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1. Introduction

We consider the following problem. Given finite sets POS and NEG of words

over a finite alphabet, can a small deterministic finite automaton (DFA) be

constructed that is consistent with POS and NEG, that is, accepts all words of

POS and rejects all words of NEG? It is known that the problem of determin-

ing the smallest such consistent DFA for a given sample is NP-hard [11], and

thus is unlikely to be solvable with a polynomial-time algorithm [101. It is

natural to ask whether an approximately small DFA can be found: Is there an

efficient algorithm, that for some reasonably slowly growing function ~, can

produce (or just determine the existence of) a consistent DFA of size jlopt),

where opt is the size of the smallest consistent DFA?

We answer this question negatively by proving that, assuming P # NP, there

does not exist a polynomial-time algorithm A and constant k such that on

input of any finite sets of strings POS and NEG (over alphabet {O, 1}*), A

outputs a nondetemziltistic finite automaton (NFA) that is consistent with POS

and NEG, and has less than optk states, where opt is the minimum number of

states of any consistent DFA.

It follows that unless P = NP, no element of any of the naturally used

representations of the regular sets (DFAs, NFAs, regular expressions, or

regular grammars) can always be found that is of size at most polynomially

larger than the smallest DFA consistent with a sample over a two-letter

alphabet, This significantly improves the lower bound on approximability due

to Li and Vazirani [18], which shows that a constant factor of ~ cannot be

achieved.

The same techniques are used to also show that the linear grammar consis-

tency problem cannot be approximated within any polynomial factor unless

P = NP. More specifically, given two finite sets POS and NEG consistent with

some linear grammar G, it is NP-hard to find a linear grammar G‘ that

generates all of the strings of POS, none of the strings of NEG, and has size

bounded by some polynomial in the size of G.

An interesting extension of our results is that when the alphabet is allowed

to vary (i.e., when the alphabet is considered as part of the problem specifica-

tion), then unless P = NP, no polynomial-time approximation algorithm can

determine if there exists a consistent DFA or NFA with at most opt[l -c ‘]o~@ ‘P’

states, or a consistent regular grammar or regular expression with at most

opt (1 6)log log Opf symbols, where opt is the number of states of the minimum

state consistent DFA, and ~ is any positive constant.

1.1. OTHER NONAPPROXIMABILITY RESULTS. There seem to be few natu-

rally arising optimization problems for which nonapproximability results have
been shown. Indeed, the dearth of such results is one of the motivations given

in a number of recent papers for the investigation of approximation preserving

reductions [17, 20, 21]. The traveling salesperson problem (TSP) is perhaps

the most notable optimization problem that cannot be approximated (in the
absence of other constraints, e.g., triangle inequality) [10] assuming P # NP.

However, the reason that TSP is not approximable is that it is essentially the

weighted version of the NP-complete Hamiltonian cycle problem. Although

one may similarly define optimization problems based on other NP-complete

decikion problems in such a way that the optimization problem cannot be

approximated at all (or at least not very well), such results are typically
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uninteresting for two reasons—the problems defined usually are not natural,

and the resulting proofs are trivial. In contrast, the minimum consistent DFA

problem discussed here is a natural problem, and the nonapproximability result

is not obtained by simply adding weights to an NP-complete decision problem.

Besides TSP, among the seemingly few existing negative approximability

results, two others are well known, but the bounds are much weaker than those

shown for TSP and the result given here for DFAs. For minimum graph

coloring [9], it was shown that (unless P = NP) no polynomial-time approxima-

tion algorithm exists guaranteeing a constant factor approximation strictly

smaller than twice optimal. Also, for maximum independent set (equivalently,

maximum clique), it has been shown that if some constant factor approxima-

tion can be achieved, then any constant factor approximation can be achieved

[10].

1.2. THE MINIMUM CONSISTENT DFA PROBLEM. Gold[11] proved that the

problem of finding a smallest consistent DFA is NP-hard. D. Angluin (private

communication) showed that it is NP-hard to determine whether there exists a

two-state DFA consistent with given data. Trakhtenbrot and Barzdin [24] gave

a polynomial-time algorithm for finding a smallest consistent DFA in the case

where the sets POS and NEG together consist of all strings up to a given

length. Angluin [5] extended Gold’s result, and showed that if even some small

fraction e of strings up to a given length were missing from POS u NEG, then

the problem is again NP-hard, and also showed that the problem of finding the

smallest regular expression consistent with a finite sample is NP-hard. Angluin

[2] left as an open question whether an approximately small DFA could be

found.

In 1987, Li and Vazirani [18] gave the first nonapproximability result for the

minimum consistent DFA problem, showing that if P + NP, no polynomial-time

algorithm can find a consistent NFA of size smaller than ~ times the size of a

smallest consistent DFA. Our main theorem (Theorem 6.1) strengthens this

result by replacing the constant factor ~ with any polynomial function of

optimal.

Finally, concurrent with this research, Kearns and Valiant give even stronger

nonapproximability results for the minimum consistent DFA problem th an the

one presented here [16]. However, their results rely on cryptographic assump-

tions (e.g., that factoring Blum integers is intractable), whereas our results

assume only that P # NP. We present a discussion of their work, and its

relationship to ours, in Section 9.

It is important to note the distinction between the minimum consistent DFA

problem, and the DFA state minimization problem. In the latter problem, the

input is a DFA and the goal is to produce a DFA accepting the same language

with a minimum number of states; this problem has well-known polynomial-time

algorithms [15]. An obvious first attempt at solving the minimum consistent

DFA problem is to create a DFA that accepts exactly the (finite) language POS

(and no other strings), and then use the DFA state minimization algorithm to

obtain a minimum state DFA for the language POS, However, it is possible
that a much smaller DFA exists that accepts a superset of POS and no string

of NEG. The minimum consistent DFA problem addresses the complexity of

finding a regular language that separates POS from NEG and for which there

is a small DFA.
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1.3. IMPLICATIONS FOR LEARNING DFAs. Although our results mainly have

significance in the context of combinatorial optimization, our original moti-

vation was in the study of the learnability of DFAs from randomly generated

examples in the distribution independent model of learning (now called “pac”-

learning) introduced by Valiant [25]. By results from [6], if in fact there was a

polynomial-time algorithm that could, given two finite sets POS and NEG,

produce a consistent DFA of size at most polynomially larger than the smallest

consistent DFA. then DFAs would be pat-learnable. This is only a sufficient

condition for learnability; consequently our results do not show that DFAs are

not pac-1earnable.1 However, our results do show that any efficient algorithm

for learning DFAs would have to produce very large hypotheses (unless

P = NP). Further discussion of the learnability of DFAs, the problem of

finding a small consistent DFA, and the relationship between our work and

recent work of Kearns and Valiant [16] (showing nonlearnability of DFAs

based on cryptographic assumptions) is given in Section 9.

The rest of this paper is organized as follows: In Section 2, we introduce

some basic definitions and techniques to be used throughout the paper, In

Section 3, it is proved that no polynomial-time algorithm can guarantee a

quadratic approximation for the minimum consistent DFA problem (unless

P = NP). One of the reasons for including the quadratic case in the paper is

that it gives some intuition for the polynomial nonapproximability results that

follow in Section 4. We show that (unless P = NP) there is no polynomial-time

algorithm for finding a consistent NFA of size polynomially larger than the size

of the smallest consistent DFA (Theorem 4.1). In Section 5, we strengthen

these results and show that an approximation of opt(l –‘ ‘]”~ ‘“~ “Pf cannot be

guaranteed in polynomial-time for any positive constant ● unless P = NP. In

these theorems the alphabet size of the DFA may vary with the problem

instance. In Section 6 we turn our attention to the problem of finding small

consistent DFAs over the two letter alphabet {O, 1}, and again prove that no

polynomial-time approximation within a polynomial function of optimal is

possible even in this simpler context (Theorem 6.1), Section 7 extends Theorem

6.1 to the cases when the approximation algorithm is allowed to output a

regular expression or a regular grammar. Similar techniques are applied in

Section 8 to show that the linear grammar consistency problem has no

polynomial-time approximation algorithm. In Section 9, we discuss the relation-

ship between approximability and learnability, noting different ways of measur-

ing approximation performance, and relating this work to the recent results of

[161. It turns out that, with respect to certain performance measures, the proof
for the quadratic case leads to a stronger nonapproximability result than the

proof for the polynomial case. Finally, we conclude in Section 10 with some
general comments and open problems.

2. Defi?litions

2.1. REPRESENTATIONS OF REGULAR LANGUAGES. In this section, we recall

the standard definitions and basic facts about regular and linear languages,

The reader unfamiliar with this material should consult [15] for further

lAngluin [4] has shown that DFAs are not learnable if the learner may only ask equi~wlence

querzes instead of receiving randomly generdted examples. This result has no bearing on the
optimization problem considered m this paper.
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terminology and definitions. X is a finite alphabet, and Z* denotes all words

(or strings) of finite length formed from the symbols of Z. If w E Z*, then IWI

denotes the number of symbols of w, and is called the length of w. The empty

word A is the unique word with length O in 2*.

Definition 2.1. A dete~ministic finite automaton (DFA) A is a 5-tuple

(Q, ~, 8, si~it , F), where Q is a finite set of states, X is a finite alphabet,
si~ic = Q is the initial state, 6 is the transition function that maps Q X Z to Q,

and F G Q is the set of accepting or final states. A nondeterministic finite

automaton is a 5-tuple with the same parameters except that the transition

function maps Q x (Z u {A}) to 2Q, the power set of Q.

The size of A, denoted by IA 1, is the number of states of A. We use the

standard graph representation of an NFA in which the vertices are the states of

the NFA, and in which there is a directed edge (or tra~lsitiorz) labeled with
u c X u {A} from state s to state t if t c 8(s,u). Note that some edges may

be labeled with A. DFAs maybe viewed as NFAs with the additional restriction

that there are no A-transitions, and for each state s G Q and letter a G X,

there is exactly one edge leaving s which is labeled with a.

A string w ● Z* is accepted by the NFA (DFA) A iff there is a directed path

leading from the initial state to some accepting state such that the concatena-

tion of the symbols of the edges of the path forms the string w. (We say that

the path is “labeled with” w.)

It is easy to show that for every NFA xl, an NFA A’ can be found in

polynomial-time such that A‘ accepts the same language as A, A’ has the

same number of states as A, and A‘ has no A-transitions [15]. Without loss of

generality, we assume for the remainder of the paper that all NFAs have no A

transitions.

For any states .s, t in Q, and any string w, we say w leads from s to t if there

is a path labeled with w from s to t (In the case of a DFA, such a path is

always unique). We also write w leads to t iff w leads from sinlt to t.

A positi[w example of A is a word accepted by A and a negatiue example is a

word in S* that is not accepted by A. The language accepted by A, denoted by

L(A), is the set of all words accepted by A. The class of languages accepted

by DFAs k identical to the class of languages accepted by NFAs and is called

the class of regular languages. The name “regular” is derived from a third

standard definition of regular languages in terms of regular expressio?ts, defined

below. For any regular expression r, Irl denotes the size of the expression.

Definition 2.2. Let 2 be a finite alphabet. The regular expressions oLer 2,

the size measure of regular expressions, and the languages that regular expressions

denote are defined recursively as follows:

(1) @ is a regular expression of size 1 denoting the empty language.

(2) For each a ~ 2 U {A}, the string a is a regu~ar expression of size 1
denoting the language {a}.

(3) If r- and s are regula~- expressions denoting the languages R and S,

respectively, then (r + s) and ( rs ) are regular expressions of size Ir! + ISI + 1

denoting the languages R U ~ and RS, respectively, and (r*) is a regular

expression of size Ir I + 1 denoting the language R*.
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LEMMA 2.3. For any regular expression r, there is an NFA A with at most 2 Ir I

states such that L(A) is the language denoted by r.

Lemma 2.3 is proven constructively by induction on the depth of recursion in

the definition of the expression r. The straightforward construction [15] makes

use of A-transitions, but as discussed above, these may be easily eliminated.

Another standard way to define languages is in terms of grammars. This

leads to a fourth mechanism for defining regular languages.

Definition 2.4. A context jiee grammar G is a 4-tuple (A, 2, P, S). A and

Z are disjoint finite sets of nonternrinals and tewninals, respectively. P is a fin-

ite set of productions; a production is of the form #l + a and has size

IA a 1, where A is a nonterminal and a G (A U 2)’. Finally, S is a special

nonterminal called the start symbol.

A context free grammar is a linear grammar if all productions are of the form
A + UBV or A + ~, where U, V, w E ~“ and B G A. A linear grammar is right

linear (left linear) if u is always h (respectively, u is always A). A regular

granwnar is either a right linear or a left linear grammar.

We associate a language with a context free grammar G = (A, 2, P, S). If

the production A ~ ~ is in P and a and y are in (A U X)*, then aAy deril’es

afky, written aAy * a~y. Note that “ = “ defines a relation on words of

(A U Z)”. Let ~ denote the reflexive and transitive closure of + . The
language generated by G (denoted by L(G)) is given by L(G) = {w : w G Z* and
s - w}.

It is easy to see that regular grammars generate exactly the class of regular

languages, Let the size IGI of a grammar G be the sum of the sizes of all of the

productions.

LEMMA 2.5. For any regular grammar G, there is a!l NFA A such that

IAI s 21GI and L(A) = L(G).

PROOF. The proof is implicit in [15], and is sketched here for completeness.

We first show how to construct an equivalent NFA A of size at most 2 IGI from

a right linear grammar G. Let the state/vertex set of A be the set of

nonterminals that appear in some production of G. For any production

N1 + LLNZ, insert a directed edge labeled with u from N] to N1. Add a special
final state F to the state/vertex set aAnd for any production N - w add a

directed edge from state N to state F that is labeled with w. Convert the

constructed graph into an NFA by replacing any edge that is labeled with a

word of length r larger than 1 by a chain of r edges, each labeled with one

letter. The chains are not allowed to have vertices in common. It is easy to see

that the constructed NFA has at most 2 IGI states, exactly one of which is final.

If G is left linear, then there is a corresponding right linear ~rammar of the
same size that accepts L( G)N, the language obtained by reversing all words of
L(G). Let A be an NFA of size at most 2 IGI and with one final state that

accepts L(G)’. By swapping the initial and the final state, and reversing all of

the transitions, an NFA of the same size that accepts L(G) is obtained. ❑

Define a linear grammar to be tltin if the number of symbols on the right

side of each production is at most two. The following proposition is easily

proved:

PROPOSITION 2.6. For any linear grammar G, there is a thin linear grammar

G’ such that IG’I s 31GI a~zd L(G’) = L(G).
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2.2. THE CONSISTENCY PROBLEM. We give some of the basic ideas and
definitions that are used throughout the paper. A set of representations

(encodings) of a class of languages L? is a set .@ such that each A G.@ denotes
a language L(A) = l%, and for each language L = S there is at least one

element of .Y that denotes L. Let L(ti) = {L,(A): A cd} (thus, if M is a set

of representations for L?, then L(M) =&?). For example, the set of determinis-

tic finite automata (DFAs) is a set of representations for the regular languages,

as are NFAs, regular grammars, and regular expressions. We associate a size

measure with each set of representations. The size (a nonnegative integer) of

any element A ● & is denoted by Ixl 1.The size measures for each of the sets

of representations discussed in this section have already been defined.

