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1. Introduction

We consider the following problem. Given finite sets POS and NEG of words
over a finite alphabet, can a small deterministic finite automaton (DFA) be
constructed that is consistent with POS and NEG, that is, accepts all words of
POS and rejects all words of NEG? It is known that the problem of determin-
ing the smallest such consistent DFA for a given sample is NP-hard [11], and
thus is unlikely to be solvable with a polynomial-time algorithm [10]. It is
natural to ask whether an approximately small DFA can be found: Is there an
efficient algorithm, that for some reasonably slowly growing function f, can
produce (or just determine the existence of) a consistent DFA of size f(opt),
where opt is the size of the smallest consistent DFA?

We answer this question negatively by proving that, assuming P # NP, there
does not exist a polynomial-time algorithm A and constant & such that on
input of any finite sets of strings POS and NEG (over alphabet {0,1}*), 4
outputs a nondeterministic finite automaton (NFA) that is consistent with POS
and NEG, and has less than opt* states, where opz is the minimum number of
states of any consistent DFA.

It follows that unless P = NP, no element of any of the naturally used
representations of the regular sets (DFAs, NFAs, regular expressions, or
regular grammars) can always be found that is of size at most polynomially
larger than the smallest DFA consistent with a sample over a two-letter
alphabet. This significantly improves the lower bound on approximability due
to Li and Vazirani [18], which shows that a constant factor of ¢ cannot be
achieved.

The same techniques are used to also show that the linear grammar consis-
tency problem cannot be approximated within any polynomial factor unless
P = NP. More specifically, given two finite sets POS and NEG consistent with
some linear grammar G, it is NP-hard to find a linear grammar G’ that
generates all of the strings of POS, none of the strings of NEG, and has size
bounded by some polynomial in the size of G.

An interesting extension of our results is that when the alphabet is allowed
to vary (i.e., when the alphabet is considered as part of the problem specifica-
tion), then unless P = NP, no polynomial-time approximation algorithm can
determine if there exists a consistent DFA or NFA with at most op¢!! ~€"egloe &
states, or a consistent regular grammar or regular expression with at most
opt'! ~eMeglog ot qymbols, where opt is the number of states of the minimum
state consistent DFA, and e is any positive constant.

1.1. OTHER NONAPPROXIMABILITY RESULTS. There seem to be few natu-
rally arising optimization problems for which nonapproximability results have
been shown. Indeed, the dearth of such results is one of the motivations given
in a number of recent papers for the investigation of approximation preserving
reductions {17, 20, 21]. The traveling salesperson problem (TSP) is perhaps
the most notable optimization problem that cannot be approximated (in the
absence of other constraints, e.g., triangle inequality) [10] assuming P # NP.
However, the reason that TSP is not approximable is that it is essentially the
weighted version of the NP-complete Hamiltonian cycle problem. Although
one may similarly define optimization problems based on other NP-complete
decision problems in such a way that the optimization problem cannot be
approximated at all (or at least not very well), such results are typically
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uninteresting for two reasons—the problems defined usually are not natural,
and the resulting proofs are trivial. In contrast, the minimum consistent DFA
problem discussed here is a natural problem, and the nonapproximability result
is not obtained by simply adding weights to an NP-complete decision problem.

Besides TSP, among the seemingly few existing negative approximability
results, two others are well known, but the bounds are much weaker than those
shown for TSP and the result given here for DFAs. For minimum graph
coloring [9], it was shown that (unless P = NP) no polynomial-time approxima-
tion algorithm exists guaranteeing a constant factor approximation strictly
smaller than twice optimal. Also, for maximum independent set (equivalently,
maximum clique), it has been shown that if some constant factor approxima-
tion can be achieved, then any constant factor approximation can be achieved

[10].

1.2, Tue MINIMUM CONsISTENT DFA PrROBLEM. Gold [11] proved that the
problem of finding a smallest consistent DFA is NP-hard. D. Angluin (private
communication) showed that it is NP-hard to determine whether there exists a
two-state DFA consistent with given data. Trakhtenbrot and Barzdin [24] gave
a polynomial-time algorithm for finding a smallest consistent DFA in the case
where the sets POS and NEG together consist of all strings up to a given
length. Angluin [S] extended Gold’s result, and showed that if even some small
fraction e of strings up to a given length were missing from POS U NEG, then
the problem is again NP-hard, and also showed that the problem of finding the
smallest regular expression consistent with a finite sample is NP-hard. Angluin
[2] left as an open question whether an approximately small DFA could be
found.

In 1987, Li and Vazirani [18] gave the first nonapproximability result for the
minimum consistent DFA problem, showing that if P # NP, no polynomial-time
algorithm can find a consistent NFA of size smaller than ¢ times the size of a
smallest consistent DFA. Our main theorem (Theorem 6.1) strengthens this
result by replacing the constant factor § with any polynomial function of
optimal.

Finally, concurrent with this research, Kearns and Valiant give even stronger
nonapproximability results for the minimum consistent DFA problem than the
one presented here [16]. However, their results rely on cryptographic assump-
tions (e.g., that factoring Blum integers is intractable), whereas our results
assume only that P # NP. We present a discussion of their work, and its
relationship to ours, in Section 9.

It is important to note the distinction between the minimum consistent DFA
problem, and the DFA state minimization problem. In the latter problem, the
input is a DFA and the goal is to produce a DFA accepting the same language
with a minimum number of states; this problem has well-known polynomial-time
algorithms [15]. An obvious first attempt at solving the minimum consistent
DFA problem is to create a DFA that accepts exactly the (finite) language POS
(and no other strings), and then use the DFA state minimization algorithm to
obtain a minimum state DFA for the language POS. However, it is possible
that a much smaller DFA exists that accepts a superset of POS and no string
of NEG. The minimum consistent DFA problem addresses the complexity of
finding a regular language that separates POS from NEG and for which there
is a small DFA.
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1.3. IMPLICATIONS FOR LEARNING DFAs. Although our results mainly have
significance in the context of combinatorial optimization, our original moti-
vation was in the study of the learnability of DFAs from randomly generated
examples in the distribution independent model of learning (now called “pac™-
learning) introduced by Valiant [25]. By results from [6], if in fact there was a
polynomial-time algorithm that could, given two finite sets POS and NEG,
produce a consistent DFA of size at most polynomially larger than the smallest
consistent DFA. then DFAs would be pac-learnable. This is only a sufficient
condition for learnability; consequently our results do not show that DFAs are
not pac-learnable.! However, our results do show that any efficient algorithm
for learning DFAs would have to produce very large hypotheses (unless
P = NP). Further discussion of the learnability of DFAs, the problem of
finding a small consistent DFA, and the relationship between our work and
recent work of Kearns and Valiant [16] (showing nonlearnability of DFAs
based on cryptographic assumptions) is given in Section 9.

The rest of this paper is organized as follows: In Section 2, we introduce
some basic definitions and techniques to be used throughout the paper. In
Section 3, it is proved that no polynomial-time algorithm can guarantee a
quadratic approximation for the minimum consistent DFA problem (unless
P = NP). One of the reasons for including the quadratic case in the paper is
that it gives some intuition for the polynomial nonapproximability results that
follow in Section 4. We show that (unless P = NP) there is no polynomial-time
algorithm for finding a consistent NFA of size polynomially larger than the size
of the smallest consistent DFA (Theorem 4.1). In Section 5, we strengthen
these results and show that an approximation of opt!! ™2t cannot be
guaranteed in polynomial-time for any positive constant e unless P = NP. In
these theorems the alphabet size of the DFA may vary with the problem
instance. In Section 6 we turn our attention to the problem of finding small
consistent DFAs over the two letter alphabet {0, 1}, and again prove that no
polynomial-time approximation within a polynomial function of optimal is
possible even in this simpler context (Theorem 6.1). Section 7 extends Theorem
6.1 to the cases when the approximation algorithm is allowed to output a
regular expression or a regular grammar. Similar techniques are applied in
Section 8 to show that the linear grammar consistency problem has no
polynomial-time approximation algorithm. In Section 9, we discuss the relation-
ship between approximability and learnability, noting different ways of measur-
ing approximation performance, and relating this work to the recent results of
[16]. It turns out that, with respect to certain performance measures, the proof
for the quadratic case leads to a stronger nonapproximability result than the

proof for the polynomial case. Finally, we conclude in Section 10 with some
general comments and open problems.

2. Definitions

2.1. REPRESENTATIONS OF REGULAR LANGUAGES. In this section, we recall
the standard definitions and basic facts about regular and linear languages.
The reader unfamiliar with this material should consult [15] for further

]Angluin [4] has shown that DFAs are not learnable if the learner may only ask equivalence
quertes instead of receiving randomly generated examples. This result has no bearing on the
optimization problem considered 1n this paper.
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terminology and definitions. 3 is a finite alphabet, and >* denotes all words
(or strings) of finite length formed from the symbols of 3. If w € 2%, then |w|
denotes the number of symbols of w, and is called the length of w. The empty
word A is the unique word with length 0 in 3*.

Definition 2.1. A deterministic finite automaton (DFA) A is a S-tuple
(0.2, 8,s,,,F), where Q is a finite set of states, 2 is a finite alphabet,
s, € Q is the initial state, 8§ is the transition function that maps Q X % to Q,
and F < Q is the set of accepting or final states. A nondeterministic finite
automaton is a 5-tuple with the same parameters except that the transition
function maps Q X (3 U {A}) to 29, the power set of Q.

The size of A, denoted by | A}, is the number of states of 4. We use the
standard graph representation of an NFA in which the vertices are the states of
the NFA, and in which there is a directed edge (or fransition) labeled with
o € Y U {A from state s to state ¢ if ¢t € 8(s, o). Note that some edges may
be labeled with A. DFAs may be viewed as NFAs with the additional restriction
that there are no A-transitions, and for each state s € Q and letter a € .,
there is exactly one edge leaving s which is labeled with a.

A string w € ¥ is accepted by the NFA (DFA) A iff there is a directed path
leading from the initial state to some accepting state such that the concatena-
tion of the symbols of the edges of the path forms the string w. (We say that
the path is “labeled with” w.)

It is easy to show that for every NFA A, an NFA A4’ can be found in
polynomial-time such that A’ accepts the same language as A4, A’ has the
same number of states as 4, and A’ has no A-transitions [15]. Without loss of
generality, we assume for the remainder of the paper that all NFAs have no A
transitions.

For any states s, ¢t in Q, and any string w, we say w leads from s to ¢ if there
is a path labeled with w from s to ¢ (In the case of a DFA, such a path is
always unique). We also write w leads to t iff w leads from s, to 7.

A positive example of A is a word accepted by 4 and a negative example is a
word in X% that is not accepted by A. The language accepted by A, denoted by
I1{A), is the set of all words accepted by A. The class of languages accepted
by DFAs is identical to the class of languages accepted by NFAs and is called
the class of regular languages. The name “regular” is derived from a third
standard definition of regular languages in terms of regular expressions, defined
below. For any regular expression r, |r| denotes the size of the expression.

Definition 2.2. Let S be a finite alphabet. The regular expressions over 2.,
the size measure of regular expressions, and the languages that regular expressions
denote are defined recursively as follows:

(1) & is a regular expression of size I denoting the empty language.

(2) For each a € 3 U {A}, the string a is a regular expression of size 1
denoting the language {a}.

(3) If r and s are regular expressions denoting the languages R and S,
respectively, then (r + s) and (rs) are regular expressions of size |r| + [s| + 1
denoting the languages R U § and RS, respectively, and (r*) is a regular
expression of size |r| + 1 denoting the language R*.
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LEMMA 2.3.  For any regular expression r, there is an NFA A with at most 2|r|
states such that L( A) is the language denoted by r.

Lemma 2.3 is proven constructively by induction on the depth of recursion in
the definition of the expression r. The straightforward construction [15] makes
use of A-transitions, but as discussed above, these may be easily eliminated.

Another standard way to define languages is in terms of grammars. This
leads to a fourth mechanism for defining regular languages.

Definition 2.4. A context free grammar G is a 4-tuple (A, 3, P, S). A and
Y, are disjoint finite sets of nonterminals and terminals, respectively. P is a fin-
ite set of productions; a production is of the form A — « and has size
| Aaf, where A is a nonterminal and « € (A U X)*. Finally, S is a special
nonterminal called the start symbol.

A context free grammar is a linear grammar if all productions are of the form
A — uBvor A — w,where u, v,w € X* and B € A. A linear grammar is right
linear (left linear) if v is always A (respectively, u is always A). A regular
grammar is either a right linear or a left linear grammar.

We associate a language with a context free grammar G = (A, 2, P, S). If
the production 4 — B isin P and « and y are in (A U X)*, then aAy derives
a By, written aAy = «aBy. Note that “= " defines a relation on words of
(AU Z)* Let = denote the reflexive and transitive closure of = . The
language generated by G (denoted by L(G)) is given by L(G) = {w :w & %* and
S = wh

It is easy to see that regular grammars generate exactly the class of regular
languages. Let the size |G| of a grammar G be the sum of the sizes of all of the
productions.

Lemma 2.5, For any regular grammar G, there is an NFA A such that
[A| < 2|G| and 1L A) = L{G).

PROOF. The proof is implicit in [15], and is sketched here for completeness.
We first show how to construct an equivalent NFA A of size at most 2|G| from
a right linear grammar (. Let the state/vertex set of 4 be the set of
nonterminals that appear in some production of G. For any production
N, = uN,, insert a directed edge labeled with u from N, to N,. Add a special
final state F to the state /vertex set and for any productlon N —>w add a
directed edge from state N to state F that is labeled with w. Convert the
constructed graph into an NFA by replacing any edge that is labeled with a
word of length r larger than | by a chain of » edges, each labeled with one
letter. The chains are not allowed to have vertices in common. It is easy to see
that the constructed NFA has at most 2|G| states, exactly one of which is final.

If G is left lincar, then there is a corresponding right linear grammar of the
same size that accepts L(G)*, the language obtained by reversing all words of
L(G). Let A be an NFA of size at most 2|G| and with one final state that
accepts L{(G)*. By swapping the initial and the final state, and reversing all of
the transitions, an NFA of the same size that accepts L(G) is obtained. [J

Define a linear grammar to be #iin if the number of symbols on the right
side of cach production is at most two. The following proposition is easily
proved:

PROPOSITION 2.6. For any linear grammar G, there is a thin linear grammar
G’ such that |G’| < 3|G| and I{G") = L(G).
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2.2. THE CONSISTENCY PROBLEM. We give some of the basic ideas and
definitions that are used throughout the paper. A set of representations
(encodings) of a class of languages %" is a set .% such that each 4 €. denotes
a language L(A) €., and for each language L €. there is at least one
element of .o/ that denotes L. Let L{w) = {L(A): A €7} (thus, if & is a set
of representations for .%, then L(&/) =.%). For example, the set of determinis-
tic finite automata (DFAs) is a set of representations for the regular languages,
as are NFAs, regular grammars, and regular expressions. We associate a size
measure with each set of representations. The size (a nonnegative integer) of
any element A €. is denoted by | A|. The size measures for each of the sets
of representations discussed in this section have already been defined.

Definition 2.7. A representation A is consistent with two sets of finite
strings POS and NEG if POS is contained in L(A) and NEG is disjoint from
L(A).

Definition 2.8. Let & and <& be sets of representations of languages and let
L(«/) € L(#). The minimization problem MIN-CON(«, %) is defined as
follows:

Input instance: An instance I of MIN-CON(.w, #) consists of two finite sets
of strings, POS and NEG, consistent with some element 4 ..

Feasible solution: Any element B € % that is consistent with [ is a feasible
solution. Note that there always exists a feasible solution.

Cost:  The cost of a feasible solution B is the size |B| of the representation B.

Optimal solution: For any instance I, the value opr(]) is defined as the size of
the smallest element of .o that is consistent with 1.

Note that a feasible solution of the problem requires a representation
from the class %, and optimality is defined with respect to elements of the
class &. Thus for some choices of & and %, there may be no feasible solu-
tions with cost as small as an optimal solution. (For example, consider MIN-
CON(NFA, DFA)). Although the general definition assumes nothing regarding
the relationship between the size of the smallest consistent members of .« and
4, in this paper the latter is usually equal to or smaller than the former.

MIN-CON(DFA,NFA) is the main optimization problem we consider. This
problem is easier than MIN-CON(DFA, DFA), since (1) every DFA is an NFA,
and (2) in some cases, the smallest consistent NFA for a language is signifi-
cantly smaller than the smallest consistent DFA. We prove hardness results for
approximating MIN-CON(DFA, NFA), and thus for MIN-CON(DFA, DFA).

