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LEARNING INTEGER LATTICES*
DAVID HELMBOLD', ROBERT SLOAN#, AND MANFRED K. WARMUTH!

Abstract. The problem of learning an integer lattice of Z* in an on-line fashion is considered.
That is, the learning algorithm is given a sequence of k-tuples of integers and predicts for each tuple in
the sequence whether it lies in a hidden target lattice of Z¥. The goal of the algorithm is to minimize
the number of prediction mistakes. An efficient learning algorithm with an absolute mistake bound
of k + | klog(nv/k)] is given, where n is the maximum component of any tuple seen. It is shown that
this bound is approximately a loglogn factor larger than the lower bound on the worst case number
of mistakes given by the VC dimension of lattices that are restricted to {-n,---,0,--- ,n}k.

This algorithm is used to learn rational lattices, cosets of lattices, an on-line word problem for
abelian groups, and a subclass of the commutative regular languages. Furthermore, by adapting the
results of [D. Helmbold, R. Sloan, and M. K. Warmuth, Machine Learning, 5(1990), pp. 165-196],
one can efficiently learn nested differences of each of the above classes (e.g., concepts of the form
c1 — (ca — (c3 — (c4 — c5))), where each ¢; is the coset of a lattice).
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1. Introduction. Integer lattices are one of the most basic combinatorial struc-
tures. An integer lattice is a nonempty set of k-tuples from Z* that is closed under
addition and subtraction. Let £* be the concept class consisting of all integer lattices
in Z*. In this paper we present an algorithm for learning LF, and prove that its
performance is within a log log factor of optimal in the on-line model of learning,
using the worst case number of mistakes as the performance criterion. Note that any
learning algorithm with a good on-line mistake bound can be used as a subroutine to
construct a PAC learning algorithm [17], [4], but some PAC learning algorithms have
very poor mistake bounds.

Although the learning algorithm is of interest itself, this paper’s major technical
contributions are analyzing the learning performance of that algorithm and comput-
ing the VC dimension for the class of integer lattices (thus giving a lower bound on
the worst case number of mistakes made by any learning algorithm). In particular, we
prove that our learning algorithm has an absolute mistake bound of k(1+ log(nvk)),!
where n is an upper bound on the absolute value of any component of any in-
stance seen, and that no learning algorithm can have a mistake bound of less than
(1 — €)klnn/Inlnn for any € > 0. Thus we achieve nearly optimal learning perfor-
mance in a very strict model.2
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2 Abe [1] considers learning the harder class of semilinear sets. Using different parameters, he
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The algorithm we present keeps a basis for the “smallest” lattice containing all
positive examples seen so far and predicts on new instances according to whether they
are in this lattice or not. Although any reasonable basis can be used, our algorithm
keeps a special basis which facilitates prediction and updates while storing only a
small number of derived examples.

Our algorithm is similar to the algorithms of Kannan and Bachem [15] and Chou
and Collins [25] for converting an integer basis into a special integer basis called
a Hermite normal form (HNF). However, in our application we are not given all the
vectors (positive instances) in advance, so we must convert the HNF algorithm into an
on-line algorithm. Significant adaptations of the HNF algorithm and its analysis were
required for our application, since we want to keep a HNF-like basis while efficiently
processing new examples.

We also present several applications of the learning algorithm for £*. For exam-
ple, it can be used to learn rational lattices, cosets of lattices, and an on-line word
problem for abelian groups. Furthermore, we can use it to learn the subclass of com-
mutative regular languages accepted by DFAs whose single final state reaches the
start state. This subclass includes the class of “counter languages.” The last result
is surprising, because the counter languages are precisely the regular languages used
to prove that the minimum consistent DFA problem for regular languages cannot be
approximated within any polynomial [21] (see §6.5 for details). Finally, adapting the
results from a companion paper [14], our algorithm can be applied to efficiently learn
nested differences of all the above learnable classes.

2. Methods and outline. The setting we will be concerned with is that of on-
line learning. Formally, concepts are subsets of some instance space X from which
instances are drawn and a concept class is a subset of 2%, the power set over X. The
instances are labeled consistently with a fixed target concept ¢ which is in the concept
class C to be learned; i.e., an instance is labeled “+” if it lies in the target concept and
“—" otherwise. Labeled instances are called ezamples. An on-line learning algorithm
interactively participates in a series of trials. On each trial, the algorithm gets an
instance and predicts what its label is. After predicting, the on-line algorithm is
informed of the instance’s true label. A mistake is a trial where the on-line algorithm
makes an incorrect prediction. Between trials, the algorithm’s hypothesis is the subset
of the instance space where the algorithm predicts “+.”

2.1. Example: Learning vector subspaces. Imagine for the time being that
our instance space is an arbitrary vector space S, and that our concept class is the set
of all vector subspaces of S. A natural on-line learning algorithm for this problem,
shown to us by Haussler and inspired by a similar algorithm of Shvaytser [23] is
described in Fig. 1.

2.2. Algorithm V is a closure algorithm. The class of all subspaces of a
vector space is intersection-closed, and Algorithm V is in fact a special case of an al-
gorithm for learning intersection-closed concept classes called the “closure algorithm”
[20], [6], [14].

DEFINITION. A concept class is intersection-closed if for any finite set contained
in some concept, the intersection of all concepts containing the finite set is also a
concept in the class.

DEFINITION. Fix an intersection-closed concept class C on some instance space.
Let S be a set of positive examples of some concept from C. The closure of S with
respect to the concept class C (written CLOSURE(S) when C is understood) is the
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Algorithm V

Predict that the zero vector is positive and all other vectors are negative until a
mistake is made.

Whenever a mistake is made predicting the label of some instance, add that instance
to a hypothesized basis set for the target subspace.

In general, predict that any instance in the span of the hypothesized basis is positive,
and all other instances are negative.

F1G. 1. An algorithm for learning subspaces of a vector space.

intersection of all concepts in C containing the instances of S.

Thus the closure of a set of instances is the smallest concept containing all those
instances. The closure algorithm is a generic on-line learning algorithm whose hypoth-
esis is CLOSURE(POS) where POS is the set of positive examples seen so far. If the
instance space is a vector space, and the concept class is the set of all subspaces, then
the closure of a set of positive examples (vectors) is their span. Thus Algorithm V' is
a closure algorithm.

2.3. How good is closure algorithm V for learning subspaces? This pa-
per uses the mistake-based performance criteria of Littlestone [16] to measure the
performance of on-line learning algorithms. For any learning algorithm @ and target
concept ¢ define Mg(c) to be the maximum number of mistakes that @ makes on any
possible sequence of instances labeled according to ¢. For any nonempty concept class
C, define Mg(C) = maxcec Mg(c). Any bound on Mg(C) is called an (absolute)
mistake bound for algorithm @ applied to class C. The optimal mistake bound for
concept class C, opt(C), is the minimum over all learning algorithms @ of Mg(C).

One lower bound on the mistake bound of any learning algorithm for a concept
class is given by a very useful combinatorial parameter, the Vapnik—Chervonenkis
(VC) dimension [24].

DEFINITION. A set of instances S is shattered (by the concept class C) if for
each subset S’ C S, there is a concept ¢ € C that contains all of S’, but none of the
instances in S —S’. The Vapnik—Chervonenkis dimension of concept class C, denoted
by VCdim(C), is the cardinality of the largest set shattered by the concept class.

Littlestone [16] has given the following relationship between the VCdim(C') and
the optimal mistake bound.

THEOREM 2.1. For every concept class C, VCdim(C) < opt(C).

It is fairly easy to see that the closure algorithm V, has an absolute mistake
bound of the vector space dimension of S when learning subspaces of vector space
S. Each time a mistake is made, a new vector is added to the basis set Algorithm V'
maintains, and this can happen at most as many times as the vector space dimension
of 8. The VC dimension of this concept class is also the vector space dimension of S,
so in this case the closure algorithm is optimal.

2.4. The closure algorithm is not always good. Even if a concept class is
not intersection-closed, it can always be embedded in one that is. Thus the closure
algorithm applies to any concept class. However, there are a number of potential
problems:

1. There might not be an efficient algorithm for computing the closure of a set
of instances.

iy ¢
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2. Given a representation of the closure, it might be difficult to predict whether
a new instance is in the closure.
3. The closure algorithm might not have a good mistake bound.

For example, regular sets are intersection-closed. The closure of a finite set of
words equals the set itself and thus the closure algorithm makes a mistake on each
new positive instance. So here the first two problems do not arise, but the third
problem does. If we restrict the concept class to regular sets representable by DFAs
with at most s states, then the class is no longer intersection-closed.

Theorem 2.1 implies that any algorithm makes at least as many mistakes as the
VC dimension. However, even when the concept class is intersection-closed and has a
small VC dimension, the closure algorithm can still make a large number of mistakes.
For example, if the instance space is 0,---,n and the concepts are initial segments
(i-e., the intervals [0, 4] for 1 <4 < n), then the mistake bound of the closure algorithm
is n (consider increasing sequences of positive examples) even though the concept class
has VC dimension 1.