Definition 2.7. A representation A is consistent with two sets of finite

strings POS and NEfG if POS is contained in L(A) and NEG is disjoint from

L(A).

Definition 2.8. Let M and @ be sets of representations of languages and let

L(d) ~ L(%). The minimization problem MIN-CON(.&, ~) is defined as

follows:

Input instance: An instance 1 of MIN-CON(.W, 9) consists of two finite sets

of strings, POS and NEG, consistent with some element A = M.

Feasible solution: Any element B = g that is consistent with I is a feasible
solution. Note that there always exists a feasible solution.

Cost: The cost of a feasible solution B is the size Ill\ of the representation B.

Optimal solution: For any instance I, the value opt(I) is defined as the size of

the smallest element of .& that is consistent with I.

Note that a feasible solution of the problem requires a representation

from the class ~, and optimality is defined with respect to elements of the

class W. Thus for some choices of w’ and 3, there may be no feasible solu-

tions with cost as small as an optimal solution. (For example, consider MIN-

CON(NFA, DFA)). Although the general definition assumes nothing regarding

the relationship between the size of the smallest consistent members of .ti and

W, in this paper the latter is usually equal to or smaller than the former.

MIN-CON(DFA, NFA) is the main optimization problem we consider. This

problem is easier than MIN-CON(DFA, DFA), since (1) every DFA is an NFA,

and (2) in some cases, the smallest consistent NFA for a language is signifi-

cantly smaller than the smallest consistent DFA. We prove hardness results for

approximating MIN-CON(DFA, NFA), and thus for MIN-CON(DFA, DFA).

Definition 2.9. Let M, Y? be sets of language representations, and ~

be any function of the single variable opt. Then MIN-CON(.CK 97) is f(opt)-

approximable iff there exists a constant c and a polynomial-time algorithm

APPROX such that on input of any instance 1 of MIN-CON(&’, ~) for which

opt(1) > c, APPROX outputs a representation B E 23’ that is consistent with 1

and such that IBI < f(opt(l)).

Note that the definition of f(opt )-approximable does not require the approx-

imation algorithm to perform well on all instances, but only on those instances

1 with sufficiently large values of opt(l). Consequently, a result showing
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nonapproximability must show, for all approximation algorithms, that for all

sufficiently large values of opt there are instances 1 with opt(I) = opt, and for

which the approximation algorithm fails to achieve the desired bound. Thus,

this is a stronger negative result than simply showing that the bound ~( opt) is

not obtainable for particular values of opt.

The definition of MIN-CON(.&, AZ) depends on the (implicit) size measures

used for .& and U?. Our nonapproximability results are with respect to the

particular size measures given in the previous subsection. However, the most

important results of this paper are in the following form: MIN-CON(.ti, 9) is

not j’(opt)-approximable for any function ~ that is polynomially bounded. Such

results are robust with respect to any size measure that is polynomially related

to ours. However, in Section 5, we prove a slightly stronger nonapproximability

result for MIN-CON(DFA, NFA) that holds when the size of a DFA or NFA is

the number of states of the automaton, but does not hold when the size is the

number of bits required to encode the automaton.

2.3. USING GAPS TO FORCE NONAPPROXIMABILITY. Our goal will be

to show that, assuming P # NP, MIN-CON(DFA, NFA) is not f(opt)-

approximable for any function ~ bounded above by some polynomial. Nonap-

proximability results may be obtained by exhibiting “gaps” in the cost measure

for a minimization problem. Intuitively, if we can transform an instance of an

NP-hard decision problem into a MIN-CON problem, such that if the answer

to the NP-hard decision problem is “yes” then the optimal solution to the

MIN-CON problem is some number p, whereas if the answer is “no,” then

there is no solution to the MIN-CON problem of size smaller than f(p),

then we can show that ~( opr)-approximability of the MIN-CON problem

implies that P = NP. More formally, we have the following sufficient condition:

LEMMA 2.10. Suppose there are i~lfinitely many positiue integers p sLlcll that

there exists a pol~’nomial-tirne transformation RP with the following properties:

PROPERTY 1. Rp takes as input some instance I of an NP-complete language

S, md outputs an instance of MIN-CON(.&. Q7).

PROPER~ 2, If instance I E S, then RP( 11 has an optimal solutiotl with cost

oPf(~/J~~)) = P.

PROPERTV j. If I ~ S, then opt(RP(I)) > f(p).

Then, under the asstinlption tht P # NP, AfIN-CON(.Q/, M] is Ilot f ( opt )-

apprcximable.

PROOF. Suppose that the hypothesis of the lemma is true, and further

suppose to the contrary that MIN-CON(.W; AZ’) was f(opt)-approxim able, wit-

nessed by constant c and polynomial-time algorithm APPROX. We show that

membership in S is decidable in polynomial time, hence P = NP, proving the

lemma.
By hypothesis, there are infinitely many positive integers p such that the

instance Rp( I ) of MIN-CON(.W’, 9) satisfies Properties 1–3 above. Choose any

such value for p such that, in addition, p > c. Membership in S may be

determined by the polynomial-time algorithm DECIDE: On input of any

instance string 1 for which membership in S is to be determined, DECIDE

computes R“( 1) and gives this as input to subroutine APPROX. If APPROX
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returns a value of less than jl p), then DECIDE outputs “1 E S.” othe~ise~

DECIDE outputs “1 G S.” Clearly, DECIDE runs in time polynomial in Ill,

since both RP and APPROX run in polynomial time.

To see that DECIDE determines membership in S correctly, observe that if

DECIDE outputs “1 = S,” then APPROX returned a value less than ~(p),

which, by Property 3, implies that 1 = S. Conversely, suppose that 1 = S. Then,

by Property 2, RP(l) has an optimal solution with cost p. By choice of p,

opt(RP(I)) = p > C. Since APPROX achieves the bound of ~ for all instances

with opt(RP( 1)) > c, APPROX must return a value less than f(P)> and thus
DECIDE outputs “1 = S.” ❑

2.4. l-IN-3-SAT. The NP-hard problem we use in our reductions is a

variant of 3-SAT, the “monotone l-in-3-SAT problem” [10, 23]. An instance 1 ,

of monotone l-m-3-SAT consists of a set of variables V = {vI, V?, . -., % } and a

<, ~,, each of size 3. (i.e., each c1 is anonempty collection of clauses {c,}, _

3-element subset of V). For brevity, we henceforth omit the word “monotone,”

and refer to the problem as “l-in-3-SAT.” 111denotes the size of the instance 1

according to some fixed encoding scheme. In particular, 11I is always at least as

large as the number of variables plus the number of clauses of instance 1, and

is not more than polynomially larger. A ( trath ) assignment is a function r:

V - {O, 1}. An assignment ~ is a solution to I if for every clause (v,, u,, v,) of 1,

the multiset {7(vX), ~(vY), (VZ)} = {O, O, 1}. If we write that q, is assigned true

(respectively false) by ~, we mean ~(ul ) = 1 (respectively, dvl) = O). The
decision problem for l-in-3-SAT is to determine for any input instance 1,

whether or not there exists a solution to 1.

2.5. COUNTER DFAs. The smallest consistent DFA for the examples of the

reductions presented will be of the following special form. A Counter DFA

(CDFA) over alphabet V is a deterministic finite automaton that counts
the number of occurrences of characters in a subset V’ of V mod p for some

number p as follows: The labeled graph representing the CDFA consists of a

simple cycle of p states, with the labeled edges of V’ advancing one state

around the cycle, and the labeled edges of V – V’ returning to the same state.

Thus, each character of V’ read increases the “count” by 1 mod p, and a

character of V – V’ leaves the count unchanged. Further, the start state is the

same as the unique final state; thus, CDFAS count from O to p – 1 mod p.

CDFAS are a restricted subclass of DFAs that are contained in a class that is

pat-learnable. Further discussion appears in Section 9.

Definition 2.11. Let ~: V ~ {O, 1} be a truth assignment to the variable set

v. Then C(p, r) is the CDFA that counts all true variables (i.e.> counts the

set ~-i (l)) mod p as described above.

3. Forcing a Quadratic Gap

Our main theorem will show that for any k, MIN-CON(DFA, NFA) is not

opt ‘-approximable. In this section, we first prove the special case for k = 2,

that is, we show that no polynomial time approximation algorithm can guaran-

tee less than a quadratic relationship between optimal and the solution it finds:

THEOREM 3.1. If P + NP, then MIN-CON( DFA, NFA) is not opt:-

approximable.
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Besides motivating the general case in the next section, Theorem 3.1 is of

independent interest for at least three reasons: (1) The proof involves interest-

ing techniques that may be useful in other domains; G!) the proof gives some

intuition for the polynomial nonapproximability results of the next section; and

(3) the quadratic case provides a better nonapproximability result with respect

to a number of the measures of approximability discussed in Section 9.

3.1. THE REDUCTION

PROOF OF THEOREM 3.1. By Lemma 2.10, Theorem 3.1 follows by exhibit-

ing, for each of infinitely many positive integers p, a polynomial-time transfor-

mation RP from instances of 1-in-3-SAT to MIN-CON(DFA, NFA) such that a

quadratic gap is created, as required by Properties 2 and 3 of the hypothesis of

Lemma 2.10. In particular, we describe for each odd number p, a reduction

RN, such that if 1 is any instance of a (monotone) l-in-3-SAT problem, then

RP(l) consists of two sets of strings, POS(p, 1), and NEG(p, 1), such that the

following lemmas hold.

LEMMA 3.2. If assignment r is a sohltio?l to I, then for any odd number p,

C(p, r) is a p-state DFA that is consistent with POS( p, I) and NEG( p, I), and

no NFA (hence no DFA ) with fewer states is consistent.

LEMMA 3.3. If I has t~o solution, then for any odd number p, there does not

exist an NFA with fewer than p z states that is consistent with POS( p, I) and

NEG( p, I).

Rather than describing RP, we simply give the sets POS(p, 1) and NEG(p, 1)

that are produced by RP on input instance 1. It is easily verified that RP is

computable in time polynomial in the size of 1 for any fixed odd number p.

Section 3.2 is devoted to the proof of Lemma 3.2. In Section 3.3, a number of

propositions are given that culminate with the proof of Lemma 3.3. These

lemmas, together with Lemma 2.10, prove Theorem 3.1. ❑

If 1 is an instance of l-in-3-SAT with variable set V = {VI, Uz, . . . . u,,}, then

the alphabet 2 over which POS( p, 1) and NEG( p, 1) are defined is given by

2 = V U {r}, where r is a symbol not appearing in V. (Here, and in Section 4,

the alphabets used in our reductions depend on the input instance. In Section

6, we show how the reductions may be modified to work even when the

alphabet is fixed as {O, 1}.) We need the following notation.
We use “ – “ to denote congruence mod p. The function [“]P is defined by

[a]r = e iff ~pis the unique number such that a -P e, and such that O < e <

p – 1. Throughout all of Section 3 (and nowhere else), the variables a, b, c,

d, e, f, g, h, i, j, k, x,y, z are always in the following ranges:

-O<a, b,c, d<pz,

90<e, f,g, hSp -1,
.l<i, j,k<p–1,

*l<x, y,z <n.

Note. If i is in the range 1 < i s p – 1, then p – i is in the same range,

and thus –i gp O.
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Definition 3.4. Let p k 3 be odd. Then define

* q = (H:= ,(y,)P)r. Thus, q is the concatenation of p copies of each variable,
followed by the additional symbol r.

. For all x, a, = H~l~(vY)p, and ~,, = (H”-Y_.+ ,(u,)p)r. Thus, a, is the unique
prefix of q, and ~X is the unique suffix of q such that al(~l)p~, = q.

o For all x and i, Wr ~ = a,y(ut )’~1. Thus, w,,, ~ is a variant of q in which the

substring (vl)p has been replaced with (u,)’.

Before we describe the examples in detail, we give a description of the

counter DFA that is constructed from a solution of the instance of l-in-3-SAT.

We do this to motivate the definition of the examples. After the examples are

given, we show that the described machine is consistent with the examples.

Let 1 be any instance of a l-in-3-SAT problem, and ~: V = {v,, Uz, . . . . u,,} -+

{O, 1} be an assignment with exactly one true variable per clause. Extend ~ to

domain V U {Y} by assigning ~(r) = 1, and define C(p, ~) with respect to the

(extended) assignment ~ as in Definition 2.11. If w is any string, let T(w)
denote the total number of occurrences of variables assigned true, that is,

variables v such that ~(v) = 1. For any number s, we’ll say w adtances by s iff

T(w) -P s. If w advances by s, then on reading w, C’(p, ~) ends up in the

[s]Pth state of the p-state cycle of C’(p, ~). Thus, C(p, ~) accepts w if s -p O,

and C(p, ~) rejects w if s +P O.

PROPOSITION 3.5. Considering C( p, ~ ), it is easily l’erfied that

. for all x, v, aduances by 1 if ~(v,) = 1, and v, adlances by O if T(vl) = O;

● r adl)ances by 1,and for all numbers a, q a adllances by a;

o for ail i and x, w,,, adljances by i + 1 if T(qt) = 1, and w,,, adtlances by 1 if

T(yl) = o.

3.1.1. Motivation for the examples. The string w,,,, contains a single occur-

rence of r, all variables other than VX occur a multiple of p times, and u,

occurs i times. Thus, in the CDFA C( p, ~), WX,, either advances by i + 1 or by

1 depending on whether ~ assigns U, true or false, respectively.

The examples are constructed to force the same properties in any consistent

NFA of less than pz states. In particular, we force a loop in the NFA, and

assign true all variables v, such that for some i between 1 and p – 1, the

string w,,, advances i + 1 around the loop, and false to those variables v, such

that for some j between 1 and p – 1, the string w,,, advances by 1 around the

loop. Negative examples are used to enforce that w. , cannot advance around

the loop by any value other than 1 or i + 1. Additional negative examples

enforce consistency, that is, that for no variable does there exist i and j such

that from some state s, W. , advances by i + 1, whereas from some other state

t, w.>] advances by only 1. Further examples enforce that among those variables

appearing in some clause of 1, exactly one variable will be assigned true.

If for some i between 1 and p – 1, we have that w,,, advances by i + 1, we

say that v, “crosses,” and if WX,~ advances by only 1, we say that u, “loops.” The

exact definitions of crossing and looping will be given later.
For each variable q,, if for some w,,, it is the case that w, , leaves some state

of the loop and then returns to the loop, then the definitions and examples
ensure that VI is either looping or crossing, and thus vi is assigned either true

or false. If all variables are assigned, the examples enforce that the assignment
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is a solution to the l-in-3-SAT instance. Thus, to avoid providing a solution,

some variable must not be assigned. If variable q, is unassigned, then we must

have that starting from any state on the loop, each of the strings w,,, ~, . . . . W,,P _ ~

do not return to the loop. It can be shown that all of the states these strings

lead to are distinct. This forces p – 1 new states for each state on the loop.

