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We investigate a model of polynomial-time concept prediction which is a relaxation of the
distribution-independent model of concept learning due to Valiant. Prediction-preserving
reductions are defined and are shown to be effective tools for comparing the relative difficulty
of solving various prediction problems. A number of prediction-preserving reductions are
given. For example, if deterministic finite automata are polynomially predictable, then so are
all Boolean formulas. We develop a complexity theory for prediction problems that parallels
standard complexity theory. It is shown that certain problems of concept prediction are
“prediction-complete” for a complexity class—a polynomial time algorithm for the prediction
problem would imply that all languages in the complexity class are polynomially predictable.
For example, polynomial-time prediction of deterministic finite automata implies the polyno-
mial predictability of all languages in the class LOG (deterministic logspace). Similar natural
prediction-complete problems are given for the standard complexity classes NC!, NLOG,
LOGCFL, and P. Showing that a prediction problem is prediction-complete for any of these
classes provides varying degrees of evidence that no efficient prediction algorithm exists. for the
problem. Based on very weak cryptographic assumptions, we establish hardness results for
prediction of Boolean circuits and other prediction problems that are prediction-complete for
P. The recent related resuts of Kearns and Valiant are discussed, which show that Boolean
formulas and DFAs are not polynomially predictable based on the assumed intractability of
computing specific cryptographic functions. © 1990 Academic Press, Inc.

1. INTRODUCTION

In this paper we are concerned with the learning of concepts from examples.
Imagine a domain X of possible real world observations. Intuitively, a concept ¢ is
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PREDICTION-PRESERVING REDUCIBILITY 431

simply a partition of the observations into positive examples and negative examples.
A learning algorithm is given randomly generated positive and negative examples
of some unknown target concept ¢ to be learned and must produce a concept ¢’ (a
hypothesis), such that it is unlikely that ¢ and ¢’ will disagree on the classification
of a new randomly generated example.

This extensional definition of a concept is not particularly useful, and in practice,
it is desirable to assume that each concept ¢ has associated with it a description r
in some given representation language. Given any class of possible representations
R, there is an associated concept class C, consisting of concepts described by
elements of R. For example, Boolean formulas and DFAs (deterministic finite
automata) are classes of representations that induce the concept classes of Boolean
functions and regular languages, respectively. Henceforth we interchangeably use R
to refer to a class of representations, as well as the concept class that it induces, and
similarly, r € R will denote either the representation or the concept represented. As
we discuss below, the representational power associated with a given concept
description language R is a significant factor in determining whether R may be
efficiently learned.

Distribution Independent Learning

The definition of distribution independent learnability (called pac-learnability
[6]) of Valiant [53] addresses these representational issues, among others. A
concept class R over domain X is pac-learnable if there exists a polynomial-time
algorithm A such that for any re R, if A is given randomly generated elements of
X (chosen according to an arbitrary, unknown distribution D on X) and told which
are positive and which are negative examples of (the concept described by) r, then
in polynomial time, 4 will output, with high probability (at least 1 —J) a concept
(description) '€ R for which the concept »' approximates the target concept r in
the following sense: the probability that an example generated according to D will
be classified differently by r and ¢’ is at most e.

The values 6 and ¢ are given as parameters to the algorithm A, reflecting the
desired degrees of confidence (1 —9) in the performance of 4, and the accuracy
(1—e¢) of the hypothesis ' produced by 4. The run time of 4, and hence the
number of examples seen, may grow at most polynomially in 1/e, 1/5, as well as in
other natural parameters reflecting the complexity of the learning task (for example,
allowing the time to depend on the length of the description r of the target concept
is typical). The algorithm is required to work regardless of the distribution D on the
domain X.

A main goal in computational learning theory is to determine, for various
definitions of successful learning, and in particular for pac-learnability, those
concept classes that may be (efficiently) learned from examples. While a number of
learnability results have been given (the papers [7, 11, 28, 37, 38] provide partial
surveys), the learnability or nonlearnability of many natural classes remains
undetermined. For example, the learnability of concept classes defined by Boolean
formulas, restricted types of Boolean formulas (e.g., formulas in disjunctive normal
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432 PITT AND WARMUTH

form (DNF)), DFAs,! NFAs, PDAs, CFGs, and Turing machines, remains
unresolved.

In the search for learnable classes, a variant of pac-learning has been introduced:
allow the algorithm A to output a description of the target concept, chosen from
a different description language. Thus, following [45], we say that (the class of
representations) R is pac-learnable in terms of (the class of representations) R’; if
the definition of pac-learnability above holds, but the concept description output by
A is an element of R’. The most general relaxation possible is to that of
(polynomial-time) prediction, where A is not required to output a description at all,
but must arrive at a state in which it can predict (classify) future examples
accurately (i.e., with error at most ¢) with respect to the target concept. This notion
of polynomial predictability, formally defined in Section 2, was introduced in

[30, 31]. The polynomial predictability of R is equivalent to the existence of any .

class R’ and algorithm A such that 4 pac-learns R in terms of R’ [30].

A useful tool for studying pac-learnability (and predictability) is the
Vapnik—Chervonenkis (VC) dimension [11, 32, 54] of a concept class. The VC
dimension is a combinatorial parameter of a concept class with the following
property. Let R be a concept class, and let R, consist of all elements of R of length
s. If the VC dimension of R, grows more than polynomially in s, then R is not
polynomially predictable (and hence not pac-learnable) [11, 19, 317]. In contrast, if
the VC dimension of R, grows polynomially in s (which is the case for all classes
considered in this paper), a number of techniques have been given for finding
learning and prediction algorithms with good performance, which cannot necessarily
be implemented efficiently. Such techniques include: finding “small” consistent
hypotheses [11, 12]; finding a prediction algorithm with small permutation index
[31]; or finding a prediction algorithm with a polynomial worst case mistake
bound [43]. Unfortunately, for the problems we consider in this paper, efficient
implementations of these techniques have not been found.

Previous (Partially) Negative Results

In the absence of positive learnability or predictability results, we hope to show
nonlearnability or nonpredictability. For a class R, let the consistency problem for
R be the problem of determining, given a collection of positive and negative exam-
ples, whether there exists an r € R that is consistent with the examples, i.e., classifies
the examples correctly. As shown in [45] (see also [11,30]), if the consistency
problem for R is NP-hard, then assuming that RP (random polynomial time) is not
equal to NP, R is not pac-learnable.

For example, it has been shown that for each constant k > 2, the class of k-term
DNF formulas is not pac-learnable (assuming RP # NP) [45]. This is true because
for each k=2, it is NP-hard to determine whether there exists a k-term DNF
expression consistent with given examples. While this shows that k-term DNF is

! Angluin gives a learning algorithm for DFAs that relies on the ability to make queries as to the
membership of examples chosen by the algorithm [3].
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PREDICTION-PRESERVING REDUCIBILITY 433

not learnable, it does not show that k-term DNF is not learnable in terms of some
other representation. In fact, as was pointed out in [45], k-term DNF is pac-learn-
able in terms of k-CNF (Boolean formulas in conjunctive normal form with at
most k literals in each clause). Similarly, it may be possible that k-term DNF is
pac-learnable in terms of f(k)-term DNF for some polynomial f, and it would
follow that DNF is pac-learnable [12]. Consequently, this type of non-
learnability result relies on the syntactic constraints imposed by the requirement
that the hypothesis of the algorithm must be expressed in some particular represen-
tation (e.g., k-term DNF, for some particular k). If these constraints are relaxed
(e.g., to k-CNF), then there may be pac-learning algorithms (e.g., k-term DNF is
pac-learnable in terms of k-CNF).

Similarly, it has been shown [45] that Boolean threshold functions? are not
pac-learnable unless RP = NP. However, it is easy to learn Boolean threshold func-
tions in terms of half spaces by using linear programming [11], or by using the
algorithm Winnow of [43]. Haussler [26] gives similar nonlearnability results that
rely on representational constraints.

The research reported in this paper was motivated by attempting to determine
the complexity of learning or predicting concept classes defined by DFAs and other
types of automata. (See [44] for a survey on DFA learning.) By work of Blumer,
Ehrenfeucht, Haussler, and Warmuth [12], and Board and Pitt [13], the
pac-learnability of DFAs is equivalent to the existence of a randomized Occam
algorithm for the minimum consistent DFA problem. Such an Occam algorithm takes
as input any collection of strings (labeled “accept” or “reject”) and produces (with
high probability) a DFA that is consistent with the labeled strings and whose size
is bounded by the product of (1) a polynomial in the size of the smallest consistent
DFA and (2) a fractional power of the number of strings in the sample. Thus the
pac-learnability of DFAs hinges on showing that the minimum consistent DFA
problem can be very weakly approximated in random polynomial time.

Since the minimum consistent DFA problem is intimately related to the pac-
learnability of DFASs, this problem has received significant study. Gold [21] shows
that it is NP-hard to find the smallest DFA consistent with a given sample. Angluin
[5] shows that this is true even if all but ¢ of the words up to a given length are
given as examples. Li and Vazirani extend the NP-hardness result of [21] by show-
ing that it is NP-hard to produce a consistent NFA that is at most 3 times larger
than the smallest consistent DFA [42]. In [46], we show (assuming P # NP) that
there is no polynomial-time approximation algorithm that is guaranteed to produce
a consistent NFA of size bounded above by any polynomial in the size of the
smallest DFA.

Although these results show that finding small DFAs consistent with a given
sample is difficult, even the last result mentioned does not rule out the possibility
of the existence of an Occam algorithm for DFAs, since such an algorithm would

% Such a function is given by a clause and a threshold k. The function is true for all assignments that
make at least & literals in the clause true.
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be allowed to produce a consistent DFA whose size depended not only polyno-
mially in the smallest consistent one, but also could be as large as a fractional
power of the number of examples in the input sample. The problem of exténding
the results of [46] to show that no Occam algorithm exists seems very difficult.
Furthermore, even if such a result were obtained, showing that DFAs were not
pac-learnable, it would still be possible that DFAs were pac-learnable in terms of
some other class of representations (not necessarily of the regular sets), and hence
DFAs would be polynomially predictable.

Thus, we have not been able to show that a number of concept classes are
learnable, and, on the other hand, the partial nonlearnability results for these
problems rely on syntactic constraints that reflect the complexity of the consistency
problem associated with a given choice of representations.® As discussed above,
polynomial predictability captures learnability in terms of an arbitrary hypothesis
class [30]. Thus, negative results for predictability are more meaningful; they reflect
the complexity of noticing patterns in the data, as opposed to simply reflecting the
syntactic difficulties of expressing such patterns. Negative results for prediction
imply negative results for learning.

A Complexity Theoretic Approach

The theory of complexity classes and reducibilities (e.g., NP-completeness) has
been particularly useful in providing evidence for the intractability of computational
problems. Here we develop a similar complexity theory for predictability. We give
formal definitions for prediction problems and introduce a notion of polynomial-
time prediction-preserving reducibility among prediction problems.

Intuitively, a polynomial-time prediction-preserving reduction consists of two
mappings: a polynomial-time computable function f that maps unlabeled examples
of the first problem to unlabeled examples of the second problem and a function g
that maps representations of the first problem to representations of the second
problem. An interesting feature of our definition of reduction is that the mapping
g need not be computable. We only require that g be length preserving within a
polynomial.