2.5. Applying the closure algorithm to integer lattices. As in the case
of vector spaces, the concept class £ of integer lattices of Z* is intersection-closed.
For any set S C Z*, the closure of S is the set of all k-tuples produced by summing
integer multiples of elements in S. Thus the generic closure algorithm can be used
to learn £*. However, lattices are significantly more complicated than vector spaces.
Any implementation of the closure algorithm must take into account the “holes” in
the lattice. For example, consider the lattice generated by the basis (2, 2) and (0,2).
Although the point (1,2) can be written as (2, 2) + 1(0,2), it is not in the lattice, as
it is not an integer linear combination of the basis vectors. Determining if a point is
in a lattice involves solving a set of linear Diophantine equations rather than inverting
a matrix.

We give a particular implementation of the closure algorithm, called Algorithm A,
which overcomes the three potential problems stated in the previous section.

1. Algorithm A (presented in the Appendix) efficiently computes closures with
respect to LF.

2. Algorithm A represents closures so that prediction can be done efficiently.

3. We prove a good mistake bound for the closure algorithm when applied to
lattices.

We show in §3 below that VCdim(LF) is infinite. Thus we know by Theorem 2.1
that the mistake bound of any algorithm must be infinite. To overcome this difficulty,
we restrict our attention to £¥(n), which we define to be the class £¥ where instances
are restricted to {—n,---,0,---,n}*. The concept class LF(n) is also intersection-
closed, as is the restriction of any intersection-closed class to some subset of its domain.
Theorem 3.3 below shows that VCdim(£¥(n)) is roughly kInn/Inlnn.

In this paper we prove that the absolute mistake bound of the closure algorithm
when learning £¥(n), Mcrosure(L*(n)), is at most k + |k log(nvk) J. This bound
is only a factor of roughly loglogn larger than the lower bound on the worst case
number of mistakes given by the VC dimension of £*(n).

Remark. We will not actually limit the size of the input to the closure algorithm;
we will simply be describing its performance as a function of the size of its inputs.

2.6. Our algorithm and its advantages. Algorithm A (fully described in the
Appendix) for learning £¥(n) is a particular implementation of the closure algorithm
since its hypothesis is always the closure of the positive examples seen so far. Thus
Algorithm A has the same mistake bound as the generic closure algorithm. Our
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algorithm, however, has some space and computational advantages over the obvious
implementations of the closure algorithm.

One obvious implementation of the closure algorithm saves all previous mistakes.
After each mistake it recomputes a lower triangular basis for the smallest lattice
containing the positive examples using the HNF algorithms of [15], [25]. Prediction
is done by back substitution in this lower triangular matrix. Note that the number
of mistakes can be at least as large as the VC dimension. As we shall see in §3, the
VC dimension is bounded below by approximately kIlnn/lnlnn, thus this obvious
implementation of the closure algorithm requires storing about klnn/Inlnn positive
examples.

In contrast, Algorithm A stores only the lower triangular basis (k derived positive
examples). Rather than recomputing the basis from scratch after each mistake, it is
updated on-line. The analysis of Algorithm A is nontrivial and is included in the
Appendix. One of the more difficult parts is bounding the number of bits required to
represent a derived example. The other contribution of this paper is the application
of Algorithm A to the problems described in §6.

2.7. Outline of the paper. In the following section we compute the VC di-
mension of £!(n), lattices in one dimension, and bound the VC dimension of £*(n).
In §4 we compute lower bounds on opt(L¥(n)), the minimum mistake bound any al-
gorithm can achieve when learning £¥(n). The closure algorithm’s mistake bound is
then analyzed in §5. At the end of the section, we show that a modified version of
the halving algorithm [5], [19], [4] has a nearly optimal mistake bound when learning
L(n). Section 6 shows how Algorithm A can be extended to learn rational lattices,
cosets of lattices, and a word problem for abelian groups. We conclude §6 by showing
how Algorithm A can be applied to learning a subclass of commutative regular lan-
guages. In §7 we discuss how Algorithm A can be used in conjunction with a master
algorithm for learning nested differences. Our master algorithm is a modification of
a similar algorithm presented in a companion paper [14]. It leads to efficient learning
algorithms for nested differences of any of the concept classes that we learn using
Algorithm A. A short summary of our results is given in the concluding section.
In the Appendix we formally state Algorithm A and prove bounds on its resource
requirements.

3. VC dimension of integer lattices. This section contains bounds on the
VC dimension of the concept class £*(n). The VC dimension provides a lower bound
on both the number of examples stored by the standard implementation of the closure
algorithm [14], and on the mistake bound of any learning algorithm.

We begin by exactly calculating the VC dimension of £!(n). Note that each
concept in £!(n) can be represented by an integer between 0 and n. The concept
represented by j contains the subset of —n,---,n whose members are multiples of j.

THEOREM 3.1. For alln > 1,

VCdim(£}(n)) = max{r |2-3-5---p, < 2n},

where p; is the ith prime.

We start with a definition we will need in our proof.

DEFINITION. Let S be any shattered set; let T C S. We call a concept ¢ such
that T =cN S a witness for T.

Proof. Let r be maximum such that P = [[,_, p; < 2n and d = VCdim(L(n)).
Now we show d > r by exhibiting set S with |[S| = r that is shattered: S is all
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products of all but one of the first r primes. In symbols, S = {P/p; |1 < i < r}.
Since P/p < n for all primes p, every element of S is in the instance space. For every
x = P/p; in S, define & = p;. It is easy to see that S is shattered: The witness for any
nonempty T' C S'is P/ [[,cr 2 = Hng Z. The witness for S is 1, and the witness for
the empty set is 0.

Hence d > r. Now we show that d < 7.

Let S = {z1,z2,--,z4} be a largest shattered set. First we argue that we may
assume that there is no s > 1 that divides all elements of S. If there is such an 8, we
can work instead with S’ = {z,/s,z2/s,---,z4/s} and divide each witness by s.

Call any subset of d — 1 elements of S a minor. Set S has d minors, S; through
S4 (where S; is the minor not containing z;). Let ¢; be a witness for S;.

Now no ¢; can be 1, since ¢; fz;. (Note that 0 ¢ S, because 0 is a positive example
of every concept and S is shattered.) Furthermore, ged(ti,t;) =1 for all 7 # j, since
ged(tiyt;) | o for every z € S, and we assumed that 1 is the only number with this
property. Thus it must be that for each ¢ there is a prime p; such that p; | ¢; but
pi ft; for any j # i.

Pick any odd z € S. Element z is in d — 1 minors of S so d —1 different ¢;’s divide
z, and z is a multiple of at least d — 1 different p;’s. Since z < n and 2 Yz, there are
d distinct primes (“2” plus the d — 1 primes dividing z) whose product is at most 2n,
thus d <. ]

In order to obtain numerical bounds on the VC dimension, we recall some facts
from number theory (see, e.g., Hardy and Wright [13, pp. 262-263)):

1. Let f(n) be the maximum number of consecutive primes such that Hzfz('{) pi <
n. Then for every € > 0, for all sufficiently large n we have

(1—¢€)lnn
Inlnn

(1) f(n) >
2. For all € > 0, for all sufficiently large m, we have

(14+€)lnm

@) log(r(m)) < *—-0 2

where 7(m) is the number of positive divisors of m.
COROLLARY 3.2. For all €, for sufficiently large n,

(I1-¢€)lnn

(I1+¢e)lnn
Inlnn ’

(1
< VCdim(£L'(n)) < nnn

Proof. The left inequality follows directly from Theorem 3.1 together with (1),
once we note that Inn/Inlnn < In2n/Inln 2n.

For the right inequality, we need to bound f(2n), where f is the function specified
in (1). Let m be a particular integer of the form m = 2-3-5---p,. Note that for such
an m we have log(7(m)) = f(m), and thus max,,<, log(r(m)) > f(n). Thus we have
an upper bound on f(n) in terms of the log of the number of divisors of any m < n,
and can apply (2) to get the desired result. 0

Remark. The preceding should make it clear that VCdim(£!(n)) can be made
arbitrarily large by choosing a suitable value for n, and thus that VCdim(L?) is
infinite.

We now get a lower bound on the VC dimension of the more general concept class

LE(n).
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THEOREM 3.3.

k+ |_k 1og(m/E)J > VCdim(£F(n)) > kVCdim(L(n)).

Proof. The first inequality is Corollary 5.3, proven later. The proof of the second
inequality is essentially a particular case of a bound of Dudley’s on the VC dimension
of cross products of those concept classes, among them L!(n), that have a certain
property he calls “being bordered” [9, Thm. 9.2.14].