Since the loop has p states, we force a total of at least pz states.

In the following, we describe the examples. The sentence in parentheses

following the name of each subset of examples suggests the function of the

subset.

POS( p, 1) = {qp’} (This example ensures that any NFA with less than pz

states that accepts this example must have a loop).

NEG(p, 1) = N1 U N2 U N3 U N4 U N5, where N1–N5 are defined below.

N1 (Any NFA consistent with POS( p, 1) must have at least p states. )

For all a such that a #P O, q“ ● N1.

N2 ( WX, is only allowed to advance by i + 1 or by 1.)

For all a, x, i, b such that b ~P – (a + 1) and b #P – (a + i + 1),

qaw,t,,qb = N2.

N3 ( VZ cannot cross and loop at the same time.)

For all a,x, i, b,j, c such that c -P – (a + i + b + 2), qawz,, qbwl ,q’ ~

N3.

N4 (No two variables of the same clause can cross.)

For all a, x, i, b, c, y, j, d such that there exists a clause containing the two

variables v, and v,,

(a) If d -P – (a + i + b +j + 2) and (i +j) #P O, then q’wt, qbw:,,,, qd

= N4.

(b) Ifd=P–(a+b+c+2i+j +3)and(i +j)-PO, then

q~ti’,y>, qhwx,,q’t$’y,,q d G N4.

N5 (Not all three variables of a clause can loop.)

For all a, x, i, b, y, j, c, s, k, d such that there exists a clause (I, L,v,, UZ) and

d -P – (a + b + c + 3), q“w,,, q’’~vy,, q’wz,kqd = N5.

PROPOSITION 3.6. The number of examples in POS(p, I) U NEG(p, I) is

0( plln~), and the total number of chomcters (over alphabet V U {r}) in all

examples of POS(p, I) U NEG(p, I) is O(plJn~).

PROOF. POS( p, 1) has only one element. From the respective ranges of a,

b, c, d, i, j. k, x, -v, and z, we immediately have that the total number of
elements oi? N1 is at most p2; N2 is at most pn(p2 + 1)2; N3 is at most

pzn(pz + 1)3;N4(a) is at most pzrzz(pz + 1)3; N4(b) is at most pznz(pz + l)J;

and N5 is at most p3n3(p2 + 1)4. Thus, the total number of elements of

POS(p, 1 ) U NEG( p, 1) is 0( pl] n3). The longest example is of type N5, and

has length 0(p3n); thus, the total number of characters in all of the examples
is 0( pl~nq). ❑

3.2. A SMALL CONSISTENT COUNTER MACHINE. To prove Lemma 3.2, we

show that for each assignment T that is a solution to the instance 1 of

l-in-3-SAT, the corresponding p state CDFA C( p, ~) (defined above) is
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consistent with POS( p, 1) and NEG(p, Z), and that no NFA with fewer states

is possible.

PROOF OF LEMMA 3.2. We first show consistency of C( p, ~) with each set of

examples.

Consistency with POS(p, I). qp’ advances by pz, and is thus accepted since
p~ =, ().

Consistency with N1. q’ advances by a, and thus is rejected if a #p O.

Consistency with N2. Let a, x, i, b be such that b #P – (a + 1) and

b +P – (a + i + 1). We show that the negative example u = q“ w,,, q b is

rejected by C(p, T).

If ~(q,) = O, then u advances by a + 1 + b, and since b #P – (a + 1),

C(p, ~) rejects u.

If 7(vX) = 1, then u advances by a + i + 1 + b, and since b +P – (a + i +

1), C(p, T) rejects zt.

Consistency with N3. Leta, x,i, b,j, cbesuchthat c-P –(a+i+b +2);

we show that the negative example u = q“ w,,,, qb w,, ~q’ is rejected by Cl p, r).

If r(vX) = O, then u advances by a + 1 + b + 1 + c =P – i #p O, and is

therefore rejected by C(p, ~). (Recall 1 s i s p – 1.)

Ift-(ux) =1, then uadvances bya+ i+l+b+j +l+c-Pj#PO, and

is also rejected by C’( p, ~).

Consistency with N4( a). Let a, x, i, b, y,j, d be such that d =P – (a + i +

b + j + 2), (i + j) #P O, and such that U, and v, appear together in some

clause. We show that C(p, ~) rejects the negative example u = q“ WX,,q~ w,, ~q’i.

Note that since VX and VY appear in some clause together, we cannot have

7(vk) = T(u,, ) = 1.

If ~(uX) = 1 and ~(v}) = O, then L1 advances by a + i + 1 + b + 1 +

d =P – j %P O and is rejected by C( p, r).

If ~(uY) = O and T(:Y) = 1, then u advances by a + 1 + b +j + 1 +

d =P – i %P O, and is rejected by C(p, r).

If ~(vX) = I-(vy) = O, then u advances by a + 1 + b + 1 + d -P – i

–j #P O (since in this subcase we have i + j #P O) and is rejected by C( p, T).

Consistency with N4(b). Let a, x, i, b, c, y, j, d be such that d -P – (a +

b + c + 2i + j + 3), (i + j) =P O, and such that v, and qV appear together in

some clause. We show that C( p, ~) rejects the negative example u =

qawx, zqbw~,lqcwy>lqd.

If~(vl) =land~(~v) =0, thenu advances bya+i+l+b+ii-l+c+

1 + d =P – j #PO and thus is rejected by C(p, ~).

If ~(ul) = O and T(uy) = 1, then u advances by a + 1 +b + 1 +C +j +

1 + d -P – 2i. Thus, u is accepted by C(p, ~) iff 2i -P O. But since p is odd,

this implies that i =P O. But recall 1 s i < p – 1, so – 2i #P O and u is

rejected by C(p, r).

If 7(~Y) = ~(~,,) = O, then u advances by a + 1 + b + 1 + c + 1 + d 7P
–2i–jsp– i – (i + j) -p – i (since i + j =P O). And since –i #1, O, u 1s

rejected by C(p, ~).
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Consistency with N5. Let a, x, i, b, y, j, c, z, k be such that d GP – (a +

b + c + 3), and such that there exists a clause (u,, <,,, v=). Then u =

q%,,lqhwy,jqcwz.kq d is a negative example. Exactly one of {I-(UX), T( u, ), T(vZ )}

is true; thus, u advances by either i, j, or k, none of which are congruent to O

mod p, and thus C(P, ~) rejects u.

Thus, C(p, ~), with p states, is consistent with POS( p, 1) and NEG( p, l).

To complete the proof of Lemma 3.2, we still need to show that any

consistent NFA must have at least p states. Let A = (Q, Z, i3, S,,,t, F’) be an

NFA that is consistent with POS(p, ~) and NEG( p, 1). Using the graph

representation of .4, since the string qfl ,= POS( p, 1), it is accepted by A, and

thus there is a path I) (labeled with qp - ) in A from S,n,t to some accepting

state s+ e F. For any w that is a prefix of qp , we say w leads aloilg # to state t

if the initial segment of ~ labeled with w leads from s,n,~ to t.For each a

(O s a < pz), let s. denote the state that q“ leads to along *. It suffices to

show that the states {s,}O ~, ~ p_,, are distinct. If sf = Sg for O < f < g s p – 1,

then qp--( g ‘f) k accepted. But this contradicts the consistency with the

examples of N1, since p 2 – (g – f) #p O. This completes the proof of Lemma
3.~. n

3.3. FORCING QUADRATICALLY LARGER NFAs. To prove Lemma 3.3, we

must show, for any instance 1 of l-in-3-SAT that has no solution, that no NFA

with strictly less than p ~ states is consistent with the examples POS( p, 1) and
NEG( p, 1). We prove the contrapositive, namely, that if A = (Q, ~, 8, sin,,, F’)

is an NFA that is consistent with POS( p, I) and NEG( p, 1) and such that

IQ I < P2, then 1 has a solution. The proof is presented following the introduc-
tion and proof of a number of supporting propositions.

As in the proof of Le~ma 3.2, we use the graph representation of A, and

recall that the string qf’ = POS( p, I ) defines the path t from si~,~ to some
accepting state s + = F, and that for each a, SU is the unique state that q“ leads

to along +.

PROPOSITION 3.7. There exists a, b, with O s a < b s p 2, such that s,, = Sb.

PROOF. If not, then IQI > pz. ❑

Let aO be the smallest number such that for some b > a., s., = Sh. Let

bO > a. be the smallest number su$h that s~,, = s~(,. Thus, following powers of

q, the path ~ in A labeled with qp- leading to s+ contains a loop as shown in

Figure 1. Let L be the states on the loop that are reachable by powers of q,

that is, L = {s~,, s~,,+l, . . . . sb,,_l}.

PROPOSITION 3.8. IL[ >0 and ILI =P 0,

PROOF. Since Sal,,e L. 1 < IL I < IQ I <pz. To complete the proof, we show

ILI -p O. Observe that q“” leads to Su(,, and qP2-b” leads from s,,,, = Sh(, to

S+. Thtls L1 = q“”+p’–b’) = qp’–~h’’–a’l~ leads to S+ and is accepted by A. But if

bO – aO +P O, then u is a negative example (Nl). Therefore, b. – aO -p O, and

since IL I = b. – ao, IL I -P O. ❑

For each e, define S. = {su: aO < a s bO – 1 and [a]p = e}, that is, S, is the

set of states on L that are reachable along + by some power of a between a,]

and b. – 1 that is congruent to e, where O < e s p – 1.
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FIG. 1. The loop of path ~ in A.

PROPOSITION 3.9 (PREFIX PROPERTY). For all e and for alls = Se, there exists

a such that [a]P = e, q“ leads to s, and aO s a s bO – 1.

PROOF. By definition. ❑

PROpOSITION 3.10. For all e, S. is ?aonernpp, and in patiicdar, S,,,l+ [. - .(ll, ~

PROOF. Since IL, > p, aO + [e – a,] 1P < bO, and the proposition follows

from the definition of S.. ❑

PROPOSITION 3.11 (REACHABILITY PROPERTY). If Sa E Se ands~ = S~, then

there exists c =P f – e such that q’ leads fiOm s. 10 sb.

PROOF. If a. s a s b s bO, then q b-” leads from Sa to Sh. Let c = b – a,

observing that indeed, O < c < p2, and c GP b – a EP f – e.

If aO s b < a s bO, then qbu-a leads from s,, to sbo = S.(,. Then qh-a” leads

b ‘U+h-ul leads from Sa to Sb. Now let c = b[l – a + b –from s.,, to s~; thus, q “

a(} = (b. – UO) – (a – b). Clearly, O < a – b < bO – aO <p:, so c is at most

p2. Finally, c =P b – a -P f – e. (Recall bO – a,, -P O.) ❑

PROPOSITION 3.12 (SUFFIX PROPERTY). For all a, ifs,, E SC, then there exists

b =~ – e such that qb leads from SC,to s+.

PROOF. Recall that the path ~ is labeled with qp’. Then q“ leads to s. and

qb leads from s. to s+ when b =Pz – a. Since S. c Se. a =P e and thus

b-P–e. ❑

PROPOSITION 3.13. For all e, f, if e + f, tlzen se f’ Sf = @.

PROOF. Assume that e # f and that t E s. f’ Sf. J3Y the pref~ proPertY~

there exists a such that a =P e such that q a leads to t.By the Suffix Pro-

perty, there exists b =P – f, such that qb leads from t to S+. Then q“q” leads

to s+, and is accepted by A. But a + b =P f – e #P O (since e and f are

between O and p – 1 and are distinct), and thus q ‘qh is a negative example of

type Nl, contradicting the consistency of ~. ❑

For each e, we use “t,”to denote any element of SC. We now define, for

each variable v,, what it means for v, to be crossing, looping, or to be off.

Crossing: v, crosses if there exists e, i, t, ~ S. and t[.+l+ ~1,,G S1, +,+ ~lP such

that w,,, leads from t,to t[.+,+I],.

Looping: v, loops if there exists e, i, t. = S,, and t[, + 1], = $,+ I]p such that

w,,, leads from tc to t,, + llP.
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O& UX is ojjf if q, neither crosses nor loops.

PROPOSITION 3.14. For all x, i, e, f, t, e Se, uml tf G S,, f w.,,, leads Porn f,

to tf. then f EP e + 1 or f 5P e + i + 1, Hence, if ~’,,, leads from some S, to

some Sl, then t!, is not off.

PROOF. Let e, f, i, x, t,, t~ be as in the hypothesis of the proposition. Then,

la such that qa leads from sl,,~ to t, and a =P e,

.,,, leads from tew to tf ,

3 b such that qb leads from tf to s+ and b =P – f.

Thus, U = q%,,,qb k accepted by ~. By examples (N2), unless b -P

– (a + 1) or b -P – (a + i + 1), u is a negative example. Since A is consis-
tent with the examples and 24 is accepted, either b =P – (a + 1) or

b=P–(ai+t l), andthusf=Pe+l or f-Pe+i+l. ❑

PROPOSITION 3.15. For all x, either v, does not cross, or v, does not loop.

PROOF. Suppose that Ux crosses and ~, loops. Then there exists e, f, i, j,

and tC, f[~+~+ ]1,)~‘j> ‘[f+ Ill, (elements of s., as;d+,; llP, sf7 S[f+ 11,7respectively)
such that WI, , leads from tf to f,f+I1,,.leads from t, to t[e+,+Ilp,

Furthermore;
t.]

~a such that q“ leads from s,~,, to t, and a =P e

.,,, leads from tew to t[. +[+l]r

~b such that qh leads from t[e+l+[j,to tf and b= Pf–(e+i+l)

w leads from tf to f[f+1],,

=C such that q:’J leads from t[t+,1,, to s+ and c =P - (f+ 1).

Thus, u = q[’w,, ,qbwY,Jqc leads to s +. and is accepted by A. Notice that

–(f+l)= –(e+i+(f–(e+i+ l)) +2),

and thus

c =[, –(a+i+b +2)

and Zi is a negative example (type N3) accepted by A, a contradiction. ❑

PROPOSITION 3.16. For all x, y, if there exists a clause of I containing both u,

and UY, then at least one of u, and v, does not cross.

PROOF. Suppose that VI and u, both cross and that they occur in the same

clause. Then there exists e, f, i, j, and t,,t[e+,+,1,,tf,t[f+j+~lp(elements of

s,, $.+l+ l],,>Sf, S[f+j+ ~1, respectively) such that Wx , leads from tc to t

and WY,J leads from t~ {o t[f+,, ,lP.
[C+, +l],,
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Case 1. i + j ~P O. Then

~a such that q’ leads from ~l,it to t, and a FP e

w, , leads from te to t[e+i+1],
3 b such that qb’ leads from t,,+,+~1,to tf and b-P~–(e+i+l)

WY,, leads from tf to t[f+j+ 1],

~d such that q’~ leads from t[f+J+ 11, to s+ and d=P –(~+j+ l).