Our definition of reduction is similar to the ones given in [37, 437, except that
we allow a variety of domains and we determine general sufficient conditions that
ensure the preservation of polynomial-time predictability. Littlestone [43] gives
reductions between prediction problems in Boolean domains for a different model
of predictability discussed in Section 8. Kearns et al. [37] give reductions between
various pac-learning problems in the Boolean domain, and Haussler [26] gives
reductions between pac-learning problems in structural domains.

We review reductions from previous work that have been given in a less formal

*In a more demanding, deterministic model of learnability, Angluin has shown that DFAs are not
learnable by polynomially many equivalence queries [2], but are learnable by polynomially many
equivalence and membership queries [3]. Neither of these results has any implications in the model
considered- here, where examples are generated according to an arbitrary probability distribution.
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setting, and present as examples a number of new reductions. One such reduction
shows that predicting arbitrary Boolean formulas is no easier even if the prediction
algorithm is given the description of a tree circuit that computes the formula, with
all gates specified, except the mapping of variables to inputs of the circuit is
unknown.

With each prediction problem, we associate an evaluation problem: given a string
and a representation, is the string a positive or a negative example of the concept
denoted by the representation? We classify prediction problems by the complexity
of their evaluation problems. This gives rise to a notion of prediction-completeness;
if a prediction problem is prediction-complete for a given complexity class, then its
predictability implies the predictability of all prediction problems whose evaluation
problem is in that complexity class.

Using these ideas, we give a prediction-preserving reduction from an arbitrary
prediction problem whose evaluation problem is in deterministic logspace (LOG) to
the prediction problem for DFAs. This shows that the prediction problem for DFAs
is prediction-complete for LOG. Since determining whether an assignment satisfies
a given Boolean formula is in LOG, it follows that predicting arbitrary Boolean
formulas reduces to predicting DFAs.

By modifying the proof for DFAs, we show that the prediction problems for
NFAs, CFGs, and alternating DFAs are prediction-complete for the complexity
classes NLOG, LOGCFL, and P, respectively, and we show that prediction of
Boolean formulas is prediction-complete for the complexity class NC.

Problems Prediction-Complete for Polynomial Time—Hardness Results

In addition to the alternating DFA prediction problem, we describe a number of
other prediction problems that, if predictable, would imply the predictability of all
languages accepted in polynomial time. Our list of such hard prediction problems
includes

* Convex polytope intersection. The concept is an unknown convex polytope;
positive examples are cubes that have non-empty intersection with the polytope.

* Horn clause consistency. The concept is an unknown conjunction of Horn
clauses; positive examples are sets of facts that are consistent with the conjunction.

» Augmented CFG emptiness. The concept is an unknown context free
grammar; positive examples are sets of productions that when added to the
grammar, yield a grammar generating the empty language.

It follows from the work of Goldreich, Goldwasser, and Micali [22] that these
prediction problems are not predictable (even in an extremely weak sense)
assuming the existence of cryptographically secure pseudorandom bit generators,
which is equivalent to the existence of a certain type of one-way function [41].
Subsequent to this research, Kearns and Valiant [39] show that a polynomial-
time learning or prediction algorithm for DFAs can be used to invert certain
cryptographic functions. This is done by first showing that predicting arbitrary
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Boolean formulas is as hard as inverting the given cryptographic functions. Next,
apply Corollary 5.7, which shows that prediction of Boolean formulas reduces to
prediction of DFAs. Consequently, DFAs are not polynomially predictable based
on the same cryptographic assumptions.

The rest of this paper is organized as follows. In Section 2 we formally define
polynomial-time predictability. Section 3 introduces the notion of a prediction-
preserving reduction, and gives a number of examples. In Section 4 we examine
additional properties of prediction-preserving reductions. We associate a language
(called the evaluation problem) with each prediction problem, and we define what
is meant for a prediction problem to be prediction-complete for a standard
complexity class. Section 5 gives some of our main results: we relate automata
prediction to various complexity classes, and in particular, we show that DFAs are
prediction-complete for LOG. In Section 6 we describe some prediction problems
that are as hard to predict as any language in polynomial time and describe in
Section 7 why it follows that these problems are not predictable based on certain
cryptographic assumptions. In Section 7 we also discuss the results of [39] showing
that DFAs are not predictable based on different cryptographic assumptions.
Finally, in Section 8 we summarize our results and discuss a number of interesting
open problems.

2. POLYNOMIAL PREDICTABILITY

Formal definitions for the complexity classes discussed in this paper may be
found in [587, and in the references given below. LOG, NLOG, P, and NP denote
the classes of languages accepted in deterministic logspace, nondeterministic
logspace, polynomial time, and nondeterministic polynomial time, respectively.
LOGCFL denotes the class of languages accepted by polynomial time bounded
auxiliary (nondeterministic) PDAs with logarithmic additional work tape [52].
NC' denotes the class of U .-uniform bounded fan-in circuit families of logarithmic
depth (and hence polynomial size) [ 16, 48]. Ruzzo [487 showed that this is exactly
the class of languages accepted by some alternating Turing machine in logarithmic
time. (See [15, 48, 58] for definitions.)

Throughout the paper, let X and I” be fixed, finite alphabets.

DEFINITION 2.1. A concept ¢ is any subset of I* A concept class C is any
collection of concepts.

We are interested in characterizing those concept classes that are “polynomially
predictable,” ie., concept classes C for which there exists a polynomial-time
algorithm that, given polynomially many randomly generated elements of X *, and
told for each word whether or not the word is in some unknown concept c e C, can
predict with high probability whether a new (unseen) word is in c.

There are many issues involved in defining the predictability of a concept class.

WL T
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A main one is that it is desirable to allow a prediction algorithm to receive more
training examples (and to spend more time) before achieving accurate prediction,
depending on the “complexity” of the concept to be predicted. A reasonable
measure of this complexity is the length (number of letters) of the description of the
concept in some given representation. Thus the predictability will depend on what
type of representation of the concept we have chosen. For example, we may choose
to represent regular languages by DFAs, NFAs, regular expressions, etc. We would
like to ask the question “Are DFAs predictable?” rather than the question “Are
regular languages predictable?” This motivates the following definition.

DEFINITION 2.2. A prediction problem is a pair (R, ¢), where R I'*, and c is a
mapping ¢:R—2*". R is a “set of representations,” and each re R denotes the
concept ¢(r) = Z*. The concept class represented by (R, ¢) is {c(r):re R}.

Generally, given any R, the mapping ¢ will be implicitly understood, hence we
use R as an abbreviation for the prediction problem (R, c). We also use R to denote
the concept class it represents.

In the following definitions of particular prediction problems, we use the word
“encodes” to abbreviate “encodes with respect to some fixed, standard encoding
scheme.” As usual, if numbers are used to define the concepts, then we must
explicitly mention whether they are to be encoded in unary or binary.

For ease of presentation, 2 was chosen as some fixed finite alphabet over which
concepts are defined. Consequently, all formal language defined below are
languages over X. As discussed in Section 8, our results hold without this restriction
to a single alphabet. In any case, the restriction to a fixed alphabet is justified for
the purposes of polynomial predictability (defined below), because the classes of
languages considered are closed under homomorphisms.

* Rppa={r:r encodes a DFA} is a set of representations (for the concept
class of regular languages over the fixed alphabet %) with the implicit mapping ¢
such that for any r, ¢(r) is the concept (language) accepted by the DFA encoded
by r.

* Rnga= {r:r encodes an NFA}.

* Rppa= {r:rencodes a PDA}.

* Rcpg = {r:rencodes a CFG in Chomsky normal form }.

Define a Boolean formula over Boolean variables {x,, ..., X,} as a (not
necessarily binary) rooted tree with internal nodes labeled with elements of
{ A, v, 1}, leaves labeled with elements of {x,, ..., X,}, and such that internal
nodes labeled with v or A have at least two children, and internal nodes labeled
with 71 have exactly one child. The value of a Boolean formula is defined in the
usual way as the value of the circuit it represents, with the leaves as inputs, the root
as output, and the interior nodes labeled A, v, and — interpreted as Boolean
gates for logical AND, OR, and NOT, respectively.
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* Rgr={r:r encodes a binary number n and a Boolean formula over
variables {x,,.., x,}}. In this case, given a formula r of n variables, the concept
c(r) is exactly those words of length n that, when interpreted as an assignment to
the n variables, satisfy the formula encoded by r.

* Rpnp={r:r encodes a number n in binary and a Boolean formula in
disjunctive normal form over variables {x,, ..., x,} }.

* Reng={r:r encodes a number n in binary and a Boolean formula in
conjunctive normal form over variables {x,, ..., x,}}.

* Rconvex={r:r encodes a number d in binary, and a system of linear
inequalities over d variables (coefficients are integers encoded in binary) that
defines a convex polytope}. The concept ¢(r) consists of all d-dimensional vectors
that are solutions to the system of equations represented by r. The components of
a vector are encoded in binary.

Before formally defining polynomial predictability, we must consider the amount
of resources (time and number of examples) that should be available to the
prediction algorithm. It is natural to allow the resources to grow polynomially in
the inverse of the parameter &, an upper bound on the desired predictive error of
the prediction algorithm. As discussed above, the length (number of letters*) of the
representation r of the unknown target concept c(r) is a measure of its complexity;
consequently, we will allow the resources to grow polynomially in a parameter s,
which is an upper bound on |r|.

Finally, the resources of the prediction algorithm should be allowed to grow with
the length of the input examples. For example, for prediction of Boolean formulas,
the time (and number of examples) allowed will depend on », the number of
variables over which the formula is defined. However, for some concept classes, the
words of a concept may not all have the same length (e.g., the concepts (languages)
defined by DFAs, CFGs, etc.). An arbitrary probability distribution may supply
words of significantly different lengths as examples. Because the words are chosen
randomly, there are subtle issues involved in specifying in a natural way how the
resources of the algorithm may depend on the word lengths.

We illustrate this difficulty by considering Angluin’s approach regarding the same
issue in a deterministic setting [2, 3]. In this model, the algorithm is allowed, at
any point, time polynomial in the longest word that it has received up to that point.
Suppose we adopt this definition in our stochastic setting, and consider a prediction
algorithm that is allowed time (and hence a number of examples) at most quadratic
in the length of the longest example yet seen. More specifically, a prediction
algorithm using a quadratic number of examples may continue to run providing
that the number of examples requested is less than the square of the length of the
longest example yet seen, but must halt as soon as these values become equal.

We construct a distribution for which such an algorithm may never halt, although
it is quadratically resource bounded. Let the distribution be such that for each i > 1,

4 Other measures of length are discussed in Section 8.
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exactly one word of length 2’ occurs with probability 27°. Observe that if the
algorithm halts, then it does so right after requesting the 2*th example, for some
i>1, and all examples seen to that point are of length at most 2’. The examples of
length at most 2’ have total probability 1 —2~'. Thus the probability of stopping
right after trial 2% is at most (1 —2"7)*' <e 2 <e~%. Thus the probability of ever
stopping is at most e ~?/(1 —e~?), which is less than L.

This example shows that, depending on the distribution, a resource bounded
prediction algorithm may have significant probability of never halting (and
therefore failing). However, we would like our definition of predictability to require
that successful prediction be achievable with any arbitrarily small probability.