Definition 2.9. Let &, % be sets of language representations, and f
be any function of the single variable opt. Then MIN-CON(.&/, %) is f(opt)-
approximable iff there exists a constant ¢ and a polynomial-time algorithm
APPROX such that on input of any instance I of MIN-CON(.%/, 4#) for which
opt(1) = ¢, APPROX outputs a representation B €.% that is consistent with
and such that |B| < f(opr(1)).

Note that the definition of f(opt)-approximable does not require the approx-
imation algorithm to perform well on all instances, but only on those instances
I with sufficiently large values of opr(I). Consequently, a result showing
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nonapproximability must show, for all approximation algorithms, that for all
sufficiently large values of opt there are instances I with opt(I) = opt, and for
which the approximation algorithm fails to achieve the desired bound. Thus,
this is a stronger negative result than simply showing that the bound f(opt) is
not obtainable for particular values of opt.

The definition of MIN-CON(«, £#) depends on the (implicit) size measures
used for & and <#. Our nonapproximability results are with respect to the
particular size measures given in the previous subsection. However, the most
important results of this paper are in the following form: MIN-CON(., Z) is
not f(opt)-approximable for any function f that is polynomially bounded. Such
results are robust with respect to any size measure that is polynomially related
to ours. However, in Section 5, we prove a slightly stronger nonapproximability
result for MIN-CON(DFA, NFA) that holds when the size of a DFA or NFA is
the number of states of the automaton, but does not hold when the size is the
number of bits required to encode the automaton.

2.3. USING GAPS TO FORCE NONAPPROXIMABILITY. Qur goal will be
to show that, assuming P # NP, MIN-CON(DFA,NFA) is not f(opt)-
approximable for any function f bounded above by some polynomial. Nonap-
proximability results may be obtained by exhibiting “gaps” in the cost measure
for a minimization problem. Intuitively, if we can transform an instance of an
NP-hard decision problem into a MIN-CON problem, such that if the answer
to the NP-hard decision problem is “yes” then the optimal solution to the
MIN-CON problem is some number p, whereas if the answer is “no.” then
there is no solution to the MIN-CON problem of size smaller than f(p),
then we can show that f(opr)-approximability of the MIN-CON problem
implies that P = NP. More formally, we have the following sufficient condition:

LeMmmAa 2.10.  Suppose there are infinitely many positive integers p such that
there exists a polynomial-time transformation R, with the following properties:

PROPERTY 1. R, takes as input some instance I of an NP-complete language
S, and outputs an instance of MIN-CON(</. <B).

PROPERTY 2. If instance I € S, then R (1) has an optimal solution with cost
opt(R (1)) = p.

ProPERTY 3. If I & S, then opt(R (1)) = f(p).

Then, under the assumption that P # NP, MIN-CON(«/, %) is not f(opt)-
approximable.

ProoF. Suppose that the hypothesis of the lemma is true, and further
suppose to the contrary that MIN-CON(.«v, &%) was f(opt)-approximable, wit-
nessed by constant ¢ and polyncmial-time algorithm APPROX. We show that
membership in § is decidable in polynomial time, hence P = NP, proving the
lemma.

By hypothesis, there are infinitely many positive integers p such that the
instance R (1) of MIN-CON(.«, %) satisfies Properties 1-3 above. Choose any
such value for p such that, in addition, p > ¢. Membership in § may be
determined by the polynomial-time algorithm DECIDE: On input of any
instance string / for which membership in § is to be determined, DECIDE
computes R,(7) and gives this as input to subroutine APPROX. If APPROX
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returns a value of less than f(p), then DECIDE outputs “I € S.” Otherwise,
DECIDE outputs “I & S.” Clearly, DECIDE runs in time polynomial in [/},
since both R, and APPROX run in polynomial time.

To see that DECIDE determines membership in S correctly, observe that if
DECIDE outputs “I € S,” then APPROX returned a value less than f( 122
which, by Property 3, implies that I € S. Conversely, suppose that I € S. Then,
by Property 2, R,(I) has an optimal solution with cost p. By choice of p,
opt(R (1)) = p = c. Since APPROX achieves the bound of f for all instances
with opt(Rp(I ) > ¢, APPROX must return a value less than f(p), and thus
DECIDE outputs “I € §.” O

2.4. 1-IN-3-SAT. The NP-hard problem we use in our reductions is a
variant of 3-SAT, the “monotone 1-in-3-SAT problem” [10, 23]. An instance /
of monotone 1-in-3-SAT consists of a set of variables V' = {v,v,,...,v,} and a
nonempty collection of clauses {c},_,.,, each of size 3. (i.e., each ¢, is a
3-element subset of V). For brevity, we henceforth omit the word “monotone,”
and refer to the problem as “1-in-3-SAT.” |I| denotes the size of the instance [
according to some fixed encoding scheme. In particular, |7|is always at least as
large as the number of variables plus the number of clauses of instance I, and
is not more than polynomially larger. A (truth) assignment is a function 7:
V — {0,1}. An assignment 1 is a solution to I if for every clause (v,, v,,v.) of [,
the multiset {r(v,), 7(v,), (v,)} = {0,0,1}. If we write that v, is assigned true
(respectively false) by 7, we mean 7(v,) = 1 (respectively, 7(v,) = 0). The
decision problem for 1-in-3-SAT is to determine for any input instance I,
whether or not there exists a solution to 1.

2.5. CoUNTER DFAs. The smallest consistent DFA for the examples of the
reductions presented will be of the following special form. A Counter DFA
(CDFA) over alphabet V' is a deterministic finitc automaton that counts
the number of occurrences of characters in a subset V' of 1 mod p for some
number p as follows: The labeled graph representing the CDFA consists of a
simple cycle of p states, with the labeled edges of V' advancing one state
around the cycle, and the labeled edges of V' — V' returning to the same state.
Thus, each character of V' read increases the “count” by 1 mod p, and a
character of V' — V' leaves the count unchanged. Further, the start state is the
same as the unique final state; thus, CDFAs count from 0 to p — 1 mod p.
CDFAs are a restricted subclass of DFAs that are contained in a class that is
pac-learnable. Further discussion appears in Section 9.

Definition 2.11. Let 7: ¥ — {0,1} be a truth assignment to the variable set
V. Then C(p, 1) is the CDFA that counts all truc variables (i.e., counts the
set 7~ 1(1)) mod p as described above.

3. Forcing a Quadratic Gap

Our main theorem will show that for any k, MIN-CON(DFA,NFA) is not
opt*-approximable. In this section, we first prove the special case for k = 2,
that is, we show that no polynomial time approximation algorithm can guaran-
tee less than a quadratic relationship between optimal and the solution it finds:

THEOREM 3.1. If P # NP, then MIN-CON(DFA, NFA) is not opt*-
approximable.
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Besides motivating the general case in the next section, Theorem 3.1 is of
independent interest for at least three reasons: (1) The proof involves interest-
ing techniques that may be useful in other domains; (2) the proof gives some
intuition for the polynomial nonapproximability results of the next section; and
(3) the quadratic case provides a better nonapproximability result with respect
to a number of the measures of approximability discussed in Section 9.

3.1. THE REDUCTION

ProOF OF THEOREM 3.1. By Lemma 2.10, Theorem 3.1 follows by exhibit-
ing, for each of infinitely many positive integers p, a polynomial-time transfor-
mation R » from instances of 1-in-3-SAT to MIN-CON(DFA, NFA) such that a
quadratic gap is created, as required by Properties 2 and 3 of the hypothesis of
Lemma 2.10. In particular, we describe for each odd number p, a reduction
R, such that if I is any instance of a (monotone) 1-in-3-SAT problem, then
R (I) consists of two sets of strings, POS(p, I), and NEG( p. I), such that the
following lemmas hold.

LEMMA 3.2.  If assignment 7 is a solution to I, then for any odd number p,
C(p, 1) is a p-state DFA that is consistent with POS(p, I) and NEG(p, I), and
no NFA (hence no DFA) with fewer states is consistent.

LemMma 3.3, If I has no solution, then for any odd number p, there does not
exist an NFA with fewer than p* states that is consistent with POS(p, 1) and
NEG(p, I).

Rather than describing R, we simply give the sets POS(p, 1) and NEG( p, I)
that are produced by R, on input instance /. It is easily verified that R, is
computable in time polynomial in the size of I for any fixed odd number p.
Section 3.2 is devoted to the proof of Lemma 3.2. In Section 3.3, a number of
propositions are given that culminate with the proof of Lemma 3.3. These
lemmas, together with Lemma 2.10, prove Theorem 3.1. O

If I is an instance of 1-in-3-SAT with variable set V' = {v,,v,,...,v,}, then
the alphabet X over which POS(p. I) and NEG(p, I) are defined is given by
3 =V U {r}, where r is a symbol not appearing in V. (Here, and in Section 4,
the alphabets used in our reductions depend on the input instance. In Section
6, we show how the reductions may be modified to work even when the
alphabet is fixed as {0, 1}.) We need the following notation.

We use “= " to denote congruence mod p. The function [-], is defined by
[a]p = e iff e is the unique number such that a =, ¢, and such that 0 < e <
p — 1. Throughout all of Section 3 (and nowhere else), the variables a. b, c.
d,e f, g h.i.j k, x,y, z are always in the following ranges:

¢ o o o
——
A A

=

=~

A

S

|

=

Note. 1If i is in the range 1 <i <p — 1, then p — i/ is in the same range,
and thus —i #, 0.
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Definition 3.4. Let p > 3 be odd. Then define

e g = (IT}_4(v,)")r. Thus, g is the concatenation of p copies of each variable,
followed by the additional symbol r.

e Forall x, o, = ﬂ (v) and B, = (I’I/v re1(y)? )r. Thus, «a, is the umque
prefix of ¢, "and ,8 is the unique suffix of ¢ such that « (v, ) B, =

e For all x and 7, w,, = a,(v)B,. Thus, w, ; is a variant of ¢ in whlch the
substring (v,)” has been replaced with (v,)".

Before we describe the examples in detail, we give a description of the
counter DFA that is constructed from a solution of the instance of 1-in-3-SAT.
We do this to motivate the definition of the examples. After the examples are
given, we show that the described machine is consistent with the examples.

Let I be any instance of a 1-in-3-SAT problem, and 7: V' = {v, v,,...,y} =
{0, 1} be an assignment with exactly one true variable per clause. Extend 7 to
domain V' U {r} by assigning 7(r) = 1, and define C(p, 7) with respect to the
(extended) assignment 7 as in Definition 2.11. If w is any string, let T(w)
denote the total number of occurrences of variables assigned true, that is,
variables v such that 7(v) = 1. For any number s, we’ll say w advances by s iff
T(w) =, s. If w advances by s, then on reading w, C(p,7) ends up in the
s ] th state of the p-state cycle of C(p, 7). Thus, C(p, T) accepts w if s = =, 0,
and C(p, 7) rejects w if 5 #, 0.

ProprosITION 3.5.  Considering C(p, ), it is easily verified that

o for all x, v, advances by 1 if v(v,) = 1, and v, advances by 0 if 7(v,) = 0;

e radvances by 1, and for all numbers a, q* advances by a;

e forall i and x, w, , advances by i + 1 if 7(v,) = 1, and w, ,
m(y,) =

3.1.1. Motivation for the examples. The string w, , contains a single occur-
rence of r, all variables other than v, occur a multiple of p times, and v,
occurs i times. Thus, in the CDFA C(p, 7), w,, either advances by i + 1 or by
1 depending on whether 7 assigns v, true or false, respectively.

The examples are constructed to force the same properties in any consistent
NFA of less than p? states. In particular, we force a loop in the NFA, and
assign true all variables v, such that for some i between 1 and p — I, the
string w, , advances i + 1 around the loop, and false to those variables v, such
that for some j between 1 and p — 1, the string w, | advances by 1 around the
loop. Negative examples are used to enforce that w, , cannot advance around
the loop by any value other than 1 or i + 1. Additional negative examples
enforce consistency, that is, that for no variable does there exist { and j such
that from some state s, w, , advances by i + 1, whereas from some other state
t,w, , advances by only 1. Further examples enforce that among those variables
appearmg in some clause of I, exactly one variable will be assigned true.

If for some i between 1 and p — 1, we have that w,_, advances by i + 1, we
say that v, “crosses,” and if w, , advances by only 1, we say that v, “loops.” The
exact definitions of crossing and looping will be given later.

For each variable v,, if for some w, , it is the case that w_, leaves some state
of the loop and then returns to the’ loop, then the definitions and examples
ensure that v, is either looping or crossing, and thus v, is assigned either true
or false. If all variables are assigned, the examples enforce that the assignment

advances by 1 if
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is a solution to the 1-in-3-SAT instance. Thus, to avoid providing a solution,
some variable must not be assigned. If variable v, is unassigned, then we must
have that starting from any state on the loop, each of the strings w, ..., w, 1
do not return to the loop. It can be shown that all of the states these strings
lead to are distinct. This forces p — 1 new states for each state on the loop.
Since the loop has p states, we force a total of at least p? states.

In the following, we describe the examples. The sentence in parentheses
following the name of each subset of examples suggests the function of the
subset.

POS(p, I) = {q”} (This example ensures that any NFA with less than P’
states that accepts this example must have a loop).

NEG(p,I) = N1 U N2 U N3 U N4 U N5, where N1-N5 are defined below.

N1 (Any NFA consistent with POS( p, I) must have at least p states.)
For all a such that a #, 0, ¢ € N1.

N2 (w,, is only allowed to advance by i + 1 or by 1.)
For all a, x, i, b such that b #, —(a + 1) and b #, —(a+i+1),
q“w"‘lqb e N2.

N3 (v, cannot cross and loop at the same time.)
For all @, x,i,b.j.c such that ¢ =, —(a +i+b+2). gw, q"w, q° €
N3.

N4 (No two variables of the same clause can cross.)
For all a, x,i,b, ¢, y, J, d such that there exists a clause containing the two
variables v, and v,

(a) If gfp —la+i+b+j+2) and (i +j)#,0, then ¢°w, ,q"w, gq*
€ N4,

™I d=, ~(a+b+c+2i+j+3) and (i +j) =, 0, then
quwyx,lqbwl,lq(‘l,‘)}',]qd E N4'

N5 (Not all three variables of a clause can loop.)
For all a,x.i, b, y, j,c. z, k, d such that there exists a clause (v,,v,,v,) and
d=, —(a+b+c+3),qw,_q"w, gw, ,q° € N5. '

PROPOSITION 3.6.  The number of examples in POS(p,I) U NEG(p.I) is
O(p''n®), and the total number of characters (over alphabet V U {r}) in all
examples of POS(p, I) U NEG(p, I) is O( p**n*).

PrOOF.  POS(p, I) has only one element. From the respective ranges of a,
b,c,d, i, ] k, x.y, and z, we immediately have that the total number of
clements of: N1 is at most p*; N2 is at most pn(p? + 1)>; N3 is at most
prlp* + 1)% N4(a) is at most p>n(p? + 1)*; N4(b) is at most p2n2(p? + 1)
and N5 is at most p’n’(p? + 1)*. Thus, the total number of elements of
POS(p.I) U NEG(p, I) is O(p''n’). The longest example is of type N5, and
has length O( p°n); thus, the total number of characters in all of the examples
is O(pHn*). O

3.2. A SMALL CONSISTENT COUNTER MACHINE. To prove Lemma 3.2, we
show that for each assignment 7 that is a solution to the instance I of
1-in-3-SAT, the corresponding p state CDFA C(p,7) (defined above) is
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consistent with POS(p, I') and NEG( p, I), and that no NFA with fewer states
is possible.

PrOOF oF LEMMA 3.2.  We first show consistency of C( p, 7) with each set of
examples.

Consistency with POS(p, I). g?" advances by p’. and is thus accepted since

p’ =, 0.

Consistency with N1.  q“ advances by a, and thus is rejected if a #, 0.

Consistency with N2. let a,x,i,b be such that b#, —(a+1) and
b#, —(a+i+1). We show that the negative example u=qw,,q" is
re]ected by C(p, 7).

If 7(v) =0, then u advances by a + 1 + b, and since b #, —(a+ 1),
C(p, 7) rejects u.

If 7(v,) = 1, then u advances by @ + i + 1 + b, and since b #, —(a +i +
D, C(p,T) rejects u.

Consistency with N3.  Let a,x,1.D, j,c besuch that ¢ =, —(a + i + b + 2);
we show that the negative example u = q"w, q"w, ,q° is rejected by C(p, 7).