Then qawt,, qbw~, jq~ leads to s+ and is accepted by A. Further, d =P

– (a + i + b + j + 2) and i + j ~, O, so it is a negative example of type N4(a),

a contradiction.

Case 2. i + j =P O. Then

~a such that q“ leads from s,,,, to 1, and a EP e

w,,, leads from t, ‘0 ‘[e+i+ l]P

2 b such that qb leads from t[e+l+ ~ln to t, and b-Pe–(e+i+l)

.,,, leads from t,w ‘0 ‘[. +i+ 1],
3C such that q’ leads from t[e+l+llPto t~ andc=P~–(e+i+l)

WY,j leads from tf to $f+j+ 1],

ad such that q~ leads from t, ~+j + 11,, to s+ and d =P -( f+j+ l).

Then q“ w,,, qb wx,, q’ WY,,q d leads to s+ and is accepted by A. Further,

d-P -(a+ b+c+2i+ j+3)and i+j=PO, soitisa negative exampleof

type N4(b), a contradiction. ❑

PROPOSITION 3.17. For all x, y, z, if (u., v}, v=) is a clallse of I, then not all of

{Vl, Vy, u=} loop.

PROOF. Suppose for some clause (u,, u}, u:), each of {q, UY, VZ} loops. Then

there exists e, f, g, i, j, k, and te, t[, + llP* tf, t[f+ 1],, tg! t[g+ II,, (elements ‘f ‘~~

S[e+ 1],7 Sf> S[f+ I]p> sg7 S[g+ 1],7 respectively) such that w.,, leads from t. to

leads from tfto t[f+ ~1,,Wz,k leads from t~ to t[~+ 11,.$,+ 1],,7WJ.J
Further,

=a such that q“ leads from ~l~it to te and a =P e

,,, leads from tew to t[. + 1],

3 b such that qb leads from t[e+~lr to ff

~,~ leads from tfw

and b=pf–(e+l)

to f[f+ 1],

3C such that q’ leads from t[f+~1, to tg and c= Pg–(f+l)

w,, k leads from tg to t[g+I]p

3d such that qd leads from t[g+ 11, to s+ and d =P – (g + 1).

Then qawx, ,qbwy,, qc w: kqc~ leads to s+ and is accepted by A. Fur-

ther, d =P – (a + b + c + 3), so it is a negative example of type N5, a

contradiction. ❑

PROPOSITION 3.18. For all x, u. is not ojf

PROOF. We show that if for some x, q was off, then A would have at least
pz states, a contradiction. Suppose u, is off. Let O s e, ~, g, It s P — 1. Define

tc to be the state s~,,+ [,-~,,1,,
(the state that quo+ L~– Uoh, leads to along *).

Similarly, define tf to be the state s~,,+ [f - ~,,l,. By Proposition 3.10, t, = S, and

t, G Sf. TO show that A has at least p2 states, it suffices to show:
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CLAIM 3.19. If (e, g) + (f, h), then the state that q“o+L’-aolflaY(vX)~ leads to

along # (denote this state by t.( aX(U, )? )) is distinct from the state that
q~~u+[f–~[,l~a (v )h leads to alo~zg * (denoted tf(a,(vx)}l)).

XX

Note that ,the state t,( aX( v, )~) is well defined, since q“”+ [‘ - “I]Pa,( Uy)s is a

prefix of qp-. Similarly, the state tf ( aX(vl )1’) is well defined. We prove this

claim in two cases:

Casel. g=hande+f.

Suppose t,(aV(vX)s) = tf(a,v(v,)~’) = s. Then let L~ = (q)p-g~, = (vx)p-~~l.

Then since ar(uX)~u == aX(U, )~U = q, u leads from s to a state t that must be

in $C+ 1],, n s[l+ll . This is a contradiction, because e #f, thus [e + l]P #

[f+ l]P, and by Proposition 3.13, S[, + ~1, f’ S[f+ 11,,= 0.

Case 2. g # h.

Without loss of generality, g > h. Let f,( aX(q )s) = tf ( a,,(v, )~z) == s. Since

al(vl)~(vX)p-~/?, = q, (ul)P-~~l leads from s to an element of $,+ ~lP. But

tf( ~l(vv)~’ ) = s also, so u = aZ(VK)’z(qY)P-gpx leads from tt to an element of

s. Notice that l<h+p-g <p-l because O<lZ<g<p-l. Thus,

f&+&me 1 <i <p – 1, u = WIZi, and leads from an element of St to an

element. of S[,, + ,],,. By Proposition 3.14, v, is either looping or crossing,

contradicting the assumption that VX is off. This completes the proof of Claim

3.19 and Proposition 3.18. u

PROOF OF LEMMA 3.3. We now show that (since A has fewer than p ~

states, and is consistent with POS( p, 1) and NEG( p, 1)) there is solution for 1.

By Proposition 3.18, for all x, U, is not off, and hence either crosses or loops.

Consider the assignment ~: V ~ {O, 1} defined by 7(v, ) = 1 if VZ crosses, and

7( v, ) = O if v, loops. By Proposition 3.15, v, cannot both cross and loop,

and thus ~ is well defined. Further, by Proposition 3.16, within any clause of 1,

at most one variable is assigned true. Finally, by Proposition 3.17, for each

clause, not all variables can be assigned false. Thus, ~ is a solution for 1. This

completes the proof of Lemma 3.3, which together with Lemmas 3.2 and

2.10, completes the proof of Theorem 3.1. ❑

4. Forcing u f’o~nomial Gap

In this section, we extend the quadratic gap of the previous section to a

polynomial of arbitrary degree, obtaining a stronger nonapproximability result

for the minimum consistent DFA problem over an arbitraV alphabet.

THEOREM 4.1. For all positil’e integers k, iVIIN-CON( DFA, NFA ) is not

opt ~-appro.rimable unless P ===NP.

PROOF. As in the quadratic case, we provide a reduction from the l-in-3-

SAT problem to the MIN-CON(DFA, NFA) problem that introduces a gap, but

this time between p and ph, instead of p and p 2. Let k be any constant, and
let nz == 3. 2k -1. We show that for all sufficiently large primes p (in particular,

for p > 2k -1 + ‘n), there exists a reduction RP, ~ that is computable in polyno-

mial time (Proposition 4.10 below) that takes as input an instance 1 of a

l-in-3-SAT problem, and produces two sets POS(p, k, 1) and NEG(p, k, 1)

that satisfy Lemmas 4.2, 4.3, and 4.4 (stated immediately below). It follows that
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the hypothesis of Lemma 2.10 is satisfied with ~( opt) = opt’, and thus unless

P = NP, MIN-CON(DFA, NFA) is not opt~-approximable. ❑

The key lemmas used are analogs of Lemmas 3.2 and 3.3, showing that there

is a p state counter machine C(p, ~) (Lemma 4.2), which is in fact optimal

(Lemma 4.3), and that any NFA with fewer than optk states provides a solution

to a l-in-3-SAT problem (Lemma 4.4).

LEMMA 4.2. Let I be an instance of l-in-3-SAT. If ~ is a solution of I, then

for all positiue integers k and p, C(p, r) is consistent with POS(p, k, I) and

NEG( p, k, I). Thus, if I has some solution, then there exists a consistent p state
DFA .

LEMMA 4.3. Let k and p be any posi~ile integers, and let I be any instance of

l-in-3-SAT. Then any NFA that is consistent with POS{ p, k, I) and NEG(p, k, I)

has at least p states.

LEMMA 4.4. Let k be any positil’e integer, and let p be a prime such that

p>2 ‘- ~~’”. If I is any instance of l-in-3-SAT, and ifA = (Q, 2, 8, sl~,,, F) is

an NFA such that \Q~ < p~ and such that A is consistent with POS(p, k, I) and

NEG( p, k, I), then I has some solution.

Lemmas 4.2 and 4.3 are proved in Section 4.3, and Lemma 4.4 is proved in

Section 4.4. Before delving into the details of the proofs, we discuss how the

proof of Theorem 3.1 suggests the approach taken to prove the more general

result.

We begin with the same underlying principle: If assignment ~ is a solution of

the l-in-3-SAT formula, then we would like the counter machine C( p, ~) to be

consistent with all positive and negative examples. Our goal is to construct a

polynomial-sized set of examples that maintains this property, and such that if

a small (less than p~ state) consistent NFA is provided, then a solution of the

l-in-3-SAT formula may be found.

Recall that in the motivation for the examples in the quadratic case, the

string w,,, played a special role in helping determine whether v, should be

assigned true or false. Either w,, i advanced by i + 1 around the loop, or w, ,

advanced by only one state. In the string w.,,, variable VI occurs a number of

times congruent to i mod p; all other variables appear O times (mod p); and

the special symbol r appears exactly once. Thus, another way of interpret-

ing the fact that w, , advances by i + 1 is to write that i occurrences of q, plus

one occurrence of ~ equals i + 1.More succinctly, “i “ vi + r =P i + 1,“ where

now we interpret v, and r as a variables with values either O or 1. Since we

know that r = 1 (i.e., r advances by 1), this reduces to i “ UK=P i, and this

equation tells us (if p is prime) that v. must equal 1 (true).

The main idea in the proof of Theorem 4.1 is to extend this interpretation in

the following way: Suppose some string containing i occurrences of v, and j

occurrences of v} is found to advance around a loop a total of s states. Then

we write the equation i . v, + j . Uv = s, We construct examples such that in any
consistent NFA with fewer than p~ states, for any k-tuple of variables we can

find such an equation relating the k variables. By exploiting special properties

of such systems of equations, we can construct negative examples such that the

set of solutions must contain a solution of the l-in-3-SAT instance.
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As a final intuition before proceeding with technical details, we offer the

following brief summary of the proof of Theorem 4.1. Note that a string is

accepted by C(p, ~ ) iff the number of true variables (according to assignment

~) in the string is congruent to O mod p. In fact, if a string y leads from any

state in C(p, ~) back to that state, then the number of true variables in y is

congruent to O. We may rewrite the above property of Cl p, ~) as follows: For

) such that for each i, 1 s i < n, theany string y. Let y= (X1, .XL, . . ..X.Z ,

number of occurrences of u, in y is congruent to x, mod p. Then y leads

around a cycle in C( p, ~) iff ~” ~ = O, where the assignment ~ is interpreted as

a Boolean vector of length n, “.” is the dot product, and all arithmetic is mod

p. Consequently, given a collection of strings {y,} that lead around a cycle in

some unknown counter machine C( p, r), one way of determining ~ would be

to solve the simultaneous system of equations {~[ “.7 = O}. This suggests a

strategy for const rutting POS( p, k, 1), NEG( p, k, I): Try to force the above

property in mzy small consistent NFA, not simply a counter DFA. Thus, we

construct POS(p, k, 1) and NEG(p, k, 1) such that

—if ~ is any solution of 1, then C( p, ~ ) (which has p states) is consistent with

POS(p, k, Z) and NEG(p, k, 1);

—a single carefully constructed positive example forces a cycle in any accept-

ing NFA with strictly less than p k stat es;

—from the cycle, a set of strings {y,} may be extracted;

—if S is the matrix with rows {~,} representing the equations {~, “Z = O}, then

the set of solutions to the system S contains an element that is {O, 1} valued,

and is a solution of 1. Thus, the existence of a consistent NFA with less than

pk states implies that 1 has some solution.

The last property is achieved by including in NEG(p, k, 1) examples that

rule out consistent automata with less than pk states whose induced set of

equations (those extracted from strings leading around the cycle) do not

include a solution of 1.

4.1. MORE DEFINITIONS AND TECHNICAL LEMMAS. Let k and p be any

positive integers. Throughout the rest of the paper, the constant nz is defined

by m = 3 “ 2~-1. Let P = {O, 1,..., p – 1}.P’Z denotes all vectors of length n

with elements in P. Vectors i, .F, 7 will always denote elements of Pn, For a

row vector 2’, we let .ty” denote the transpose (column vector) of ,7. All vectors

are indexed starting at 1, thus .7 = (xl, x,, . . . x.). We assume the standard
lexicographic ordering on P*. Thus, 7 <~; indicates that .i? comes first in

the lexicographic order. Matrices are sets of row vectors in P“. All operations

involving vectors or matrices are mod p, The binary operator “.” denotes the
dot product (mod p), except where both operands are scalar values, in which

case multiplication is denoted. COL( M ) denotes the set {i: the ith column in

M is nonzero}. Note that COL( M) is also defined if M consists of+only one

row. Let K(M) denote the kernel of M, that is, K(M) = {7: ik?7T = O}, and let

spa~z(M ) be the set of all linear combinations of rows of ikl. Recall from linear

algebra that if M is a matrix and B is a basis of M (more precisely, a basis of

the vector space span(M)), then K(M) = K(B).

Any assignment ~ may also be interpreted as a vector ( dvi, dz~z ), ...,

7( u,,)) e {O, l}n Q P“. The symbol 7 will be used to denote either the function,

or the vector; the meaning will be clear from context. For example, in
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‘67(v1 )“, the function is denoted, whereas the vector is denoted in “7 o ~.”

Similarly, any vector 7 = {0, 1}” may be interpreted as a truth assignment, in

which v, is assigned false (respectively, true) iff xi = O (respectively, xl = 1).

Definition 4.5. Let M be a matrix of nonzero rows.

—A set XC {1,2,... n} is free with respect to M if for every row X of M,

COL(2) ~ X.

—M is k-closed if for every X c {1,2 ,.. .,n} such that 1X1 = k, X is not free

with respect to M, that is, for each X of size k there exists a row i’ of M

such that COL(7) c X.

—A maximal free set C (with respect to a matrix M) is called a core of 11.

Note that if M is a matrix of nonzero rows, then M has a core, since the empty

set is free.

LEMMA 4.6. Each core C of a k-closed matrix M has size at most k – 1. and

for each number i G {1,..., n] – C, there is a row 2 of M (called a determining

row of index i) such that COL(2) L C u {i} and sach that x, is nonzero.

PROOF. Assume C is a core and has size at least k. Then, let C‘ be any

subset of C of size k. Since M is k-closed, M contains a row Z with

COL(2) c C‘ g C and this contradicts the fact that C is free with respect

to M.

To prove the second part of the lemma, assume that there is a number

i G {1, ..., n} – C such that there does not exist a row 7 of M with COL(i) ~

C U {i} and such that x, # O. Then either (1) there does not exist a row 2 of M
with COL(7) c C u {i}, or else (2) there exists at least one row 2 of M with

COL(2) c C u {i}, such that x, = O. If (1) is the case, then C u {i} is free

with respect to M, contradicting the maximality of C. If (2) is the case, then

COL(7) G C, contradicting the fact that C is free. In either case, we have a

contradiction; thus, the second part of the lemma must hold. ❑

LEMMA 4.7. If p is prime, then any subset B of span( M) of size larger than

lspan(M)l\p contains a basis of M.