Another approach is to allow the time used by the prediction algorithm to
depend on the variance and the expectation of the length of an example. Observe
that in the above example the expected length is infinite, so again a resource
bounded algorithm would be allowed infinite time.

Perhaps the most natural way to deal with this issue is to supply the algorithm
with parameters n and y, where the probability that a word of length greater than
n occurring is at most y. The resources available to the prediction algorithm would
then depend on n and the inverse of y. For simplicity, we take a related approach;
we assume that for some #, the probability of example words of length greater than
n is 0. The prediction algorithm is given » as a parameter and the resources of the
algorithm are allowed to grow polynomially in this parameter as well. Note that for
any distribution D on the countably infinite space 2*, and for any arbitrarily small
7 >0, there is a length n such that the probability of any word of length greater
than »n occurring is at most y. Thus there is a distribution D’ assigning zero
probability to words of length greater than » such that D’ “approximates” D within
y. Consequently, our restriction to such distributions is not an unreasonable one.

DerFINITION 2.3.  For any language L, let LU = {we L :|w|<n}.

DEerFINITION 2.4. For any representation r (and induced concept ¢(r)), and for
any word w, let label ., (w)=“+"if wec(r) and “—" if w ¢ c(r). An example of c(r)
is a pair {w, label,,,(w)). An unlabeled example is just a word w.

DEFINITION 2.5. A prediction algorithm A is an algorithm® that takes as input
three parameters s, n, and &, a collection of elements of X" x {+, —}, and an
element we 21, The output of A4 is either “+” or “—,” indicating its prediction
for w. A is a polynomial-time prediction algorithm if there exists a polynomial ¢ such
that the run time of 4 is at most #(s, n, 1/, [), where [ is the total length of the input
of A. ‘

SIn this paper we consider only deterministic algorithms; all probabilities are taken over the
distribution on examples. Our results also hold in the case of probabilistic prediction and learning
algorithms. Relationships between such deterministic and probabilistic algorithms are discussed in [30].
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DEFINITION 2.6. The prediction problem R is polynomially predictable if there
exists a polynomial-time prediction algorithm 4 and polynomial p such that for all
input parameters s, n, and ¢ >0, for all re RI*J, and for all probability distributions
on XU if 4 is given at least p(s,n, 1/¢) randomly generated examples of (the
unknown target concept) c(r), and a randomly generated unlabeled word we X",
then the probability that A incorrectly predicts label ., (w) is at most e.

Comments. From here on, “predictable” means “polynomially predictable.” Our
model is based on the definition of predictability introduced in [31]. (In this paper
we also allow the number of examples to grow with n for the reasons discussed
above.) These definitions of predictability are analogous to the pac-learnability
introduced by Valiant [53]; the correspondence is as follows: Let error(4) denote
the probability that A predicts incorrectly on the unlabeled word. Predictability
requires that error(4)<e. As outlined in the Introduction, for pac-learning the
algorithm must, with probability at least 1 — §, output a hypothesis r’ € R such that
the probability (with respect to the fixed distribution) of the symmetric difference
of ¢(r) and c(r') (ie., the “error” of c(r')) is at most ¢ (for arbitrarily small
parameters ¢, ). Polynomial predictability is equivalent to the existence of a
polynomial-time learning algorithm that is allowed to output any polynomial-time
algorithm as a representation for the hypothesis [30].

Polynomial predictability is not sacrificed if the parameters s, n, and ¢ are not
explicitly given to the algorithm. This may be seen by an argument similar to the
one used in [30]. Suppose that prediction algorithm 4 and polynomial p witness
that the prediction problem R is predictable as required by Definition 2.6. Although
A receives as input the parameters s,n, and & we construct B that uses no
parameters and satisfies Definition 2.6.

Assume without loss of generality that p is increasing in each of its three
arguments. Define p(x)= p(x, x, x). On input of u examples, B computes the
largest integer x such that p(x)<uw. If x is greater than or equal to the length of
the longest example, then B simulates 4 with the parameters s=x, n=x, and
¢=1/x on the first p(x) examples, and predicts as 4 does on the unlabeled example.
Otherwise, x is smaller than the length of the longest example, and B simply
predicts + on the unlabeled (test) instance.

If Bis given u> p(s+n+ 1/e) examples of length at most n of some unknown
concept of size at most s, then the value x computed is at least s+n+ 1/e. In
particular, x >n, the length of the longest example, andtherefore B simulates A4
with the three parameters x, x, and 1/x. The first two parameters exceed s and n,
and the last is at most ¢. The simulation uses p(x)= p(x, x, x) labeled examples.
Consequently, the probability that 4 (and hence B) is incorrect in predicting the
unlabeled example is at most 1/x <e.

1
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3. PREDICTION-PRESERVING REDUCTIONS

We are now ready to define prediction-preserving reductions among prediction
problems. The intent of such a reduction is that it preserves polynomial
predictability. Intuitively, R reduces to R’ iff for every representation r in R there
is an at most polynomially larger representation g(r) in R’ such that a word w is
in ¢(r) iff a polynomially computed transformed word f(w) is in ¢(g(r)).

DEerFINITION 3.1. Let R and R’ be prediction problems (with implicit mappings
c and c’, respectively). Then R reduces to R’ (denoted by R <2 R’) iff there are
functions f: XZ* x N xN - X* (the word transformation) and g: RxNx N — R’
(the representation transformation), and polynomials ¢ and ¢ such that for all
s,neN, re RP) and we 207,

(1) wec(r)iff f(w,s, n)ec'(g(r, s, n));
(2) f is computable in time ¢(|wl, 5, n) (and thus | f(w, s, n)| <t(|w), s, n));
(3) lg(r,s,n) <q(lrl, s, n).

If R= R’ and R’ < R then we write R~ R..

Comments. The definition does not quite fit the intuitive description above, in
that the word transformation f and the representation transformation g both have
additional parameters s and ». In most simple cases, these additional parameters
are unnecessary, and transformations f and g such that wec(r) iff f(w)ec'(g(r))
will be sufficient. However, in some cases, no such simplified reduction seems
possible, and it will be necessary for the transformation f to depend also on s, a
bound on |r| (the length of the representation of the unknown target concept) and
on n (a bound on the lengths of words for which the reduction is applicable).
Similarly, g will also depend on its additional parameters. (Although g is given r
as a parameter, the upper bound s on |r| is also needed to ensure transitivity of the
reducibility (Lemma 4.1) in the case that s is more than polynomially larger than
|r|. This corrects earlier versions of this manuscript where s was not included as a
parameter to g.)

Requirement (1) specifies that the word transformation must map positive
examples to positive examples. A straightforward modification (as in [43]) allows
the following condition as an alternative:

(") wec(r) iff f(w,s,n)¢c'(g(r,s, n)).

In all but one of our reductions, requirement (1) is sufficient. All proofs will
assume that f and g satisfy (1) instead of (1'); only minor modifications are
necessary for any theorem presented herein if (1') is allowed also.

Note that the representation transformation g need not be polynomial-time
computable. In fact, it need not be computable. We only require that it is length

|
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preserving within a polynomial. We discuss relaxations of the definition of a
prediction-preserving reduction in Section 8.

In our discussion below, we assume that prediction-preserving reductions do
indeed preserve predictability, ie., that if R<IR’, then the predictability of R’
implies the predictability of R, and thus the prediction problem R’ is at least as
hard as the prediction problem R. The proof of this property appears in Section 4
(Lemma 4.2). In the remainder of this section we exhibit some example reductions.

Example Reductions

Let k-term DNF be the class of Boolean formulas in disjunctive normal form
with at most k terms (i.e., disjuncts of at most k conjuncts), and let k-CNF be the
class of Boolean formulas in conjunctive normal form, in which each clause has at
most k literals. As pointed out in [45], for every k-term DNF formula over n
variables, there is a logically equivalent k-CNF formula over the same » variables
of size O(n*). For each constant k, this immediately gives a prediction-preserving
reduction from k-term DNF to k-CNF, where f is the projection function of its first
argument (i.e., f is the identity on w), and g maps a k-term DNF expression to the
equivalent k-CNF expression.

A trivial prediction-preserving reduction that exemplifies the use of the alternate
requirement (1’) exists between CNF and DNF (in either direction), and thus
Rene = Rpnr. The word transformation £ is the identity on the assignment w,
and the representation transformation g maps a DNF expression D to a CNF
expression C (or vice versa) such that C is equivalent to the negation of D.
Note that there is no reduction for which f is the identity on w, and for which
requirement (1) is satisfied (i.e., positive examples map to positive examples). This
follows from the fact that there are DNF expressions for which the smallest
equivalent CNF expression is exponentially larger.

A simple reduction shows that prediction of membership in convex regions is at
least as hard as the prediction of CNF formulas. To see that Rong =< Reonvexs
suppose r is the encoding of a CNF expression C over the variables x,, X2y ey X
If w=w,w,---w, is an n-bit assignment to the variables of C, then the word
transformation f expands w into a 2n-bit string wWw containing the original bits
followed by their negations (this trick was used in [37, 43]). Then the collection of
inequalities g(r, s, n) over the 2n variables x,, ..., x,,, X415 - X2, 18 constructed as
follows. For each clause {a,,a,, .. a,}, where a; is either x, or its negation,
include in g(r, s, n) the inequality b, +b,+ --- +b, > 1, where by=x;if a;=x,,
and b, =x, . if a; is the negation of X

As another example, observe that the language consisting of satisfying
assignments (represented as a Boolean string of length 1) of any DNF formula of
n variables with s terms is accepted by an NFA of size O(sn). (The NFA guesses
which of s terms is satisfied, and branches to a chain of O(n) states to verify that
the n bit input satisfies the appropriate literals.) Thus predicting DNF trivially
reduces to predicting NFAs, where again, f is the identity on w, and g maps the
DNF expression to the corresponding NFA.
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However, observe that the language consisting of satisfying assignments of a
DNF formula might have an exponential size minimum DFA. For example, the
satisfying assignments of the formula x,x,,,,+X3X,;, 2+ - +X,%,, for n
even, is a language whose smallest DFA has size at least 2”2 Thus there is no
prediction-preserving reduction from DNF to DFAs, where f is the identity on w;
some transformation must be applied to the set of satisfying assignments in order
for the resulting language to be accepted by a DFA of size at most polynomially
larger than the size of the DNF expression. We give such a reduction in
Theorem 3.2 below.

A simple reduction in which f is not simply the identity on w is given in [37, 43].
A monomial is a conjunct of literals, i.e., a 1-term DNF formula. For any fixed %,
the problem of predicting k-CNF formulas reduces to that of predicting monomials.
By definition, each clause in a k-CNF formula has at most & literals. Thus there are
u=0(n*) such clauses, where n is the number of variables. Let map each n-bit
assignment into a u-bit assignment, the ith bit of which is 1 iff the ith k-literal
clause is 1. Given this transformation of the assignment, the mapping g simply
expresses each k-CNF with v clauses as a monomial of size v over the enlarged
variable set of size u. Note that since k is a constant, f is computable in time
polynomial in n, and the size of the image of g is bounded by a polynomial in x.

In the above reductions, the transformation f did not depend on the parameter
s, which is a bound on the length of the representation of the target concept in the
original problem. The following reduction makes use of that parameter as well.