Let S be the exhibited set of numbers shattered in the proof of Theorem 3.1. Let
U be the set of size k | S| consisting of all k-tuples of integers containing k—1 zeros and
one value from S. In this case witnesses are sets of k-tuples. To shatter any T C U,
first write T = Ty U To U - - - U Ty, where all elements of T; have nonzero values only
in position 4. For each T}, let t; be the number that is the witness for the set of all
nonzero components of all elements of T; (viewed as a concept from Ll(n) as in the
proof of Theorem 3.1). The witness for T is then the set of all integer combinations
of the k tuples that have t; in the ith position and 0’s elsewhere. 0

The lower bound in Theorem 3.3 is not tight. For example, VCdim(L'(2)) = 1,
but VCdim(£2(2)) = 3 since (1,2), (2,1), and (2,2) are shattered. Determining tight
bounds on VCdim(£*(n)) remains an open problem.

4. Lower bounds on learning LF(n). We know from Theorem 2.1 that
opt(L¥(n)) > VCdim(L*(n)), so from Theorem 3.3 together with Corollary 3.2, we
get a first lower bound for opt(L¥(n)).

COROLLARY 4.1. For all € > 0, for sufficiently large n,

Inn

k(n)) > k(1- .
opt(C(n) > k(1= 0) i
For sufficiently large n we can get a slightly better lower bound on opt(L'(n))
than VCdim(£!(n)) using an adversary argument.’
THEOREM 4.2.

opt(Ll(n)) > gg,)ézs: |log(e; + 1)
- =1

where m = [[;_, p§*.

Proof. Let m = [[p{* be a number less than or equal to n with a maximal
number of divisors. Our adversary begins by first giving m as a positive instance.
The adversary then makes the algorithm perform a search similar to binary search
for the value of each exponent as follows. The next group of instances begin with
p%el/ 2 [I;>oP§*, and continues with various exponents for p; (times [[;5,p5*). The
algorithm is forced to make |log(e; + 1)) mistakes since there are e; + T choices for
the exponent of p;. The following group of instances all have the exponent of p; set to
its correct value, the exponents of each p; for i > 3 set to e;, and force the algorithm
to search for the value of the exponent of p;. Next comes a group of instances forcing
the algorithm to search for the exponent of p3, and so on. O

3 To be precise, the adversary argument gives a stronger bound on opt(L¥(n)) for all n > 27 -33 .
5.7-11.--31 ~ 8.9 x 10'3. After this point, max;,<n Zf 1 Llog(e; +1)] is strictly greater than

max{r|2-3-5---pr < 2n}.

Hlfi |
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COROLLARY 4.3.
opt(Lk(n)) > k <m3xz [log(e; + 1) J)
=n i=1

where m = [[;_; p*.

Proof. The method used by the adversary in the proof of Theorem 4.2 can be easily
extended to the general case. There are k rounds; in the ith round the adversary gives
instances with all components but the ith set to 0. The values of the ith component
are chosen according to the adversary strategy in the proof of Theorem 4.2. 0

5. Mistake bounds. This subsection calculates Mcrosure (£¥(n)), the mistake
bound of the closure algorithm, and considers how close it is to opt(£*(n)). We will
bound M4(L*(n)) = Mcrosure(£L¥(n)) by noticing that every time the algorithm
makes a mistake, its new hypothesis is a strict superset of its old hypothesis. At the
end of the section we analyze a modified halving algorithm for the special case when
k=1.

Before stating the main theorem, we recall some facts about lattices. The stan-
dard definition of lattices in R* insists that the lattice be generated by k linearly
independent basis vectors. Our definition allows less than k basis vectors, thus our
lattices need not have full “rank.”

DEFINITION. The rank of lattice A C Z* is the minimum of the ranks of all vector
subspaces of R that contain A.

Thus any lattice of rank 7 can be written as {}_;_, 2;z; | z; € Z} for some r basis
vectors z; € VAR

It is easy to see that any integer lattice in Z* with rank r < k can be rotated
into R (i.e., the last k — r coordinates of every point in the rotated lattice are Zeros).
For every set of r basis vectors that determine the same lattice, the volume of the
r-dimensional parallelepiped that they generate is the same. Furthermore, rotating
the lattice into R" preserves volume. The volume of the parallelepiped is called the
determznant of the lattice [7]. We write det A to denote the determinant of lattice A.
If A C Z*, then det A = 0 only if A is O, the null lattice containing only the origin.
Otherw1se, det A is a positive integer.

THEOREM 5.1. Let O = Ag C Ay C Ay C -+ C Ay, be a sequence of distinct
lattices of Z* where each Ai, for1 <i<m, is the closure of A;—1 plus some z; €
(Z¥\ Ai—y) and every component of every x; has absolute value at most n. Then

m<k+ [k log(n\/E)J .

Proof. There are at most k values of i for which A;4; can have greater rank than
A;.

Consider now the case where A; and A;;; have the same rank. Since A; is a
sublattice of A;41, we have tdet A; 41 = det A; for some integer ¢ > 2 [7].* Thus every
time the rank of the lattice stays the same, we decrease the determinant by at least
a factor of 2.

On the other hand, when the rank of A;y; is greater than the rank of A;, then
the determinant can 1ncrease The first lattice, A1, is simply all integer multiples
of some particular z; € Z*, so its volume is ||z;|| < nv/k, where |lz|| denotes the

4 In geometry of numbers, ¢ is called the index of Ajin Ajyg.
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Euclidean norm of vector z. In general, when A; has rank 7 and A;41 has rank 7+ 1,
one set of basis vectors for A;y; will be z;,; together with the basis vectors of A;.
The (r + 1)-dimensional volume of the parallelepiped associated with A;y; is det A;
times the distance from z;,; to the hyperplane containing A;. Hence we have

det Aj41 < ||.’L'i+1|| det A;
< m/Edet A;.

Thus det A; < nvk, and the determinant is multiplied by no more than nVk in
at most k — 1 other steps. In all other steps the determinant is divided by at least 2,
and det A, > 1. Therefore m < k + |klog(nvk)]. O

COROLLARY 5.2. MCLQSURE(ﬁk(n)) <k+ I_k log(n\/E)J .

Comparing Corollary 5.2 to Corollary 4.1 we see that the mistake bound achieved
by the closure algorithm is indeed within a loglogn factor of optimal (assuming
n > k).

By giving example sequences for which the closure algorithm makes the maximum
number of mistakes we next show that for infinitely many choices of k£ and n, the
bounds of Theorem 5.1 and Corollary 5.2 are tight. These sequences are constructed
using Hadamard matrices. A Hadamard matriz is a square matrix where the entries
are 1 and the columns are orthogonal to each other. Using n times the columns of
a k x k Hadamard matrix, one can force the closure algorithm to make k mistakes
while the volume of the closure algorithm’s hypothesis grows to (\/W)k Let n be
a power of 2 and k a power of 4, so this volume is a power of 2. Consider now
a k x k lower-triangular matrix whose columns form a basis for the hypothesized
lattice. Since the determinant of this matrix is the product of the diagonal elements
and equals the volume of the lattice, each of the diagonal elements is a power of 2.
In particular, the element in the lower-right corner is some +2!. We can reduce this
element by a factor of two (without changing the other diagonal elements) by giving
the closure algorithm the positive example (0,0,---,0, 2i=1), After the corner element
is reduced to +1, we can start reducing the diagonal element on the second-to-last
row, and so on. The number of additional mistakes made by the closure algorithm is
log(Vkn2)* = klog(nvk). Thus for infinitely many choices of k and n, the bound of
Theorem 5.1 and Corollary 5.2 can be achieved.

Surprisingly, the mistake bound of the closure algorithm (together with Theo-
rem 2.1) gives us our tightest upper bound on the VC dimension of LE(n).

COROLLARY 5.3. VCdim(L¥(n)) < k + |klog(nVk)].

For the case k = 1, when instances are integers and concepts are sets of multiples,
instead of using Algorithm A, we can implement a modified version of the halving al-
gorithm [5], [19], [4]. This modified halving algorithm has a basically optimal mistake
bound in this case, but requires more computation than the closure algorithm. The
modified halving algorithm predicts “—” on every instance except 0 until it makes a
mistake on some instance m. The target concept is then known to be all multiples of
one of the divisors of m. The modified halving algorithm predicts so that each time it
makes a mistake, the number of possible target concepts is cut by at least half (i.e., it
predicts as the majority of the remaining target concepts do). Note that the modified
halving algorithm factors m, but that is one factorization for the whole run of the
algorithm, rather than one per mistake.