PROOF. Let B be as above and let B‘ be any basis of M. If B does not

contain a basis of M, then there is a row i? of B‘ that is not in span(B). Now

observe that for any r, r’, ~, Z such that O s r, r’ s p – 1, j7, 2 = span(B), and

for which (r, ~) # (r’, Z), we have @ + ~ # r’~ + Z To see this, observe that

if r = r‘ then ~ # 2 and then trivially R + ~ # r‘7 + 2. On the other hand, if

r + r’ and Z+F = r’.l+ 7, then i?= (2 —~)/(r — r’) G span(B), which is a

contradiction. Note that division is well defined since p is prime. Thus, the set

{ri + ~: O < r < p – 1, ~ E B} has size plBl > lspan(M)l. But this set is clearly

a subset of span(M), and we have a contradiction. Thus, B must contain a

basis of M. ❑

Definition 4.8. If 1 is an instance of l-in-3-SAT, then SOL(1) = {~ =
{O, 1}’ : n is the number of variables of 1 and 7 is a solution to the instance 1}.

If V is the set of variables of 1 and V’ c V, then the instance 1 restricted to V’

(written 11~) is the instance of l-in-3-SAT over the same variable set V, that

contains exactly the clauses c of 1 for which every element of c is in V’.
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Note that the length of the vectors of SO~( llP) is the number of variables

in the original instance 1.

4.2. THE REDUCTION AND EXAMPLES. Let 1 be an instance of l-in-3-SAT,

with variables V = {u,, v~, ..., u.}. We let the alphabet Z for the problem

MIN-CON(DFA, NFA) be V. In Section 6, we refine the reduction so that

Z = {O, 1} regardless of the instance 1.
Recall that for any string y = S“, ~ = (xl, XJ,... x,, ), such that for each i,

1 < i < n, the number of occurrences of u, in y is congruent to xi mod p.

We now define a special word q, which is specified by a product (denoting

concatenation ) of many subwords. Since the product sign below denotes con-

catenation, to be unambiguous, we must specify the order in which the terms

(subwords) are concatenated: The choice in the product below is made in

lexicographic order of the vectors 7.

Note that q’ = 6. Whenever they appear, a and ~ (and subscripted versions)

will denote prefixes and suffixes, respectively, of q.

On input 1, the transformation RP, ~ outputs RP, L(1) consisting of the two

sets, POS(p, k, 1) and NEG( p. k. 1). We show that these sets have the proper-

ties claimed above. Note that the transformation RP, ~ need only be com-

putable in time polynomial in ]11, since p and k are constants. However, in

Section 6, we use the fact, proved below, that the transformation is also

polynomial in the t!alue p. (The dependence on k is doubly exponential

however.) We now describe POS( p, k, Z) and NEG(p, k, 1).

POS(p, k, 1) consists only of the word qp’.

NEG( p. k, I ) is constructed as follows: Let { ai}~l, be any collection of

ilz prefixes of q (recall nz = 3 ‘ 2L - [), let { ~,}~!,, be any collection of m

suffixes of q, and let ( pl, pz, . . ., p,,, ) be any element of P“’. Define

y, = ~, F,. Let Y == H:. ,(y[)p. Then, if there exists a set D such that

(l)lDlsk–l+m,

(2) CoL(T) s D s V,

(3) SOL(l/~) n K(z) = 0,

then for any numbers a, b, c (O s a, b, c s p~ ), include in the set

NEG(p, k, 1) the string y.,~,, = q“(~~l ~(y, q~)p)q’.

PRo~osmIoN 4.9. The lengtlz of each example in POS( p, k, I) and

NEG( p, k, I), and the number of examples in these sets, is po$nor?zial in III arzd
in the ualz~e p.

PROOF. The length of q is at most pk+ ‘n~+ 1, since there are at most p~?zA

choices of Z in the product defining q, and for each choice, the facto: in

the product is exactly pn characters long. Thus, the single element qfl of

POS(p, k, 1) has length p~lql Sp2h+ ‘~z~+’. Each element of NEG(p, k. 1)

consists of

—at most (pm + 2)pk copies of q. (The leading a copies of q, the trailing

c copies of q, and pm instances of b copies of q, included with the

subwords y,.);
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—at most pm instances of subwords y, = a, P,, of q, having total length at

most 2pmlql.

Thus, the total length of any element of NEG( p, k, 1) is at most

((pm + 2)p~ +2pm)lq1 < ((pm + 2)p~ + 2pnl)pk+ ‘n~”. Recalling that m
= 3 “ 2k - 1, a constant, each element of NEG( p, k, 1) is clearly of length

polynomial in Ill and p, and the lemma follows if the number of elements of

NEG( p, k, 1) is also polynomial in 111 and p. TO see that this is the case,

observe that the number of elements of NEG( p, k, I) is at most the number of

ways to choose m pairs (a,, ~,), some element of P’n, and three values a, b,

and c. The total number of possible examples is thus at most ((I q I +

l) Q)~pn’(pk)3, a polynomial in III and p. ❑

PROPOSITION 4.10. For any k andp, RP,’( I) is computable in time polynomial

in III and in the l~alue p.

PROOF. As shown in the proof of Proposition 4.9, the number of ways to

choose m pairs ( a,, ~,), some element of P’n, and three values a, b, and c, is

polynomial in 111and p. Also the number of ways to choose a set D of at most

k – 1 + m variables is polynomial in 111,since k – 1 + m is constant. Thus

we only need to show that for a particular choice of { a,}~~,, { ~,}~~ 1, ( p 1,

P2,..., P,,, ), and D) it iS Possible to check in time Polynomial in III and P if
COL(~) L D and SOL(ll~) f’ K(7) = @, where y = ~~ll(a, /3, )pI.

Observe that ~ and SOL(ll ~) can be easily constructed and C0L(7 ) L D is
+

easy to check. Let y = (Xl, Xz, . . . . ~,, ). We are left with having to determine

whether SOL( 11~) n K(~) = 0. Since COL(~ ) G D this is equivalent to de-

termining whether there exists an assignment t-: D j {O, 1} of the variables of

D, such that either ~ violates some clause of SOL( 11~) or the sum of all

components x, of ~ such that v, c D and d v, ) = 1 is not equal to zero (mod

p). Since both D and SOL(1 I~ ) have constant size, this method for determin-

ing whether SOL(I I~ ) n ~(~) = 0 requires only constant time (on a unit cost

RAM). ❑

4.3. A SMALL CONSISTENT COUNTER MACHINE. We show that if 1 has

some solution ~, then there is a small (p state) DFA consistent with
POS(p, k, 1) and NEG(p, k, 1).

PROOF OF LEMMA 4.2. Observe that C(p, ~) accepts a string y iff ~ = K(?),

that $, iff the number of true variables occu~ring in -y is zero mod p. Since

~ = O, then for any power q’ of q, ~ = O. Clearly, ~ E K(r), and thus

C(p, T) accepts q“. In particular, C(p, ~) accepts the only element qp of

POS(p, k, l).

To see that C(p, ~ ) rejects all elements of NEG(p, k, 1), we show that if
C(P, ~) accepts a string y., ~,, (as described in the definition of NEG( p, k, 1)),

then y., ~,. is not an element of NEG( p, k, 1). Note that since q contains each

variable occurring a number of times congruent to O mod p, if C( p, T) accepts
yti, ~,~, then it also accepts any word formed from y., ~,. by removing any

number of copies of q. In particular, it also accepts y, (described in the

definition of NEG(p, k, 1)). From our comments preceding Section 4.1, it

follows that 7 = K(?). Further, by assumption ~ = SOL(I), hence for any
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D c V, ~ = SOL(ll~). Thus, certainly there is no set D c V of size IDI s k –

1 + m, such that SOL(ll~ ) f’ K(7) = 0, and therefore, for no choices of a, b,

and c would the string y., ~,, be placed in NEG(p, k, I). ❑

To prove that p states are necessary in any NFA consistent with POS( p, k, 1)

and NEG( p, k, 1) (Lemma 4.3), we first introduce some notation that will also

be used in the proof of Lemma 4.4.

Let A = (Q, Z, 8, s,.,,, F) be any NFA with less than p~ states that is

consistent with POS( p, k, 1) and NEG( p, k, l), and again consider, the graph

representation of A. Since A is consistent, the positive example qp defines a

path * from s,.,, to some accepting state s.. Since A has less than pL states,

there exist numbers d, e, and f such that d + 1 + e + f = pk, and states s and

t on path # such that: qd leads from SIn,t to s; q leads from s to t;q’ leads

from t to s; and qf leads from s to s+. Figure 2 shows the loop of y, together

with states s and t,and the strings q~, q’, q~. (The states s,n,~, s, t,and s+

need not be distinct.)

For any prefix w of qJ”, let s,.,,(w) denote the state that ~v leads to along ~.

Since we assumed (see Section 2) that NFAs do not have A-transitions, the

state S,.it(w) is uniquely defined. For each .2 = P“ for which ICOL(.i)l < k we

define a particular prefix ar and suffix & of q as follows:

PROOF OF LEMMA 4.3. We show that any consistent NFA A with less than

ph states must have at least p states. Let n be the number of variables of 1 and

let {v,, v], v~} be any clause of 1. Let Z, be the n-component vector that

contains all O’s except for components i, j, and k, which are 1. Let 2, = iil, for

O<l’ <p-l.

It suffices to show that the states {s,,,t(q %; )}0 ~, ~ p _ ~ are distinct. Assume

to the contrary, that for some r and r‘ such that O < r‘ < r s p – 1, we have

s,n,,(q%z;) = s,n,t(q~a~,, ). Obseme that qJaIr Br,q’+f == qdai,, &,q”+t = qp’.

Since s,nl~(q’h~, ) = s,.,, (q’& F,,), we conclude that the word u = qdax, ~xr, q’qf is
accepted. We now obtain a contradiction by showing that p = NEG( p, k, I).

Thus, s,n,,(q’h~r) + s,~lt(q’b~ ,), and A must have at least p states.

To see that ~ is a negative example, recall the definition of NEG( p, k. 1).

Set y, to ari &., and y~ to CYy,&, = q. for 2<1< nz. Let (PI, Pz, ..., p,,, ) be

the vector (1, O, ..., O) of Prn and set D to be the clause {v,, u,, u~}. The word

K can be rewritten as q’t(~~~ ~ (y,q’)~)q~ = q~ylq’’q~. To show that w is a

negative example we only need to show that SOL(ll ~ ) n K(~) = @ for

Y = ~~1 I(Y,)PI = Y1. Note z consists of all zeros except for the components i,

j, and k, which have value r – r‘. The restriction 11~ consists of the clause D

and thus any solution of SOL(ll ~) must have exactly one of the three
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FIG. 2. The loop of path # in A.

components corresponding to the variable of the clause set to 1 and the others

set to O. Since 1 s r – r‘ s p – 1, this implies that such a solution cannot lie

in K(?) and SOIAIID) f’ ~(?) = @. ❑

4.4. FORCING POLYNOMIALLY LARGER NFAs. In this section, we prove

Lemma 4.4 by showing that if there exists an NFA consistent with POS(P, k, 1)

and NEG( p, k, I) with fewer than P k states, then there exists a solution of

instance 1. Before proving Lemma 4.4, we need a number of supporting

propositions. The arguments to follow apply to any NFA A that satisfies the

hypothesis of Lemma 4.4. As described above, A must have a loop; in what

follows we use the notation given in Figure 2.

For any set X c {1,2,... , n} such that IX I = k, we define an X-bridge as

follows: The string a; By is an X-bridge iff 2 #j, COL(i) and COL(~) are

both subsets of X, and the string ar & leads from s to t.Figure 3 depicts a

bridge.

PROPOSITION 4.11. For all X G {1,2,..., n} such that IXl = k, there exists an

X-bridge.

PROOF. Consider any X as in the hypothesis of the proposition. There are

exactly p~ vectors 7 such that CO-L(Z) c X. Since IQ I < pk, there must be two

such vectors 7 # ~ such that COL(7) c X, COL(j) c X and for some state r,

the states si~lt( q~~r) = si.lt(q~~y) = r. The string ~F BF = q leads ‘rem s =

S,n,t(qd) to t = S,n,t(q ‘+ 1), and thus p; leads from r to f. Consequently, % ~F

leads from s to t,and is therefore an X-bridge. ❑

A bridge is a string that for some X of size k, is an X-bridge. By the

definition of a bridge, and e, the string ar &q” leads from s to t and then

back to s. Thus, q~ (which leads from ~in,t to s), followed by any sequence of

strings of the form a.r ~~q’ where al P7 is a bridge, followed by q f (which

leads from s to s+) is accepted by A (refer to Figure 3). We have just proved

the following proposition.

PROPOSITION 4.12. Let {al};: ~ be any collectiotl of pref~es of q, a~ld { ~,}~ 1

any collection of suffixes of q, such that for each i, ~ s i s m, tl~e string Y, = ~, P,
) = P’”, and for any string Y =is ~ bridge. Then fo~ any (pl, Pz, .--, P,~~

~~= I( y,q’)p’, the NFA A accepts the string q yqf.

Recall from the discussion at the beginning of Section 4 that in any counter

machine C( p, ~), if y is a word that leads from a state back to the same state,
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FIG. 3. A bridge from s to t.

then r satisfies ~. r = O. Since for every bridge ar ~r the string yry = Q.r prq e

forms a cycle in A, we follow the approach discussed earlier, and from yiy we

derive the equation ~~y” ~ = O for the unknown assignment vector ~. Since

~ = O, this equation is equivalent to ( Zr + ~r) . ~ = 6. Our goal is to extract

from A a small collection of bridges S such that at least one solution of the

collection of associated equations is also a solution to the instance 1. The

examples NEG( p, k, I) will rule out collections of bridges whose corresponding

sets of equations do not have this property:

Let R be the matrix with a row dz + ~j. for each bridge aF ~r of A. By

Proposition 4. 11~ for every X of size k there i> an ~X-bridge ar P7 such

that COL( d; + &) c X and 7 # ] (i.e., row dr + By # O). Thus, R is k-closed
(Definition 4.5), and therefore, by Lemma 4.6, R contains a core C of size at

most k – 1. Also, from Lemma 4.6, there exists a determining row for each

ie{l,2, . . ..llc —c.

Definition 4.13. Let S be any matrix of ~z – ICI rows of R containing

exactly one determining row for each index of {1 ~,e, ..., n} – c.

For any set M of rows of length n, let V(M) abbreviate Vco~(Jfj (the

variables v, for which there is a row in M with a nonzero ith component). Let

Vc denote the set of variables indexed by the core, that is, {u, : i = C}. Once

the variables of Vc are set, the values of all other variables are forced in the

following sense: Given a setting of values for Vc, that is, CT: V(C s {O,..., p – 1},

the determining rows in S for all indices outside of the core ensure that there

is exactly one extension of m to a setting of all variables u‘: V ~ {(), . . . . p – 1}

that lies in K(S). Since ICI < k – 1, this implies that there are at most 2A-l

elements of K(S) n {O, 1}’*. Lemma 4.4 will be proved using the following

proposition:

PROPOSITION 4.14. Consider the numbered statements below:

(i) SOL(I) n K(S) = 0.