THEOREM 3.2. Rpnp <U Rppa.

Proof. Let re Rpne encode a DNF expression of n variables. Then each
example assignment is a word of length n. The parameter s is a bound on the length
of the target DNF expression r. In particular, s is an upper bound on the number
of terms of r. For all assignments w, f(w,s, n)=w" ie, f simply replicates w
exactly s times. For a given DNF expression r with at most s terms it is easy to
design a DFA A4 with O(sn) states such that r is true on w iff 4 accepts w*. In
particular, for each of at most s terms, the DFA uses a chain of O(n) states (and
n input symbols) to check if the term is satisfied. If not, then 4 moves on to the
next copy of w in the input, and the next set of states to test whether the next term
is satisfied. Thus g simply needs to map r, s, and n to a representation r’ of such
an automaton A4. For any reasonable encoding for DFAs we have that |r/| is
polynomial in sn. |

In light of the apparent difficulty of predicting arbitrary Boolean formulas,
Russell suggests [47] that it may be easier to predict certain restricted classes of
Boolean formulas. Prediction-preserving reducibility is the appropriate tool to
determine whether indeed, the prediction problems associated with these restricted
classes are any easier than the unrestricted version. We extrapolate from his
discussion and define two very restricted classes of Boolean formulas. Theorems 3.3
and 3.4 below show that Rgp reduces to both of these classes, and in fact that the
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polynomial predictability of both of these classes is equivalent to the polynomial
predictability of Ry, the unrestricted class of Boolean formulas. Hence it is unlike
that these restricted classes are predictable considering the results from [39]
discussed in Section 7.

Recall that a Boolean formula is a Boolean tree, i.e., a Boolean circuit that is a
tree, where each node is an A -gate, an v -gate, or a —1-gate, the input variables are
at the leaves, and the value of the formula is computed at the root. Both restricted
classes assume that the formula is a complete ordered binary tree. For the first
class, the input variables x,, x,, ..., x, are provided (in that order) at the leaves, but
the labels of the gates are unknown. For the second class, the labels of the gates are
given, but the mapping of the variables to the leaves is unknown. Thus in the first
case, the goal is to learn a formula when given as additional information the
structure of the tree that computes it. In the second case, not only is the tree
structure available, but all gate labelings as well—the only unknown is the mapping
of input variables to leaves.

The two restricted classes are formalized by the following prediction problems.
Note that we only use A-gates and v -gates as labels. The height of a node is the
length of the longest path to a leaf (leaves have height zero) and the height of a tree
is the height of its root. The size of a tree T, denoted by |7, is the number of nodes
of T.

* Rrggg, = {r:r encodes a complete ordered binary tree, where each internal
node is either an A -gate or an v -gate }. The concept ¢(r) consists of those Boolean
strings w of length the number of leaves of r, such that when the bits of w are
supplied (in order from left to right) at the leaves, the value computed at the root
is 1.

* Rygggr, = {r :rencodes a permutation 7 of n = 2* elements, for some k}. For
any k, let T be the complete ordered Boolean tree of height k, where the gates
at even height are v-gates and the gates at odd height are A-gates. Then c¢(r)
consists of exactly those strings w of length 2, such that if the leaves of 7 are
labeled (in order from left to right) with the inputs n(w), then T*) evaluates to 1.

THEOREM 3.3.  Ryggg, = Rgr.

Proof. The fact that Ryggg, < Rpp follows almost immediately from the
observation that every representation of a concept in Rrgeg, is also a representation
of a Boolean formula, ie., an element of Rzr. More formally, the reduction is
witnessed by the transformations f and g as follows. The word transformation fis
the identity on its first argument. Let r € Rrpgg, represent an ordered tree 7. For
s2|r| and n at least as large as the number of leaves of | 7|, define the representa-
tion transformation g(r, s, n) to be a string consisting of the number 7 in binary
followed by the representation »’ of the Boolean formula defined by the tree T,
where the ith leaf from the left receives the input variable x,. Clearly | g(r, s, n)| is
O(|r| log n) and thus g is polynomially length preserving.

B
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It is somewhat more involved to show that Ry <t Rrggg,. Let F be a Boolean
formula (a tree) over the variables x,, x,, .., x,. Let |F| be the number of nodes in
F. Using standard techniques [56], one can show that F can be computed by a
Boolean circuit of depth at most | blog |F| |, where b is a fixed constant indepen-
dent of F. Also, by using two-railed logic, F can be computed by a monotone
Boolean ciruit of depth at most | b'log |F| ] with the following properties. The
input variables are x,, .., x,, —x,.., 1x,, all gates of the circuit have fan-in
exactly two, and the circuit has only A -gates and v -gates. Again, b’ is a fixed
constant independent of F. From this latter circuit it is easy to construct a binary
tree circuit of height exactly hA=|b'log|F| |, with input variables x,, .., x,,
Xy, .., 71X, that computes F (this will involve duplicating gates at each level).

In this tree circuit, all internal nodes have degree exactly two, and thus the tree
has /< 2" leaves. If /< 2" (i.e., the tree is not complete), then we can pad the tree
into a complete ordered binary tree without increasing the height. This is done by
iteratively replacing “shallow” leaf nodes labeled with some literal z by a tree
representing z A z.

Let T, denote the complete ordered binary tree constructed above, which
computes the function F. T is not in the form required by Ryggg,: Although T,
as 2" leaves, the variables x|, .., x,, X, .., 71x,, do not necessarily appear at the
leaves of T, in any particular order, and each may appear any number of times,
depending on the transformations in the construction above. We construct a tree
from T, where the sequence of inputs that appear on the leaves (from left to right)
follow a particular pattern. Let n’ be the smallest power of 2 that is at least as
large as n. We replace each leaf / in T by a complete ordered binary subtree such
that:

1. The leaves of each subtree are labeled from left to right with the fixed input
sequence

I={x,0,..,x,,0 71x,,0, ., 1x,, 0>0 4=,

2. The Ith subtree, replacing the /th leaf, selects the function y,, where y, is
the input of the /th leaf in T.

3. The height of each subtree is (logn')+ 2.

Such subtrees can be built for each leaf using only A -gates and v -gates. Denote
the new tree that is contructed from T, by T,. Observe that T, has height
Lb"log |F| |+ logn]+2.

We now give a reduction proving Theorem 3.3, relying on the above construc-
tion. For a given input string (assignment) w, let I(w) be the string (assignment)
resulting from substituting, for each i, the ith bit of w in place of x, in the sequence
I above. The string transformation f is now defined by f(w, s, n) = (I(w))>L? logs],
The representation transformation g is defined as follows. If 7 is the encoding of a
Boolean formula (a tree) F’ over n variables, then clearly [F'| < |r| <s. Then F’ can
be padded into a tree F that computes the same function, and such that |F| =s.

LN
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(The padding is as above—iteratively replace leaves labeled z by the subtree z A z.)
Now let g(r, s, n)= T, as defined above. (Technically, g(r, s, n) is the representa-
tion of the tree 7',..)

By the above construction, g(r, s, n) = T accepts f(w, s, n) = (I(w))2L2" 181 iff r
accepts w. Clearly f is polynomial-time computable, and since 7, has height
Lb"logs ]+ [logn]+2, it follows that the number of nodes of 7, and hence the

size of its encoding, is at most a polynomial in s and n. |

THEOREM 3.4. Rrrgg,= Rpr.

Proof. As in the previous proof Rygpg, <0 Ry is the easier direction. Let f be
the identity on its first argument. Let ¥ € Rrrgg, represent a permutation n of size
2% Let T be the complete ordered Boolean tree of height k, where the gates at even
height are v-gates and the gates at odd height are A -gates and the ith leaf from
the left is labeled with x,,), for 1 <i<2* For s> |r| and n > 2* define the represen-
tation transformation g(r, s, n) to be a string consisting of the number # in binary
followed by the representation r’ of the tree T. As in the previous proof, |g(r, s, n)|
is O(|r| logn) and thus g is polynomially length preserving. This concludes the
proof of the first reduction: Rrrgg, <0 Ry

We show in Section 4 that prediction-preserving reductions are transitive
(Lemma 4.1). Thus, by Theorem 3.3, to prove Rpr <1 Rrgg, it suffices to show that
Ryreg, = Ryges,-

Let T be a complete ordered binary tree of height 4 with nodes labeled A and
v, and with n leaves that receive the inputs x, .., x,. Let h=1logn be the height
of 7. We embed T into a complete binary tree 7" such that

1. T computes the same function as 7.

2. The height of T is 2k + 2, the gates on all even levels are v -gates, and the
gates on all odd levels are A -gates.

3. The leaves of T are labeled from left to right with a permutation 7 of
T =gy %, )70, 120

If for each T there exists a T satisfying these conditions, the reduction can be
easily completed as follows. For a given input string (assignment) w of length , let
J(w) be the string (assignment) obtained by substituting, for each i, the ith bit of
w in place of x; in the sequence J above. The string transformation f is defined as
S(w, s, n)=J(w). Let r € Rrggg, represent the tree 7. The representation transforma-
tion is given as g(r, s, n) =, where 7 is as defined above. (Technically, g(r, s, n) is
the representation of n.) By definition, the concept c(g(r, s, n)) = c(n) consists of
those strings of length 4n* that when permuted according to 7, evaluate to 1 on the
alternating A—v tree of height log 4n>. By construction, f(w, s, n)=J(w) is such a
string if and only if T evaluates to 1 on input w.

We now show how to construct 7 from T. This is done by induction on the
height 4 of T. Let E, and E, be two leaves with input 0 and 1, respectively. If 7
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has height 0, then it consists of just one leaf L; make two copies L, and L, of that
leaf and let 7" be the following height two complete binary tree: (L, A E,) v
(L, A E)). Clearly Tcomputes the same function as 7. Also J= {x;)>?¢0, 1) in the
case h=0. Thus T is labeled with a permutation of J.

If h> 1, then let T and T, be the left and right subtrees of 7. Thus T, and
T\ign, are complete ordered binary trees of height 4 — 1. By induction, there exist
complete binary subtrees T, and 7 right With the above properties computlng the
same functions as Ty, and T, respectively. We build T from T\, Tngh,, and
some special trees defined as follows. Let T, (¢>1) be an ordered complete binary
tree of height e whose internal nodes at even height are v -gates and whose
internal nodes at odd height are A -gates. Furthermore, all leaves of the left subtree
of T, are labeled with 0 and the leaves of the right subtree with 1. Note that 7,
computes 1 iff e is even.

Now if the root of T is an A -gate ther} define T= (T A T right) V T2 41 and if
the root of T is an v -gate then define 7'= (Tien A Top) v ( T,lgm A T,,). Since, by
induction, the trees 7). and Tnght each have height 24, in both cases above 7 is a
complete binary tree of height 24 + 2. It is easily verified that 7 computes the same
function as T. '

To complete the proof, we only need to show that the leaves of 7" are labeled
with a permutation of J. Since the height of T'is 2/ + 2, it suffices to show that each
of the variables x, x,, .., x, appears as a leaf of 7 exactly twice, half of the
remaining leaves are labeled with 0, and the other half labeled with 1. T,
(resp. Tyign,) has leaves Xy, Xy, .., X0 (X,041, - X,). Thus by induction, the
variables Xy, X5, ..., X2 (Xu/24 15 - X,) appear in Tyeg (Tign:) exactly twice, and the
remaining leaves of T (T right) are split evenly between the constants 0 and 1. All
leaves of the trees T,, and T, , are labeled with constants, exactly half with 0 and
half with 1. We conclude that T contains 2n leaves that are labeled with variables
(two for each of the n variables) and half the remaining leaves are labeled with 0,
and half with 1. |

4. PROPERTIES OF PREDICTION-PRESERVING REDUCTIONS

We first show that =2 is transitive, and then, as promised, we show that the
reducibility is in fact prediction-preserving.