THEOREM 5.4. On instances of absolute value at most n, the modified halving
algorithm achieves a mistake bound of 1 + maxm<n [log7(m)] where T(m) is the
number of positive divisors of m.
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Proof. The algorithm makes one mistake on the first positive example it sees. Call
this example m. Without loss of generality, 0 < m < n. Once m has been seen, the
divisors of m are the only candidates for being the target concept, and the modified
halving algorithm cuts the number of candidates by at least half with every mistake.
Hence the mistake bound is, as claimed, 1 + maXm,<n |log 7(m)]. o

Note that the bound of the theorem can be rewritten as

8
1+ ﬁ‘%ﬁ Lz:; log(e; + l)J ,

where m = []/_; pf*. Thus the mistake bound of the modified halving algorithm is
Just slightly above Theorem 4.2’s lower bound of MaXm<n Y ;; [log(e; +1)].

6. Generalizations and applications of Algorithm A.

6.1. Arbitrary Euclidean domains. We need not limit ourselves to lattices of
VA Algorithm A can in fact learn submodules of a free D-module for any Euclidean
domain D. Careful examination of the algorithm shows that it does not rely on any
properties of Z not possessed by all Euclidean domains. This generalization gives us
learning algorithms for various exotic instance spaces such as k-tuples of Gaussian
integers. Also, if we take D to be a field, then Algorithm A becomes Algorithm V for
learning vector subspaces.

Unfortunately, however, the analysis of the mistake bound given in Theorem 5.1
no longer carries through. The difficulty is that we can no longer find a bound on any
quantity analogous to the determinant of a lattice when we go from one module to a
supermodule of higher rank.

6.2. Rational lattices. A slight modification of Algorithm A learns rational
lattices (where the basis vectors consist of rationals rather than integers). After the
derived examples are written with a common denominator, Algorithm A can be used
whenever a mistake is made. By the argument of Theorem 5.1, the modified Algorithm
A has a mistake bound of k plus the maximum number of times the determinant
(volume) of the hypothesized lattice can be divided by an integer greater than 1.
The determinant of the hypothesis is upper bounded by (VEn2)¥ where n is the
largest component seen by the algorithm and lower bounded by v, the determinant of
the target lattice. Therefore, the algorithm makes at most k + |k log(nvk) — logv]
mistakes. However, finding a common denominator and operating on the consequently
larger numerators makes the modified algorithm computationally more expensive than
Algorithm A applied to integer lattices.

6.3. Cosets of lattices and Algorithm A+. A simple trick allows us to gen-
eralize the class of concepts we can learn from lattices to arbitrary cosets of lattices
(viewing the lattice as an abelian group). The algorithm still responds “Negative”
until it makes a mistake on some positive instance z. We now run the basic Algo-
rithm A given in the Appendix, with the addition that z is subtracted from every
instance. For the remainder of the paper, we use “A*” to denote this modification of
Algorithm A. Note that the mistake bound of Algorithm A* when learning cosets of
L restricted to the domain {—n,---,0,- ., n}* is at most 1 plus the mistake bound
of Algorithm A on L*(2n) (the subtraction doubles the bounds on the size of the
components). This leads to a mistake bound of

1+k+ l_k log(2nV’k) J =142+ [k log(m/I?)J
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for Algorithm A+ which is k + 1 larger than Algorithm A’s mistake bound when
learning £*(n).

6.4. Abelian groups. Consider the following on-line word problem for groups
over a set of k generators:

Given a sequence of words using the generators and their inverses
as letters, predict for each word whether it is equal to some fixed
element with respect to a hidden target group over the generators.

The goal is to minimize the number of mistakes.

In the case of abelian groups, words over the generators and their inverses can
be represented as k-tuples. All words that are equal to some particular element
with respect to a hidden abelian group form the coset of an integer lattice of VA
Thus Algorithm A™ leads to an efficient solution to this learning problem for abelian
groups with a mistake bound of 1+ 2k + |klog(nVv’k)], where n is a bound on the
maximum word length of all instances seen. Since the word problem for general groups
is undecidable, it is unlikely that there is an efficient learning algorithm for nonabelian
groups. (See [10] for related work on permutation groups.)

6.5. Learning some commutative regular languages. We call a language L
over alphabet ¥ commutative if whenever some word w is in L, then all permutations
of w are also in L. When learning such languages we can represent words as k-tuples
of nonnegative integers, where k = |X|. Each component of the k-tuple equals the
number of times the corresponding letter occurs. We use 7 to denote this mapping
from words to tuples. If language L is commutative and m(w) = w(w’), then word
w’ € L if and only if w € L. Therefore learning a commutative language is similar to
learning a set of tuples that have nonnegative components.

For any subset S of Z*, we call the set of all tuples in S that have only nonnegative
components the nonnegative restriction of S. If we have a class of languages where,
for each language in the class, the image under 7 of the words in the language is
the nonnegative restriction of a coset of a lattice, then Algorithm At can be used
to efficiently learn that class of languages. Simply use m to convert each word into a
tuple and learn the tuples. The hypothesis of Algorithm A% may include tuples with
negative components, however, no mistakes will be made on these tuples as they are
not in the domain. The bulk of this subsection is devoted to showing that the images
under 7 of a certain subclass of commutative regular languages (defined below) are
the nonnegative restrictions of cosets of lattices, and thus can be efficiently learned
by Algorithm A+ with a mistake bound of 1 + 2|Z| + |[|Z|log(n/|X[)].°

Note that many commutative nonregular languages can also be learned using
Algorithm A. For example, the language over a, b containing all words with one more
a than b is commutative but not regular, and its image under 7 is the coset of a
lattice.

We now present several definitions concerning DFAs.

DEFINITION. A DFA is a 5-tuple, (Q, X, 4, qo, F') where g0 € Q, F C @, and § is
a partial function from Q x ¥ to Q.6 The elements of @ are called states; § is called
the transition function; qo is called the start state; and the states in F' are called

5 Abe has recently [2] discovered a learning algorithm (using different parameters) for arbitrary
commutative regular languages. The mistake bound of his algorithm grows exponentially in |X|.
6 We extend the transition function to words in the obvious way; if a € £ and w = aw’, then

6(‘1) w) = 6(6(Q7 a)? wl)°
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final states. The language accepted by this DFA is the set of all words w such that
6(qo,w) € F.

DEFINITION. A DFA M = (Q,%,6,qo, F) is closed if for each final state gr € F
there is some word wy such that 0(gf,ws) = qo.

DEFINITION. We say a DFA M = (Q, %, 6, g0, F) is canonical if it has the following
properties:

1. Every state can reach a final state.
2. If the language accepted by M is commutative, then we also require that for
all states ¢ and all words w and w’, §(g, ww') = 6(q, w'w).

Given a closed DFA, one can create (by deleting and merging states) a closed
canonical DFA that accepts the same language.

In the remainder of this section ¥ denotes the set of useful letters—those on which
the transition function is defined for some state, and k denotes the cardinality of X.

DEFINITION. A DFA M = (Q,%,6,qo, F) is invertible” if for each letter in 3,
every state in @ has both an incoming and an outgoing transition for that letter.

LEMMA 6.1. Any closed canonical DFA accepting a commutative regular language
18 tnvertible.

Proof. Let M = (Q, %, 8, g0, F) be a closed canonical DFA accepting a commuta-
tive language L. It suffices to show that every state in Q has at least one incoming
transition for every letter of ¥. Since each state has at most one outgoing transition
for every letter of X, this implies by the pigeonhole principle that for each state there
is exactly one incoming and exactly one outgoing transition for every letter.

Let a be an arbitrary letter in ¥ and g be an arbitrary state in Q. Since every state
reaches a final state in F' there is a word ujaus, that is accepted, i.e., §(go, urauy) =
g5 € F'. Let v be a word leading from the start state to ¢, and w be a word leading from
gy to the start state. Now ujauswv leads to q and since ujuswva is a permutation of
the latter word it leads to ¢ as well. Thus for the state qd = 6(qo, uruawv), we have
6(¢';a)=q. O

Remark. Note that exactly one incoming and one outgoing transition per letter
property does not hold if we remove the condition that the start state be reachable
from the final states. For instance, the canonical DFA for L, = {a} has no outgoing
transitions from its final state, even though L, is commutative.

With an invertible DFA, one can talk about the inverses of letters. For the
alphabet ¥ = {oy,---,0%} we define the inverse alphabet £~! to be the set of new
symbols {o7",---,0;}. The extended alphabet is £ U £~

DEFINITION. The extension of an invertible DFA M = (@,%,8,q0, F) is the DFA
M'=(Q,2UX™1,§,qo, F), where for each a € £ and ¢ € Q:

6’(% a) = 6(‘1, a)a
6'(g,a™") = r such that §(r,a) = q.

LEMMA 6.2. For any closed canonical DFA M accepting a commutative language
L, the language accepted by the extension of M is commutative.

7 Invertible DFAs with a single final state are zero-reversible. Angluin [3] presents an algorithm
for learning the languages accepted by zero-reversible DFAs (as well as for the more general class
of r-reversible DFAs). However, those algorithms learn in the limit and no bound was given on the
number of mistakes made.
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F1c. 2. Detail of proof of Lemma 6.2: §(q,ab) = 6(q,ba). Dashed lines indicate the deduced
transitions.