(ii) There exists a subset of rows T of S such that 1TI s m = 3. 2L - 1, and such
that SOL(IIVC ~ ~.{~j) n K(T) = 0.

(iii) T&ere exists an element Z of span(T) such that SOL(IIV-C,, ~(~,) n K( Z) =

T/zetz (i) ~ (ii) = (iii),
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PROOF THAT (i) IMPLIES (ii). This portion of the proposition asserts that if

the system of equations S has no solution in common with the set of solutions

of 1, then a constant-sized subset T of S has no solutions in common with the

set of solutions of 1 restricted (see Definition 4.8) to those variables Vc of

the core, and those variables V(T) with nonzero entries in some row of T.

We construct a matrix T from a subset of the rows of S such that T has the
desired properties. For each assignment 7: Vc s {O, 1}, there is exactly one

extension of ~ to a setting of all variables ~‘: V ~ {O, ..., p – 1} that lies in

K(S). Since SOL(l) n K(S) = @, we have that either

(1) there is a number i ● {1,2,..., n} – C such that ~’(v, ) Z {O, 1}, or

(2) ~’ G {O, l}” n K(S) but ~’ @ SoL(I).

In case 1, include a determining row Z of index i in T (such a row exists

in S).

In case 2, the unique extension ~‘ of 7 is an element of {O, 11” n K(S)
but there exists a clause (v,, Vj, v,,) of 1 such that the multiset

{~ ‘(~j), 7 ‘(uj), ~ ‘(% )} # {O, O, 1}. That is, it is not the case that exactly one
variable is set to true. Then, for each i ● {j, j‘, j“ } – C, include in T the

determining row 7 of i in S.

Clearly, ITI s m = 3 ~2~-1, since for each assignment ~ of V= (and ICI s

k – 1), at most three rows of S were included in T.

We show that SOL(1I “C. ~(~)) n K(T) = @. Suppose this is not the case,

and there’ exists a vector 2 c SOL(I I~~r” ~(~)) n K(T). Let ~ be the assign-

ment of the variables of V(C given by 2, that is, for all i ● C, ~(u,) = z,. Then 7

was considered in the above construction of T. Since the unique extension ~‘

of ~ to V that lies in K(S) cannot be an element of SOL(I), one of the two

cases occurred.

If case 1 occurred, then there is a determining row Z of T and a number i

such that any extension r” of ~ to an assignment of V for which Z” t-” = O

must be such that ~“ ( v,) is a unique value that is not in {O, 1}. Since 7 E T c S,

it follows that both ~‘ and 2 are such extensions and thus ~‘( v, ) = z, E {O, 1}.

But the fact that z, ~ {O, 1} contradicts the fact that 2 ● SOL(II V=u v(~~) n

K(T).

If case 2 held, then for the unique extension of ~ to ~‘ ● {O, l}” n K(S),

there exists a clause (vj, zy, y,) of 1 such that the multiset {~ ‘(vJ ),

~’(v,, ), ~’(vr)} + {O, O, 1}. If i = {j, j’, j“} – C, then the determining row 1 of i

was included in T, and any extension of ~ to some ~“ = {O, l}n n K(T) must

set the variable vi to the same value as ~‘ does. On the other hand, if
i ~ {j, j’,j” } n C, then since ~ has domain Vc, any extension ~“ of ~ to an

assignment of V must set the variable v, to the same value as I-’ does. Thus,

regardless of whether i ● {j, j‘, j“ } n C or i ~ {j, j‘, j“ } – C, we have con-

structed T so that {vj, v,,, VJ,,} c Vc U V(T), and such that for each v, =
{v,, y, q}, any extension of T to 7“ ~ {O, 1}” n K(T) is such that

~“ (v, ) = ~ ‘(v,). Since 7 is such an extension of ~, it follows that the multiset

{zJ, ZJ, z],} = {~’(vj), ~’(q), ~’(y)} + {O, O, 1} and thus 2 E SOL(lIVC u t,f~}),
and certainly Z’ @ SOL( I IVC” V(I ~) m K(T), as was hypothesized above. This

completes the proof that (i) implies (ii).

PROOF THAT (ii) IMPLIES (iii). Suppose to the contrary that (ii) holds but

that (iii) does not, so no such element Zi exists. Then for each element G of
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span(~), SOL(IIVC” ~tT)) n K(7) is nonempty. Since V(7) ~ V(T), if t-: Vc U

V(T) ~ {O, 1}, then either all extensions ~‘: V ~ {O, 1} of ~ are such that
7‘ = SOL(lII,C” ~,(~)) n K( ti), or no extensions ~‘ are such that ~‘ =

SOL(ll VCU v(~~) f’ K( i3). In the first case, we say that ~ is a witness to the
nonemptiness of SOL(ll ~C” 1,(~)) n K(Z). Since for each d, we have

SOL(lIJC” ~(~~) n K(Z) # @, there is a witness for each i3. There are at most

2k - l‘~ distinct witnesses, since each is an assignment of at most k – 1 + m

variables (at most k – 1 variables of the core C and at most one variable not

in C for each of the m determining rows of S that are in T). Thus, there must

be some assignment ~(): Vc u V(T) + {O, 1} that is a witness for at least

/span(T) I \span(T)l
>

qk–l+m
& P

elements of span(T) (because p > 2k - I ““ ). Let B be the subset of elements

of span(T) for which TO is a witness, that is, B is the set of elements of

span(T) such that for every Z ● B, every extension of TO is an element of

SOL(111, u V(~)) n K(G). Immediately, we have that every extension of TO is an

element of SOL(ll P-Cu ~(~1) n K(B).

By Lemma 4.7, the above bound on the size of B implies that B contains

a basis of T and thus K(T) = K(B). Thus, SOL(lll.C u ~.f~)) n K(T) =

SOL(IIVC u ~(~)) n K(B). But since every extension of ~cl is in

SOL(ll ~c u ~(~)) n K(B), this implies that SOL(llvC u ~,(~)) n K(T) is nonempty,

contradicting the hypothesis of the proposition. ❑

PROOF OF LEMMA 4.4. Assume the hypothesis of the lemma is true; we

need only show that there exists a solution of instance 1. Thus, Lemma 4.4

follows immediately from:

PROPOSITION 4.15. ~0~(1) n ~(~) # ~.

PROOF. Suppose to the contrary that SOL(1) n K(S) = 0. Then, by

Proposition 4.14, there exists T G S of size at most nz such that

SOL(lIPC” p(~)) n K(T) = 0. This implies, again by Proposition 4.14, that

there exists a vector d 6 span(T) such that SOL(l IVC. ~t~)) n K( ti) = 0.

Recall that T consists of 1 s m vectors ~1, ~z, ..., ~1, corresponding to

bridges yl, Yz, ..., YI, where each Y, is formed from the concatenation of some
prefix at and some suffix ~, of q. For syntactic convenience, define y, = yl

for 1< j < nz. By the definition of span(T), there exists ~ G P“’ such that

~ = ~;:lp,~l. Let the string y = ~~. ~ (yI)PI. Then, clearly ~ = Z, and thus

SOL(1I ~C” ~t~)) n K(7) = 0. Now define D = Vc U V(T), and we have that

SOL(IID) n K(z) = a, IDI < A – 1 + r72, and COL( ~ ) G D. Then, by the

definition of NEG(p, k, 1), for any a, b, c, y.,~,C = q“(~~= ,(ylqh)P)qC is an

element of NEG( p, k, 1). But when a = d, b = e, and c = ~, by Proposition

4.12, this string is accepted by A, contradicting the consistency of A. We

conclude that SOL(1) n K(S) # @, completing the proof of Proposition 4.15

and Lemma 4.4. ❑

5. A Larger than Polynomial Gap

We extend Theorem 4.1 to show that not only is a polynomial approximation

factor unachievable, but no polynomial-time approximation algorithm can find
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a consistent NFA of size opt( 1- c)lw Iw OP~ for anY con5tant E > 0. (In this paper,

“log” denotes “logZ.”)

‘THEOREM 5.1. For any constant e >0, MIN-CON(DFA, NFA) is not

opt ‘~ - ‘)h~ ‘g “Pt-approximable unless P = NP.

PROOF. Suppose to the contra~ that there exists a polynomial-time algo-

rithm A, a constant e > 0, and a constant c such that on input of any instance

of MIN-CON(DFA, NFA) for which the smallest consistent DFA has at least

opt > c states, A outputs a consistent NFA with at most opt(l - ‘)’”~ log“Pt states.

We obtain a contradiction by applying the reduction RP ~ to an instance I of

a l-in-3-SAT problem for appropriate choice of p and k. Choose any prime

p > max{c, 223”}. We show below that for k = [log log p] – 2, the following

two conditions hold:

(1) P(l-.)lWI%.P <Pk,

(2) p > 2A-1+”’.

If we apply Rp, ~ to instance 1, we obtain sets POS( p, k, 1) and NEG(p, k, 1)

for which the number of states in a smallest DFA is p > c if 1 has a solution,

or is at least p~ if 1 does not (Lemmas 4.2, 4.3, and 4.4).

Certainly if 1 has no solution, then approximation algorithm A cannot find

an NFA with fewer than p~ states. On the other hand, if 1 has a solution, then

A must find an NFA with at most p~l - ‘)’”g ‘“g P < pk states. By the second

condition above, p satisfies the appropriate size bound and the proof of

Theorem 4.1 applies, so A maybe used to solve l-in-3-SAT in polynomial time.

To complete the proof of Theorem 5.1 we must show that the two conditions

above hold. To see that the first condition holds, note that by our choice of p,

e log log p > 3, and so (1 – ~)loglog p < log log p – 3 < [log log pl – 2.

Thus, P(l-’)lOglO~p < pl10~l”gp]-2 = pk.

For the second condition, assume without loss of generality that e <1, thus

p > 2s and

Z]oglog P+4.’I’UIWJJ-S

—— Zk-]+s.zk-]

—_ Zk-l+m
7

completing the proof of Theorem 5.1. ❑

Let REGEXPR and REGGRAM denote the classes of regular expressions

and regular grammars, respectively.

COROLLARY 5.2. For any constant e >0, MIN-CON(DFA, REGEXPR) and

MIN-CON(DFA, REGGRAM) are not opt {~- ‘~h~ b~“P’-approximable lmless P =

lVP.

PROOF. By trivially modifying the proof of Theorem 5.1 and using Lemmas

2.3 and 2.5, it follows that MIN-CON(DFA, REGEXPR) and MIN-CON

(DFA, REGGRAM) are not ~opt (1- “)lo~ ‘“~ ‘P’-approximable for any e‘ >0
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unless P = NP. To see that they are not opdl - ‘)fo~ ‘“~ ‘~t-approximable for any

~ > 0, choose any e‘ < e (and greater than O), and then for sufficiently large

values of opt we have Opt(l – ‘)[”~ ‘“g “Pf < ~opt( L–‘ ‘)’”~ ‘o~‘“r. Thus, an algorithm

guaranteeing an approximation of opt(l - ‘)’o~ 10g“P’ would immediately guaran-

tee an approximation of at most ~opt(l -‘ ‘)’o~l“g “Pt, which we have observed

is not possible for any e‘ > 0. ❑

It is important to point out that Theorem 5.1 and Corollary 5.2 hold only

when the size of a DFA or NFA is the number of states of the automaton.

These results do not hold if we take the size measure to be the number of bits

to encode the automaton—an arguably more natural measure. (lt is easily

shown that Theorem 4.1 still holds for this more natural size measure.)

To see where the theorem fails to apply, first note that the reduction RP, ~

takes time at least 0( p‘( ~)) when applied to an instance of 1-in-3-SAT of n

variables, because the word qp~ alone is at least that long. Thus, in order to use

RP, ~ to solve an instance 1 of l-in-3-SAT, k must not be chosen to be any

increasing function of n, otherwise the time taken by the reduction would be

more than polynomial in n.

A DFA of p states with an n symbol alphabet requires roughly pn log pn

bits to encode, so to achieve a result comparable to Theorem 5.1 for this size

measure, it would be necessary to show the difficulty of finding an NFA with a

description of at most ( pn log pn) (1– c)log IOg(P~ IOg PFI) bits. TO do this would

simultaneously show the difficulty of finding an NFA with fewer than, say,
(Pn)log loglog p,, states, so the value k in the reduction would need to be at least

log log pn, an increasing function of H, and hence the reduction would not be

polynomial in the size of the instance 1.

In Sections 6, 7, and 8, we consider some related MIN-CON problems and

prove approximability lower bounds of opt~ for any constant k, as in Theorem

4.1. However, we will not be able to extend the lower bounds to opd[ - ‘)’”~ ‘“~ ‘Pt

for the following reasons. The proofs of the theorems in the following sections

will necessitate applications of reductions RP, ~ to an instance I of n variables,

where p is chosen to be at least n. If we try to apply the proof of Theorem 5.1,

we note that the value k is chosen to be roughly log log p. Consequently, the

exponent k of the reduction would grow as a function of n, and the reduction

would not be executable in time polynomial in n.

6. The Two-Letter Case

We generalize Theorem 4.1 to the case of DFAs and NFAs over the two-letter

alphabet {0, 1}. Let DFA(O 1) and NFA{O l) denote the class of DFAs and NFAs
over alphabet {O, 1}, respectively.

THEOREM 6.1. If P # NP, then for all positive integers k, MN-CON

(Di%{O l}, N~j4{(). 1)) ~n not opt ~-approxinuzble.

COROLLARY 6.2. If P # NP, then A41N-CON( DFA{U 1), NFA{O’1 }) is not

f (opt )-approximable for anyfunction f that is bounded abole by some polynomial.

The proof of Theorem 6.1 (presented later) is essentially the same as that of

Theorem 4.1, except that, since all examples must be constructed using only

two symbols, binary sequences are used to encode the symbols of the alphabet.
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Let 1 be an instance of l-in-3-SAT with variable set V = {vl, Vz,. ... v,,}.

Without loss of generality, n is a power of 2, for otherwise we could pad by

adding dummy variables. Fix some bijection “hat” (we write “2” to denote

“hat(v)”) with domain V and range {O, 1}10~”, and thus 8, is the bit string of

length log n that “encodes” the variable v,. Inductively extend hat in the usual

way to strings of V+= V* – {A} by letting =v= tit where w = V+ and v = )?

Let Ry,’~1 be the (polynomial-time) algorithm that takes as input an instance

1 of l-in-3-SAT, and outputs the sets ~(p, k, 1) = {V: w G POS(p, k, 1)}

and NEG(p, k, 1) = {ti : w e NEG(p, k, 1)}. (That there is such a

polynomial-time R~~] follows immediately from the definition of the function

hat, and from Proposition 4.10.)