If 7(v,) =0, then u advances by a + 1+b+1+c=, —i#,0, and is
therefore rejected by C(p. 7). (Recall 1 <i <p — 1.)

If 7(v,) = 1, then u advancesby a +i+ 1 +b+j+ 1+c=,j#,0, and
is also rejected by C(p, 7).

Conszstency with N4(a). Let a,x,i,b,y,j,d be such that d =, — (a +i +
b+j+2),(i+))#,0, and such that v, and v, appear together 1n some
clause. We show that C(p,7) rejects the negative example u=q‘w, ,q° W, Jq
Note that since v, and v, appear in some clause together, we cannot have
m(v) = 7(y) = 1.

If 7(vy)=1 and 7(v) =0, then u advances by a +i+1+b+ 1+

d=, —j#, 0and is rejected by C(p, 7).

If 7(v,)=0 and 7(y) =1, then u advances by a +1+b+j+ 1+
d=, —i#,0,and is re]ected by C(p, 7).

If 7(y)=7(y) =0, then u advances by a+1+b+1+d=, —i

—j #, 0 (since in this subcase we have i + J #, 0) and is rejected by C(p, 7).

Consistency with N#(b). Let a,x,i,b,c,y.j,d be such that d =, — (a +
b+c+2i+j+3),3G+j)=,0 and such that v, and v, appear together in
some clause We show that C( p,T) rejects the negative example u =

q WX lq lq WV jq

If 7(v,) = 1 and 7(v,) = 0, then v advancesbya +i+ 1 +b+i+ 1+ ¢+
I +d=, —j#,0and thus is rejected by C(p, 7).

If 7(v) =0 and 7(v,) = 1, then u advances by a+l+b+1+c+j+
1 +d =, — 2i. Thus, u is accepted by C(p, 7) iff 2i =, 0. But since p is odd,
this implies that i =, 0. But recall 1 <i<p —1, so —2i#,0 and u is
rejected by C(p, 7).

If 7(v) = 7(v,) =0, then u advances by a +1+b+1+c+1+d=,
—2i—j=, —1—(z+]) , — i (since i +j =, 0). And since —i #, 0, u is
rejected by C(p, 7).
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Consistency with N5. Let a,x,i,b,y,j,c,z,k be such that d = — (a +
b +c +3), and such that there exists a clause (v, v, v,). Then u =
a‘w, .q"w, ,q‘w. ,q* is a negative example. Exactly one of {r(v,), 7(v,). 7(.))
is true; thus, u advances by either i, j, or k, none of which are congruent to 0
mod p, and thus C(p. 1) rejects u.

Thus, C(p, 1), with p states. is consistent with POS( p, I) and NEG( p, I).

To complete the proof of Lemma 3.2, we still need to show that any
consistent NFA must have at least p states. Let 4 = (Q, X, 8,s,,, F) be an
NFA that is consistent with POS( p.1 ) and NEG(p, I). Using the graph
representatlon of .4, since the string g”* € POS(p, 1), it is accepted by A4, and
thus there is a path ¢ (labeled with g#’) in A from s, to some accepting
state s, € F. For any w that is a prefix of q”’, we say w leads along i to state t
if the 1n1t1al segment of ¢ labeled with w leads from s, to ¢. For each a
(0 <a <p?), let s, denote the state that g“ leads to along . It suffices to
show that the states {s,},_,.,_y, are distinct. If s, =5, for0 <f<g=<p — 1,
then ¢? =&~ s accepted But this contradicts the consistency with the
examples of N1, since p? — (g — f) #, 0. This completes the proof of Lemma
32. O

3.3. FORCING QUADRATICAILY LARGER NFAs. To prove Lemma 3.3, we
must show, for any instance 7 of 1-in-3-SAT that has no solution, that no NFA
with strictly less than p? states is consistent with the examples POS( p. I) and
NEG( p, I). We prove the contrapositive, namely, that if 4 = (0.3, 8.s,,,, F)
is an NFA that is consistent with POS(p, I) and NEG( p, I) and such that
|Ql < p?, then I has a solution. The proof is presented following the introduc-
tion and proof of a number of supporting propositions.

As in the proof of Lemma 3.2, we use the graph representation of A4, and
recall that the string ¢* € POS(p, I) defines the path ¢ from s, to some
accepting state s € I, and that for each a, s, is the unique state that g leads
to along .

PROPOSITION 3.7.  There exists a, b, with 0 < a < b < p?, such that s, = s,.

Proor. If not, then [Q] > p2. O

a

by > a, be the smallest number such that s, = s, . Thus, followmg powers of
g, the path ¢ in A labeled with ¢ leadlng to s+ contains a loop as shown in
Figure 1. Let L be the states on the loop that are reachable by powers of g,
that is, L = {s, , S, 1 1+--»55,_1)-

Let a, be the smallest number such that for some b > ay, s, . Let

ProrosiTION 3.8. |L{> 0 and |L] =,

PrROOF. Since s, € L. 1 <|L| <|Q| < p>. To complete the proof, we show
|L| =, 0. Observe that q* leads to s, , and g7 "' leads from s, =s, to
.. Thus u = = q“tP’ =Py = gP’~(20=40) Jeads to s, and is accepted by A. But if
by — a, #, 0, then u is a negative example (Nl) Therefore, b, — a, =, 0, and
since |L| = by —a,, [LI=,0. O

For each e, define S, = {s,: ay <a < b, — 1 and [a], = ¢}, that is, S, is the
set of states on L that are reachable along ¢ by some power of a between a,
and b, — 1 that is congruent to e, where 0 <e <p — 1.



Minimum DFA Problem Cannot Be Approximated 109

q"ovao

@ o : "\
g \\/ q° ~bo

FiG. 1. The loop of path ¢ in A.

PROPOSITION 3.9 (PREFIX PROPERTY). Forall e and forall s € S,. there exists
a such that [al, = e, q“ leads to s, and ay < a < b, — 1.

PrROOF. By definition. O

¢ PROPOSITION 3.10.  For all e, S, is nonempty, and in particular, s, .. —q, €

e

PROOF. Since |L|>p. a, +[e —a,]l, <b;, and the proposition follows
from the definition of S,. O

PROPOSITION 3.11 (REACHABILITY PROPERTY). Ifs, € S, and s, € S;, then
there exists ¢ =, f — e such that q° leads from s, 10 s;,. ‘

PrOOF. If a, <a <b < b, then g° “ leads from s, to s,. Let ¢ = b — a,
observing that indeed, 0 <c¢ <p®,andc=,b —a=, f—e.

If a, <b <a < b, then g’~* leads from s, to s, =s, . Then q" % leads
from s, to s,; thus, gPe4 P4 leads from s, to s,. Nowlet c = b, —a + b —
a, = (by — ay) — (a — b). Clearly, 0 <a — b < b, —a, < p*, 50 ¢ is at most
p?. Finally, ¢ =, b —a =, f—e. (Recall by —a,=,0) O

PROPOSITION 3.12 (SUFFIX PROPERTY). For all a. if s, € S, then there exists
b =, — e such that q° leads from s, 10's ..

Proor. Recall that the path ¢ is labeled with qu. Then ¢“ leads to s, and
g" leads from s, to s, when b =p* —a. Since s, € S,. a =, e and thus

bzp—e. ]

PROPOSITION 3.13.  Foralle, f, if e # f, then S, N §; = &.

PROOF. Assume that e # f and that € S, N S,. By the Prefix Property,
there exists a such that a =, e such that ¢° leads to & By the Suffix Pro-
perty, there exists b =, — f. such that ¢” leads from ¢ to s . Then g°q® leads
to s, and is accepted by 4. But a +b =, f—e #, 0 (since e and f are
between 0 and p — 1 and are distinct), and thus q°q" is a negative example of
type N1, contradicting the consistency of 4. O

For each e, we use “t,” to denote any element of §,. We now define, for
each variable v,, what it means for v, to be crossing, looping, or to be off.

Crossing: v, crosses if there exists e, i, t, € S, and £,y € Ste+e+1y, such
that w, , leads from £, 10 /[, .y -

Looping: v, loops if there exists e, i, t, € S,, and £, , ) € Siery, such that
w, , leads from 7, to £, .
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Off: v, is off if v, neither crosses nor loops.
ProposITION 3.14.  Forallx, i e, f, 1, €S,, andi; €S, ifw_, leads from?,

fot, then f=,e+1orf=,e+i+1 Hence, if w_, leads from some S, to

) P
some S,, then v, is not off.
f X

PROOF. Lete, f. 1, x, 1,, t; be as in the hypothesis of the proposition. Then,

da  such that g  leads from s,, to ¢, and a =, e,
w, , leads from ¢, to 1,
3b suchthat ¢" leadsfrom ¢ to s, and b=, ~f.

Thus, u :q”wx,,qb is accepted by A. By examples (N2), unless b =,
—(a+Dorb=, —(a+i-+1),uisanegative example. Since A is consis-
tent with the examples and u is accepted, either b=, —(a +1) or
b=, —(aitt 1, and thus f=, e+ lorf=,e+i+1 O

PropositioN 3.15.  For all x, either v, does not cross, or v, does not loop.

Proor. Suppose that v, crosses and v, loops. Then there exists e, f, i, j,
and Los lovus 1y by Bpe, (elements of S,, S[Hlﬂ]p, Spr Sipen, respectively)

such that w_, leads from ¢, to Yevir]y and w, | leads from ¢, to fpe,
Furthermore,

da such that g leads from s, to ¢, and a =, e
w, , leads from ¢, O fr, 1,4y,

b such that g” leads from ferivy, 1O and b=, f—(e+i+1)
w,,, leads from f, to iy,

dc such that ¢g¢  leads from lijrn, 1O S, and ¢ =, — (f+ 1).

Thus, u = q“w, ,q"w, ,¢° leads to s . and is accepted by A. Notice that
—(f+D=—(e+i+(f—(e+i+1))+2),

and thus

c=, ~la+i+b+2)
and u is a negative example (type N3) accepted by A, a contradiction. O

PROPOSITION 3.16.  For all x, y, if there exists a clause of I containing both v,
and vy, then at least one of v, and v, does not cross.

PROOF.  Suppose that v, and vy, both cross and that they occur in the same
clause. Then there exists e, f. i, j, and 7 ,¢, te,t (elements of
e’ lete+ 1], °f> [f+y+1], .

Ses Steiiny, Sy Sif+,+ 1, Tespectively) such that w, | leads from' ¢, to I

e+t 1],
and w, , leads from ¢ to ¢

[f+r+1,
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Case 1. i+j#, 0. Then

da such that ¢¢ leads from s, to ¢, and a =, ¢
w,, leads from ¢, Lt
3b such that qb leads from ., 1), to & and b=, f—(e+i+1)
, leads from 7, to f5 40y,

3d such that q‘l leads from f,.,, .y 1O s, and d=, —(f+j+ 1.

Then g‘w, ,q” w, qd leads to s, and is accepted by A. Further, d =
—(a+i+b+j £ 2) and i + j #, 0,50 it is a negative example of type N4(a),
a contradiction.

Case 2. i +j=,0.Then

da such that g leads from s, to f, and a =, e
w, , leads from ¢, 0 fohivyy,

Ab such that ¢g” leads from Hesivn, O 1, and b=, e—(e+i+1)
w, , leads from ¢, 0 fopivy

dc such that ¢¢  leads from 7., to 4 and c=, f—(e+i+1)
w, ; leads from ¢, to f15y)41y,

3d such that g¢ leads from lfey+ny, 1O S, and d =, — (f+j+D.

Then q“w, ,q"w 4wy, ]q leads to s, and is accepted by A. Further,
d=, —(a+ b+¢+ 2 +j+3)andi+j=,0,s0itis a negative example of
type N4(b), a contradiction. O

PROPOSITION 3.17.  Forallx, y, z, if (v, v,,v,) is a clause of I, then not all of
{v,, v, v} loop.

PROOF. Suppose for some clause (v,,v,,v,), each of {y,,v,, v.} loops. Then
there exists e, f, g, i, J. k, and £ty sty Lo Tigeny, (elements of S,
Stextyy S Sipenyy Sgr Sigen, respectlvely) such that w, , leads from ¢, to

t[c+l]l, .., leads from tf to tf+71] ..« leads from ¢, to tg+1 Further,

da such that g leads from s ; to t, and a=,e
w,, leadsfrom i1, o oy,

3b such that ¢”  leads from ., to i and b=, f—(e+1)
w, , leads from 1, o iy,

3¢ such that g¢  leadsfrom 7, , to £, and c=, g—(f+1
w, . leads from f, to fr,4q

. r

3d such that ¢¢  leads from ¢ to s, and d=, —(g+ D).

g+ 1]p

Then q“w, q Pw, 14 W- .q" leads to s, and is accepted by A. Fur-
ther, d =, — (a + B+ e + 3), so it is a negative example of type NS, a
contradiction. O

PROPOSITION 3.18.  For all x, v, is not off.

PROOF We show that if for some x, v, was off, then A would have at least
p? states, a contradiction. Suppose v, is off Let O < e, f g, A < p — 1. Define
t, to be the state s, ,(,_,, (the state that g“*le-alr leads to along ).

5

Slmlldrly, define ¢, to 'be the state Sa, il . By Proposition 3.10, t, € S, and
; € S;. To show that A has at least p? states it suffices to show:
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CrAM 3.19. If {e.g) # {f, h), then the state that g“o*'*~“)a (v,)¢ leads to
along & (denote this state by t(a(v)*?)) is distinct from the state that
gt ada (v)" leads to along y (denoted t(a (v,)")).

Note that the state 7,(e(v,)?) is well defined, since g™l “lra (v,)¢ is a
prefix of ¢””. Slmllarly, the state tela (v, ) is well defined. We prove this
claim in two cases:

Case 1. g=hand e # f.

Suppose t,(a(v,)¢) = 1,(a(v)") =s. Then let u = (v)? 4B, = (v,)"7'B,.
Then since « (v,)%u = a (v)*u = g, u leads from s to a state ¢ that must be
in Sy, N Sy, This is a contradiction. because e # f, thus [e + 1], #
[f+ 1],, and by Proposition 3.13, S, N Siprn, =9

Case 2. g +#h.

Without loss of generality, g > h. Let 1,(a,(v,)%) = (@ (v,)") = 5. Since
alv)¥ ) 8B, =q, (v)"~ 5’,8 leads from s to an element of iy, But
tf(a (v, )h) = s also, so u = a,(v,)"(v,)" ¢B, leads from ¢, to an element of
S[e+1] Notice that | </ +p —g<p — 1 because 0 < & <g<p — 1. Thus,
for some 1 <i<p—1, u= w, ;, and leads from an element of §; to an
element of SLH] By Proposition 3.14, v, is either looping or crossmg,
contradicting the assumption that v, is off. This completes the proof of Claim
3.19 and Proposition 3.18. O

PrROOF OF LEMMA 3.3. We now show that (since A has fewer than p-
states, and is consistent with POS( p, I) and NEG( p, I)) there is solution for 1.
By Proposition 3.18, for all x, v, is not off, and hence either crosses or loops.
Consider the assignment 7: V' — {0, 1} defined by 7(v,) = 1 if v, crosses, and

(v) = 0 if v loops. By Proposition 3.15, v, cannot both cross and loop,
and thus 7 is well defined. Further, by Proposition 3.16, within any clause of I,
at most one variable is assigned true. Finally, by Proposition 3.17, for each
clause, not all variables can be assigned false. Thus, 7 is a solution for 7. This
completes the proof of Lemma 3.3, which together with Lemmas 3.2 and
2.10, completes the proof of Theorem 3.1. O

4. Forcing a Polynomial Gap

In this section, we extend the quadratic gap of the previous section to a
polynomial of arbitrary degree, obtaining a stronger nonapproximability result
for the minimum consistent DIFA problem over an arbitrary alphabet.

THEOREM 4.1. For all positive integers k, MIN-CON(DFA, NFA) is not
opt“-approximable unless P = NP.

PrROOF. As in the quadratic case, we provide a reduction from the 1-in-3-
SAT problem to the MIN-CON(DFA, NFA) problem that introduces a gap, but
this time between p and p*, instead of p and p?. Let k be any constant, and
let m = 3-2K~1. We show that for all sufficiently large primes p (in particular,
for p > 24717), there exists a reduction R, , that is computable in polyno-
mial time (Proposition 4.10 below) that takes as input an instance I of a
1-in-3-SAT problem, and produces two sets POS(p, k,I) and NEG(p, k, I)
that satisfy Lemmas 4.2, 4.3, and 4.4 (stated immediately below). It follows that
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the hypothesis of Lemma 2.10 is satisfied with f(opt) = opt*, and thus unless
P = NP, MIN-CON(DFA, NFA) is not opt*-approximable. O

The key lemmas used are analogs of Lemmas 3.2 and 3.3, showing that there
is a p state counter machine C(p, 7) (Lemma 4.2), which is in fact optimal
(Lemma 4.3), and that any NFA with fewer than opt* states provides a solution
to a 1-in-3-SAT problem (Lemma 4.4).