Proof. Let M = (Q,X,6,q0, F) be such a DFA. By Lemma 6.1, each state has
exactly one incoming and one outgoing transition for each letter in ¥. This means
that M’ is a DFA with transitions defined at each state for every letter in £ U 1.

Now we argue that the language accepted by M’ is commutative. It is sufficient
to show that for all ¢ € Q, 6'(g, ab) = §(g, ba) for arbitrary a,b € £ U X!, There are
three cases:

1. Both a,b € ¥. In this case, §' is the same as 6.

2. Both a,b € ©-'. Say a = 4! and b = b~!, where 4,b € &. Now 6'(g,ab)
must be some state 7 such that &(r, ba) = . Since M is a canonical machine
for a commutative language, 6(r, ab) = 6(r, ba) = q. Therefore 6§'(g,ba) = r
as well. .

3. Let the letter a € X, and the letter b € ¥~1. Again, say b= b=! where b € X.
By Lemma 6.1, every state has an entering and exiting transition for each
letter in ¥, and hence for every letter in ¥ =1 as well. Now let r = §’(q,b),
let s = §'(r,a), and let t = §'(q,a). §'(g,ba) is obviously s. Now we need to
calculate &'(g, ab) = &§'(t,b).

By the commutativity of &', §(r, ab) = é(r, ba). Now since r = §'(g,b), it
follows that 6(r,b) = g. Therefore t = §(r, ba) = 6(r,ab) = 6(s,b). Thus, as
desired, s = §'(t,b). (See Fig. 2.) 0

Remark. Again, the property that the start state is reachable from the final states
is crucial. Even if each state in a commutative canonical DFA has at most a single
incoming transition, the extension of the DFA may not be commutative. Consider
the two-state extended DFA for the commutative language {a}. The string aa™'a is
accepted by that DFA, but the string a~laa is not, because there is no transition out
of the start state for a=!.

When the extended DFA is commutative, it makes sense to talk about its behavior
given simply letter counts from the extended alphabet, rather than specific words. We
extend 7 as follows:

7(w) = ((number of o1 € w) — (number of o7 1),- -,
(number of o} € w) — (number of g ' € w)).

If a word w over the extended alphabet contains more occurrences of a letter

~1 than o;, then the ith component of 7(w) is negative. Note that when learning a
language L, neither the language nor the input include words with characters in ¥~ 1

Although the hypothesis of Algorithm A% may contain these words, they are not in
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the domain, and thus no mistakes will be made on them. The inverse alphabet is used
only as a tool in the proofs.

We will show that closed canonical DFAs that accept a commutative language
are essentially Cayley graphs (8], [11], [18].

DEFINITION. A directed multigraph (possibly with self-loops) where the edges
are labeled with elements from an alphabet ¥ is a Cayley graph if it has the following
properties:

1. For each letter in X, every vertex has exactly one incoming and one outgoing
edge labeled with that letter. This means that for each vertex, each word
over the extended alphabet ¥ U ! describes an undirected path starting
at that vertex (if the next letter in the word is some o € ¥ then follow the
edge labeled with o leaving the current vertex and if the next letter is some
01 € 71 go to the tail of the edge labeled with o entering the current
vertex).

2. If a word over the extended alphabet describes a closed path starting at some
vertex, then that word describes a closed path starting at every vertex in the
graph.

DFAs naturally define a directed graph: The states are the vertices and the
transitions correspond to directed edges.

LEMMA 6.3. The directed graph defined by a closed canonical DFA accepting a
commutative regular language is a Cayley graph.

Proof. Let M = (Q,X%,6,q0, F) be such a DFA and M’ = (Q,T U 2716 g0, F)
be the extension of M. The first property follows from the fact that M is invertible
(Lemma 6.1). For the proof of the second property, let state ¢ € @ and word w
over the extended alphabet be such that §'(¢,w) = q. We need to show that for all
states r € Q, §'(r,w) = r holds. By the definition of closed canonical DFAs there is
a string z € ¥*, such that §'(¢,z) = r. By Lemma 6.2, M’ is commutative and thus
r=6'(q,x) = §'(q, wzr) = §'(g, zw). We conclude that w also leads from r to r. ]

Cayley graphs over the alphabet ¥ correspond to groups over the generator set
¥ as follows [18]: The vertices are the elements of the group and after fixing a start
state (which becomes the neutral element) the words leading from the start state to
a particular vertex are the words over the generators and their inverses that equal
the group element corresponding to that vertex. Also, for each group generated by ¥
there is a Cayley graph based on the above correspondence [18].

This implies that any closed canonical DFA (with alphabet ¥) accepting a com-
mutative language corresponds to an abelian group generated by ¥. The language
accepted by the DFA consists of all words over ¥ that are equal to one of the group
elements whose corresponding state is a final state. The abelian group defines a lat-
tice and the language is the union of positive restrictions of cosets of that lattice, one
ccoset for each final state. This proves the main theorem of this section.

THEOREM 6.4. Let M be a DFA accepting a commutative language that is closed
and has a single final state. Then the image under 7 of the language accepted by M
is the positive restriction of a coset of a lattice.

COROLLARY 6.5. The class of commutative reqular languages accepted by closed
DFAs with one final state can be learned with a mistake bound of

1+2[2]+ [IEllog(n\/E)J ,

where ¥ is the alphabet and n is the length of the longest word seen.
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Remark. A set of tuples in ZF is the coset of a lattice if and only if whenever z, y,
and z are in the set, then the tuple z —y + 2 is also in the set. Unfortunately, it is not
true that a subset of N¥ is the nonnegative restriction of a lattice coset if and only if
whenever z, y, and z are in the subset, then z — y + z is either in the subset or has
a negative component. Consider the set {(1,1,1),(3,0,0),(0,3,0)}. Every z —y + 2z
combination of these three vectors either has a negative component or is already in the
set, but any lattice coset containing these three vectors also contains (0,0, 3). This is
the simplest counterexample since for k < 2 the above characterization of nonnegative
restrictions of cosets of lattices does hold.®

Corollary 6.5 is somewhat surprising in light of the results of Pitt and Warmuth
[21]. They identify a small subclass Cx of the closed commutative regular languages
over k letters, called counter languages, and show that for any k > 2 and any poly-
nomial Q, the problem: “given a set of examples (from some L € Ci accepted by a
DFA of s states), find a DFA or NFA with fewer than Q(s) states consistent with the
examples” is NP-hard [21].° Algorithm A* bypasses that hardness result by repre-
senting its hypothesis as a coset of a submodule rather than as a DFA. The resulting
algorithm for learning Cx makes at most 1+ 2k + |k log(nv/k)] mistakes, where n is
the length of the longest word seen.

We now define a number of subclasses of regular languages and give lower bounds
on their VC dimensions (and hence the number of mistakes made on them by any
learning algorithm). By this method we will show that the mistake bound of Corol-
lary 6.5 is within a loglog n factor of optimal.

DEFINITION. Let CCSg, be the class of commutative regular languages over
alphabets of size k accepted by closed DFAs having a single final state and restricted
words of length at most n (CCSg, is the class of Corollary 6.5). Let REGk,n and
CREGg,, be the class of all regular languages and all commutative regular languages,
respectively, over alphabets of size k restricted to words of length at most n.

LEMMA 6.6.

1. VCdim(CCSgpn) < 1+ k + |klog(nvk)| and for every € > 0 and for all
sufficiently large n, VCdim(CCSg,z) > k(1 — €)Inn/Inlnn.

2. VCdim(REG ) = ==L if k> 1 andn+1 if k= 1.

3. VCdim(CREGy,,) = (")

Proof. The upper bound of part 1 of Lemma 6.6 follows from the mistake bound
of the algorithm for learning CCS , given in Corollary 6.5. For the lower bound
first observe that the commutative languages over the single letter o accepted by
closed DFAs with a single final state are all languages of the form o(0?)*. Thus the
letter counts of these languages are the positive restrictions of shifted one-dimensional
lattices. By Corollary 3.2, one-dimensional lattices (ignoring possible shifts) restricted
to {-n,---,0,--+,n} have VC dimension larger than (1—¢)In n/Inlnn, for every e > 0
and for all sufficiently large n. The shattered set used to prove the lower bound for
one-dimensional lattices (proof of Theorem 3.1) consisted only of positive numbers.
Thus the same lower bound applies for CCS; 5.

Positive restrictions of one-dimensional lattices correspond to languages of the

8 This example corresponds to the language L containing aaa, bbb, and all permutations of abc.
Language L is commutative and zero-reversible [3] and thus Algorithm At is unable to learn all of
the commutative zero-reversible languages over three or more letters.