If ~: V + {O, 1} is any assignment, then define C( p, T) to be the “counter-

like” machjne over the alphabet {O, 1} that, pn input ti, simulates C(p, T) on

input w : C(p, T) will accept the language L(C( p, T)) = {* : w ~ L(C(P, T))}

and may be constructed fro~ C( p, ~) as follows: Let 8 be the transition

function of C( p, ~). Then, C( p, 7J consists of counter states and auxilia?y

states, and has transition function 8. The counter states are exactly the states

of C( p, T). We replace each of the n edges emanating from any counter state s

with a complete binary tree of depth log n. The tree is rooted at s, and each

vertex has edges labeled O and 1 to its left and right child, respectively. All

(n – 2) internal vertices other than the root are aux~iary (new) states, and the
leaves are counter states such that for each u ● V, 8(s, 0) = 8(s, u).

L~IWMA 6.3. If I has a solution, then for any positiLe integers k and p, the size

opt of the smallest DFA consistent with POS( p, k, 1) and NEG( p, k, I) satisfies
p < opt < pn, where n is the number of lariables of instance I.

PROOF. The first inequality follows easily from the proof of Lemma 4.3,

which shows that the smallest DFA consistent with POS( p, k, 1) and

NEG( p, k, 1) has at least pA states. To prove the second inequality, observe

that by the construction of C( p, ~) and by Lemma 4.2, if 1 has some solution

~, then ~(p, ~) is a DFA consistent with ~(p, k, 1) and ~(p, k, 1) and

has exactly p + p( n – 2) s pn states. Note that the lower bound of the lemma

holds for NFAs, and the upper bound holds for DFAs.

LEMMA 6.4. Let k be any positiue integer, and let p be a prime such that

p>2 ~-~ q ‘n. If I is any instance of l-in -3-SA T, and if there exists an NFA A with

less than p~ states that is consistent with ~(p, k, 1) and %(p, k, I), then I

has some solution.

PROOF. If the hypothesis is true we may easily obtain an NFA A‘ over

alphabet V, and with at most as many states as A, that is consistent with

POS( p, k, 1) and NEG( p, k, 1). Thus, by Lemma 4.4, 1 has some solution. •l

Now to prove Theorem 6.1, define, for each k, a transformation T~ as

follows. On input instance 1 of a l-in-3-SAT problem with n variables, T~ first

determines whether n > 2~- ] + ‘n. If not, then TL halts and outputs nothing.

Otherwise, T~ finds the smallest prime number p satis&ing 2”-1 + ‘“ < n s p s
2n. Such a p exists by a theorem of Chebyshev (Theorem 8.6, page 185 of [191),

which states that for all n > 1 there exists a prime p such that n < p < 2 n.

After obtaining p, T~ then computes and outputs R~~}(I).
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We argue that for each constant k, T~ is computable in time polynomial in

IIl. Since 111> n, checking the n + 1 numbers p between n and 2n for

primality may be done in time polynomial in 11[ by trying all possible divisors

up to fi. (Note that the time is polynomial in n, and not in log n). By

Proposition 4.10, the run time of R~~) is polynomial in 11I as well as the value

p, which is at most 2 n.

PROOF OF THEOREM 6.1. Let k be given. Then there exists a number k‘

such that opt ~ < (opt/2)L”~ for all sufficiently large values of opt. Conse-

quently, to show for all k that MIN-CON(DFA{O l}, NFAIO 1}) is not opt~-

approximable unless P = NP, it suffices to show for all k that MIN-CON

(DF~(] 1},NFA{O ‘}) is not (opt/2)L /~-approximable unless P = NP.

Suppose to the contrary that for some number k, MIN-CON

(DFA{”’ 1),NFA{O> 1)) was (opt/2) ~\z-approximable, witnessed by constant c and
polynomial-time algorithm APPROX. We show that membership in l-in-3-SAT

is decidable in polynomial time, hence P = NP, thus proving the theorem.

The polynomial-time algorithm DECIDE determines l-in-3-SAT as follows:

On input instance 1 with n variables, DECIDE determines if n >

max{c, 2~– 1“n }. If not, then DECIDE determines whether 1 has a solution by
trying all possible assignments (a constant number, since c, k, and m are

constants). Otherwise, DECIDE computes T~(l), and gives the result as input

to subroutine APPROX. If APPROX returns an NFA with less than n~ states,

then DECIDE outputs “1 has a solution.” Otherwise, DECIDE outputs “1

does not have a solution.”

Clearly, DECIDE runs in time polynomial in III, since both Tk and APPROX

run in polynomial time. We must show that DECIDE is correct. Certainly

DECIDE is correct for all instances 1 with n s max{c, 2~- 1‘~} variables, since

these decisions are made by exhaustive search.

Suppose 1 is an instance with n > max{c, 2k - 1+‘} variables, and that

DECIDE outputs “1 has a solution.” Then, T~( 1) gives the MIN-CON

(DFA!(” 11,NFA{() l}) instance R}~}(I) as input to APPROX (where p is the

smallest prime between n and 2 n). Since APPROX returns an NFA with less

than n ~ s p~ states, by Lemma 6.4, 1 has a solution.

Conversely, suppose that 1 is an instance with n > max{c, 2k - I ““} variables,

and 1 has a solution. Since n is large enough, DECIDE runs 7’~(1 ) and

obtains the instance l?fl~}(l) = ~(p, k, 1), ~(p, k, 1) of MIN-CON

(DFA((’ 1},NFAI(’ I}), where p is the smallest prime between n and 2n.

By Lemma 6.3, the size opt of the smallest DFA consistent with ~( p, k, 1)

and NEG( p, k, I ) satisfies p < opt < pn. Since c < tl s p < opt, the value of

opt k large enough so that the bound on the performance of APPROX must
apply, thus APPROX must find a consistent NFA with less than ( opt/2)~ /z

states. Since opt < pn and p < 2n, this gives opt < 2 n~. Consequently, the

consistent NFA returned by APPROX has less than (2nz/2)A’2 = ~z~ states,

and DECIDE outputs “1 has a solution. ” ❑

7. Other Representatiotzs of Regular Sets

Let REGGRAM(O 1} and REGEXPR([)’ } denote the sets of regular gram-

mars and regular expressions, respectively, over the two letter alphabet

{O, 1}. We show that Theorem 6.1 implies that unless P = NP, MIN-CON
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(DF~O’ l}, REGGRAMtO’ l}) and MIN-CON(DFA(O l), REGEXPR(O’ l}) are not

polynomially approximable.

THEOREM 7.1. If P + NP, and f is any function that is bounded abole

by a polynomial, then MIN-CON(DFA(O> l}, REGGRAM(O 1)) and

MIN-CON(DFA{O’ l}, REGEXPR{O l}) are not f( opt)-approximable.

The proof of this theorem is a modification of the proof of Theorem 6.1. We

use the same polynomial-time algorithm Rfl~}, which for a given instance 1 of
l-in-3-SAT (with variable set V = {v,,. ... %}, where n is a power of 2),

produces the sets ~(p, k, 1) = {W: w e POS(p, k, 1)} and ~(p, k, Z) =

{i: w e NEG(p, k, 1)}. Recall that t, is a bit string of length log n that

encodes the variable v,.

LEMMA 7’.2. Let k be any positiue integer, and let p be a prime such that

p>2 ‘-l + “’. If I is any instance of l-in-3-SAT, and if there is a regular grammar

or a regular expression of size less than pk/2 that is consistent with ~( p, k, I)

and ~(p, k, I), then I has some solution.

PROOF. Assume there is a consistent regular grammar or a consistent

regular expression of size less than pk/2. Then by Lemmas 2.5 and 2.3,

respectively, there is a consistent NFA of size less than pk. We conclude by

Lemma 6.4 that 1 has a solution. ❑

To prove Theorem 7.1, we use the same transformation Tk, which was used

in Section 6. Upon input of some instance 1 of l-in-3-SAT with n > 2A- 1+”
variables, T~ computes the smallest prime number p satisfying n < p < 2 n and

runs Rfl~l(I). Recall that T~ is computable in time polynomial in 111.

PROOF OF THEOREM 7.1. Since f is bounded above by some polynomial,

there exists a number k such that f (opt) < (opt/8)k’z for all sufficiently large

values of opt. Thus, it is sufficient to prove that for all positive integers k,

neither MIN-CON(DFA{O’ 1}, REGGRAM{()> 1}) nor MIN-CON(DFA{O) 1],

REGEXPRIO> ‘1) are (opt\8)k /z-approximable unless P = NP.

Suppose, for some positive integer k, that MIN-CON(DFA{O’ 1),

REGGRAM(O’ l}) or MIN-CON(DFA{O’ 1), REGEXPR{O> ‘}) was (opt/8) k’z-

approximable, witnessed by constant c and polynomial-time dgorithrn

APPROX. Then the following algorithm DECIDE determines l-in-3-SAT in

polynomial time, thus proving the theorem by contradiction. On input instance
1 with n variables, DECIDE determines if n > max{c, 2k - 1‘~}. If not, then

DECIDE determines whether 1 has a solution by trying all possible assign-

ments (a constant number, since c, k, and m are constants). Otherwise,

DECIDE computes Tk(~), and gives the result as input to subroutine AppROX.

If APPROX returns a regular grammar or a regular expression of size less than

n~/2, then DECIDE outputs “1 has a solution.” Otherwise, DECIDE outputs

“1 does not have a solution.”

Clearly DECIDE runs in time polynomial in 111,since both Tk and APPROX

run in polynomial time. We must show that DECIDE is correct. Certainly,
DECIDE is correct for all instances 1 with n s max{c, 2L - 14’} variables, since

these decisions are made by exhaustive search.

Suppose 1 is an instance with n > max{c, 2k - 1‘~} variables, and that

DECIDE outputs “1 has a solution. “ Then, Tk(I) gives the output of 11~,’~](1)
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as input to APPROX (where p is the smallest prime between n and 2 n ). Since

APPROX returns a regular grammar or a regular expression of size less than

~zk/2 s pk/2, it follows by Lemma 7.2 that 1 has a solution.

Conversely, suppose that 1 is an instance with n > max{c, 2~- 1+ ‘n} varia-

bles, and 1 has a solution. Since n is large enough, DECIDE runs Tk(~ )

and obtains the instance R~~}(l) = ~(p, k, 1), ~(p, k, 1) of MIN-

CON(DFA{” 1},NFA{()’ 1)), where p is the smallest prime between n and 2n.

By Lemma 6.3, the size opt of the smallest DFA consistent with ~(p, k, 1)

and ~(p, k, I) satisfies p s opt < pn. Since c < n s p s opt, the value of

opt is large enough so that the bound on the performance of APPROX must

apply; thus, APPROX must find a consistent regular grammar or regular

expression of size less than (opt/8 )k’2. Since opt < pn and p < 2n, opt s 2nz.

Consequently, the consistent regular grammar or regular expression returned

by APPROX has size less than (2rz2/8)~ /2 s nk/2 and thus DECIDE outputs

“1 has a solution.” ❑

Because Theorem 7.1 shows polynomial nonapproximability, the theorem

holds also with respect to other natural size measures than the ones introduced

in Section 2.1, as long as these other size measures are polynomially related to

the ones used here.
By “reversing” the construction of Lemma 2.5, it is easily seen that there

exists a consistent regular grammar of size at most a constant times larger than

the smallest consistent DFA over alphabet {O, 1}. However, in the case of

regular expressions, Theorem 7.1 may be uninteresting for unrestricted DFAs

over alphabet {O, 1} if there are finite sets of positive and negative examples

such that the smallest consistent regular expression over alphabet {O, 1} is

exponentially larger than the smallest consistent DFA over the same alphabet. ~

In this case, Theorem 7.1 would trivially hold, even without the complexity

theoretic assumption that P # NP. However, it is easily verified that, in the

case of counter-like DFAs, which were used in the reduction of the previous

section (Lemma 6.3), the smallest consistent r~gular expression is at most

polynomially larger than the counter-like DFA C(p, T).

LEMMA 7.3. For any p art< r: {vi, ..., v.} ~ {O, 1}, the smallest regular
expression for the language L( C( p, r)) laas size at most cpn log tl, for some

constant c.

PROOF. Assume without loss of generality that T(vl) = ~(u2) = . . . =

~(q,) = O and that ~(q,+ ~) = “.. = T(vn) = 1. Let To denote the regular

expression (21 + 02 + o.” +0, ) if s > 0 and A if s = O. (Note that we have

omitted superfluous parentheses in accordance with the standard precedence

rules [15].) Let ~1 denote the regular expression (3, + ~ + O,+ ~ + --- + ~,1) if
s < n and A if s = n. For any regular expression r, let rJ’ be an abbreviation

for the regular expression rr “”” r (concatenated p times). Then the regular

expression

(70)* ((( TO)*T, )P(7(,)*)*

denotes the language L( ~( p, ~)) and has size O(pn log n). ❑

2 In [8], it is shown that there are languages such that the smallest regular expression is
exponentially larger than the smallest DFA for the language. It IS not clear whether this implies
the same separation between the sizes of DFAs and regular expressions consistent with a finite set

of examples.
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8. Forcing Large Linear Grammars

Let LIN be the class of linear grammars, as defined in Section 2. By employing

techniques similar to those of the previous sections, we obtain nonapproxima-

bility results for MIN-CON(LIN, LIN). For simplicity, we only develop the

proof for the case of linear grammars where the alphabet is a parameter to

the problem, as opposed to presenting results for the fixed alphabet {O, 1}.

THEOREM 8.1. If P # NP, then MIN-CON(LIN, LIN) is not f(opt)-

approximable, for any function f that is bounded abol’e by some polynomial.

To prove Theorem 8.1, we essentially repeat the proof of Theorem 4.1, but in

the context of linear grammars. Recall that the size of a linear grammar is the

total number of symbols on all left and right sides of all productions. A

reduction will be exhibited that produces a gap: the smallest consistent gram-

mar will be of size between p/3 and 6pn, (where n is the number of variables

of an input instance of l-in-3-SAT), and whenever there is a grammar of size

less than (p~ – 4)/6, then the corresponding instance of l-in-3-SAT will have

a solution. The proof of Theorem 8.1 is delayed for the proof of the necessary

supporting lemmas.

Let 1 be an instance of l-in-3-SAT over variable set V, and let # be an

additional symbol not appearing in V. For each j, 1 s j s pk + 1, define

POSJ(p, k, 1)# and NEG(p, k, 1)# as follows:

POSj(p, k, 1)# = {(qp’)J#};

NEG(p, k, 1)# = {w# : w G NEG(p, k, 1)}.

Also, the counter machine C( p, ~)# is defined as the counter machine

C(p, T), with additional transition 8(s, #) = s added for each state s.

For each number j, it is easily verified that the proof of Theorem 4.1 holds

with only trivial modification if the reduction RP, ~ outputs POSJ(p, k, 1 )# and

NEG(p, k, 1)# instead of POS(p, k, 1) and NEG(p, k, 1). More specifically,

the following lemma holds, which incorporates modified versions of Lemmas

4.2,4.3, and 4.4.

LEMMA 8.2. Let I be any instance of l-in-3-SAT, let k and p be any positille

integers, and let j be such that 1 < j < pk + 1.