LeMMa 4.2, Let I be an instance of 1-in-3-SAT. If 1 is a solution of I, then
for all positive integers k and p, C(p,T) is consistent with POS(p, k,I) and
NEG(p, k, I). Thus, if I has some solution, then there exists a consistent p state
DFA.

LemMA 4.3, Let k and p be any positive integers, and let I be any instance of
1-in-3-SAT. Then any NFA that is consistent with POS(p, k, I) and NEG(p, k, I)
has at least p states.

LEMMA 4.4. Let k be any positive integer, and let p be a prime such that
p > 251 If Lis any instance of 1-in-3-SAT, and if A = (Q, 3, 8,s,,,,, F) is
an NFA such that |Q| < p* and such that A is consistent with POS(p, k, 1) and
NEG(p, k, I), then I has some solution.

Lemmas 4.2 and 4.3 are proved in Section 4.3, and Lemma 4.4 is proved in
Section 4.4. Before delving into the details of the proofs, we discuss how the
prootf of Theorem 3.1 suggests the approach taken to prove the more general
result.

We begin with the same underlying principle: If assignment 7 is a solution of
the 1-in-3-SAT formula, then we would like the counter machine C( p, 7) to be
consistent with all positive and negative examples. Our goal is to construct a
polynomial-sized set of examples that maintains this property, and such that if
a small (less than p* state) consistent NFA is provided, then a solution of the
1-in-3-SAT formula may be found.

Recall that in the motivation for the examples in the quadratic case, the
string w, , played a special role in helping determine whether v, should be
assigned true or false. Either w, ; advanced by i + 1 around the loop, or w, ,
advanced by only one state. In the string w, ,, variable v, occurs a number of
times congruent to i mod p; all other variables appear 0 times (mod p); and
the special symbol r appears exactly once. Thus, another way of interpret-
ing the fact that w_, advances by i + 1 is to write that i occurrences of v, plus
one occurrence of r equals 7 + 1. More succinctly, “i-v, + r =, i + 1,” where
now we interpret v, and r as a variables with values either 0 or 1. Since we
know that » = 1 (i.e.,, r advances by 1), this reduces to i-v =, i, and this
equation tells us (if p is prime) that v, must equal 1 (true).

The main idea in the proof of Theorem 4.1 is to extend this interpretation in
the following way: Suppose some string containing i occurrences of v, and j
occurrences of v, is found to advance around a loop a total of s states. Then
we write the equation i - v, + j - v, = 5. We construct examples such that in any
consistent NFA with fewer than p* states, for any k-tuple of variables we can
find such an equation relating the k variables. By exploiting special properties
of such systems of equations, we can construct negative examples such that the
set of solutions must contain a solution of the 1-in-3-SAT instance.

4
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As a final intuition before proceeding with technical details, we offer the
following brief summary of the proof of Theorem 4.1. Note that a string is
accepted by C(p, 7) iff the number of true variables (according to assignment
7) in the string is congruent to 0 mod p. In fact, if a string y leads from any
state in C(p, 7) back to that state, then the number of true variables in y is
congruent to 0. We may rewrite the above property of C(p, 7) as follows: For
any string y. Let y= (x,,x,,...,x,), such that for each i,1 <i <n, the
number of occurrences of v, in y is congruent to x, mod p. Then vy leads
around a cycle in C(p, 7) iff y- 7 = 0, where the assignment 7 is interpreted as
a Boolean vector of length n, “-” is the dot product, and all arithmetic i1s mod
p. Consequently, given a collection of strings {y,} that lead around a cycle in
some unknown counter machine C(p, 7), one way of determining 7 would be
to solve the simultaneous system of equations {¥,-X = 0}. This suggests a
strategy for constructing POS(p, k, I), NEG{ p, k. I): Try to force the above
property in any small consistent NFA, not simply a counter DFA. Thus, we
construct POS( p, k, I) and NEG( p, k, I') such that

—if 7 is any solution of 7, then C(p, 7) (which has p states) is consistent with
POS(p, k, I) and NEG(p, k, I);

—a single carefully constructed positive example forces a cycle in any accept-
ing NFA with strictly less than p* states;

—from the cycle, a set of strings {7y} may be extracted,

—if § is the matrix with rows {7,} representing the equations {7, - ¥ = 0}, then
the set of solutions to the system S contains an element that is {0, 1} valued,
and is a solution of I. Thus, the existence of a consistent NFA with less than
p* states implies that I has some solution.

The last property is achieved by including in NEG(p, k, I) examples that
rule out consistent automata with less than p* states whose induced set of
equations (those extracted from strings leading around the cycle) do not
include a solution of 1.

4.1. MORE DEFINITIONS AND TECHNICAL LEMMAS. Let k and p be any
positive integers. Throughout the rest of the paper, the constant m is defined
by m =321 Let P={0,1,...,p — 1}. P" denotes all vectors of length n
with elements in P. Vectors X, y, Z will always denote elements of P". For a
row vector ¥, we let ¥’ denote the transpose (column vector) of ¥. All vectors
are indexed starting at 1, thus ¥ = (x;, x,....x,). We assume the standard
lexicographic ordering on P”. Thus, ¥ <V indicates that ¥ comes first in
the lexicographic order. Matrices are sets of row vectors in P”. All operations
involving vectors or matrices are mod p. The binary operator *“-” denotes the
dot product (mod p), except where both operands are scalar values, in which
case multiplication is denoted. COL(M) denotes the set {i: the ith column in
M is nonzero}. Note that COL(M) is also defined if M consists of only one
row. Let K(M) denote the kernel of M, that is, K(M) = {¥: Mx” = 0}, and let
span(M ) be the set of all linear combinations of rows of M. Recall from linear
aJgebra that if M is a matrix and B is a basis of M (more precisely, a basis of
the vector space span(M)), then K(M) = K(B).

Any assignment 7 may also be interpreted as a vector (7(v,, 7(v,),...,
(1)) € {0, 1}" < P". The symbol 7 will be used to denote either the function,
or the vector; the meaning will be clear from context. For example, in
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o i}

“7(v,)”, the function is denoted, whereas the vector is denoted in “X- 7.
Similarly, any vector ¥ € {0,1}" may be interpreted as a truth assignment, in
which v, is assigned false (respectively, true) iff x; = 0 (respectively, x, = 1).

Definition 4.5. Let M be a matrix of nonzero rows.

—Aset XC{l,2,...n}is free with respect to M if for every row X of M,
COL(X) ¢ X.

—M is k-closed if for every X < {1,2,...,n} such that |X| = k, X is not free
with respect to M, that is, for each X of size k there exists a row X of M
such that COL(X) ¢ X.

—A maximal free set C (with respect to a matrix M) is called a core of M.

Note that if M is a matrix of nonzero rows, then M has a core, since the empty
set is free.

LEmMMA 4.6.  Each core C of a k-closed matrix M has size at most k — 1. and
for each number i € {1,...,n} — C, there is a row X of M (called a determining
row of index i) such that COL(X) < C U {i} and such that x, is nonzero.

PrROOF. Assume C is a core and has size at least £. Then, let C’ be any
subset of C of size k. Since M is k-closed, M contains a row X with
COL(X) € C' c C and this contradicts the fact that C is free with respect
to M.

To prove the second part of the lemma, assume that there is a number
i €{1,...,n} — C such that there does not exist a row ¥ of M with COL(X) C
C U {i} and such that x, # 0. Then either (1) there does not exist a row X of M
with COL(X) c C U {i}, or else (2) there exists at least one row x of M with
COL(%) < C U {i}, such that x, = 0. If (1) is the case, then C U {i} is free
with respect to M, contradicting the maximality of C. If (2) is the case, then
COL(X) c C, contradicting the fact that C is free. In either case, we have a
contradiction; thus, the second part of the lemma must hold. O

LEMMA 4.7. If p is prime, then any subset B of span( M) of size larger than
|span( M)\|/p contains a basis of M.

Proor. Let B be as above and let B’ be any basis of M. If B does not
contain a basis of M, then there is a row X of B’ that is not in span(B). Now
observe that for any r,r’, ¥, Z such that 0 < r,r’ <p — 1, ¥, 7 € span( B), and
for which (r, y) # (r', Z), we have X + ¥ # r’'X + Z. To see this, observe that
if r=r' then y # Z and then trivially X 4+ y # r'X + z. On the other hand, if
r#r' and ¥+ y =r'¥+ 2 then ¥ =(Z—)/(r —r') € span(B), which is a
contradiction. Note that division is well defined since p is prime. Thus, the set
{r* +y:0<r <p— 1,y € B} has size p|B| > |span(M)|. But this set is clearly
a subset of span(M), and we have a contradiction. Thus, B must contain a
basis of M. O

Definition 4.8. If I is an instance of 1-in-3-SAT, then SOL(]) = {x €
{0, 1}" : n is the number of variables of I and ¥ is a solution to the instance I}.
If V is the set of variables of I and V' C V, then the instance [ restricted to V"’
(written ;) is the instance of 1-in-3-SAT over the same variable set 1/, that
contains exactly the clauses ¢ of I for which every element of ¢ is in V.
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Note that the length of the vectors of SOL(Il;-) is the number of variables
in the original instance /.

4.2. THE REDUCTION AND ExaAMpLES. Let / be an instance of 1-in-3-SAT,
with variables V = {v,,v,,...,u,}. We let the alphabet 3 for the problem
MIN-CON(DFA,NFA) be V. In Section 6, we refine the reduction so that
> = {0, 1} regardless of the instance 1.

Recall that for any string y € %, ¥ = {x,, x».... x,). such that for each i,
1 <i < n, the number of occurrences of v, in vy is congruent to x; mod p.

We now define a special word ¢, which is specified by a product (denoting
concatenation) of many subwords. Since the product sign below denotes con-
catenation, to be unambiguous, we must specify the order in which the terms
(subwords) are concatenated: The choice in the product below is made in
lexicographic order of the vectors .

q= I_I vi“lv‘z‘: v”xnvif"xlvg*kz U’{"x”.
xep”
lcoL <k

Note that g = 0. Whenever they appear, a and B (and subscripted versions)
will denote prefixes and suffixes. respectively, of g.

On input /, the transformation R, , outputs R, ,(I) consisting of the two
sets, POS(p. k, I) and NEG( p, k. I). We show that these sets have the proper-
ties claimed above. Note that the transformation R, , need only be com-
putable in time polynomial in ||, since p and k are constants. However, in
Section 6, we use the fact, proved below, that the transformation is also
polynomial in the value p. (The dependence on k is doubly exponential
however.) We now describe POS( p, &, I) and NEG( p, k, I).

POS(p, k., I') consists only of the word qpk.
NEG(p., k,I) is constructed as follows: Let {@;}”, be any collection of

=1
m prefixes of ¢ (recall m = 3-2"1), let { B} |, be any collection of m

=17

suffixes of ¢, and let { p;, p,,....p,» be any element of P™, Define
v, = «, B.. Let y = I'17 ,(y,)7. Then, if there exists a set D such that

(D) IDl<k—1+m,
(2) COL(y)c D cV,
(3) SOL(I/,) N K(Y) = &,

then for any numbers a,b,c (0 <a,b,c <p*), include in the set
NEG( p. k, I) the string v, , . = ¢“T1L(v,¢")")q".

PropoSITION 4.9, The length of each example in POS(p, k, 1) and
NEG(p, k., I), and the number of examples in these sets, is polynomial in |I| and
in the value p.

Proor. The length of ¢ is at most p**'n**1 since there are at most p“n*
choices of X in the product defining ¢, and for each choice, the factor in
the product is exactly pr characters long. Thus, the single clement qf’A of
POS(p. k, I) has length p*lgl < p***'n**'. Each clement of NEG(p, k. I)
consists of

—at most (pm + 2)p* copies of ¢. (The leading a copies of g, the trailing
¢ copies of g, and pm instances of b copies of ¢, included with the
subwords v,.);
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—at most pm instances of subwords y, = «, B,, of g, having total length at
most 2 pmlg|.

Thus, the total length of any element of NEG(p,k,I) is at most
(pm + Z)p +2pmlgl < ((pm + 2)p* + 2pm)p**'n**'. Recalling that m
=3-2K1 a constant, each element of NEG(p,k,I) is clearly of length
polynomial in |7| and p, and the lemma follows if the number of elements of
NEG(p, k, I is also polynomial in /] and p. To see that this is the case,
observe that the number of elements of NEG( p, k, I') is at most the number of
ways to choose m pairs (e,, 8,), some element of P™, and three values a, b,
and c¢. The total number of possible examples is thus at most (({g| +
)" p™(p*)?, a polynomial in |I| and p. O

PrOPOSITION 4.10.  For any k and p, R, ((I) is computable in time polynomial
in |I| and in the value p.

ProOF. As shown in the proof of Proposition 4.9, the number of ways to
choose m pairs («,. B,), some element of P™, and three values a, b, and c, is
polynomial in [I| and p. Also the number of ways to choose a set D of at most
k — 1+ m variables is polynomial in |I], since kK — 1 + m is constant. Thus
we only need to show that for a particular choice of {a}",, {B}",, (P},
Das-+vs D2 and D, it is possible to check in time polynomial in |/] and p if
COL(¥) € D and SOL(I|p) N K(y) = &, where y = TI" (o, B).

Observe that y and SOL(I|p) can be easily constructed and COL(Y) € D is
easy to check. Let y = {(x, x,,...x,>. We are left with having to determine
whether SOL(Ilp) N K(y) = &. Since COL(y) € D this is equivalent to de-
termining whether there exists an assignment 7: D — {0, 1} of the variables of
D, such that either ¢ violates some clause of SOL(I|p) or the sum of all
components x, of y such that v, € D and r(v,)) = 1 is not equal to zero (mod
p). Since both D and SOL(I{;) have constant size, this method for determin-
ing whether SOL(I|) N K(y) = & requires only constant time (on a unit cost
RAM). O

4.3. A SMALL CONSISTENT COUNTER MACHINE. We show that if [ has
some solution 7, then there is a small (p state) DFA consistent with
POS(p, k,I) and NEG( p, k, I).

PROOF OF LEMMA 4.2.  Observe that C(p, 1) accepts a string y iff 7 € K(¥),
that is, iff the number of true variables occurrmg in y is zero mod p. Since
q= 0, then for any power q° of ¢, q* = 0. Clearly, T € K(g*), and thus
C(p,7) accepts ¢“. In particular, C(p, 7) accepts the only element g” of
POS(p, k, I).

To see that C(p, 1) rejects all elements of NEG(p, k, I), we show that if
C(p, 7) accepts a string v, , . (as described in the definition of NEG( p, k. I),
then v, , . is not an element of NEG(p, k, I}. Note that since g contains each
variable occurring a number of times congruent to 0 mod p, if C(p, 7) accepts
Yu.p.c» then it also accepts any word formed from v, , , by removing any
number of copies of ¢. In particular, it also accepts 7y, (described in the
definition of NEG(p, k, I)). From our comments preceding Section 4.1, it
follows that 7€ K(¥). Further, by assumption 7 € SOL(J]), hence for any
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D cV, 7€ SOL(I|p). Thus, certainly there is no set D < V of size |D| < k —
1 + m, such that SOL(I|p) N K(¥) = &, and therefore, for no choices of a, b,
and ¢ would the string v, , . be placed in NEG(p, k, [). O

To prove that p states are necessary in any NFA consistent with POS(p, k, I)
and NEG(p, k, I) (Lemma 4.3), we first introduce some notation that will also
be used in the proof of Lemma 4.4.

Let A=1(0.%,8,s,,,F) be any NFA with less than p* states that is
consistent with POS(p, k, I) and NEG( p, k, I), and again consider the graph
representation of A. Since A is consistent, the positive example g” defmes a
path ¢ from s, to some accepting state s,. Since 4 has less than p* states.
there exist numbers d, e, and f such that d + L + e + f=p*, and states s and
t on path ¢ such that: g leads from s, to s; g leads from s to ¢; ¢° leads
from ¢ to s; and ¢’ leads from s to s_. Figure 2 shows the loop of , together
with states s and ¢, and the strings ¢“, ¢¢ q’. (The states s, s, , and s,
need not be distinct.)