LemMA 4.1. The relation =2 is transitive, ie., if Ry <R, <R, then R, < R,.

Proof. Let Ry, R,, and R; have implicit mappings ¢, ¢,, ¢ (see Definition 2.2).
Let R, =R, be witnessed by functions f,, g,,?,, and ¢,, as described in
Definition 3.1, and let R, <0 R; be witnessed by the functions f;, g,, ¢,, and qp-
Define f and g as

f(W, S, n) =fb(fa(w, S, n)’ qa(S, S, n)a ta(n’ S, n))
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and

g(l’, s, n) = gb( ga(r5 S, I’l), q:;(sa S, n): ta(ns S5, n))

Now let 5,neN, re R, and we Z"). Then, by the properties of £, and g,,
Wecl(r)éfa(ws S,”)Ecz(ga(”a s,n)). (1)

Assuming without loss of generality that 7, and ¢, are monotone nondecreasing in
each argument, it follows that f,(w, s, n) € Zt«»*m1 and that g,(r, s, n) € Ri%(>sm],
Thus, by the properties of f, and g,,

Saw, s,n) € cy(g,(r, s, n))

be(fa(w, S, n), qa(Sa S, n)9 ta(na S, n)) € c3(gb( ga(r’ S, I’l), qa(s’ S5, n)’ ta(n’ S, l’l)))
’ (2)

Combining (1) and (2), f and g satisfy the first requirement of Definition 3.1. It
is easily verified that the other two requirements are satisfied as well. |

LEMMA 4.2.  For all prediction problems R and R', if R<U R’ and R’ is predictable,
then R is predictable.

Proof. Let A’ be a polynomial-time prediction algorithm for R’, and let R < R/,
with word transformation f, representation transformation g, and polynomials ¢
and g as given in Definition 3.1. Without loss of generality, we assume that ¢ and
g are monotone nondecreasing in each parameter. We construct a polynomial-time
prediction algorithm A4 for R. A takes its input parameters s, n, and ¢, and passes
the parameters s’ =gq(s, s, n), n'=t(n, s,n), and ¢ to A'. Then for each example
(x, label), A computes f(x, s, n) and passes the example (f(x, s, n), label) to A4".
Note that the examples 4 gives to A’ have length at most n’, and are examples of
some concept whose representation g(r, s, n) € R’ has length at most 5. 4 also gives
the unlabeled word f(w, s, n) to A’, where w is the unlabeled word that A receives.
.To predict the label of w, A predicts exactly what A’ predicts for the word
f(w, s, n).

For some polynomial p’, A" predicts incorrectly with probability at most & (with
respect to the image under f of the original distribution) when given p'(s’, n’, 1/¢)
examples. By (1) in the definition of a prediction-preserving reduction, the
probability that 4 predicts incorrectly (with respect to the original distribution)
is the same. Clearly p'(s’,n’, 1/¢) and the run time of 4 are polynomial in s, n,
and 1/e. |

As discussed in Section 2, the definition of polynomial predictability does not
necessarily require that the parameters s,n and ¢ be given to the prediction
algorithm. If they are not given, then in the proof of Lemma 4.2, the prediction
algorithm A that is constructed for R by simulating a prediction algorithm A’ for

VIl 6] 1
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R’ must first choose its parameters. As before, the parameters are chosen x, x, 1/x,
where x is the maximum integer such that p(x)= p’(x, x, x) is at most as large as
the number of examples. If x is undefined and if the length of the longest example
exceeds x then A simply predicts + by default. Otherwise the simulation proceeds
as before using the chosen parameters and the first p(x) examples. It is easily shown
that A predicts as required when given at least p(s' +n’ + 1/¢) examples.

DerINITION 4.3. If R is a prediction problem, and # is a set of prediction
problems, then R is prediction-hard for # iff for all prediction problems R’ e %,
R'=R. If Re # also, then R is prediction-complete for A.

Thus if a prediction problem R is prediction-hard for a class %, then the
predictability of R implies the predictability of every prediction problem in Z.

Associated with any prediction problem R is an evaluation problem, which is that
of determining, given an arbitrary r€ R and we 2*, whether or not we c(r). This
is defined formally as a language:

DErFINITION 4.4. The evaluation problem for a prediction problem R is the
language E(R)= {(r, w): wec(r)}.

As we shall see, it will be useful to classify prediction problems based on the
complexity of their evaluation problems. Intuitively, there should be a relationship
between the difficulty of determining membership in a concept when given a
representation of the concept (the evaluation problem), and the problem of
predicting membership in an unknown concept when using the same representa-
tions for the concepts (the prediction problem.) Consequently, all prediction
problems whose evaluation problems have similar complexity form a natural class
of prediction problems.

DEerFINITION 4.5. For a class of languages L, let # = {R:E(R)eL}.

Below we consider collections of prediction problems %, , where L is a complexity
class.

5. PREDICTION-COMPLETE PROBLEMS

For each of the standard complexity classes NC'!, LOG, NLOG, LOGCFL, and P,
we give a natural prediction problem that is prediction-complete for the corre-
sponding classes of prediction problems %yc1, %06, Znroc> ZrocerL, and %p. In
particular, we show that the problems of predicting Boolean formulas, DFAs,
NFAs, PDAs, and alternating DFAs, are as hard as predicting any problem in the
above classes of prediction problems, respectively. The main technique is given in
detail for DFAs. The prediction-completeness of other automata prediction
problems follow analogously, and the proofs will only be sketched.

1wl
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THEOREM 5.1.  Rppa is prediction-complete for R, o .

Theorem 5.1. is proved by showing that predictability of DFAs implies the
predictability of logspace Turing machines. We need the following definitions. Let
4=20TI'u {B} (where B denotes the blank symbol). For each constant k>0, we
define

* Ryiogtm = {r: r encodes a single tape (offline) TM with tape alphabet 4 that
runs in space at most & log n on inputs of length n}.

LEMMA 52. Let Re R . Then for some k>0, R< R, log TM -

Proof. Let Re % os. Then for some constant k, there is a single tape, k logn
space bounded TM T with tape alphabet 4 that accepts E(R). For each re R there
is a single tape, k logn space bounded TM T, that accepts c(r) and is of size
[T| + O(|r]). (T, is the TM T with r included in the state information.) Hence f and
g witness that R = Ryi0gTm, Where for any s,r,n, and w, f(w,s,n)=w and
g(r, s, n) is a representation of 7.,. [ ]

Proof of Theorem5.1. 1Tt is easy to show that Rppa €% o6, 1€., that it is
logspace decidable whether a given DFA accepts a given word. To show that any
Re A oc reduces to Rpr, we show that for each constant k>0, Ry 1og v < Rppa,
and the result follows from Lemma 5.2 and Lemma 4.1.

Let r be the encoding of a TM Te Ry 10 Tv> and let s be an upper bound on ¥,
and therefore, an upper bound on the size of the state set Qr of T. Let the word
transformation f be defined by f(w, 5, n) =1"10w?(*sm \where P is a polynomial
defined later. Let the representation transformation g be defined by g(r, s, n) = M,
where M ; is described below.

Note that f simply replicates the word w some (polynomial) number of times,
and precedes it with a string of 1’s of length |w| followed by a 0. The DFA M 7 Will,
on input f(w, s, n), simulate the action of 7 on input w.

M, is composed of n+1 smaller DFAs, My, M,, .., M,. M, uses a chain of
n+ 1 states to read the initial string of 1’s in f(w, s, n), and branch to M |wj Upon
seeing the first 0. A, is a machine designed to simulate T on inputs of length
exactly |w|. The behavior of M w on the p(|wl, s, n) copies of w will simulate the
behavior of T on w.

In essence, the DFA M|, must overcome two obstacles: that the Turing machine
T uses work space k log |w|, and that it can move in two directions. M, overcomes
the first obstacle by having poiynomially many states to encode the memory of 7.
The second obstacle is overcome by using the repeated copies of w to avoid moving
left.®

M,,, stores the entire contents of the worktape of 7 into its state information and
simulates T. The only problem occurs when T tries to move to the left. In that case,

®In [51], two-way head movement is similarly reduced to one-way head movement by using a power
of ww® (where w® is the reverse of w).
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M,,, simply moves to the corresponding symbol in the next copy of the input word
by moving |w| — 1 symbols to the right. Thus M, has as part of its state informa-
tion a mod |w| — 1 counter that it invokes whenever T moves left. The number of
states of M, is at most the product of the number of states of T, the number of
states needed for the counter, the number of distinct worktape configurations of T,
and the number of possible worktape head positions. Since s is an upper bound on
|Q |, this product is at most

s(Iwl = 1)(14]*1°2 ")k log [w])

and thus the number of states of M, is at most

n+ 1+ (n+1)s(n—1)(|4|*'"°e")(k log n).

Thus the length of the encoding of M is at most polynomial in » and the length
of the encoding of 7. Further, the number p(|wl, s, n) of copies of w that are
required is at most the number of moves of T, which is at most the number of
distinct configurations of T. Since T is space bounded by k log n, the number of
distinct configurations is polynomial in n and |Q 7 <s. |

It should be clear that the proof of Theorem 5.1 may be applied to any
reasonable class of automata. The theorem essentially says that, with respect to
predictability, there is no distinction between an automaton and the two-way
version of the automaton with an additional logspace work tape. This observation
provides us with the next three corollaries.

COROLLARY 5.3. Rypa is prediction-complete for Ryioc-

Proof. To show prediction-hardness, repeat the proof of Theorem 5.1 using the
corresponding nondeterministic version of DFAs and TMs. It is easily verified the
E(Ryra), the evaluation problem for NFA membership, is in NLOG. ||

For each polynomial A, let

e R,ppa= {r:rencodes a h(n) time bounded PDA }.

COROLLARY 5.4. Rcpg is prediction-complete for R ogcrL, and there exists a
polynomial h such that R,ppa is prediction-complete for R occrL-

Proof. Recall that LOGCFL is the class of languages accepted by a polynomially
time bounded two-way PDA with auxiliary logspace work tape [52]. To see that
Rppa is prediction-hard for 2, oacr, apply the proof of Theorem 5.1 with PDAs
replacing DFAs, and with polynomially time bounded two-way PDAs with addi-
tional logspace replacing logspace TMs.

To see that Rcpg is also prediction-hard for Z ogcrL, Observe that for any
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PDA M there is a CFG G in Chomsky normal form’ of size polynomial in the size
of M, that generates the same language [25]. Thus Rppy <0 Repg (the represen-
tation transformation maps a PDA to the equivalent CFG, and the word transfor-
mation is the identity on w), and it follows that Rcrg is also prediction-hard for
R ocerL- Prediction-completeness  for Rcpg follows by showing E(Rcpg)e
LOGCFL, which is straightforward from the definition of LOGCFL.

