1986). On construction of heuristic functions. Ph.D. Thesis, University of 
California at Santa Cruz. 

Prim, R.C. (1957). Shortest connection networks and some generalizations. Bell System 
Technical Journal 36, pp.1389-1401. 

Ramer, D. (1986). Issues in theoretical and practical complexity for heuristic search algo- 
rithms. Ph.D. Thesis, University of California at Santa Cruz, 

Ramer, D., Pohl, I. (1986). Joint and LPA': combination of approximation and search. 
Proceedings Fifth National Conference on Artificial Intelligence, 
Philadelphia, PA. 



136 D. Ra tncr  and M. Warmuth  

Rendell, L.A. (1983). A new basis for state-space learning systems and a successful imple- 
mentation. Artificial Intelligence 20 pp. 369-392. 

Schaefer, T.I. (1978). The complexity of satisfiability problems. Proceedings lOth Annual 
A C M  Symposium on Theory of  Computing. New York. 

Appendix 

THEOREM 6. 2/2/4--SAT is NP-complete. 

PROOF. We will reduce 21214-SAT to 1~3-SAT, a known NP-complete version of the 
satisfiability problem [Schaefer, 1978]: 

INSTANCE. A set U of variables and a collection C of clauses over U such that each clause 
c e C has exactly three literals ( I c I = 3). 
QUESTION. IS there a truth assignment for U such that each clause in C has exactly one true 
literal ? 
Let U = [ul ,u2 ....... u~ } be a set of variables and C = {cl,c2 ....... cp } be a set of clauses which 
are an arbitrary instance of 1/3-SAT.  In the following four steps we construct the correspond- 
ing instance of 2/2/4-SAT:  a collection C ~ of 7p four literal clauses over a set V of  7p vari- 
ables. Each v ~ V appears exactly twice negated and twice unnegated in the clauses of C*. 

STEP 1. Rename each appearance of a literal in each clause of  C with a unique name 
(variables v i j ,  for 1 < i < p  and 1 ~ j  < 3) and add a new variable wl to each clause. Thus as 
a result of  this step we have a set V1 of variables and a set C1 of  clauses such that: 

V l = { V i j  I I < i < p , i < j < 3 } k . ) { w t  I l < i < p  } 

C l = { ( vi.l , vi,2 , vt.3 , wt ) l l < i < p } 
STEP 2. The clauses of this step assure that all v i j  that correspond to the same literal uk 

in C have the same assignment. Also all vt, j. that correspond to the literal ~k must have the 

opposite assignment than the vi,: variables that correspond to the literal uk. 
Let l be a literal in the 1~3-SAT instance. 
Occur ( l )  := {viz I l is the j - t h  literalin ct } and 

as := IOccur(u i ) l ,  bl := I O c c u r ( ~ ) l ,  si := (aj +b : ) .  

Note that ai (b~) is the number of occurrences of ui (respectively ~'s) in the formula of the 
1~3-SAT instance. Let Occur (ui) := { x l ,  x 2 , "  �9 ' ,  x,, } and 

O c c u r ( ~ )  := {Yl , Y 2 , " "  ,Y~,} . Now we construct, for each u i~U,  a chain of (ai +b l )  4 

literals clauses, called C2.~. This chain consists of four subsets C(k)z~ , for 1 _< k _< 4. In each 
new clause we introduce a new variable. The chain is: 

C(1)2.1 = { ( xj , x:+l , zs,+: , z',,+j ) I 1 ~ j < a i -1  } 

C(2)2,/ = {( Xa, , Y l ,  ~'s,+a, , Za,+a, ) 

C(3)2,t = { ( ~  ,yj+l ,za,+~,+j, ~,+a,+j ) I l < j  < b t - 1  } 

C(4)2 j  = {(~b, , X l ,  Za,+a,+b, , ~a,+a,+b, ) } 

I f a l  = 0 then C(1)2# = CC2)zl = qb and Cr = {(y-t,, ,Y l ,  z~,+b,, ~,+b, ) } �9 

If bi = 0 then C(3)2,i = Cr = d: and Cr = {( x~,, s z,,+~,, ~+~, ) } . 

In summary this step adds the following variables and clauses: 
V z = { z j  I l<j<__3p } 
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2= i__~C~ where C2.i = C(k)2,i. 

STEP 3. This step forces the variables w~ for 1 < i <-p, to posses the same truth assign- 
ment in the 2/2/4-SAT instance. We use the same technique as in Step 2 and add the follow- 
ing p clauses: 
C3= { ( wi , ~i§ ,zi ,~  ) l l < i < p - 1 }  tO { ( wp , ~ l  ,zp , ~  ) } 

STEP 4. We now add clauses in order that each literal will appear exactly twice. Note 
that each of the literals vi,i , wi , zl , and F/ , for 1 < i  -<p and l < j  -<3, have already 
appeared twice. The literals ~]j , for l < i  -<p and l < j  < 3 ,  and the literals ~i , for 
1 < i _< p,  have appeared only once in the previous steps. Therefore we add another set of  

clauses, called C4,1, which is as exactly as C~ except that all the variables in the clauses are 

negated: C4,1 = { ( Vi,l, V,.,2, V,.,3, ffi ) I 1 < i < p } 
The literals zi and ~ , for p-el < i < 3p , have appeared only once ( in C2 ), They appear a 
second time in the following set of clauses, called C4,2: 

C4,2= { ( zp+i ,  ~-.+i, z ~ + ~ ,  ~-z.+~ ) I 1 _< i <__p } 
C4 = C4,1 k..) C4~ 
The four steps give the corresponding instance of 2/2/4-SAT, where 

C* =C l  k , .JC2kf lC3k .JC4 andV =Vl  k.JV2 . 
Note that each v ~ V appears exactly four times, twice negated and twice unnegated. We only 
sketch the proof that the instance of 1~3-SAT has a valid truth setting (one Irue in each clause) 
iff the instance of 2/2/4-SAT has a valid truth setting (two true per clause). An extended proof 
and examples are given in [Ratner, 1986]. 

Given a truth setting which is a solution to the instance of l l3-SAT. Assign all literals in 
Occur (l) the same value as I and set all variables wl and zj to true. It is easy to check that the 
constructed truth assignment for the instance of 2/2/4-SAT contains exactly two literals per 
clause. 

Finally given a truth setting for the instance of 2/2/4-SAT. Note that the complementary 
truth setting also contains exactly two true literals per clause. Pick the truth setting that sets w 1 
to true. The clauses of C3 assure that all the wi are set to true as well. Thus in the clauses of  
C1 exactly one of the literals vi,1, via ,  vi,3 is set to true. The clauses of Cz force all variables 
in Occur (l) to have the same value and all variables in Occur (T) have the same but  the oppo- 
site value. We conclude that by assigning the literal l the same value as the members of 
Occur (l) we get a solution to the instance of 1~3-SAT. [] 