9 If k is an input to the problem then it is even NP-hard to produce a consistent NFA of super-
polynomial size: for any 0 < € < 1 it is NP-hard to find a consistent NFA of size s(1—€)loglog s
[22].
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form (¢7)*, i.e., the canonical DFAs accepting these languages have a single final
state that equals the start state. Let C denote the subclass of these languages over
one letter. To complete the proof of part 1 it suffices to show that VCdim(CCSy ) >
kVCdim(C). The proof of this is similar to the proof of Theorem 3.3.

Let S; be a set of words over the same letter shattered by C. Let S = Ule Sos)
where S;, is a copy of S; using o; as the single letter. Clearly, |S| = k|S;|. To show
that S is shattered by CCSg n, let T be an arbitrary subset of S and T; = T N o;*.
Now for each T; there is a DFA M; over the letter o; accepting T;. Using a standard
cross product construction it is easy to build from Mj,- -, M} a commutative DFA
over the alphabet o1, - -, 0} accepting T. Since for each M; the start state equals the
single final state, the same holds for the new DFA. Thus this DFA witnesses the fact
that T is in CCSy p.

For the proof of part 2 of Lemma 6.6, observe that the class REGy , shatters its
entire domain of all words of length at most n, since all subsets of the domain are in
the class. The size of the domain is Y- ; k*.

In the commutative case (part 3), the class CREGy , also shatters its entire
domain, which can be characterized by the set of all k-tuples of nonnegative integers
whose components sum to at most n. The size of this domain is (":k) 0

6.6. Discussion. Part 1 of Lemma 6.6 shows that the mistake bound of Algo-
rithm A*when used to learn CCSy,, is within a loglogn factor of optimal and parts
2 and 3 indicate that it is much harder to learn arbitrary regular languages or even
arbitrary commutative regular languages.

7. Nested differences. Using the results obtained in a companion paper [14],
we can apply Algorithm A in the construction of a number of master algorithms that
learn nested differences of lattices. Let DIFF(LF) be the class of concepts of the form
Ay~ (Az— (A3 —--—(Ap—1 — Ap))---), where each A; € L*. Thus each concept in
DIFF(L*) is a nested difference of lattices. We call p the depth of the concept. The
master algorithms learn the class DIFF(LF) with a mistake bound that is p times
the bound for single lattices. The master algorithms can be used to learn nested
differences of any intersection-closed class.!?

In this section we sketch only a single master algorithm for learning DIFF(C),
where C' is any intersection-closed class, and discuss how it can be adapted to learn
nested differences of those concept classes where Algorithm A (or its coset modifica-
tion) was applied. Thus this modified master algorithm can be used to learn nested
differences of cosets of lattices, nonhomogeneous vector spaces, commutative regular
languages accepted by DFAs whose single final state reaches the start state, etc. The
mistake bound, the efficiency, and (generally) the VC dimension grow linearly with
the depth of the nested difference. Thus the master algorithm efficiently learns these
classes with good mistake bounds.

The master algorithm!! for DIFF(C) keeps track of a finite sequence of closures.
The depth of the master algorithms hypothesis is the number of closures in the se-
quence. In [14], each closure is represented by a minimal set of instances that defines
the closure. When given a new instance z, the master predicts on = by the following
rule. Let the Ith closure be the first one that does not contain z. (If z is in all of

10 In [14] we also give master algorithms for the case when each concept A; is in the union of
several concept classes, each of which is intersection-closed, and for the case where the innermost
concept Ap is from a concept class that is not necessarily intersection-closed.

1 This is the “space efficient master algorithm” of [14] for learning DIFF(C).
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the closures, then let [ be 1 + the depth of the hypothesis.) If [ is even, then predict
“+” and if | is odd, predict “—.” When a mistake is made, = is added to the lth
closure. If [ is one larger than the depth of the current hypothesis, then the depth of
the hypothesis is increased by initializing the Ith closure to the closure of {z}.

The above algorithm applies to learning nested differences of lattices, since they
are intersection-closed. A different copy of Algorithm A can be used to efficiently
compute each closure of the sequence. It is shown in [14] that the mistake bound of
the master algorithm for learning concepts in DIFF(C) of depth p is at most p times
the mistake bound of the closure algorithm applied to C.

In §6.3 we gave a simple trick for learning cosets of lattices. A slight modification
of the master algorithm lets this trick be used at each position in the sequence. Let x;
be the first mistake made at each position ¢ in the sequence of closures. Example z;
is not directly used to form the ith closure, but rather is remembered as the shift at
position i. When predicting on a new instance z, | is now the first closure that does
not contain x — z;, the appropriately shifted example. (If £ — z; is in the ith closure
for all i between 1 and the depth of the hypothesis, then set [ to 1 + the depth of the
hypothesis.) When a mistake is made, the lth closure is adjusted to include z — x;.
If I is one larger than the depth of the hypothesis, then z; is set to z, i.e., z becomes
the shift of the new [th level and the depth of the hypothesis is increased.

This modified master algorithm learns nested differences of cosets of lattices,
abelian groups, and commutative regular languages accepted by DFAs whose single
final state reaches the start state. Its mistake bound is at most p times the mistake
bound for cosets of lattices (which is 1 + k larger than the bound for lattices), where
p is the depth of the target.

8. Conclusions. This paper contains a nontrivial algorithm that efficiently learns
the basic combinatorial class of integer lattices. The algorithm leads to efficient learn-
ing algorithms for a large number of other classes. The mistake bounds of this algo-
rithm, and most of its applications presented, are provably within roughly a loglogn
factor of general lower bounds derived from the VC dimension.

9. Appendix: An implementation of the closure algorithm. This ap-
pendix gives a precise description of Algorithm A for on-line learning of the concept
class L£* of integer lattices, and analyzes its running time. This algorithm is an imple-
mentation of the closure algorithm and was derived from the algorithm of Kannan and
Bachem [15] for putting a matrix in Hermite normal form (HNF). Basically, we keep
track of a basis for the smallest lattice containing all of the positive instances seen so
far. Whenever a mistake is made, a new basis for the smallest lattice containing both
the old lattice and the example on which the mistake was made must be found. Since
Algorithm A is an implementation of the closure algorithm, it never makes mistakes
on negative examples.

We first present the on-line Algorithm A and show that it computes the appro-
priate basis. In order to bound the size of the entries stored by Algorithm A, we
present a batch algorithm A’, which gets all of the examples at once. By an analysis
similar to that used for HNF algorithms [25], [15], we bound the size of entries stored
by A’. Finally, we argue that the values stored by Algorithm A after it has made its
ith mistake are a subset of the values stored by Algorithm A’. Therefore the bound
on the entries stored by Algorithm A’ carries over to Algorithm A.

Algorithm A keeps a k by k lower triangular matrix M whose column span rep-
resents the current hypothesis. Matrix M is initially all 0, and gradually has nonzero
columns added to it as positive examples are seen. Algorithm A will occasionally
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exchange rows in M. This operation corresponds to changing the order of the com-
ponents in examples. At any point, the permutation 7 reflects the row exchanges
made by A, and the necessary adjustment to the components of new examples. The
algorithm’s current hypothesis is all (permuted) examples in CLOSURE(M), the (in-
teger) column space of M. Algorithm A makes a mistake only when it gets a new
positive example z where 7(z) is not in the column space of M. When this happens,
Algorithm A updates M (and possibly 7) so that the column space contains 7(z) in
addition to the (possibly permuted) column space of the original matrix.

ALGORITHM A. Matrix M is initially the k x k matrix of 0’s. Permutation = is initialized to the
identity permutation on k elements. The variable z is initialized to 1 and contains the index of the
leftmost all-zero column in M. Throughout, m;; denotes the entry in the ith row and jth column of
M. The following procedure is executed for each instance z.

1. Permutation:
z := w(z). The component ordering of z now agrees with the row ordering in M.
2. Prediction:
Determine whether = can be written as an integer combination of the columns in the
matrix. (Since M is lower triangular, this can be done by back-substitution with O(k?2)
arithmetic operations.) If so, predict “Positive,” since it is certain that z is in the target
lattice. Otherwise, predict “Negative.” (If M is the zero matrix, then a positive prediction
is made only on the zero vector.)
3. Update:
If a mistake is made, then z replaces the all-zero column z in M.12
To return M to normal form, perform the following operation, rather similar to Gaussian
elimination:
(a) Fori:=1to z—1do: if m;, is not already 0, force it to 0 by the following:
i. Use the extended GCD algorithm to find a, b, and g such that am;; + bm;, =
g = ged(mis, miz).
ii. Simultaneously update columns i and z of M. Replace column i with a times
column i plus b times column 2z (and thus m;; becomes g) and replace column z
of M with m;;/g times column z minus m;,/g times the old value of column 3.
This “zeros out” the entry m;,.
(b) If column z now contains a nonzero entry then z is not linearly dependent on the
previous examples. Let j be the first row containing a nonzero entry in column z. If
this nonzero entry is negative, multiply column z by —1. Swap rows j and z in M,
and swap the zth and jth elements in n. Finally, set 2z to z + 1, as the number of
nonzero columns in M has increased.
(c) Call REDUCE(z—1, M) to ensure that each element to the left of a nonzero diagonal
element is less than that diagonal element.
4. Get a new example and go to step 1.