To prove the second part of the corollary, note that to derive a word of length
n>0 in Chomsky normal form takes exactly 2n—1 steps (one step if n=0).
Therefore, there are polynomials 4 and 4’ such that for each grammar G there is
a PDA M of size at most 4'(|G|) such that {w: Mg accepts w in at most h(Jw])
steps } = L(G). Tt follows that Rcrg = Ryppa (With word transformation f as the
identity on its first argument, and representation transformation g that maps the
representation of a grammar G to the representation of the PDA M), and thus
R, ppa is prediction-hard for &, occr, .

To see that E(R,pps) € LOGCFL, note that there is a universal two-way auxiliary
PDA U that on input of an encoding r of any A(n) time bounded PDA M and
string w, U simulates M on input w: U uses at most O(log(|r| + |w|)) space on its
auxiliary worktape to store the current location of M’s read head and the current
state of M while scanning across the input representation r looking for an
applicable transition. For some polynomial p independent of M, U can simulate M
with at most p(|r| + |w|) steps for each step of M. Thus the total time taken by U
is at most p(|r| + |w|) A(|w|) which is a polynomial in the size of U’s input. Since
U is a two-way PDA running in polynomial time and using at most logspace
auxiliary worktape, we conclude that E(R,ppa) € LOGCFL. |

Recall that an alternating DFA is a DFA where transitions may be of three
types: existential (nondeterministic), universal, or negation. (For a formal
definition, see [15].) Defining the prediction problem R,prs in the obvious way,
we prove the following corollary.

COROLLARY 5.5. R,upra is prediction-complete for R, .

Proof. An alternate characterization of P is given in terms of alternating
logspace TMs [15]. In particular, P =alternating logspace. Note that an
alternating logspace TM is simply the two-way version of an alternating DFA, with
additional logspace work tape. To see that Rapra is prediction-hard for %,
apply the proof of Theorem 5.1 with alternating DFAs replacing DFAs, and with
alternating logspace TMs replacing standard logspace TMs. To show prediction-
completeness, we must show E(R,pra) € P. There is an alternating TM that, on
input the description of an alternating DFA M and input word w, simulates M on
input w and accepts iff M accepts w. Clearly only logspace is needed for such a
simulation, thus E(R.pra) € alternating logspace = P. [ ]

" We use the definition in [25], which allows the production S — 4.
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THEOREM 5.6. Rgp is prediction-complete for Ryci.

Proof. Let R be any prediction problem such that E(R) € NC!. Thus there is an
alternating logtime Turing machine 4 accepting E(R). By “hardwiring” the
representation into the state space of the machine we have that for all re R there
is an alternating logtime Turing machine A, that accepts c(r). Furthermore, for
each length bound 7 there is a modified alternating logtime Turing machine 4, ,
that accepts all words of ¢(r) of length at most n, padded to have equal length 7 + 1.
More precisely, 4, , accepts the language {w01" =" |w|<n and wec(r)}. The
machine 4,, can be chosen so that its size is polynomial in |r| and n. In more
detail, let |4, ,| denote the number of symbols required to encode the machine with
respect to some standard encoding scheme. Then for some polynomial ¢ (which
may depend on R), for all re R and neN, |4, ,| <q(|r|, n). By Theorem 2 of [14]
there exists a polynomial p such that for any such 4, , there exists a Boolean
formula F,, of size at most p(n, |4, ,|) accepting the same language as 4, ,,.

Now the following transformations witness the fact that R<1Rgg: Let the
word transformation f(w, s, n)=w01"~ ™ and the representation transformation
g(r, s, n) be the representation in Rgg for F,,. To complete the proof, we observe
that E(Rgr) has been shown to be in alternating logtime by Buss [14] (see Main
Theorem 1 and the comments on top of page 129). Thus E(RgF) € NCL 1

By Theorems 3.3 and 3.4, Rrggg, and Ryggg, are prediction-hard for Zyc:. It is
also easy to show that these problems are prediction-complete for Zyc:-
We use the above theorem to show that Rgr <2 Rpga.

COROLLARY 5.7. Rppa is prediction-hard for Ryci and, in particular, for any of
the representations Re { Ry, Rrreg,> Rrer,}» R =<1 Rpra-

Proof. By Theorem 5.1, Rpps is prediction-complete for % og. Thus
Rpr < Rppa follows from the fact that Zyci S %ios, Which is true because
NC! = alternating logtime < LOG [15, 58]. The other two problems now reduce to
Rppa by Theorems 3.3 and 34. |}

An alternative reduction from Boolean formula predictability to DFA
predictability may be given as follows: Rpp <! Rrggg, (Theorem 3.3), and the
evaluation problem for Ryggg, is trivially in LOG. Rgr <2 Rppa now follows from
Theorem 5.1.

In Section 7 we discuss recent results [39] suggesting that neither Rpr nor Rppa
are likely to be predictable.

A natural open problem that is captured by Rconvex is that of predicting
membership in an unknown convex polytope. Recall from Section 3 that Reng =
Reonvex- We now show that Rconvex < Rpr. In Section 6 we consider a
generalization of this problem, and show that predicting whether cubes have
nonempty intersection with an unknown convex polytope is prediction-complete for
A, and by the results in Section 7, is thus unlikely to be predictable.

i
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COROLLARY 58. E(Rconvex)€NC', and thus for any Re{Rgr, Rrggg,,
Rrreg, }» Reonvex <R

Proof. To show that E(Rconvex)€ NCY, we show that it can be determined in
alternating logtime whether a given input vector x satisfies all of the inequalities
a;-X > b;, where the vectors {a;} and the numbers {b;} are also given as input. To
do this, it is sufficient to show that it can be determined in alternating logtime
whether a single inequality a,-x > b, holds, since a single universal branch of an
alternating TM could check in parallel the input inequality for each i.

We will say that a function f can be “computed” in alternating logtime if the
associated language L, is in alternating logtime, where L;={{zic): the ith
character of f(z) is c¢}. Standard techniques [49] can be adapted to show that the
sum of » integers, each of n bits, and that the multiplication of two n-bit integers,
can be computed in alternating logtime. This implies that the dot-product a - x can
be computed in alternating logtime. Le., the language Ly, = {<a, x, i, c): the ith
bit of a-x is c} is in alternating logtime.

Let z=a-x. For any number u, let u[i] be the ith bit from the right in the
binary representation of u (1[0] is the least significant bit of u). To determine, in
alternating logtime, whether z > b, an existential branch guesses the most significant
bit i such that z[i] # b[i]. It is then determined via a universal branch, each branch
using the alternating logtime membership test for L,,,, that for all sufficiently large
J>14 z[j1=0b[/], and that z[i]=1>0=5[i]. |

We conclude this section by discussing some differences between our notion of
prediction-preserving reduction, and the standard many—one deterministic logspace
reduction used in complexity theory. We showed that the prediction problem Ry,
is prediction-complete for %, . Following [34], E(Rpga) (the membership
problem for DFAs) is complete for LOG with respect to one-way, read-only-input,
deterministic logspace reductions. Similarly, Rnpa is prediction-complete for
Znioc> and E(Ryg,) is complete for NLOG with respect to standard deterministic
logspace reductions. Given these observations, a tempting conjecture might be that
if an evaluation problem E(R) is complete (with respect to logspace reductions) for
some complexity class L, then R is prediction-complete for R, .

This conjecture is not true because prediction-preserving reductions are
sufficiently different from the standard reductions between languages. If E(R) is
complete for L then for any L e L there is one logspace computable function f such
that for all u, ue L iff f(u)e E(R). In our notion of reduction, two functions are
required, one for the word transformation and one for the representation
transformation. For any language L that is complete (with respect to logspace
reductions) for some complexity class L, the language Lx {1} is also complete
for £. It is easy to define a set of representations R such that E(R)=Lx{1}: Let
R=2* where any word r represents the concept {1} if reL, otherwise, r
represents the empty concept { }. Now E(R) is complete for L, but R is trivially
predictable. : :
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6. PREDICTION PROBLEMS COMPLETE FOR &

In the previous section we saw that alternating DFAs are prediction-complete for
Ae. In this section we give a number of additional prediction problems with this
property.

From any language L that is not in P, it is easy to construct a prediction
problem R, that is trivial predictable, even though E(R,) is not in P: Let R,
consist of all words w over the same alphabet as L, where c¢(w)= {w} n L. Thus,
the concept represented by a word w is either the empty language, or the language
consisting of the singleton w, depending on whether we L. Clearly, E(R,) has the
same complexity as L, and is trivially predictable.

Even though it is easy to construct prediction problems outside %, most
“patural” problems lie in this class. Consequently, prediction problems that are
prediction-complete for %, are of particular interest, as their predictability would
imply the predictability of any prediction problem in which we might be reasonably
interested. In Section 7, we give strong evidence that these problems are not
predictable.

We first show that prediction of Boolean circuits is prediction-complete for % :

¢ Rcre= {r:r encodes an acyclic Boolean circuit }, where if r has n inputs,
then c(r) is the set of Boolean input strings of length n accepted by the circuit
encoded by r.

THEOREM 6.1. Rcre is prediction-complete for Rp.

Proof. Clearly E(Rcirc)€P. Let R be any prediction problem such that
E(R) € P. To show that R <3 Rcjrc, note that for each representation r € R and each
length bound # there is a Boolean circuit B, , that accepts all words of ¢(r) of length
at most n, padded so as to have equal length. More precisely, let B, , accept the
language {w01"~"™':|w|<n and wec(r)}. Thus B,, has n+1 inputs. Since
E(R) € P, there exists a polynomial ¢ such that for all s, re RY) and neN, B, , can
be chosen such that |B,,|<gq(|r|,s,n). Now let the word transformation
f(w, s, n)=w01"~"! and the representation transformation g(r,s,n)=238,,. |

Our goal now is to reduce Rcre to other natural prediction problems which
have polynomial time evaluation problems, thus showing that they are prediction-
complete for %,. As was pointed out at the end of the previous section, if a
language is P-complete (with respect to logspace reductions) then a given related
prediction problem is not necessarily prediction-complete for %,. Nonetheless, a
number of P-complete evaluation problems do have related prediction problems
that are prediction-complete for Zp.

The evaluation problem E(Rcgrc) is exactly the circuit value problem (CVP), the
standard problem that is complete for P with respect to logspace reductions
[35,40]. CVP has been reduced to a large number of other problems in P, thus
showing that these problems are also P-complete [33]. In many cases a logspace
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reduction from CVP to a new problem L leads to a prediction-preserving reduction
of Rcre to a fairly natural prediction problem that is related to L. The prediction
problems defined below, and the proofs that they are prediction-complete for Zp,
were obtained in this manner.

The first two prediction problems are defined with respect to the same set of
representations. Recall that a Horn clause is a disjunction of literals, where at most
one literal is unnegated. Equivalently, a Horn clause is either an implication
V=X A X3 A - AX,, or the assertion y<=TRUE, where y and each Xx; i1s an
unnegated literal. Let Ry be the set of representations {r : r encodes a conjunction
of Horn clauses }. Then the prediction problems are

* Horn clause consistency. The pair (Ryc, c), where c(r) is the set of collec-
tions of facts (assertions) that are consistent with the conjunction represented by r.