For any prefix w of g?', let sa(w) denote the state that w leads to along .
Since we assumed (see Section 2) that NFAs do not have A-transitions, the
state s, ,(w) is uniquely defined. For each ¥ € P" for which [COL(X)| < k we
define a particular prefix «, and suffix B¢ of g as follows:

mnit?

ay = TT vz - g 2w = e pP e fufinds oy
y<x
lcoL(m] <k

and S; is the unique suffix such that «; ;= ¢g. In other words,

Bo = vf Wl T P l_[ vwd? e pdepf THpf T e P T
>Xx
lcoL(ml <k

PROOF OF LEMMA 4.3. We show that any consistent NFA A4 with less than
p’ states must have at least p states. Let n be the number of variables of I and
let {v, v, ,u,) be any clause of I. Let x1 be the n-component vector that
contains all s except for components i, j, and k, which are 1. Let X, = rxX, for
O0<r=p-1

It suffices to show that the states {smlt(q @ No<rsp  are distinct. Assume

to the contrary, that for some r and » such that 0<r < r <p -1, we have
Sl @) = s(qaz ). Observe that qloy Beg*™ = qar B g =g
Since slmt(q o) = sm(q o), we conclude that the word p = ¢ aM Br.q qf is
accepted. We now obtain a ‘contradiction by showing that u € NEG(p, k, I).
Thus, s,,,(q%a; ) # 5,,(q‘a;. ), and 4 must have at least p states.

To see that p is a negatlve example, recall the definition of NEG( p, k. I).
Set y, to a; By, and vy, to a; B =q.for2 <! <m. Let{p, p,,...,p,) be
the vector <1 0,...,0) of P’” and set D to be the clause {v,, , v). The word
u can be rewrltten as g I (v,q)")q" = q%,q°q". To show that u is a
negative example we only need to show that SOL(Ilp) N K(y) = & for
y =T1" (y,)" = v,. Note ¥ con31sts of all zeros except for the components £,
J, and k which have value r — r'. The restriction |, consists of the clause D
and thus any solution of SOL(I {p) must have exactly one of the three
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q

F1G.2. The loop of path ¢ in A.

components corresponding to the variable of the clause set to 1 and the others
set to 0. Since 1 <r —r’ < p — 1, this implies that such a solution cannot lie
in K(¥) and SOL(I1p) NK(y) =J. O

4.4, FORCING POLYNOMIALLY LARGER NFAs. In this section, we prove
Lemma 4.4 by showing that if there exists an NFA consistent with POS(p, k, I)
and NEG( p, k, I) with fewer than p* states, then there exists a solution of
instance I. Before proving Lemma 4.4, we need a number of supporting
propositions. The arguments to follow apply to any NFA A that satisfies the
hypothesis of Lemma 4.4. As described above, A must have a loop; in what
follows we use the notation given in Figure 2.

For any set X € {1,2,...,n} such that |X| = k, we define an X-bridge as
follows: The string a8y is an X-bridge iff X + ¥, COL(¥) and COL(Y) are
both subsets of X, and the string a8, leads from s to £ Figure 3 depicts a
bridge.

PROPOSITION 4.11. Forall X € {1,2,..., n} such that | X| = k, there exists an
X-bridge.

PrROOF. Consider any X as in the hypothesis of the proposition. There are
exactly p* vectors ¥ such that COL(X) € X. Since |Q| < pk, there must be two
such vectors ¥ # ¥ such that COL(X) € X, COL(¥) € X and for some state r,
the states s;,(q'a;) = s, (q%;) = r. The string a;B; = g leads from s =
s,.(g") to t = s, (q""), and thus B; leads from r to t. Consequently, o By
leads from s to f, and is therefore an X-bridge. O '

A bridge is a string that for some X of size k, is an X-bridge. By the
definition of a bridge, and e, the string aByq¢ leads from s to ¢ and then
back to s. Thus, g¢ (which leads from s;,, to s), followed by any sequence of
strings of the form «;B;q° where agB; is a bridge, followed by g’ (which
leads from s to s,) is accepted by A (refer to Figure 3). We have just proved
the following proposition.

PROPOSITION 4.12.  Let {a)™, be any collection of prefixes of q, and {B}",
any collection of suffixes of q, such that for each i,1 < i < m, the string vy, = a, B,
is a bridge. Then for any {p,,p,,-...Pn> €P". and for any string v =
117 (v,q*)", the NFA A accepts the string q%yq’.

Recall from the discussion at the beginning of Section 4 that in any counter
machine C(p. ), if v is a word that leads from a state back to the same state,
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@

F16. 3. A bridge from s to t.

then 7 satisfies y- 7 = 0. Since for every bridge «; B; the string Yoy = a5 Byq¢
forms a cycle in A4, we follow the approach discussed carlier, and from .. we
derive the equation Yey - 7= 0 for the unknown assignment vector 7. Since
gc = 0. this equation is equivalent to (&, + B_},) 7= 0. Our goal is to extract
from 4 a small collection of bridges S such that at least one solution of the
collection of associated equations is also a solution to the instance I. The
examples NEG( p, k, I) will rule out collections of bridges whose corresponding
sets of equations do not have this property.

Let R be the matrix with a row a, + By for cach bridge a.B; of A. By
Proposition 4.11, for every X of size k there is an_X-bridge B, such
that COL(d;- + B;) € X and ¥ # ¥ (i.e., row dz + B # 0). Thus, R is k-closed
(Definition 4.5), and therefore, by Lemma 4.6, R contains a core C of size at
most k& — 1. Also, from Lemma 4.6, there exists a determining row for each
ief{l,2,....,n — C.

Definition 4.13. Let S be any matrix of n —|C| rows of R containing
exactly one determining row for each index of {1,2,....n} — C.

For any set M of rows of length n, let V(M) abbreviate Veorar (the
variables v, for which there is a row in M with a nonzero ith component). Let
Ve denote the set of variables indexed by the core, that is, {v,:1 € C}). Once
the variables of V. are set, the values of all other variables are forced in the

following sense: Given a setting of values for V., that is, o: Ve = 1{0,...,p — 1},
the determining rows in S for all indices outside of the core ensure that there
is exactly one extension of o to a setting of all variables ¢ ': IV — 0,...,p -1}

that lies in K(S). Since |C| < k — 1, this implies that there are at most 2%~ !
clements of K(S) N {0, 1}". Lemma 4.4 will be proved using the following
proposition:

PROPOSITION 4.14.  Consider the numbered statements below:

(i) SOL(I) N K(S) = &.
(i) There exists a subset of rows T of § such thar |T| <m = 3-2% and such
that SOL([|1/L U l’(T)) N K(T) = @

(iif) There exists an element & of span(T) such that SOLy, s yir) N K(&) =
.

Then (i) = (ii) = (iii).
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PROOF THAT (i) IMPLIES (ii). This portion of the proposition asserts that if
the system of equations S has no solution in common with the set of solutions
of I, then a constant-sized subset 7" of S has no solutions in common with the
set of solutions of I restricted (see Definition 4.8) to those variables V. of
the core, and those variables V(T') with nonzero entries in some row of 7.

We construct a matrix T from a subset of the rows of S such that T has the
desired properties. For each assignment 7: Vc - {0, ]} there is exactly one
extension of 7 to a setting of all variables 7': V' — {0,. — 1} that lies in
K(S). Since SOL(I) N K(S) = J, we have that either

(1) there is a number i € {1,2,...,n} — C such that 7'(v,) & {0,1}, or
(2) 7' €{0,1}* N K(S) but 7’ & SOL(I).

In case 1, include a determining row ¥ of index i/ in T (such a row exists
in S).

In case 2, the unique extension 7’ of 7 is an element of {0, 1}" N K(S)
but there exists a clause (v, v, Up ) of I such that the multiset
{r'(), 7'(v), '(v, )} # {0,0,1}. That is, it is not the case that exactly one
variable is set to true. Then, for each i €{j,j’,j"} — C, include in T the
determining row ¥ of i in S.

Clearly, |T] <m = 3-2*"! since for each assignment 7 of V. (and |C| <
k — 1), at most three rows of S were included in 7.

We show that SOL(Ily,uyr)) N K(T) = . Suppose this is not the case,
and there exists a vector Z € SOL(I|y, ,yry) N K(T). Let 7 be the assign-
ment of the variables of V. given by Z, that is, for all i € C, 7(v) = z,. Then 7
was considered in the above construction of 7. Since the unique extension 7'
of 7 to V' that lies in K(S) cannot be an element of SOL(I), one of the two
cases occurred.

If case 1 occurred, then there is a determining row X of 7 and a number i
such that any extension 7 of 7 to an assignment of V' for which ¥ - 7" =0
must be such that 77(v,) is a unique value that is not in {0, 1}. Since x € T C S,
it follows that both 7' and Z are such extensions and thus 7'(v,)) = z, & {0, 1}.
But the fact that z, & {0,1} contradicts the fact that z € SOL(ly .y vr)) N
K(T).

If case 2 held, then for the unique extension of = to 7' € {0, 1} N K(S),
there exists a clause (v, vy, v.) of [ such that the multiset {7- (v),

7'(v), 7'(v )} #{0,0,1}. If i € {] j',j’} — C, then the determining row X of i
was included in T, and any extension of 7 to some 77 € {0, 1}" N K(T) must
set the variable v, to the same value as 7' does. On the other hand, if
ief{jj.j'IncC, then since 7 has domain V., any extension 7” of 7 to an
assignment of 1/ must set the variable v, to the same value as 7’ does. Thus,
regardless of whether i € {j,j’,j"} N Corie {j,j'.j"} — C, we have con-
structed 7' so that {v,v.,v,} €V, U W), and such that for each v &
{v,v,, v}, any extensmn ‘of  to 7" € {0,1}* N K(T) is such that

(v) = 7'(v,). Since Z is such an extension of 7, it follows that the multiset
{Z,,Z,,Z )= {7 (v), 7'(v), 7'(yp)} #{0,0,1} and thus z & SOL(Ily, o)),
and ccrtainly Z & SOL(IIV U;(,)) N K(T), as was hypothesized above This
completes the proof that o) implies (ii).

PROOF THAT (ii) 1MpLIES (iii). Suppose to the contrary that (ii} holds but
that (iii) does not, so no such element & exists. Then for each element & of
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span(T), SOL(I|y, uyry) N K(&) is nonempty. Since V(@) < V(T), if 72 V, U
W(T) — {0, 1}, then either all extensions 7': ¥V — {0,1} of 7 are such that
T e SOL(IIVCU;/(T)) N K(&), or no extensions 7' are such that 7’ €
SOL(Ily, uvery) N K(@). In the first case, we say that 7 is a witness to the
nonemptiness of SOL(I|,, ) N K(&). Since for each &, we have
SOL(Ily uwiry) N K(8) # O, there is a witness for each @. There are at most
2k=T+m distinct witnesses, since each is an assignment of at most k — 1 + m
variables (at most k — 1 variables of the core C and at most one variable not
in C for each of the m determining rows of S that are in 7). Thus, there must
be some assignment 7,: V. U V(T) — {0, 1} that is a witness for at least

lspan(T)|  |span(T)I

2k71+m p

elements of span(T) (because p > 2¥~!1*™). Let B be the subset of elements
of span(T) for which 7, is a witness, that is, B is the set of elements of
span(T) such that for every & € B, every extension of 7, is an element of
SOL(Ily, yvry) N K(w). Immediately, we have that every extension of 7 is an
element of SOL(I|y.,v(r)) N K(B).

By Lemma 4.7, the above bound on the size of B implies that B contains
a basis of T and thus K(T) = K(B). Thus, SOL|y.yycr) NK(T) =
SOL(Ily_ ,vry) N K(B). But since every extension of 7, is in
SOL(Ily_uvry) N K(B), this implies that SOL(Iy, ,yry) N K(T) is nonempty,
contradicting the hypothesis of the proposition. O

PrOOF OF LEMMA 4.4. Assume the hypothesis of the lemma is true; we
need only show that there exists a solution of instance /. Thus, Lemma 4.4
follows immediately from:

ProPOSITION 4.15. SOLLI) N K(S) # .

PROOF. Suppose to the contrary that SOL(I) N K(S) = . Then, by
Proposition 4.14, there exists 7 C .S of size at most m such that
SOL(Ily, svry) N K(T) = . This implies, again by Proposition 4.14, that
there exists a vector & € span(T') such that SOL(Ily_, 7)) N K@) = &.

Recall that 7T consists of I <m vectors y,,%¥,,...,7,, corresponding to
bridges v,, v,, ..., ¥;, where each vy, is formed from the concatenation of some
prefix «, and some suffix B, of g. For syntactic convenience, define y, = v,
for I <j < m. By the definition of span(T), there exists p € P™ such that
o= X" p7v,. Let the string vy =TT, (y,)?. Then, clearly ¥ = &, and thus
SOLU |y, s viry) N K(Y) = &. Now define D = V. U V(T), and we have that
SOL(I|p) NK(3) =&, IDl <k — 1 +m, and COI(y) < D. Then, by the
definition of NEG(p, k, I), for any a,b,c,v, , . = ¢*I1™ (y,4")?)gq* is an
element of NEG(p. k, I). But when a = d, b = e, and ¢ = f, by Proposition
4.12, this string is accepted by A, contradicting the consistency of 4. We
conclude that SOL(1) N K(S) # &, completing the proof of Proposition 4.15
and Lemma 44. O

5. A Larger than Polynomial Gap

We extend Theorem 4.1 to show that not only is a polynomial approximation
factor unachievable, but no polynomial-time approximation algorithm can find
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a consistent NFA of size opt!! ~ 108198 or! for any constant € > 0. (In this paper,
“log” denotes “log,.”)

THEOREM 5.1. For any constant € > 0, MIN-CON(DFA, NFA) is not
opt‘! ~ ezl ov_gpnyoximable unless P = NP.

PROOF. Suppose to the contrary that there exists a polynomial-time algo-
rithm A, a constant € > 0, and a constant ¢ such that on input of any instance
of MIN-CON(DFA,NFA) for which the smallest consistent DFA has at least
opt > c states, A outputs a consistent NFA with at most opt!! ~ /08102 ¥ ggates.

We obtain a contradiction by applying the reduction R, , to an instance I of
a 1-in-3-SAT problem for appropriate choice of p and k. Choose any prime
p > max{c,2>”}. We show below that for k = [loglog p] — 2, the following
two conditions hold:

(l) p(l—e)loglogp <pk
(2) p > 2k~1+m‘

If we apply R, ; to instance I, we obtain sets POS(p, k, I') and NEG(p, k, 1)
for which the number of states in a smallest DFA is p > ¢ if I has a solution,
or is at least p* if I does not (Lemmas 4.2, 4.3, and 4.4).

Certainly if I has no solution, then approximation algorithm A cannot find
an NFA with fewer than p* states. On the other hand, if I has a solution, then
A must find an NFA with at most pt!~€leleer < pk gstates. By the second
condition above, p satisfies the appropriate size bound and the proof of
Theorem 4.1 applies, so A may be used to solve 1-in-3-SAT in polynomial time.

To complete the proof of Theorem 5.1 we must show that the two conditions
above hold. To see that the first condition holds, note that by our choice of p,
eloglog p > 3, and so (1 — e)loglog p < loglog p — 3 < [loglog p] — 2.
ThUS p(l eloglog p <p[10glogpj 2 :pk

For the second condition, assume without loss of generality that € < 1, thus
p > 2%and

1/2

p > (IOg p)p
— 21()g10g p+21(!gl\)gp‘1
— nloglog p+4-2belogp=3

7 |loglog pJ_3+3.Zng1(.gm,3

\Y

- 2k71+3«2"“

— 2k~ 1+m

2

completing the proof of Theorem 5.1. O

Let REGEXPR and REGGRAM denote the classes of regular expressions
and regular grammars, respectively.

COROLLARY 5.2.  For any constant € > 0, MIN-CON(DFA, REGEXPR) and
MIN-CON(DFA, REGGRAM) are not opt''~ V%% ¥ gpproximable unless P =
NP.