Procedure REDUCE(:, M) [25]. This procedure performs elementary column operations to
ensure that each below-diagonal element in both the first ¢ columns and the first 4 rows is nonnegative
and smaller than the (positive) diagonal element on the same row. The off-diagonal elements are
examined from column ¢ — 1 down to column 1, and from row ¢ + 1 to row i within each column c.

for c:=1i— 1 down to 1 do
forr:=c+1toido
if (mpre < 0) or (Mpe > myr) then
subtract |mre/mrr| times column r from column ¢
making 0 < mpe < Mpr
end if;
end for r;
end for ¢;
end REDUCE

12 If M already contains k nonzero columns, then a temporary column z = k+ 1 is created to hold
z. The temporary column is deleted after it is “zeroed out” by the following operations.
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Fic. 3. Pseudo-Hermite normal form.

Throughout, M is kept in a pseudo-Hermite normal form (pseudo-HNF).13

DEFINITION. A matrix M is a pseudo-Hermite normal form (see Fig. 3) of matrix
M, if both:

e M; = PM,U where P is a permutation matrix and U is unimodular. Thus
M; can be derived from M> by a series of row permutations and elementary
column operations [15].

e M; is a lower-triangular matrix where in every column with any nonzero entry,
the diagonal element is positive and each element to its left is nonnegative
and less than that diagonal element.

Although these properties are not needed until we prove that the entries of M
remain small, they are the motivation behind several of the operations in Algorithm A.

The strange order used in the REDUCE procedure (see Fig. 4) ensures that only
previously reduced elements are added to (or subtracted from) the elements which
have not yet been reduced (see [25]).

LEMMA 9.1. Algorithm A correctly implements the closure algorithm.

Proof. The row exchange in step 3(b) is reflected by an update to permutation
m, which is applied to all future examples. Thus it suffices to show that whenever a
prediction mistake is made, matrix M is updated so that its column span (ignoring
the row permutation) includes z and no points not in the column span of M U {z}.
This occurs when z is inserted into M at the beginning of the update step. It remains
to show that the other operations on M do not change its (permuted) column span.

The operations in procedure REDUCE consist of adding a multiple of one column
to another, and thus do not change the column span of M. Similarly, the multipli-
cation of a column by —1 in step 3(b) does not change the column span. Finally, we

13 The notion of pseudo-Hermite normal form is a generalization of Hermite normal form defined
for nonsingular (integer) matrices.
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Fi1G. 4. Illustration of the REDUCE procedure.

show that the simultaneous update in step 3(a)ii does not change the column span of
M.

It is easy to see that the new columns are in the lattice generated by the old
columns. Furthermore, the old column z is a times the new column z plus m,.,/g
times the new column 7, and the old column r is —b times the new column z plus
My /g times the new column 7. Therefore, the lattice generated by M is not changed
by the simultaneous updates. O

Although we now know that Algorithm A is correct, we have yet to show that it
is efficient. The time taken by the GCD computations performed by Algorithm A, as
well as the amount of space used by Algorithm A, depends on the size of the numbers
stored in the k x k matrix M. To bound these entries we study a slightly different
algorithm, A’. Algorithm A’ uses unimodular column operations and row swaps to
convert a t x t nonsingular matrix of padded examples, M’, into pseudo-Hermite
normal form. Using the techniques in [25], [15], we bound the entries of this matrix
after each column is processed. We will also show that every nonzero entry stored in
matrix M by Algorithm A is stored in M’ by Algorithm A’.

To create the matrix M’, fix the sequence of examples on which the closure
algorithm makes ¢ prediction mistakes and let e; be the example on which the closure
algorithm makes its ith mistake. (Thus e; will be the first nonzero example.) We
assume that ¢ > k and that the e;’s have full row rank,'4 and pad the examples out
to length ¢ as follows. First, for 1 < i < ¢, define 7(%) to be the row rank of the k x ¢
matrix with columns ey, - - -, e;. Note that ¢ —r(%) is the number of linearly dependent
columns in this matrix and is a nondecreasing function of ;. We now extend each
column e; to an € of length ¢ as follows. If i = 1 or 7(i) > r(i — 1), then vector €]
is e; followed by ¢t — k “0”s. If 7(i) = r(i — 1), then €] is e; followed by ¢ — 1 — 7(3)
“0”s, a single “1,” and another ¢t — k — i + (i) “0”s. The ith column in matrix M’ is
ei, for 1 < i < t. Since the e}’s are linearly independent and of length ¢, matrix M’,
consisting of e}, -, e}, is square and nonsingular. The last t — k rows of M’ are the
padding rows, and any column with a nonzero entry in a padding row is a padded
column (see Fig. 5).

14 Additional examples where the closure algorithm would make mistakes can be appended to
{e1,- - ,et}, making the assumptions true.
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Fic. 5. Initial structure of M'.

Like the Hermite normal form (HNF) algorithm of Kannan and Bachem [15], our
algorithm iteratively processes the columns from left to right, placing the principal
minors of M’ into (pseudo-) Hermite normal form.

That algorithm first preconditions the matrix using column permutations so that
all of the principle minors in the resulting matrix are nonsingular. In our application
we are given one example (column) at a time, so we replace the preconditioning step
by on-the-fly row swaps. These row swaps will ensure that after processing column
i, the i x i principal minor is nonsingular. Furthermore, we segregate the padding
rows and padded columns from the normal rows and columns. Whenever a ¢ X ¢
principal minor has been placed into pseudo-HNF, there will be some number, say ¢/,
of processed nonpadded columns. These nonpadded columns will be in columns one
through ¢/, and the processed padded columns will be in columns ¢’ + 1 through c.
Similarly, rows one through ¢’ will be nonpadding rows and rows ¢’ + 1 through ¢ will
be padding rows (see Fig. 6).

To maintain this organization, at each iteration the new column is moved left to
between columns ¢’ and ¢’ + 1. Similarly, some row below row ¢ — 1 will be moved up
between rows ¢’ and ¢’ + 1.

ALGORITHM A’. This algorithm modifies matriz M', placing it into pseudo-HNF.
o Initialize ¢’ to 0. Variable ¢’ counts the number of nonpadded columns which have been
processed.
e For c:=1 tot put the ¢ X ¢ minor into pseudo-HNF as follows:
1. For i := 1 to ¢’ do: if m], is not already 0, force it to 0 by the following:

(a) Use the extended GCD algorithm to find a, b, and g such that am}; + bm; =
9 = ged(m,m!,

(b) Make m!, zero: Simultaneously update columns ¢ and c of M'. Replace column %
with a times column i plus b times column ¢ (and thus m}; becomes g) and
replace column ¢ of M to m};/g times column ¢ minus m;,/g times the old
value of column i. This “zeros out” the entry mgc.

2. If m%, = 0 then permute rows to make it nonzero. Let m,.. be the topmost nonzero
entry in column ¢ below row ¢. Move row r to row c, shifting each row from row

c through row r — 1 down one position. The column c¢ is a padded column exactly
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Fi1G. 6. Structure of M' after c iterations.

whenr > k+c—c'.
3. If m/, < 0 then multiply column ¢ by —1.
4. Permute the rows and columns to segregate the padding rows and padded column.
(See Fig. 7.)
(a) Move column c to column ¢’ +1, shifting columns ¢’ + 1 through ¢—1 one column
to the right.
(b) Move row c to row ¢’ + 1 shifting rows ¢’ + 1 through ¢ — 1 one row down.
5. If column ¢ was a nonpadded column then ¢’ := ¢’ + 1.
6. Call REDUCE(c, M’) to ensure that the ¢x ¢ principal minor of M’ is in pseudo- HNF.

Note that Algorithm A’ uses only columns 1 through ¢ while processing the first c
columns and placing the ¢ X ¢ principal minor into pseudo-HNF. Although the simul-
taneous transformations made in step 1(b) can affect the values of padding rows, we
adopt the convention that this step never changes the padded/nonpadded status of a
column. Also, the padded/nonpadded status of columns and the padding/nonpadding
status of rows is carried along with them when rows and columns are permuted.

The simultaneous transformations of Step 1(b) are unimodular since the matrix

a _m{rc/g
b m./g

has determinant am!.,. /g +bm.../g = 1. Note also that this transformation is identical
to the one used in Algorithm A.
In some sense, the padded columns are used in only one iteration of the “for ¢”
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Fi1G. 7. Illustration of step 4.

loop of Algorithm A’. A padded column is created from an example that is a linear
combination of the previous examples. Therefore, immediately after a padded column
has been processed its only nonzero entries will be in padding rows.