An almost identical prediction problem, which was proved prediction-complete for
Rp by Angluin [4], is

* Horn clause implication. The pair (Ryc, '), where c'(r) consists of all single
clauses that are logically implied by the conjunction represented by r.

Additional prediction problems that we consider are

* Augmented CFG emptiness. Rycpg = {r:r encodes a CFG}, where c(r)
is the set of all collections of productions that when added to the grammar
represented by r, yield a context free grammar that generates the empty language.

¢ Convex polytope intersection. Rpoyyropg = {r: r encodes a system of linear
equations (coefficients are integers encoded in unary) that define a convex polytope
contained in the unit cube of some dimension /}, where c(r) is the set of unit
subcubes that have non-empty intersection with the polytope represented by r.

THEOREM 6.2. Let R e {(‘RHC, C), (RHC, C/), RQCFG’ RPOLYTOPE}‘ Then
Rcire =R, and each of these problems is prediction-complete for Rp.

Each of the prediction problems in Theorem 6.2 has an evaluation problem
decidable in polynomial time, thus it is sufficient to prove prediction-hardness for
Zp. Each of the following prediction-preserving reductions correspond to a proof
of P-completeness of a related decision problem. The proofs of P-completeness are
all achieved via logspace reductions from CVP, ie., given a truth assignment and
an acyclic circuit, does the last gate of the circuit evaluate to 17 We repeat the
known logspace reductions from CVP within the framework of prediction-
preserving reductions.

Proof that Rcire < (Ryc, ¢). Horn clause consistency is related to the P-com-
plete problem of deciding whether the empty clause can be deduced from a given
set of Horn clauses [35]. We use the method of [33] to show that R re reduces
to the prediction problem of Horn clause consistency.
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Let r € Repre be the encoding of an acyclic circuit U, with # inputs x,, .., x,, and
gates x, ., .., X, Without loss of generality, all gates are A -gates or —1-gates. We
reduce Rcpre to the Horn clause consistency problem using transformations f and
g as defined below.

Let g(r, s, n)=h, where h represents a conjunction of Horn clauses obtained as
follows. The variables of 4 are X, .., X, and Y, .., Y, (each Y, will represent the
negation of X;). For each gate x,= —1x;, include in the conjunction 4 the clauses
X,<Y;and Y,<X,. For each gate x;=x; A x,, include in the conjunction 4 the
clauses X; <X, A X, Y;<=Y,,and Y, <= Y,.

If w=w,w,---w, is an n bit string input to the circuit and s is any upper bound
on the length of the unknown circuit, then let f(w,s, n) be the collection of facts
(assertions) {B;<TRUE: 1<i<n}u {X,<TRUE}, where B;=X; if w,=1, and
B,=Y,if w;=0.

It is easily verified that U, accepts the input w (i.e., gate x, evaluates to 1) if and
only if the collection of assertions f(w, s, n) is consistent with the conjunction of
clauses h = g(r, s, n). Further, f is polynomial-time computable, and g is polyno-
mial length preserving. |

Proof that Rcere < (Ryc, ¢'). Prediction of Horn clause implication was shown
to be prediction-complete for %, by Angluin [4], using the methodology of
prediction-preserving reductions introduced here. Her proof is nearly identical to
that for Horn clause consistency, given above: The representation transformation
g(r,s,n) is identical. The word transformation f(w,s,n) encodes the clause
X,<B,ABy,A --- A B,, where B;=X,if w,=1, and B,=7,if w,;=0. It is easily
verified that U, accepts w if and only if the collection of clauses g(r, s, n) implies the
clause f(w, s,n). |

Proof that Rcre < Rgcrs. The proof of the prediction-completeness of
augmented CFG emptiness (Rgcrg) is related to the proof of P-completeness of
deciding for a given CFG G, whether L(G) = [24, 35]. The reduction relies on
the reduction above for Horn clause consistency. In the reduction, the Horn clauses
become the productions of the CFG.

Again, let re Ropre be the encoding of an acyclic circuit U, with n inputs
Xy, . X,, and gates X, ., .., X, all either A-gates or —1-gates without loss of
generality. Let g(r, s, n) be the grammar S, N, T, P as follows. The start symbol S
is the symbol Y,. The set of nonterminals N={X,, .., X, Y, .., ¥;}. The set of
terminal symbols 7 is empty, thus the grammar will generate either the empty
language or the language consisting only of the empty string 4. The set of
productions P is constructed as follows. For each gate x;= 71x; of U,, include in
P the productions X;— Y; and Y, - X;. For each gate x;=x; A x,, include in P the
productions X; > X;X,, Y,—» Y, and ¥,—> Y. In this construction, a derivation
corresponds to starting at the output gate (start symbol) Y,, and “computing
backwards.” '

The word transformation f(w, s, n) now must provide an additional collection of
productions, such that when added to the grammar g(r, s, n), the resulting language
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is empty iff the circuit U, accepts w=ww,---w,. Define f(w,s,n) to be the
productions {B; - A: 1 <i<n}, where B;=X, if w,= 1, and B,=Y,if w;=0.

In the P-completeness proof of [24], it is shown that the last gate x; of U,
computes 1 on input w iff the CFG with productions f(w, s,n)u g(r, s, n) and start
symbol Y, derives the empty language. |

Proof that Rcire < Rporyrops. The convex polytope intersection prediction
problem, Rpoiyropr, is related to deciding whether there exists any feasible
solution to a given linear programming problem. This problem is P-complete [17].
Again, we adapt the reduction from CVP used to show that linear programming
feasibility is P-complete.

Let r € Repre be the encoding of an acyclic circuit U, with n inputs x,, ..., x,,, and
gates x,,y,..,x;, all either A-gates or —i-gates without loss of generality. Let
g(r, s, n) be the linear programming problem over variables x,, ..., X,, consisting of
inequalities that encode the gates of U,. The inequalities g(r, s, n) define a convex
polytope contained in the /-dimensional unit cube. For each gate x,= T1x;, we
include the inequalities of x;=1—x;; for each gate x,=x; A x, we include the
inequalities 0 < x, < 1, Xi < X;, X; <X, and x;+ x, — 1 < x;. Further, for the output
gate x; of r, include the inequalities of x,= 1.

The word transformation f(w, s, n) consists of inequalities corresponding to an
[—n dimensional subcube of the / dimensional unit cube given. In particular,
f(w, s, n) includes the inequalities of: x;=w,, for 1<i<n, and 0<x,<1, for
n+1<j<l

Reinterpreting the reduction of [177, the gate x, of the circuit U, outputs 1 iff the
collection of inequalities g(r, s, n) U J(w, s, n) contains a feasible solution, i.e., iff the
subcube defined by f(w, s, n) has nonempty intersection with the polytope defined
by g(r,s,n). |

An additional prediction problem that we mention informally is that of
predicting fixed grid planar circuits. It is easy to show that any Boolean circuit can
be embedded into an at most polynomially larger square grid, using A, v, -1, and
selection gates at the nodes. It follows that this restricted class of circuits is also
prediction-complete for %,. Thus, as shown in Section 3 for Boolean trees
(Theorem 3.3), restricting the circuit topology in a uniform way does not result in
an easier prediction problem.

Lately, considerable attention has been given to neural networks as models of
computation, particularly in the context of learning. In one of the basic models, a
network is a circuit, where each gate computes a linear function of its inputs, and
evaluates to 1 iff the value exceeds a given threshold. It is easy to show that
A, v, 71, and selection gates can be simulated with threshold elements using only
small integral weights. Thus the prediction problem for fixed grid planar neural
networks is also prediction-complete for %,.

Adleman [1] showed that there are non-uniform polynomially sized circuit
families for all languages in RP, the class of languages accepted in randomized
polynomial time [20]. More precisely, for each language LeRP, there is a
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polynomial p and a (non-uniform) family of circuits {C,},> such that C, accepts
L~ {0, 1}" and such that C, has size at most p(n). By a straightforward adaptation
of the proof of Theorem 6.1, this implies that Rerre is prediction-complete for Zge.
This follows from that fact that the representation transformation in a prediction-
preserving reduction is highly non-uniform—it need not even be computable. By
transitivity, all other prediction-complete problems for %, are also prediction-
complete for Zgp.

7. UNPREDICTABLE CONCEPTS

We give evidence that the prediction problems complete for %, discussed in
Section 6 are not predictable, even in a very weak sense. We also discuss recent
results [39], showing that Boolean formulas and DFAs are not (even weakly)
predictable, relying on certain cryptographic assumptions.

DErINITION 7.1, The prediction problem R is weakly ( polynomially) predictable
iff there exists a polynomial-time prediction algorithm 4 and polynomials p and ¢
such that for all input parameters s and n, for all re R*J, and for all probability
distributions on 27, if 4 is given at least p(s, n) randomly generated examples of
(the unknown target concept) c(r), and a randomly generated unlabeled word
we X211 then the probability that A incorrectly predicts label,, (w) is at most

32— 1/q(s, n).

The difference between predictability and weak predictability is that to satisfy the
definition of weak prediction, an algorithm need only be able to predict with
accuracy exceeding 4 by a vanishing (as s and n grow) fraction of the distribution,
whereas for predictability, any accuracy arbitrarily close to 1 must be achievable.
Clearly predictability implies weak predictability. Surprisingly, Schapire [50]
proves the converse, giving the following theorem:

THEOREM 7.2 [50]. For all prediction problems R, R is polynomially predictable
if and only if R is weakly polynomially predictable.

Our next lemma asserts that prediction-preserving reducibility also preserves
weak predictability.

. LEMMA 7.3. For all prediction problems R and R, if R=IR" and R’ is weakly
predictable, then R is weakly predictable.

Proof. The proof is a trivial variant of the proof of Lemma 4.2, using weak
predictability instead of predictability. Alternatively, if R’ is weakly predictable,
Theorem 7.2 asserts that R’ is predictable, and Lemma 4.2 shows that R is predict-
able and thus weakly predictable. ||
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Assuming the existence of a cryptographically secure pseudorandom bit
generator (CSB generator) Goldreich, Goldwasser, and Micali [22] have
constructed a collection of polynomial-time computable functions that are
indistinguishable (to any polynomially time bounded algorithm) from functions
“chosen at random.”

We rephrase the results of [22] in our terminology. Based on the CSB generator,
a polynomial-time algorithm (without loss of generality, a TM) T is constructed.
T expects two inputs of the same length. Call the first input the index. Each index
re 2" defines a new TM T, such that T,(w) accepts iff T(r, w) accepts. Note that
IT,| is O(|r]). Let Ruarp(n) = the set of encodings of machines T . for each re X",
Let Rysrp =, Ryarp(ny- Since each T, is essentially the same polynomial-time
Turing machine 7, E(Rysrp) € P.

Goldreich et al. prove that Ryarp has the following property. Let 4 be any
polynomial-time query-test algorithm for Ryarp, Where a query-test algorithm 4
works as follows: 4, given 7 as input, attempts to predict those words of length n
accepted by some randomly chosen element re Ruarp(n) by first querying on any
collection of words of length n and of cardinality polynomial in 7, as to whether or
not the machine encoded by r accepts. Then A4 chooses a different test word w (of
length ) and predicts whether w is accepted by the machine encoded by r. Let
avg-error,(4) denote the probability that 4 is incorrect, where the probability is
taken over the random selection of r e Ryarp(r) according to a uniform distribution
(and over all possible runs of 4, if 4 is randomized). Then for any such algorithm
A, and any polynomial p, avg-error,(A4) > 35— 1/p(n), for sufficiently large ».