PrROOF. By trivially modifying the proof of Theorem 5.1 and using Lemmas
2.3 and 2.5, it follows that MIN-CON(DFA,REGEXPR) and MIN-CON
(DFA,REGGRAM) are not iopt!! < lele ¥ approximable for any €’ > 0
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unless P = NP. To see that they are not opt!! 'l ¥ approximable for any
e > 0, choose any €’ < e (and greater than 0), and then for sufficiently large
values of opt we have opt'! ~<logloeat « Loppt=edloglogar Thyg an algorithm
guaranteeing an approximation of opt!~ '8¢ % would immediately guaran-
tee an approximation of at most Soprl ~€M8le ¥ which we have observed
is not possible for any €’ > 0. O

It is important to point out that Theorem 5.1 and Corollary 5.2 hold only
when the size of a DFA or NFA is the number of states of the automaton.
These results do not hold if we take the size measure to be the number of bits
to encode the automaton—an arguably more natural measure. (It is easily
shown that Theorem 4.1 still holds for this more natural size measure.)

To see where the theorem fails to apply, first note that the reduction R, ;
takes time at least Q(p"( ’Z)) when applied to an instance of 1-in-3-SAT of n
variables, because the word qpA alone is at least that long. Thus, in order to use
R, , to solve an instance [ of 1-in-3-SAT, k must not be chosen to be any
increasing function of #n, otherwise the time taken by the reduction would be
more than polynomial in .

A DFA of p states with an »n symbol alphabet requires roughly pnlog pn
bits to encode, so to achieve a result comparable to Theorem 5.1 for this size
measure, it would be necessary to show the difficulty of finding an NFA with a
description of at most ( pnlog pp)t~elosloglmioe ) hits To do this would
simultaneously show the difficulty of finding an NFA with fewer than, say,
( pr)logloglos m gstates, so the value k in the reduction would need to be at least
loglog pn, an increasing function of #, and hence the reduction would not be
polynomial in the size of the instance I.

In Sections 6, 7, and §, we consider some related MIN-CON problems and
prove approximability lower bounds of opt* for any constant k, as in Theorem
4.1. However, we will not be able to extend the lower bounds to op#!! ~loglog o
for the following reasons. The proofs of the theorems in the following sections
will necessitate applications of reductions R, ; to an instance [ of n variables,
where p is chosen to be at least n. If we try to apply the proof of Theorem 5.1,
we note that the value k is chosen to be roughly loglog p. Consequently, the
exponent k of the reduction would grow as a function of 7, and the reduction
would not be executable in time polynomial in 7.

6. The Two-Letter Case

We generalize Theorem 4.1 to the case of DFAs and NFAs over the two-letter
alphabet {0,1}. Let DFA Y and NFA® Y denote the class of DFAs and NFAs
over alphabet {0, 1}, respectively.

THEOREM 6.1. If P # NP. then for all positive integers k, MIN-CON
(DFA®™ Y, NFA®Y) is not opt*-approximable.

COROLLARY 6.2. If P+ NP, then MIN-CON(DFA"“Y NFA®") s not
f (opt)-approximable for any function f that is bounded above by some polynomial.

The proof of Theorem 6.1 (presented later) is essentially the same as that of
Theorem 4.1, except that, since all examples must be constructed using only
two symbols, binary sequences are used to encode the symbols of the alphabet.
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Let I be an instance of 1-in-3-SAT with variable set V = {v,,v,,...,v,}.
Without loss of generality, n is a power of 2, for otherwise we could pad by
adding dummy variables. Fix some bijection “hat” (we write “v” to denote
“hat(v)”) with domain V" and range {0, 1}'*¢”, and thus ¥, is the bit string of
length log n that “encodes” the variable v,. Inductively extend hat in the usual
way to strings of V*= * — {A} by letting wv= Wt where w € V" andve V.

Let R be the (polynomial-time) algorithm that takes as input an instance
I of 1-in-3-SAT, and outputs the sets POS(p,k I)={w:w e POS(p, k, )}
and NEG(p, k, I) = (W : w € NEG(p, k, I)}. (That there is such a
polynomial-time R{0 ! follows immediately from the definition of the function
hat, and from Proposmon 4.10.)

If 7: V - {0, 1} is any assignment, then define C(p. ) to be the “counter-
like” machine over the alphabet {0, 1} that, on input W, simulates C(p, 7) on
input w:C(p,7) will accept the language L(C(p, 7)) = {(W:w € L(C(p, 7))}
and may be constructed from C(p,7) as follows: Let & be the transition
function of C(p, 7). Then, C(p,7) consists of counter states and auxiliary
states, and has transition function 6. The counter states are exactly the states
of C(p, 7). We replace each of the n edges emanating from any counter state s
with a complete binary tree of depth log n. The tree is rooted at s, and each
vertex has edges labeled 0 and 1 to its left and right child, respectively. All
(n — 2) internal vertices other than the root are auxiliary (new) states, and the
leaves are counter states such that for each v € V, 8(s,9) = 8(s, v).

LeMMA 6.3. If I has a solution, then for any positive integers k and p, the size
opt of the smallest DFA consistent with POS(p, k, I) and NEG(p, k, I) satisfies
p < opt < pn, where n is the number of variables of instance I.

Proor. The first inequality follows easily from the proof of Lemma 4.3,
which shows that the smallest DFA consistent with POS(p, k,I) and
NEG( p, k, I) has at least p. states. To prove the second inequality, observe
that by the construction of C(p,7) and by Lemma 4.2, if I has some solution
7, then C(p, ) is a DFA consistent with POS(p, k, I) and NEG(p, k, I) and
has exactly p + p(n — 2) < pn states. Note that the lower bound of the lemma
holds for NFAs, and the upper bound holds for DFAs.

LEmMA 6.4. Let k be any positive integer, and let p be a prime such that
p > 25 Vtm If Lis any instance of 1-in-3-SAT, and if there exists an NFA A with
less than p* states that is consistent with POS(p, k, I) and NEG(p, k. I), then 1
has some solution.

ProOF. If the hypothesis is true we may easily obtain an NFA A" over
alphabet V7, and with at most as many states as A, that is consistent with
POS( p, k, I) and NEG( p, k, I'). Thus, by Lemma 4.4, I has some solution. O

Now to prove Theorem 6.1, define, for each k, a transformation 7 as
follows. On input instance I of a 1-in-3-SAT problem with 7 variables, T} first
determines whether n > 257'*™ 1f not, then T, halts and outputs nothing.
Otherwise, 7, finds the smallest prime number p satisfying 2k < p<p <
2n. Such a p exists by a theorem of Chebyshev (Theorem 8.6, page 185 of [19]),
which states that for all n > 1 there exists a prime p such that n <p < 2n.
After obtaining p. T, then computes and outputs RU>J(1).
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We argue that for each constant k, T} is computable in time polynomial in
|I|. Since |I{> n, checking the n + 1 numbers p between n and 2n for
primality may be done in time polynomial in [/] by trying all possible divisors
up to /p. (Note that the time is polynomial in », and not in logn). By
Proposition 4.10, the run time of R is polynomial in |/| as well as the value
p. which is at most 2n.

PROOF OF THEOREM 6.1. Let k be given. Then there exists a number k'
such that opt® < (opt/2)*'/* for all sufficiently large values of opt. Conse-
quently, to show for all & that MIN-CON(DFA‘ ! NFA®) is not opt*-
approximable unless P = NP, it suffices to show for all £ that MIN-CON
(DFA® B NFA® 1) is not (opt /2)*/*-approximable unless P = NP.

Suppose to the contrary that for some number k, MIN-CON
(DFAC D NFA" D) was (opt /2)*/*-approximable, witnessed by constant ¢ and
polynomial-time algorithm APPROX. We show that membership in 1-in-3-SAT
is decidable in polynomial time, hence P = NP, thus proving the theorem.

The polynomial-time algorithm DECIDE determines 1-in-3-SAT as follows:
On input instance [ with n variables, DECIDE determines if »n >
max{c, 271"}, If not, then DECIDE determines whether I has a solution by
trying all possible assignments (a constant number, since ¢, k, and m are
constants). Otherwise, DECIDE computes 7,(7), and gives the result as input
to subroutine APPROX. If APPROX returns an NFA with less than »n* states,
then DECIDE outputs “/ has a solution.” Otherwise, DECIDE outputs **/
does not have a solution.”

Clearly, DECIDE runs in time polynomial in | 7], since both 7, and APPROX
run in polynomial time. We must show that DECIDE is correct. Certainly
DECIDE is correct for all instances I with n < max{c,2*~'*"} variables, since
these decisions are made by exhaustive search.

Suppose I is an instance with 7 > max{c,2* !*"} variables, and that
DECIDE outputs “I has a solution.” Then, 7,(I) gives the MIN-CON
(DFAY Y NFA“ 1) instance R(0 J(I) as input to APPROX (where p is the
smallest prlme between n and 211) Since APPROX returns an NFA with less
than n* < p* states, by Lemma 6.4, I has a solution.

Conversely, suppose that [ is an instance with 1 > max{c, 2%~ 1*"} variables,
and I has a solution. Since n is large enough, DECIDE runs 7,(/) and
obtains the instance RUJ(J) = POS(p, k, ),NEG( p, k, I) of MIN-CON
(DFA D NFA" D), where p is the smallest prime between #n and 2n.

By Lemma 6.3, the size opt of the smallest DFA consistent with POS(p, k, 1)
and NEG(p, k, I) satisfies p < opt < pn. Since ¢ <n < p < opt, the value of
opt is large enough so that the bound on the performance of APPROX must
apply, thus APPROX must find a consistent NFA with less than (opr/2)%/>
states. Since opt < pn and p < 2n, this gives opt < 2n*. Consequently, the
consistent NFA returned by APPROX has less than (2n° /2)¥/? = »* states,
and DECIDE outputs “7 has a solution.” O

7. Other Representations of Regular Sets

Let REGGRAM™!Y and REGEXPR™" denote the sets of regular gram-
mars and regular expressions, respectively, over the two letter alphabet
{0.1}. We show that Theorem 6.1 implies that unless P = NP, MIN-CON
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(DFA" Y, REGGRAM® ) and MIN-CON(DFA" !, REGEXPR"™") are not
polynomially approximable.

THEOREM 7.1. If P # NP, and f is any function that is bounded above
by a polynomial, then MIN-CON(DFA"Y, REGGRAM ") and
MIN-CON(DFA" Y, REGEXPR"Y) are not f(opt)-approximable.

The proof of this theorem is a modification of the proof of Theorem 6.1. We
use the same polynomial-time algorithm R}, which for a given instance [ of
1-in-3-SAT (with variable set V' ={v,,...,v,}, where n is a_power of 2),
produces the sets POS(p, k, 1) = {W:w € POS(p, k, I)} and NEG(p, k, I) =
{(W:w e NEG(p, k, I)}. Recall that v, is a bit string of length log n that
encodes the variable v,.

LeMMA 7.2. Let k be any positive integer, and let p be a prime such that
p > 2k=1Fm If Iis any instance of 1-in-3-SAT, and if there is a regular grammar
or a regular expression of size less than p* /2 that is consistent with POS( p.k, 1)
and NEG(p, k, I, then I has some solution.

PROOF. Assume there is a consistent regular grammar or a consistent
regular expression of size less than p*/2. Then by Lemmas 2.5 and 2.3,
respectively, there is a consistent NFA of size less than p*. We conclude by
Lemma 6.4 that I has a solution. 0O

To prove Theorem 7.1, we use the same transformation T, which was used
in Section 6. Upon input of some instance I of 1-in-3-SAT with n > 2%~ '
variables, T, computes the smallest prime number p satisfying n < p < 2n and
runs RYJ(I). Recall that 7} is computable in time polynomial in [/].

PrOOF OF THEOREM 7.1. Since f is bounded above by some polynomial,
there exists a number k such that f(opt) < (opt/8)*/* for all sufficiently large
values of opt. Thus, it is sufficient to prove that for all positive integers k,
neither MIN-CON(DFA® Y, REGGRAM® ") nor MIN-CON(DFA" Y,
REGEXPR® ") are (opt/8)*/*-approximable unless P = NP.

Suppose, for some positive integer k, that MIN-CON(DFA®DY,
REGGRAM® D) or MIN-CON(DFA® !, REGEXPR®Y) was (opt/8)%/*
approximable, witnessed by constant ¢ and polynomial-time algorithm
APPROX. Then the following algorithm DECIDE determines 1-in-3-SAT in
polynomial time, thus proving the theorem by contradiction. On input instance
I with n variables, DECIDE determines if n > max{c,2*~'*™}. If not, then
DECIDE determines whether I has a solution by trying all possible assign-
ments (a constant number, since ¢, k, and m are constants). Otherwise,
DECIDE computes T, (1), and gives the result as input to subroutine APPROX.
If APPROX returns a regular grammar or a regular expression of size less than
n* /2, then DECIDE outputs “I has a solution.” Otherwise, DECIDE outputs
“I does not have a solution.”

Clearly DECIDE runs in time polynomial in |7}, since both T, and APPROX
run in polynomial time. We must show that DECIDE is correct. Certainly,
DECIDE is correct for all instances / with n < max{c,2¥~"*”} variables, since
these decisions are made by exhaustive search.

Suppose I is an instance with n > max{c,2¥"'*"} variables, and that
DECIDE outputs “I has a solution.” Then, T,(I) gives the output of R%- (1)
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as input to APPROX (where p is the smallest prime between n and 2n). Since
APPROX returns a regular grammar or a regular expression of size less than
n*/2 < p*/2, it follows by Lemma 7.2 that I has a solution.

Conversely, suppose that 7 is an instance with n > max{c,2* '™} varia-
bles, and [ has a solution. Since n is large enough, DECIDE runs T,(I)

and obtains the instance R{-(1) = POS(p. k, ), NEG(p. k. I) of MIN-
CON(DFAY- U NFA™ ), where p is the smallest prime between n and 2n.

By Lemma 6.3, the size opt of the smallest DFA consistent with POS( p, &, I)
and -I\T]—E—G(p. k, I) satisfies p < opt < pn. Since ¢ < n < p < opt, the value of
opt is large enough so that the bound on the performance of APPROX must
apply; thus, APPROX must find a consistent regular grammar or regular
expression of size less than (opt /8)*/2. Since opt < pn and p < 2n, opt < 2n*.
Consequently, the consistent regular grammar or regular expression returned
by APPROX has size less than (2rn2/8)*/? < n* /2 and thus DECIDE outputs
“l has a solution.” O

Because Theorem 7.1 shows polynomial nonapproximability, the theorem
holds also with respect to other natural size measures than the ones introduced
in Section 2.1, as long as these other size measures are polynomially related to
the ones used here.

By “reversing” the construction of Lemma 2.5, it is easily seen that there
exists a consistent regular grammar of size at most a constant times larger than
the smallest consistent DFA over alphabet {0,1}. However, in the case of
regular expressions, Theorem 7.1 may be uninteresting for unrestricted DFAs
over alphabet {0, 1} if there are finite sets of positive and negative examples
such that the smallest consistent regular expression over alphabet {0,1} is
exponentially larger than the smallest consistent DFA over the same alphabet.?
In this case, Theorem 7.1 would trivially hold, even without the complexity
theoretic assumption that P # NP. However, it is easily verified that, in the
case of counter-like DFAs, which were used in the reduction of the previous
section (Lemma 6.3), the smallest consistent regular expression is at most
polynomially larger than the counter-like DFA C(p, 7).

LEMMA 7.3. For any p and T: {vi,....,v} = 0,1}, the smallest regular
expression for the language L(C( p, 7)) has size at most cpnlogn, for some
constant c.

ProOF. Assume without loss of generality that +(v) = 7(v,) = -+ =
7(y,) = 0 and that T(U+1) - =1(y) =1. Let 7, denote the regular
expression (9, + v, + -+ +7,) 1f s >0 and A if s =0. (Note that we have
omitted superfluous parentheses in accordance with the standard precedence
rules [151) Let 7, denote the regular expression B, +5,,+ - +3)
s <n and A if s = n. For any regular expression r, let »? be an abbreviation
for the regular expression »r --- r (concatenated p times). Then the regular
expression

(7)*(((rg) ) (7)) %)
denotes the language L(C(p, 7)) and has size O(pnlogn). O

*In [8]. it is shown that there are languages such that the smallest regular expression is
exponentially larger than the smallest DFA for the language. It 15 not clear whether this implies
the same separation between the sizes of DFAs and regular expressions consistent with a finite set
of examples.
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8. Forcing Large Linear Grammars

Let LIN be the class of linear grammars, as defined in Section 2. By employing
techniques similar to those of the previous sections, we obtain nonapproxima-
bility results for MIN-CON(LIN, LIN). For simplicity, we only develop the
proof for the case of linear grammars where the alphabet is a parameter to
the problem, as opposed to presenting results for the fixed alphabet {0, 1}.

THEOREM 8.1. If P + NP, then MIN-CON(LIN, LIN) is not f(opt)-
approximable, for any function f that is bounded above by some polynomial.