It is not obvious that a processed padded column will always have zero entries in
nonpadding rows. The padded column might be spoiled during step 1 while processing
a future column, or during the REDUCE procedure if a nonpadded column is used
to reduce one of its entries.

LEMMA 9.2. A processed padded column always has a 0 in every nonpadding row.

Proof. The proof is by induction on the number of processed padded columns.
Let column c¢ be the first padded column in the initial matrix M’. The lemma holds
trivially until iteration ¢, when this padded column is processed. Column ¢ was
created from example e., which can be expressed as a linear combination of the
previous examples. Columns 1 through ¢ — 1 represent a basis for the vector space
generated by the previous examples, so all entries in column ¢ on normal rows will be
“zeroed out” during step 1. Thereafter, the row and column permutations guarantee
that column c remains the last column in the pseudo-HNF principal minor. The only
further references to column c are shifting it right a column, permuting its entries in
steps 2 and 4(b), and in the procedure REDUCE where it is subtracted from other
columns. None of these operations can create a nonzero entry in a nonpadding row.

Let there be c—c’ > 0 processed padded columns before iteration ¢ where column
cis a padded column. The nonpadding rows of the first ¢’ columns represent a basis for
the vector space generated by the first ¢ examples. During step 1, all entries in column
¢ representing components of e, will be zeroed out. The only other (nonpermutation)
modifications to the column occur during the REDUCE procedure, where multiples
of other padded columns may be subtracted from it. However, by the inductive
hypothesis, the nonzero entries of these other columns occur only in padded rows.
Therefore, the column’s entries on nonpadding rows remain 0. o

COROLLARY 9.3. Entries in a nonpadding row are not affected by adding multiples
of padded columns during the REDUCE procedure.

LEMMA 9.4. At the end of iteration c, the first ¢ columns of M' are converted to
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pseudo-HNF form.

Proof. Since the algorithm performs only row permutations and unimodular col-
umn operations, the first condition for a pseudo-HNF form is met. The algorithm
ensures that the diagonal elements are positive (step 3), and the REDUCE proce-
dure ensures that the entries to the left of the diagonal have the proper values. The
remainder follows by induction on c.

If the newly processed column is a nonpadded column then, after step one, the
first ¢ — 1 entries of ¢ are 0. Each padding row is either in its original position or is
above row c¢, so the first nonzero entry in column c is in a nonpadding row. Thus after
step 2, row c will be a nonpadding row. By Lemma 9.2 that row contains a 0 in each
processed padded column. Therefore, if the first ¢ — 1 columns were lower-triangular
before step 4, then the first ¢ columns are lower-triangular after that step.

If the newly processed column is a padded column, then at step 2 the only nonzero
element in column ¢ below row c is some multiple!® of the original “1” in the padded
example for that column. Before iteration ¢, this column was the only column con-
taining a nonzero entry on that padding row, which becomes row c after step 2. Thus,
the previously processed padded columns still have zero entries in the (new) row c,
and if the first ¢ — 1 columns were lower-triangular before step 4, then the first ¢
columns are lower-triangular after that step. O

LEMMA 9.5. Let M* be the modified matriz M’ after i iterations of the main loop
of Algorithm A'. The entries of M* are no larger than tnF+'k*/2 for 1 <i<t.

Proof. Algorithm A’ ensures that, at the end of iteration 4, the ¢ X ¢ principal
minor of M* is a nonsingular, lower-triangular matrix with each entry between 0
and the value of the diagonal element to its right. Furthermore, each M* is formed
from M’ by a series of row permutations and unimodular column operations, thus
M?® = PiM'U*. Since the column operations involve only the first ¢ columns,

i_| Ui 0
=[5

where U; i is an ¢ x 4 unimodular matrix. Let M} and M] denote the i x ¢ principal
minors of M and PM’, respectively. Thus, M} = M]U; and!6

_1qi _ adj Mj
Ui = (M))™'M] = det M
2

Let adjmax(M ) be the largest absolute value of any entry in adj M/. Now when u;
and my, are the entries in row j and column % of U; and M, respectlvely,

adjmax(M]
Iu]k| < Z' lk| |Jdet MI )

The sum of the entries in any column contains at most one diagonal element.
Since M} is in Hermite normal form, every entry is nonnegative and each nondiagonal
entry is less than the diagonal entry to its right. Therefore,

%
Y Imiil < (miy = 1) + (mby — 1) + -+ (mf; = 1) +1
=1
15 In step 1 column c is repeatedly replaced by m' ;/g times column c plus a multiple of some

already processed column.
16 adj M represents the adjoint of M.
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%
< [ mi = det M* = det(M;U;) = | det M|,
=1

and so for each u;y,
lujk| < adjmax(M;).

Every element of adj M is the determinant of an (i — 1) x (¢ — 1) minor of M;.
Recall that the last ¢t — k rows of M’ each contain a single 1 and ¢ — 1 0’s. Therefore,
by cofactor expansion, the determinant of any large submatrix of M’ is at most the
determinant of a k x k matrix whose columns are in {e;,---,e;}. Note that each
entry in this smaller matrix is at most n, so its determinant contains k! terms each
at most n*. Applying Hadamard’s inequality (see, for example, [12]) shows that the
determinant of any k x k matrix with entries bounded by n, and thus each ujk, has
absolute value at most k*/2n*.

As M = PiM'U?, each entry of M’ has absolute value at most n, and each entry
of U has absolute value at most k¥/2n¥; the absolute value of each entry of M* is at
most tnk*/2nk. 0

In particular, t < k + klog(n\/ic_), the mistake bound of the closure algorithm.
This gives us the following corollary.

COROLLARY 9.6. After each iteration of the “for c¢” loop of Algorithm A’, the
largest entry in M® is at most k¥/2n*+1(k + klog(nV’k)), which can be written in
O (klog(nk)) bits.

Using the above, we bound the size of numbers during iterations of Algorithm A

LEMMA 9.7. During the computation of Algorithm A’, each entry of M' requires
at most O (klog®(nk)) bits.

Proof. The sizes of entries are changed only in the REDUCE procedure and
step 1. Let m = k*/2n*¥t1(k + klog(nvk)) be a bound on the largest absolute value
of an entry in M’ at the beginning of step 1. Each iteration of this step increases the
entries in column ¢ by a factor of at most 2m, as both a and b found in Step 1(a) are
at most m [15]. Since there are at most k iterations, the largest entry in column c at
the end of step 1 is at most m(2m)*. The entries in the other columns are bounded
by the same expression.

The REDUCE procedure can also produce large intermediate results. Consider
what happens as we reduce some column. The entries in the previously reduced
columns are bounded by m. Each time an entry in the column is reduced, the unre-
duced entries in that column are increased by at most m times the value of the entry
being reduced (reduced entries are never greater than m). Since there are ¢ entries in
each column that are originally bounded by m(2m)*, the entries of the column never
get larger than m(2m)*(1 + m)?.

The maximum number of bits needed to represent an entry is roughly ¢log(m +
1)+k+ (k+1)log m. Plugging in the bounds on m and t gives us that O (k2 log?(nk))
bits suffice to represent each entry (note that the hidden constants are small). 0

Note that one of the key contributions of [25] is the clever order used by the
REDUCE procedure. This lets them show that the maximum entry size during an
iteration of their HNF algorithm is within a constant factor of the between-iteration
bound. It appears likely that their techniques could achieve better bounds on the
maximum entry size for Algorithm A’ than the simple ideas used in the proof of
Lemma 9.7.

We now formally state the relationship between Algorithm A and Algorithm A’.
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LEMMA 9.8. After Algorithm A has processed the cth mistake and Algorithm A’
has processed the first c columns of M', each nonzero entry in M also appears in M'.

Proof. It is easy to show by induction on ¢ that the first ¢ columns of M’ are
identical to the nonzero columns in M after the padded columns and padding rows
are deleted. O

This allows us to apply Corollary 9.6 and Lemma 9.7 to Algorithm A.

THEOREM 9.9. Using the uniform!” cost measure, Algorithm A requires time
O (k?) to make a prediction, and time O (k® + klog(nk)) to perform an update, where
n 1is the largest absolute value of any component of any instance seen.

( Proof. Prediction time: The prediction time is just the time for back substitution,
0 (k).

Update time: In step 3(a), updating matrix M can in general require k extended
GCD operations to be performed, and the running time for extended GCD is propor-
tional to the logarithm of the smaller of the two numbers. In our case, one of the two
numbers will always be a diagonal element stored between iterations. By Lemma 9.5,
the saved diagonal elements are at most (k + k log(nvk))k*/2n*+1 and each extended
GCD computation can be done in O (klog(kn)) time.

Finally, each iteration of the nested for loop of procedure REDUCE requires O(k)
subtractions, so this step takes time O(k®) altogether. O
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