LEMMA 74. Assuming that CSB generators exist, Rysrp is not weakly
predictable.

Proof. Suppose to the contrary that there exists a prediction algorithm B that
weakly predicts Ryarp. Let 4 be a query-test algorithm that runs B using a
uniform distribution on words of length n. To supply an example to B, 4 simply
generates a word of length n randomly and queries whether it is a positive or
negative example. By the definition of weakly predictable, after only polynomially
many examples (and time), regardless of the unknown 1 € Ryarp(n), B Will be able
to correctly predict label,,)(w) for a randomly generated w of length n, with proba-
bility at least 1+ 1/g(|r|, n)= 3+ 1/q(n, n) for some polynomial ¢g. A4 supplies
sufficiently many examples for this guarantee to hold and then randomly generates
w as a test string, predicting label,,)(w) as predicted by B.

Let p(n)=gq(n,n). Then for each 7€ Ruarp(n)> the error of the query-test
algorithm A is at most 1 — 1/p(n). Thus the average error satisfies avg-error,(4) <
3—1/p(n), contradicting the fact above that no such query-test algorithm A for
Ruarp exists with these properties. |

Thus assuming that CSB generators exist, there is a prediction problem in Rp
that is not weakly predictable and certainly not predictable. Similarly, it has been
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shown assuming the existence of CSB generators, that polynomial size Boolean
circuits are not pac-learnable [10].

THEOREM 7.5. If there exists a CSB generator, then any prediction problem that
is prediction-hard for Rp is not weakly predictable.

Proof. Follows immediately from Lemma 7.4. |

COROLLARY 7.6. Assuming the existence of any CSB-generators, Rcircs Rgcras
ReorLytopes (Rucs ¢), and (Ryc, ¢') are not weakly predictable.

The existence of CSB-generators follows from the existence of one-way permuta-
tions [57], and is equivalent to the existence of one-way functions that are one-way
on iterates [23, 41]. Consequently, the above theorems hold under the assumption
that such one-way functions exist.

At this point a strategy for proving unpredictability based on cryptographic
results becomes evident. If cryptographic functions that are hard to invert can be
shown to have easy evaluation problems (i.e., are computable in polynomial time,
logspace, or lower in the complexity hierarchy), then any prediction problem that
is prediction-hard for the relevant complexity class will not be predictable.

Kearns and Valiant [36, 397 have very recently taken this approach and have
shown that, based on certain specific cryptographic assumptions (the intractability
of inverting the RSA cryptosystem, factoring Blum integers, or deciding quadratic
residues), there are some prediction problems that are not weakly predictable. It is
further shown that for each representation r and input length » there is a circuit
C,, that accepts ¢(r)n {0, 1}", and such that C,, has depth O(log(|r| + n)) and
size polynomial in |r| and n. They observe that such circuits can be unfolded into
equivalent Boolean formulas of size polynomial in || and n, and they conclude that
Ryr is not weakly predictable based on the same cryptographic assumptions. By
combining this result with Corollary 5.7 (Rgr <X Rpra), they show that the same
holds for DFA prediction.

8. CONCLUSION

Summary of Results

We have developed the beginnings of a complexity theory for predictability. By
considering a type of prediction-preserving reduction, we have been able to relate
the difficulty of various prediction problems. To illustrate the usefulness of this tool,
a number of example reductions were given. In particular, it was shown
(Theorems 3.3 and 3.4) that even when given significant additional information
about the structure of an unknown Boolean formula, the prediction problem is no
easier than the prediction of unrestricted Boolean formulas.

This work was motivated in an attempt to understand the difficulty of learning
DFAs from examples. We showed that DFAs are at least as hard to predict as any
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language in LOG (Theorem 5.1). Consequently, the prediction of DFAs is at least
as hard as the prediction of Boolean formulas (Corollary 5.7) and convex regions
(Corollary 5.8).

The approach of showing a prediction problem complete for a particular class of
problems gave rise to an interesting parallelism between prediction of automata and
standard complexity classes. For each of a number of classes, it was shown that
there is a prediction problem whose predictability implies the predictability of all
prediction problems whose associated evaluation problem lies in the complexity
class (Theorem 5.1, Corollaries 5.3, 5.4, 5.5, Theorem 5.6).

Of particular interest are those prediction problems that are prediction-complete
for polynomial time (Theorems 6.1 and 6.2). Besides implying the predictability of
all reasonable prediction problems, assuming the existence of a type of one-way
function, these prediction problems are not predictable even in an extremely weak
sense.

Further, relying on specific cryptographic schemes, the results of [39] show that
this predictive difficulty actually occurs at a significantly lower level of the com-
plexity hierarchy. Thus it is no surprise that general algorithms have not been
found for predicting DFAs or Boolean formulas,

It is interesting to note that all of the standard complexity classes we have
discussed consist of languages that are efficiently decidable, where “efficient” ranges
from polynomial time down to very fast parallel circuits. However, in the case of
predictability, the corresponding classes of prediction problems from Ap down to
the “easiest” class %yc: consist of prediction problems that are evidently very
difficult. Thus we have provided a taxonomy of unpredictable problems, as opposed
to predictable ones. In some sense, the largest complexity class of prediction
problems that have known polynomial-time prediction algorithms is the class of
constant depth one (unbounded fan-in) Boolean circuits (monomials) [53]. The
problem of predicting constant depth two circuits is exactly the problem of
predicting DNF or CNF formulas, which remains a basic open question in this
field.

Relaxations of Our Model

Our definition of a prediction-preserving reduction is not the most general
definition that preserves polynomial predictability. The definition may be relaxed in
a number of ways, the most natural (and general) extension would be to allow a
reduction similar to a randomized Turing reduction, as opposed to the many-one
reduction presented here. This would allow the use of a prediction algorithm for
one concept class as an oracle for solving another prediction problem. We are
unaware of any examples for which this more general reduction is required to prove
reducibility from one problem to another in the context of learning from examples
only.

For ease of presentation, we have used one fixed alphabet (X) for concepts, and
one fixed alphabet (I') for representations. Tt is easy to generalize our definitions to
the case where each concept class and each representation is over a different finite
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alphabet. In the most general case, a concept is simply some subset of some domain
X, a representation is an element of a set R such that each re R denotes some
subset of X, and there are general notions of length for the elements of X and of
R. However, if one wishes to ignore issues of precision in a continuous domain, a
representation might involve a collection of real numbers, where the length of each
number would be counted as one unit. In a more general definition of prediction,
these new length measures would replace the length measure “number of charac-
ters” that we have used in this paper. See [55] for more general definitions along
these lines.

When attempting to predict the concept (language) accepted by an unknown
automaton, it may be desirable to allow the prediction algorithm time polynomial
in other reasonable parameters of the unknown representation (and induced
concept). For example, it is reasonable to allow at least as much time for prediction
of an unknown concept as would be required to determine membership in the
concept when given as input an example word and the representation of the
concept. However, for all of the representations we have considered, concept
membership could be evaluated in polynomial time; consequently, this additional
allowance would be superfluous.

All of our reductions and proofs of completeness are not sensitive to the particular
definition of distribution-independent predictability we have chosen. For example,
they immediately held in the case of weak predictability discussed in Section 7.

A non-probabilistic model of polynomial-time predictability could be defined
based on the “on-line” prediction model appearing in [9,43]. In that model, the
prediction algorithm is given an unbounded sequence of (unlabeled) words. The
algorithm makes a prediction (as to whether the word is in the unknown concept)
after receiving each word, and is told whether it is correct before receiving the next
word. The mistake bound of an algorithm for a prediction problem R is the number
of incorrect predictions (in the worst case) for any representation re R"1 and
sequence of words from X »1 expressed as a function of s and .

A prediction problem R is polynomially predictable in this model if there is a
polynomial-time algorithm whose mistake bound grows polynomially in s and n.
The transformations discussed in [6, 43] imply that if a prediction problem is poly-
nomially predictable in this mistake-bounded model, then it is also polynomially
predictable according to Definition 2.6. The theorems of this paper concerning
polynomial reducibility and completeness also hold for the mistake bounded model,
and, in particular, the negative results proved here hold for the mistake bounded
model as well. Note that there are prediction problems that are polynomially
predictable in our model, but are not in the mistake-bounded model (probabilistic
approximation is easier than worst case).

Duality

Following Assouad [8], one can associate a dual prediction problem with each
prediction problem as follows. In a (primal) prediction problem the representation
of the target :concept is unknown and labeled examples of the target concept are

[ IR TRELI



464 PITT AND WARMUTH

given. In the dual problem, positive examples consist of representations whose
induced concepts all contain some unknown example. (E.g., in the dual DFA
prediction problem the positive examples of the word 011 are representations of
DFAs that accept the unknown word 011.)

The above definition can be made formal; the dual of the dual is the primal
problem, and the evaluation problems for the primal and the dual are identical. It
is interesting to note that for all prediction-complete problems given in this paper,
the dual prediction problem is also prediction-complete for the same class as the
primal prediction problem, even though this does not seem to be true in general.

While duality of prediction problems is of mathematical interest, the duals of
most prediction problems are not sufficiently natural to be of interest. Perhaps the
notion of duality will be useful in determining the complexity of prediction
problems.

Open Problems

The apparent difficulty of DFA prediction can be extended to other problems.
Ehrenfeucht and Haussler [18] give a (not quite polynomial time ) #'°8” algorithm
for learning (and hence predicting) decision trees. A natural open problem
suggested by Haussler [27] is the problem of learning “strictly ordered decision
graphs”—the layered graph analog of a decision tree, but with the additional
constraint (simplifying the problem) that all queries within the ith layer be a query
on the variable x,. This type of rule is the least generalization of the problem of
learning strictly ordered decision trees, which was solved in [297]. However, strictly
ordered decision graphs are essentially “unrolled” DFAs, thus these decision graphs
are at least as hard to predict as DFAs.

There are a large number of open problems. For particular prediction problems,
it would be of interest to determine the relative difficulty of predictability. For
example, can it be proven that DNF prediction is easier than prediction of all
Boolean formulas? What is the largest class of prediction problems for which Ry
is prediction-hard? Decision tree prediction trivially reduces to DNF prediction; is
there a reduction in the other direction? Is Boolean formula prediction equivalent
to DFA prediction? Perhaps by relaxing our notion of reduction as discussed
above, hardness results for these problems may be found. What are the closure
properties of the class of polynomially predictable prediction problems?

The negative results based on cryptographic assumptions are disheartening; how
low in the complexity hierarchy does one need to go to ensure predictability? Can
the negative results of [39], which show that Rgr and Rpp, are hard based on
certain cryptographic assumptions, be proven using the weaker assumption that
RP#NP?

Finally, Angluin [3] gives an algorithm for learning DFAs from examples and
membership queries. What is the appropriate notion of reduction when the predic-
tion algorithm is allowed to make queries about particular words (or to make types
of queries as described in [6])? If the result Rgr <X Rppa of Corollary 5.7 can be
proved with an extended notion of reduction allowing membership queries, then it
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can be used to show that all Boolean formulas are predictable by an algorithm that
is allowed to make membership queries.
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