To prove Theorem 8.1, we essentially repeat the proof of Theorem 4.1, but in
the context of linear grammars. Recall that the size of a linear grammar is the
total number of symbols on all left and right sides of all productions. A
reduction will be exhibited that produces a gap: the smallest consistent gram-
mar will be of size between p/3 and 6pn, (where n is the number of variables
of an input instance of 1-in-3-SAT), and whenever there is a grammar of size
less than ( p* — 4) /6, then the corresponding instance of 1-in-3-SAT will have
a solution. The proof of Theorem 8.1 is delayed for the proof of the necessary
supporting lemmas.

Let I be an instance of 1-in-3-SAT over variable set V, and let # be an
additional symbol not appearing in V. For each j,1 <j <p* + 1, define
POS/(p, k, D# and NEG( p, k, )# as follows:

POS/( p, k, D# = {(g?" )V #);
NEG(p, k, D# = {w#:w € NEG(p, k, I)}.

Also, the counter machine C(p, 7)# is defined as the counter machine
C(p, 1), with additional transition 8(s, #) = s added for each state s.

For each number j, it is easily verified that the proof of Theorem 4.1 holds
with only trivial modification if the reduction R, , outputs POS/(p, k, I)# and
NEG( p, k, )# instead of POS(p, k, I) and NEG(p, k, I). More qpec1f1cally,
the following lemma holds, which incorporates modified versions of Lemmas
4.2,4.3, and 4.4.

LEMMA 8.2. Let I be any instance of 1-in-3-SAT, let k and p be any positive
integers, and let j be such that 1 <j < p* + 1.

(1) If 7 is a solution of I, then C(p, t)# is consistent with POS'(p, k, I)# and
NEG(p. k, D#.

(2) If A is an NFA that is consistent with POS/(p, k, # and NEG(p, k, I)#,
then A has at least p states.

Q) If p > 2K+ s prime, and if A is an NFA with less than p* states that
is consistent with POS'(p,k, )# and NEG(p, k, )#, then 1 has some
solution.

We define the polynomlal -time transformation R'™ , which takes as input an
instance I of 1-in-3-SAT, and outputs two finite sets POS™(p, k,I) and
NEG!"(p, k, I) with the required gap properties described in Lemmas 8.3, 8.4,
and 8.5 (given below). We present Ry (1) by describing the sets POS™(p, k
I) and NEG"(p, k, I). It is easily verified that R)", runs in time polyn0m1a1 in
|I| and the value p. The sets POS™(p,k, I) and NEG““(p, k,I) are con-
structed so that from any linear grammar of size less than (p* — 4) /6, we can
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obtain a right linear grammar that is consistent with POS/(p, k, I)# and
NEG(p, k, D# of size less than p*/2, for some j between 1 and p* + 1.
Applying Lemma 2.5, we obtain an NFA with less than p* states that is
consistent with POS/(p, k, I)# and NEG( p. k, )#; thus, we obtain, by the
third part of Lemma 8.2, a solution of I.

Let u = (qPA)Pk+I and v= $7¢?", where $ and ¢ are not elements of V.
Then define

POS™(p, k, I) = {uv, v},
NEG"(p, k, 1) = M1 U M2 U M3 U M4, each defined below.

M1 = {xwyw,z 1 xyz = v,|lw; + w,| < p, and w;,w, are both substrings of v};
M2 = {xv:x € NEG(p, k, };

M3 = {u,1,$7'¢? : (Juuu,uy = u and 0 < d < p*);

M4 = {(g?")%z¢!:0 <d. f < p* + 1, and z € NEG(p, k, )}.

LEMMA 8.3.  For all positive integers k, p, and all instances I of 1-in-3-SAT,
any linear grammar G that is consistent with POS""(p, k, I} and NEG"**(p, k, I)
has size at least p /3.

PrOOF. Suppose to the contrary that G is a grammar consistent with
POS"™(p, k, I) and NEG"(p, k, I) and the size of G is less than p /3. Then,
by Proposition 2.6, G may be replaced with an equivalent thin grammar G’ of
size less than p. Without loss of generality, G’ has at most p nonterminals;
otherwise, some terminal(s) must be useless and could be discarded to obtain a
smaller grammar.

Consider any derivation of the string v, which has length 2p*. Since the
grammar is thin, each production generates at most one additional terminal;
thus, there must be at least 2p* applications of productions (steps) in the
derivation. After each step (except the last) the sentential form thus far
generated consists of some number of terminals, and exactly one nonterminal.
Thus, one of the strictly less than p nonterminals appears in two different
sentential forms less than p steps apart in the derivation of v. In other words,
for some nonterminal A4, we have

¥ < *
S=>wiAw, = ww, Aww, =S wwiwsw,w, = v,

and such that 4 = w, Aw, in less than p steps. By repeating this “subderiva-
tion” in the derivation of v, we obtain

. . . 2 2 2 2 ,
S =wAw, = wwsAw,w, = w(w)” Alw, ) 'w, = wiw,) wilw,) w, = v'.

Note that w; and w, are substrings of v such that |[w; + w,| < p. Conse-
quently., a negative example (type M1) is obtained by inserting these two strings
anywhere in v = wwywsw,w,. In particular, v’ is a negative example generated
by G’, contradicting the fact that G' is consistent, completing the proof of
Lemma 83. O

LEMMA 8.4.  Let I be an instance of 1-in-3-SAT. If 7 is a solution of I, then

Jor all positive integers k and p there is a linear grammar of size at most 6 pn that is
consistent with POS""(p, k, I} and NEG""(p, k, I).

ProOOF. We construct a linear grammar G of the desired size. First, convert
the counter DFA C(p, 1) to a right-linear grammar G’: Each of the p states
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becomes a nonterminal. For each of the » letters a € V/, and for any states 77,
T,, the size 3 production T, — aT, encodes the edge labeled with a from T
to T,. For the nonterminal S, which corresponds to the start and final state of
C(p, 7), add the production § — A. Then L(G') = L(C(p, 7)) [15]. Finally, the
grammar G may be obtained from G’ by adding the production § — $7S¢?.

The size of G’ is exactly 3pn + 1, and the size of G is exactly 3pn + 1 +
2p + 2, which is at most 6pn, since n > 3 for any instance of 1-in-3-SAT. G is
consistent with POS"™( p, k, I), since it clearly generates v, and, by construc-
tion, also generates xv for any string x accepted by C(p, 7). Since u is such a
string, G generates uv also.

We argue that G is consistent with NEG"(p,k, I). If G gencrates any
string of M1, it must do so using only the two productions § — $7S¢? and
S — A, since all other productions generate a character of V' — {$, ¢}. Clearly
no element of M1 can be gencrated in this way, since all strings generated
using these two productions must have length a multiple of p, which does not
hold for any string of M1. Thus, G does not generate any string in M1.

If G generates some string xv € M2, then, by construction of G, we must
have that G’ generates x. But L(G') = L(C(p, 7)), and thus C(p, 7) accepts
the string x € NEG( p, k, I), contradicting Lemma 4.2. Thus, G is consistent
with M2.

G cannot generate any string of M3, since only strings with an equal number
of $ and ¢ symbols can be generated.

Finally, suppose that G generates some string w = (g**)?z¢/ € M4. Then
f =0, otherwise w contains an unequal number of $ and ¢ symbols, and would
not have been generated by G. It follows that G’ must generate w = (" )z
with z € NEG(p, k, I). But L(G") = L(C(p, 7)), and C(p, 7) does not accept
w, since for all 4, (q”k)d leads from the start back to the start state, and thus if
C(p, ) accepted w, it would accept the string z € NEG(p, k, I), contradicting
Lemma 4.2. We conclude that G is consistent with all examples, completing
the proof of Lemma 8.4. O

LeMMA 8.5. Let k be any positive integer, and let p be a prime such that
p > 2KV If Lis any instance of 1-in-3-SAT, and if G is a grammar of size less
than (p* — 4)/6 that is consistent with POS"(p,k,I) and NEG""(p, k, I),
then I has some solution.

Before proving Lemma 8.5, we present some supporting propositions.
Throughout, we assume that the hypothesis of Lemma 8.5 is true.

Since |G| < (p* — 4)/6, by Proposition 2.6 there exists a thin linear gram-
mar G’ that is consistent with POS"™(p, k, I) and NEG"™(p, k, I) and such
that |G'| < 3|G| < (p*/2) — 2. As in the previous reductions, we again con-
centrate on a particular positive example. All derivations used in the proof are
with respect to the equivalent thin grammar G’, instead of the original
grammar G.

PROPOSITION 8.6. The derivation of uv can be written as S = oCy and
C = v. such that oxif = uv. | x| = p*, and ¥ is a suffix of ¢

PROOF. Since G’ is thin, exactly one terminal is generated at each produc-
tion step. Thus, there is some point in the derivation of uwv such that exactly p*
terminals remain to be generated. Writing this as § = ¢Ciy and C = Y, such
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that oy = uv, | x| = p*, the proposition is proved if we show that  is a suffix
of ¢7'.

Assume to the contrary that  is not a suffix of ¢”*, in which case ¢#" must
be a proper suffix of ¢, that is, || > p*. Since | x| = p¥, and there are p*
$-symbols in uv, ¢ must be a prefix of u. Thus, all ¢-symbols are generated
in the derivation of uv before the first $-symbol is generated. Thus, the

derivation of uv can be rewritten as:
S= D¢ = 0Dy’ S = 00, @D,

where ¢ ¢, = ¢, is aprefixof u, D« = w$? and 1y @, cw$Pert = .
Since |G'] < ( p" /2) — 2, G’ has less than p* nontermmals Thus, there
must exist 0 < a < b < p* such that D, = D,, and we have that

S = Pr¥y "7 ()DaDa¢a
and
Dy = @y SDp‘Dpk‘zpk_b'
Since D, = D,, we have

S = Q1@ @iy @D, bt P10 PP P cw§Pgr b,

Let =@ (a prefix of u), let Uy = @y 0 G (a suffix of u), and
let d =p* —b + a. Then § = u,u 87 ‘¢, and for some Uy, U U,U5 = u. Thus,
G’ (and G) generates a negdtwe example (type M3), contradlctmg its
consistency. We conclude that ¢ is a suffix of ¢?, completing the proof of
Proposition 8.6. O

PROPOSITION 8.7. There are numbers 0 <d, e <p*+ 1, and 0 <f < pF
such that the derivation of the positive example uv can be written as

S = (q”‘)dfmf = (qpk)dq”k(q”k)eBef = 1.

PROOF. Proposition 8.6 ensures that in the derivation of uv, all of u is
generated before any $-symbol is generated to the right of the nonterminal,
and thus we can rewrite the initial segment of the derivation as follows:

N K . AN R . i pritl
S =Eopy = q" Eypy = (‘]1 ) Eyp, = - = (flp )p Epe e,y = uv,

where E, = S, ¢, = A and all of the strings {¢7}, ., ., G consist of at most p*
¢- symbols Since there are p* + 2 strings {4}, and only p* + 1 values they may
have, there exist a and b such that 0 <a < b < p* + 1 and ¢, = ¢,. Letting
A=FE,d=a, ¢/=4y,=4,, B=E,, and e=b —a — 1, the proposition
follows. @O

PROOF OF LEMMA 8.5. Proposition 8.7 ensures that in the derivation of the
positive example uv, there is a nonterminal A such that 4 = (¢?")**'B for
some e > (. It follows that the subgrammar G”, with start symbol A, and with
only those productions involved in the generation of (¢”")¢*'B, is a rlght linear
grammar.

Let G” be the right linear grammar obtained by adding production B — #
to the right linear grammar G”, where # & VU {$, ¢}.
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PROPOSITION 88. Let j=e¢ + 1. Then G" is conmsistent with the examples
POS(p, k, # and NEG(p, k, I#.

Lemma 8.5 now follows from Proposition 8.8 by the following argument:
Suppose the proposition is true. Note that the size of right linear grammar G”
satisfies |G"| = |G"| +2 <|G'| + 2 <p k/2. Applying Lemma 2.5, we obtain
an NFA A of size at most 2|G"”| < p* that is consistent with POS/( p, k, I)#
and NEG(p, k, [)#. By part 3 of Lemma 8.2, we conclude that I has a
solution.

We now prove Proposition 8.8. G" is consistent with POS/( p, k, I)# because
(1) G" has start symbol 4, (2) by definition, we have included productions such
that 4 = (¢”)*'B,(3) j = e + 1, and (4) B — # is an additional production
of G".

Now suppose that G” generates some element of NEG(p, k, I)#. Then
clearly, A = z#, where z € NEG{p, k, I), and thus in grammar G” and G’
we have A = z.

From Proposition 8.7, in grammar G’, we have

S = (q7) 4 5 (¢7)"z¢/,

which is a negative example (type M4), contradicting the consistency of G'.
Thus, G" is consistent with POS/(p, k, I)# and NEG(p, k, I)#, completing
the proof of Proposition 8.8 and Lemma 8.5. O

Proor or THEOREM 8.1.  Suppose f(opt) is bounded above by some polyno-
mial in opt. Then there exists a number k such that for all sufficiently
large values of opt,

(opt) Liopt\¥* 2
H<—|—| -+
flop 6( 12 3
Consequently, to show that MIN-CON(LIN, LIN) is not f(opt)-approximable
unless P = NP, it suffices to show for all & that MIN-CON(LIN, LIN) is not
(1/6(opt /12)*/2 — 2 /3)-approximable unless P = NP,

As in the proof of Theorem 6.1, for each k we define a polynomial-time
transformation 7, that on input instance [ of a 1-in-3-SAT problem with n
variables, determines which reduction R}D’f‘k(l ) to apply. More specifi-
cally, 7, first determines whether n > 2¥"'*™_1If not, then T, halts and
outputs nothing. Otherwise, 7, finds the smallest prime number p satisfying
k=1%m < n < p < 2n. After obtaining such a prime p, T, then computes and
outputs R;” (I). By the same argument as that given in the proof of Theorem
6.1, for each constant &, 7, is computable in time polynomial in |/|.

Let k be given. Suppose contrary to what we must show, that there exists a
constant ¢ and a polynomial-time algorithm APPROX such that for all
instances of MIN-CON(LIN, LIN) with optimal solution satisfying opt > c,
APPROX is guaranteed to output a consistent linear grammar of size less than

1( opt) ke 2
3

As in the proof of Theorem 6.1, we construct a polynomial-time algorithm

DECIDE for determining whether instances of 1-in-3-SAT have a solution.

6l 12 3
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On input instance [ with »n variables, DECIDE determines if n >
max{3¢,2*~ "}, If not then DECIDE determines whether I has a solution by
trying all possible assignments (a constant number, since ¢, k, and m are
constants). Otherwise, DECIDE computes 7,(/), and gives the result as input
to subroutine APPROX. If APPROX returns a linear grammar G of size
|Gl < (n* — 4)/6. then DECIDE outputs “/ has a solution.” Otherwise,
DECIDE outputs, ““I does not have a solution.”

Clearly DECIDE runs in time polynomial in |7}, since both 7}, and APPROX
run in polynomial time. We must show that DECIDE is correct. Certainly
DECIDE is correct for all instances I with n < max{3c¢,2% """} variables,
since these decisions are made by exhaustive search.

Suppose that [ is an instance with n > max{3c,2*~'*™} variables, and
that DECIDE outputs “/ has a solution.” Then T,(I) gives the MIN-
CON(LIN,LIN) instance R,"(I) as input to APPROX (where p is the
smallest prime between n and 2n). Since APPROX returns a linear grammar
G of size |G| < (n* — 4)/6 < (p* — 4) /6, it follows by Lemma 8.5 that I has
a solution.

Conversely, suppose that [ is an instance with n > max{3¢c,2* '*"} vari-
ables, and I has a solution. Since n is large enough, DECIDE runs 7,(/) and
obtains the instance (of MIN-CON(LIN, LIN)) R}jf‘k(l ) consisting of sets
POS"( p, k, I) and NEG"™(p, k, I'), where p is the smallest prime between 7
and 2n.

By Lemmas 8.3 and 8.4, the size opt of the smallest linear grammar
consistent with POS"™(p. k, I) and NEG"™( p, k. I) satisfies p/3 < opt < 6pn.
Since 3¢ < n < p, we have

nop
< = < — < opt,
cS3=3 =%
and opt is large enough so that the bound on the performance of APPROX
must apply, thus APPROX must find a consistent linear grammar G such that

Liopt\** 2
Gl< - £} -2
6\ 12 3
Since opt < 6pn and p < 2n, we have opr < 12n°. Consequently, the consis-
tent linear grammar G returned by APPROX satjsfies

L/ .
1120\ 2 a* 2 nt-4
Gl < — Ll I
61 12 3 6 3 6
and DECIDE outputs 7 has a solution.” (]

9. Approximability and Learnability

Following [10], let IT be a minimization problem, let I be any instance of II,
and let A4 be an approximation algorithm. There are a number of ways we
might wish to measure the performance of 4. One measure is to simply
express the size of the approximate solution as a function of the size of
the smallest feasible solution. Consider the minimization problem MIN-CON
(DFA™ B NFA® D) of Theorem 6.1. In this case, an instance I consists of a
collection of positive and negative examples, opt(I) is the number of states in
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the smallest consistent DFA, and for any approximation algorithm A, A(I)
is the consistent NFA produced by 4 and | A(7)| is the number of states of the
NFA produced. Theorem 6.1 states that if P # NP, then no polynomial-time
algorithm A for MIN-CON(DFA®" " NFA”Y) can achieve |A(I)| < opt(I)*
for any constant k.

Another reasonable measure is to express the ratio [A(I)|/opt(I) as a
function of the size of the input (denoted by |I]). In the case of MIN-CON, ||
is the total number of letters in all of the examples. Using the quadratic
nonapproximability result of Section 3, we prove a lower bound on the ratio,
given below in Theorem 9.1. Similar bounds could be achieved with the
polynomial nonapproximability results of Section 6, however, the lower bound
obtained would be much lower. Note that if P = NP, then [A(I)|/opt(I) = 1
for MIN-CON(DFA® ), NFA®™ ). For an arbitrary DFA or NFA M, let || M]||
be the number of bits needed to encode M according to some standard
encoding. Recall that |M| is the number of states of M. We assume that
IMIl = |M|.

THeOREM 9.1. If P + NP, then for any € > 0, for any polynomial-time
approximation algorithm A for MIN-CON(DFA" Y, NFA"Y), and for infinitely
many positive integers c, there are instances 1 of MIN-CON(DFA®", NFA®-1)
such that opt(I) > ¢, and for which the performance ratio of A satisfies

(DIl 14D
>

~ ]1/(14‘}'6).
opt(1) — opt(I)

PrROOF. The first inequality holds by our earlier assumption that [[M1] >
IM|. To obtain the second inequality, we convert the reduction of Section 3
(which was used to show the quadratic nonapproximability result) to the
two-letter case. A similar conversion was done in Section 6 for the polynomial
nonapproximability result of Section 4.

For any odd number p, let R{*"Y map any instance I’ of 1-in-3-SAT to an
instance 1 of MIN-CON(DEA" " NFA® 1), which consists of the two-letter
examples POS(p, I'") and NEG( p.I'). By Proposition 3.6, and from the fact
that v, is a logn length bit string, it follows that the total length of all
examples of I is at most cp14 *log n, for some constant c. Also, if /' has a
solution, then opt(I) < pn, since for any solution 7 of I’ there is a pn state
DFA for L(C( p, 7)) (from the proof of Lemma 6.3). If there is a consistent
NFA M with less than p? states then I’ has a solution. Then an approxima-
tion algorithm that guarantees

LAl  p
< —_
opt(I) n

can be used to solve an NP-complete problem as follows: If I’ has a solution,
then

| A(D)] la(Dl  p
=< < =
pn opt(I) n

which implies that |A(I)| < p?; on the other hand, if I' does not have a
solution, then | A(I)| = p*. We conclude that (unless P = NP), no polynomial-
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time approximation algorithm can guarantee

lAD]  p
< —.
opt(I)  n
To complete the proof of the theorem, it suffices to show that the guarantee
| A /080
opt(I) —
implies that
LA p
< —_
opt(I) n

for some value of p that is polynomially related to n. By our analysis above
concerning |71, it suffices to show that the inequality
1/(14+¢) < £

(cp¥n* log n) (D

n

has a solution for p that is at most polynomially larger than 7.
To see this, let p = n’, and solve for r. Inequality (1) is equivalent to

log,(c) + log,(logn) + 18 + €
r> c .
Let
c+19+e€

r' =
€

and let p be the smallest odd integer larger than n”". Then, inequality (1) is
satisfied, and since ' is a constant, p is clearly polynomial in [/'| and |7|. O

A standard measure of performance of an approximation algorithm A is the
asymptotic performance ratio (denoted R%) [10], defined by R = inf{r > I: for
some positive integer k,

| ACD|
<r
opt(I)

for all instances I such that opt(I) > k}. Theorem 9.1 above implies that,
unless P = NP, R% is infinite for MIN-CON(DFA® ! NFA®-1),

We next introduce another measure of approximation performance which
1s motivated by recent work in computational learning theory. Pac-learning
of a class of objects (e.g., of DFAs) requires that from randomly generated
examples of some unknown member of the class (the target DFA), a (possibly
different) member of the same class (called the hypothesis) is produced that is
likely to agree (in a precisely quantified way) with future examples generated
from the same distribution [25]. A relaxation of this definition allows pac-
learning of a class in terms of some other class [22]. For example, to pac-learn
DFAs in terms of NFAs, a learning algorithm may choose its hypothesis from
the class of NIFAs. Thus pac-learning of DFAs in terms of NFAs is easier than
pac-learning of DFAs (in terms of DFAs). It follows from [6] that the pac-
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learnability of DFAs in terms of NFAs would be established from the existence
of a polynomial-time algorithm A, and any constants « > 0 and B8 < 1, with
the following properties: A4, on input of any instance I of the MIN-
CON(DFA" !, NFA® 1) problem (i.e., finite sets POS and NEG), will produce
a consistent NFA A([) such that

I A < opt (1) card(D)*, (2)

where opt(I) is the size of the smallest DFA consistent with the examples of I,
and card(I) is the number of examples of /. Further, it has been shown that
the existence of an approximation algorithm that produces a DFA whose size
meets the above bound is equivalent to the existence of a learning algorithm
for DFAs (in terms of DFAs) [7].

If we restrict our attention to pac-learning DFAs in terms of NFAs from
polynomially length bounded examples (all examples with nonzero probability
are at most polynomially larger than the size of the DFA to be learned), then
the results of [6] also give that pac-learnability is implied by the existence of a
polynomial-time algorithm A, and any constants « > 0 and 8 < 1, such that
on input of any instance I of MIN-CON(DFA"" NFA®Y) A4 outputs a
consistent NFA A(I) such that

A < opr(D|1|%, (3)

where |I] is the total size of all examples of I. (Again, for the case where the
learning algorithm must output a DFA and the examples are polynomially
length bounded, the above sufficient condition for pac-learning DFAs has also
been shown to be necessary [7].)

Consequently, an approach toward pac-learning of DFAs in terms of NFAs
from polynomially length bounded examples is to produce a polynomial-time
algorithm that satisfies the guarantee of inequality (3) for instances of MIN-
CON(DFA™ U, NFA®™ 1) for which the elements of POS and NEG are polyno-
mially length bounded in the size of the smallest consistent DFA.

All of the nonapproximability results of this paper in fact apply to a
restricted version of MIN-CON in which the size of the elements of POS and
NEG are polynomially length bounded. This can be seen as follows: In each
reduction, the length of the longest example is polynomial in p (a parameter of
the reduction) and # (the number of variables of the instance of 1-in-3-SAT).
In all reductions, p < ¢ - opt, for some constant ¢, and thus if p is chosen at
least as large as n then the length of the longest example is polynomially
length bounded in opt. We complete this section by investigating the implica-
tions that these (and other) reductions have with respect to the performance
criterion given by inequality (3).

Recently, Kearns and Valiant [16] have shown that DFAs are not polynomi-
ally predictable based on any of several well established cryptographic assump-
tions: that deciding quadratic residuosity is hard, that the RSA public key
cryptosystem is secure, or that factoring Blum integers is hard. Their results
hold even if the examples are polynomially length bounded.

Polynomial predictability is equivalent to pac-learnability in terms of
the class of polynomially sized programs (i.e., the hypothesis may be any
polynomial-time algorithm for classification of examples which is representable
with polynomially many bits) [13]. In [16], it is shown that the nonpredictability
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of DFAs, together with the results in [6], imply that there is no polynomial-time
algorithm A4 for MIN-CON(DFA® ", NFA® ") producing a consistent NFA
A(T) such that inequality (3) holds for any constants « > 0 and S8 < 1, unless
the previously mentioned cryptographic assumptions are false.

Our results, given in Corollary 9.2, complement those presented in [16]; we
obtain analogous nonapproximability results for restricted choices of « and 8,
but using the (ostensibly weaker) assumption that P # NP.

COROLLARY 9.2. If P+ NP, then for any polynomial-time approximation
algorithm A, and for infinitely many positive integers c, there are instances I of
MIN-CON(DFA"™ Y, NFA®Y) such that opt(I) > c, and for which the per-
formance of A satisfies || ACDI > | A(D| > opt(I)|I1® for any of the following
choices of « and B:

(1) forany a > 0, when B = 0;
(2) for a =1 and any B < 1/14;
(3) forany 0 < a=1+a’ <2andany B<(1— a')/14.

PROOF. The inequality || A(D)I| > [ A(1)] follows by assumption on the size
measures. Observe that the inequality |A(D)| < opt(1)'*«|I|* is equivalent to
[A(D|/opt < opt®'|I1P. Case 1 follows from Theorem 6.1. Case 2 is equivalent
to the statement of Theorem 9.1, where B8 = 1/(14 + ¢) has been rewritten as
B < 1/14. Case 3 follows by an argument similar to the proof of Theorem 9.1.
The only significant modification is that inequality (1), which addresses the
case a’ = 0, is replaced by
p

2

a’ —a’ € a' (1—a”) /(14 )
opt(I)“ [T/~ < (pn)* (epn*logn) /M <
n

which is equivalent to

1/014+¢) p

14 4
(cpn*log n) reama

Set the constant
¢+ 5+ 14y + ey

r’ =

k)

€
where

1+ o
yﬁl-a"

Then the first odd number p > n’" makes the previous inequality true. 0

Besides the use of different assumptions (i.e., cryptographic versus P # NP),
another difference between our work and that appearing in [16], is that while
the cryptographic based results of [16] rely on the inability to predict DFAs, the
subfamily of DFAs for which we show nonapproximability results is actually
easy to predict. The class of CDFAs accept permutation invariant languages (w
is accepted iff any word formed by permuting the characters in w is accepted),
and for each CDFA the start state equals the unique final state. DFAs with
these properties have been shown to be predictable [14], thus the techniques of
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[16] cannot apply to show that the related MIN-CON problem for this restricted
class of DFAs is not polynomially approximable.

10. Conclusion

The problem of finding an approximately small DFA consistent with a finite
sample was investigated. It was shown that unless P = NP, no polynomial-time
algorithm can be guaranteed to produce a DFA, NFA, regular expression, or
regular grammar of size at most polynomially larger than the smallest consis-
tent DFA. The minimum consistent linear grammar problem was also shown to
have similar nonapproximability properties. Qur results are summarized by
Theorems 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1, and their corollaries.

It should be noted that the proofs of each of these theorems was noncon-
structive in the sense that the existence of an approximately small NFA
(regular grammar, regular expression, linear grammar, respectively), implies
the existence of a solution to an instance of 1-in-3-SAT. The proofs can be
easily modified so as to be constructive, that is, so that from an approximately
small NFA (for example), a solution to the relevant 1-in-3-SAT instance can be
found in polynomial time. Of course, since the problem of finding a solution to
a 1-in-3-SAT problem reduces in polynomial time to the decision problem, our
observation concerning constructiveness is of dubious interest.

In our definition of approximability (Definition 2.9) we required that
the approximation algorithm must output a representation of size less than the
upper bound. It should be noted that all nonapproximability results of this
paper still hold when the approximation algorithm only decides whether there
exists a consistent representation of size less than the upper bound.

Because the DFAs used in the reductions of this paper were of a very special
form (CDFAs or counter-like DFAs), the proof of Theorem 4.1 (for example)
actually shows the stronger result that for any constant k, MIN-CON(CDFA,
NFA) (and thus MIN-CON(DFA, NFA)) is not opt*-approximable unless P =
NP. As discussed at the end of the previous section, it has been shown that
CDFAs are polynomially predictable [14]. (See [1] for additional results on the
prediction of classes of commutative languages.)

The research presented here suggests a large number of open problems. The
investigation of the approximability of versions of the MIN-CON problem
other than the ones considered here seems appropriate. Can the nonapprox-
imability results (assuming P # NP) for MIN-CON(LIN, LIN) be extended to
MIN-CON(CFG, CFG)? (At present, it is not even known whether it is NP-hard
to find the smallest consistent CFG). In the problem MIN-CON(DFA, NFA),
the approximation algorithm has the “freedom” to output a consistent NFA
instead of a consistent DFA. Further generalizing along these lines, it would be
of interest to know whether similar nonapproximability results may be shown
for MIN-CON(DFA, 2DFA), MIN-CON(DFA, 2NFA), MIN-CON(DFA, LIN),
and MIN-CON(DFA, CFG), etc., where 2DFAs and 2NFAs are the two-way
versions of DFAs and NFAs, respectively. It has been shown that MIN-
CON(DNF,DNF) is not (2 — €)opt-approximable [22], (where DNF denotes
the set of Boolean formulas in disjunctive normal form). Can this result be
strengthened using an adaptation of the methods used here?

Another set of Boolean functions other than DNF that is of interest in
computational learning theory is the set of Boolean decision trees (DT). It has
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been recently shown in [12] that MIN-CON(DT, DT) is not opt + opt? approx-
imable for any constant 8 < 1. The decision trees used in the reduction are
very unbalanced. Let a balanced decision tree (BDT) have the additional
property that all leaves are on the same level. Can it be decided in polynomial
time whether there is a BDT that is consistent with given examples POS and
NEG?

In Section 9, the work of [16] was discussed. These results show nonapprox-
imability for DFAs based on cryptographic assumptions. By relying instead on
the assumption that P # NP, our results strengthen theirs, but only for a
subrange of the parameters a and g. Can the entire range of results presented
in [16] be proven using only the assumption that P # NP?

Angluin showed in [3] that DFAs are learnable in polynomial time if the
learning algorithm is allowed equivalence and membership queries with respect
to a fixed unknown target DFA. An equivalence query consists of a hypothe-
sized DFA, and the response (of the teacher) is either “correct, the hypo-
thesized DFA and the target DFA are equivalent,” or else a counterexample
word is returned on which the queried DFA and the target DFA disagree. A
membership query is a word w, and the response of the teacher is “yes” iff w
18 accepted by the target DFA.

Angluin’s algorithm (call it A4) can be used to construct an algorithm B that
solves MIN-CON(DFA, DFA) in polynomial time making use of the following
type of query, which we call a consistency query: A consistency query consists of
a pair (EX, w), where EX is a finite set of labeled examples (each example is a
word, and the label is either “+” or “—" indicating whether the word
is a positive or negative example), and w is an additional (unlabeled) word. The
response to the query (EX,w) is “+ 7 if the size of a smallest DFA consistent
with EX and additional positive example w is the same as the size of a smallest
DFA consistent with the examples EX. Otherwise, the response is “—".

The algorithm B for MIN-CON(DFA,DFA) using consistency queries
behaves as follows. B receives examples POS and NEG and is to output 4
consistent DFA with the minimum number of states. B initializes EX to
POS U NEG (labeling all elements of POS with 4 and all of NEG with
“—7), and simulates 4. When A asks a membership query “w”, B asks a
consistency query using EX as the example set, and w as the additional word.
Each consistency query produces a new labeled example which is then added to
EX. When A asks an equivalence query with DFA M as an argument,
B checks if M is consistent with POS and NEG. If M is consistent, then B
outputs M and stops, otherwise, B returns to A an inconsistent example of
POS U NEG (the counterexample to A’s equivalence query) and continues the
simulation of A.

The properties of Angluin’s algorithm guarantee that after polynomially
many consistency queries (polynomial in the size of POS, NEG, and the value
opt) the machine output by B has opt states.

An interesting problem is to determine lower bounds on the number
of consistency queries required to produce the smallest consistent DFA
(or a DFA of size at most opt*, where opt is the smallest). Clearly, more
than a logarithmic number of consistency queries are necessary, since a
polynomial-time algorithm could try all possible answers to these queries.

This paper presented a number of very strong nonapproximability proofs for
certain types of NP-hard optimization problems. A final open problem is
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whether similar proof techniques can be used to obtain nonapproximability
results for other classical NP-hard problems.
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