(1) If T is a solution of I, then C(p, ~)# is consistent with POS’(p, k, 1)# and
NEG(p, k, 1)#.

(2) If A is an NFA that is consistent with POS’(p, k, 1)# and NEG(P, k, 1)#,
then A has at least p states.

(3) If p > 2k- ~““ is prime, and if A is an NFA with less than pk states that
is consistent with POS]( p, k, 1)# and NEG( p, k, 1)#, then I has some

solution.

We define the polynomial-time transformation R&k, which takes as input an

instance 1 of l-in-3-SAT, and outputs two finite sets POS’in(p, k, 1) and

NEG1in(p, k, 1) with the required gap properties described in Lemmas 8.3, 8.4,

and 8.5 (given below). We present R~k( I ) by describing the sets pOS’in(p,k,

l) and NEG’’”(p, k, 1). It is easily verified that R&’k runs in time polynomial in

Ill and the value p. The sets POS’in(p, k, 1) and NEG1’n(p, k, 1) are con-

structed so that from any linear grammar of size less than ( pk – 4)/6, we can



130 L. PITT AND M. K. WARMUTH

obtain a right linear grammar that is consistent with POS( p, k, 1)# and

NEG(p, k, 1)# of size less than p~/2, for some j between 1 and p~ + 1.

Applying Lemma 2,5, we obtain an NFA with less than p~ states that is

consistent with POSJ(p, k, 1)# and NEG(p, k, I)#; thus, we obtain, by the

third part of Lemma 8.2, a solution of 1.

Let u = (qJ’’)P’+l and v = $J’’@~’, where $ and @ are not elements of P’.

Then define

POS1’n(p, k, 1) = {UU, u},

NEG1’n(p, k, 1) = Ml U M2 U M3 U M4, each defined below.

Ml = {xw~yw~z: xyz = v, lw~ + Wdl <p, and w~, WJ are both substrings of v};

M2 = {xv: x G NEG(p, k, 1)};

M3 = {U1L13$pk@d : (=u2)u,u,u, = L{ and O L d <p’};

M4 = {(qp’)~z~f :0< d, ~ <pk + 1,and z = NEG(p, k, 1)}.

LEMMA 8.3. For all positive integers k, p, and all instances I of l-in-3-SAT,

any linear grammar G that is consistent with POS1’”( p, k, I) and NEG1’”( p, k, I)

has size at least p/3.

PROOF. Suppose to the contrary that G is a grammar consistent with

POS1in(p, k, 1) and NEG1’n(p, k, 1) and the size of G is less than p/3. Then,

by Proposition 2.6, G may be replaced with an equivalent thin grammar G’ of

size less than p. Without loss of generality, G‘ has at most p nonterminals;

otherwise, some terminal(s) must be useless and could be discarded to obtain a

smaller grammar.

Consider any derivation of the string u, which has length 2pk. Since the

grammar is thin, each production generates at most one additional terminal;

thus, there must be at least 2p ~ applications of productions (steps) in the

derivation. After each step (except the last) the sentential form thus far

generated consists of some number of terminals, and exactly one nonterminal.

Thus, one of the strictly less than p nonterminals appears in two different

sentential forms less than p steps apart in the derivation of u. In other words,

for some nonterminal A, we have

and such that A a w~ Awl in less than p steps. By repeating this “subderiva-

tion” in the derivation of v, we obtain

~ ~ WIAWZ ~ WIW3AW4W2 ~ WI(W3)2A(W4)2W2 ~ Wl(W3)2W5(W/W2 = v’.

Note that W3 and W4 are substrings of v such that IW3 + W4I <p. Conse-
quently, a negative example (type Ml) is obtained by inserting these two strings
anywhere in v = wlw~w~ WAWZ. In particular, v‘ is a negative example generated

by G’, contradicting the fact that G‘ is consistent, completing the proof of

Lemma 8.3. ❑

LEMMA 8.4. Let I be an instance of l-in-3-SAT. If r is a solution of I, then

for allpositiue integers k amip there is a linear grammar of size at most 6pn that is

consistent with POS[’n(p, k, I) and NEG1’n(p, k, 1).

PROOF. We construct a linear grammar G of the desired size. First, convert

the counter DFA C(p, ~) to a right-linear grammar G‘: Each of the p states
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becomes a nonterminal. For each of the n letters a = V, and for any states Tl,

Tz, the size 3 production TI ~ aTz encodes the edge labeled with a from T1

to Tz. For the nonterminal S, which corresponds to the start and final state of

C(p, ~), add the production S ~ A. Then L(G’) = L(C(P, 7)) [15]. Finally, the

grammar G may be obtained from G’ by adding the production S ~ $PSQ’.

The size of G’ is exactly 3pn + 1, and the size of G is exactly 3pn + 1 +

2p + 2, which is at most 6prz, since ~z >3 for any instance of l-in-3-SAT. G is

consistent with POS[in(p, k, I), since it clearly generates v, and, by construc-

tion, also generates xv for any string x accepted by C( p, ~). Since Z~is such a

string, G generates UV also.

We argue that G is consistent with NEG1’n(p, k, 1). If G generates any

string of Ml, it must do so using only the two productions S ~ $ ‘SC p and

S ~ A, since all other productions generate a character of V – {$, c}. Clearly

no element of Ml can be generated in this way, since all strings generated

using these two productions must have length a multiple of p, which does not

hold for any string of Ml. Thus, G does not generate any string in Ml.

If G generates some string xv c M2, then, by construction of G, we must

have that G’ generates x. But L(G’) = L(C(p, T)), and thus C(p, T) accepts

the string x = NEG( p, k, 1), contradicting Lemma 4.2. Thus, G is consistent

with M2.

G cannot generate any string of M3, since only strings with an equal number

of $ and ~ symbols can be generated.

Finally, suppose that G generates some string w = (qp’)dzcf ~ M4. Then

f = O, otherwise w contains an unequal number of $ and c symbols, and would

not have been generated by G. It follows that G‘ must generate w = (q” )dz

with z = NEG(p, k, 1). But L(G’) = L(C(p, ~)), and C(p, ~) does not accept

w, since for all d, (q f“ )~ leads from the start back to the start state, and thus if

C( p, ~) accepted w, it would accept the string z = NEG( p, k, 1), contradicting

Lemma 4.2. We conclude that G is consistent with all examples, completing

the proof of Lemma 8.4. ❑

LEMMA 8.5. Let k be any positille integer, and let p be a prime such that

p>2 ~-1 h ‘“. If I is any instance of l-in-3-SAT, and if G is a grat?lmar of size less

than (pk – 4)/6 that is consistent with POS1i’’(p, k, I) a~ld NEGIC’’(P, k, I),

then I has some soh~tion.

Before proving Lemma 8.5, we present some supporting propositions.

Throughout, we assume that the hypothesis of Lemma 8.5 is true.

Since IGI < ( pL – 4)/6, by Proposition 2.6 there exists a thin linear gram-

mar G‘ that is consistent with POS1’n( p, k, 1) and NEG1’n( p, k, 1) and such

that IG’ I s 3 IG I < ( p~\2) – 2. As in the previous reductions, we again con-

centrate on a particular positive example. All derivations used in the proof are

with respect to the equivalent thin grammar G‘, instead of the original

grammar G.

PROPOSITION 8.6. The derivation of uv can be written a{ S + PC+ and

C * X, such that PX$ = UV, 1x1 =PL, and 4 is a suffix of Qp .

PROOF. Since G‘ is thin, exactly one terminal is generated at each produc-

tion step. Thus, there is some point in the derivation of 24u such that exactly pk

terminals remain to be generated. Writing this as S ~ PC* and C ~ X, such
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that PX+ = 14v, I x\ = p~, the proposition is proved if we show that ~ is a suffix

of Qpk.

Assume to the contrary that * is not a suffix of QJ“, in which case @f“ must

be a proper suffix of ~, that is, 1+1 > pk. Since \ x I = pk, and there are pk

$-symbols in 24v, P must be a prefix of 14. Thus, all ~-symbols are generated
in the derivation of L~v before the first $-symbol is generated. Thus, the

derivation of uv can be rewritten as:

where p, Pz . . . Ppk is aPrefixof U, Dpk A @$p’ and p1q2 -“. Ppkco$p’@p’ = LIv.

Since IG’ I < (p~/2) – 2, G‘ has less than p~ nonterminals. Thus, there

must exist O < a < b < p~ such that D. = D~, and we have that

Since Da = Db, we have

Letul=ql . . . q. (a prefix of u), let, ~S = Pb+ ~ ..” Pp, o (a suffix of u), and
letd=p~– b + a. Then S ~ uluj$pc , and for some L4Z, Uluzus = u. Thus,

G‘ (and G) generates a negative example (type M3), contradicting its

consistency. We conclude that ~ is a suffix of c J“, completing the proof of

Proposition 8.6. ❑

PROPOSITION 8.7. There are numbers O < d, e s pk + 1, and O < fs p~

such that the deril)ation of the positive example uv can be written as

PROOF. Proposition 8.6 ensures that in the derivation of uv, all of z~ is

generated before any $-symbol is generated to the right of the nonterminal,

and thus we can rewrite the initial segment of the derivation as follows:

where ,!30 = S, +0 = A and all of the strings { ijJl}O~, ~ Pk +, consist of at most pk

c-symbols. Since there are pk + 2 strings {~,}, and only pk + 1 values they may

have, there exist a and b such that O < a < b < pk + 1 and ~,, = ~.. Letting
A = E,l, d = a, ~f = *O = +b, B = Eb, and e = b – a – 1, the proposition
follows. ❑

PROOF OF LEMMA 8.5. Proposition 8.7 ensures that in the derivation of the

positive example LIV, there is a nonterminal A such that A A (qP’)C+ IB for

some e > 0. It follows that the subgrammar G“, with start symbol A, and with
only those productions involved in the generation of ( qp’ )@+ lB, is a right linear

grammar.

Let G’” be the right linear grammar obtained by adding production B A #
to the right linear grammar G“, where # G V U {$, c}.
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PROPOSITION 8.8. Let j = e + 1. Then G’” is consistent with the examples
POSJ(p, k, 1)# and NEG(p, k, 1)#.

Lemma 8.5 now follows from Proposition 8.8 by the following argument:

Suppose the proposition is true. Note that the size of right linear grammar G’”
satisfies IG’”1 = IG” I + 2 < IG’I + 2 < pk/2. Applying Lemma 2.5, we obtain

an NFA A of size at most 2 IG’” I < p~ that is consistent with POS1(p, k, 1)#

and NEG(p, k, I )#. By part 3 of Lemma 8.2, we conclude that 1 has a

solution.

We now prove Proposition 8.8. G’” is consistent with POSJ(p, k, I )# because

(1) G’” has sta~t symbol A, (2) by definition, we have included productions such
that A ~ (qJ’ )’+ IB, (3) j = e + 1, and (4) B ~ # is an additional production

of G ‘“.

Now suppose that G’” generates some element of NEG(p, k, 1)#. Then

clearly, A A z#, where z = NEG( p, k, 1), and thus in grammar G“ and G‘

we have A ~ z.

From Proposition 8.7, in grammar G‘, we have

~ == (qJ’’)dA@’ A (qpk)dz$?f,

which is a negative example (type M4), contradicting the consistency of G‘.

Thus, G ‘“ is consistent with POSJ( p, k, 1)# and NEG( p, k, 1)#, completing

the proof of Proposition 8.8 and Lemma 8.5. ❑

PROOF OF THEOREM 8.1. Suppose f(opt ) is bounded above by some polyno-

mial in opt. Then there exists a number k such that for all sufficiently

large values of opt,

Consequently, to show that MIN-CON(LIN, LIN) is not f(opt)-approximable

unless P = NP, it suffices to show for all k that IvIIN-CON(LIN, LIN) is not

(l\6(opt/12)L/2 – 2/3)-approximable unless P = NP.

As in the proof of Theorem 6.1, for each k we define a polynomial-time

transformation T~, that on input instance 1 of a l-in-3-SAT problem with n

variables, determines which reduction R#~~(l) to apply. More specifi-

cally, T~ first determines whether n > 2~- 1+ ~. If not, then T~ halts and

outputs nothing. Otherwise, Tk finds the smallest prime number p satisfying

2h -1 + “’ < n < p s 2n. After obtaining such a prime p, Tk then computes and

outputs R~~A( 1 ). By the same argument as that given in the proof of Theorem
6.1, for each constant k, T~ is computable in time polynomial in Ill.

Let k be given. Suppose, contrary to what we must show, that there exists a

constant c and a polynomial-time algorithm APPROX such that for all

instances of MIN-CON(LIN, LIN) with optimal solution satisfying opt > c,

APPROX is guaranteed to output a consistent linear grammar of size less than

1 opt ‘/2 2

(-)i 12 ‘z’

As in the proof of Theorem 6.1, we construct a polynomial-time algorithm

DECIDE for determining whether instances of l-in-3-SAT have a solution.
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On input instance 1 with n variables, DECIDE determines if n >

max{3c, 2 ‘-’ ““}. If not then DECIDE determines whether 1 has a solution by

trying all possible assignments (a constant number, since c, k, and m are

constants). Otherwise, DECIDE computes T~(l ), and gives the result as input

to subroutine APPROX. If APPROX returns a linear grammar G of size

IGI < (n~ – 4)/6. then DECIDE outputs “1 has a solution.” Otherwise,
DECIDE outputs, “1 does not have a solution.”

Clearly DECIDE runs in time polynomial in 11/, since both Tk and APPROX

run in polynomial time. We must show that DECIDE is correct. Certainly

DECIDE is correct for all instances 1 with n s max{3c, 2~- ] + “Z} variables,

since these decisions are made by exhaustive search.

Suppose that 1 is an instance with n > max{3c, 2A-l +‘} variables, and

that DECIDE outputs “1 has a solution.” Then Tk( 1) gives the MIN-

CON(LIN, LIN) instance R~~A(l) as input to APPROX (where p is the

smallest prime between n and 2n ). Since APPROX returns a linear grammar

G of size IGI < (n~ – 4)/6 s (p” – 4)/6, it follows by Lemma 8.5 that 1 has

a solution.

Conversely, suppose that 1 is an instance with n > max{3c, 2k - 1+ ‘“} vari-

ables, and 1 has a solution. Since n is large enough, DECIDE runs TL( 1) and

obtains the instance (of MIN-CON(LIN, LIN)) R&k(l) consisting of sets

POSJ’”( p, k, 1) and NEG 1“( p, k, I), where p is the smallest prime between n

and 2n.

By Lemmas 8.3 and 8.4, the size opt of the smallest linear grammar

consistent with POS1’n(p. k, 1) and N13G[in(p, k, 1) satisfies p/3 < opt s 6pn.

Since 3C < n s p, we have

and opt is large enough so that the bound on the performance of APPROX

must apply, thus APPROX must find a consistent linear grammar G such that

Since opt s 6pn and p <2 n, we have opt L 12nz. Consequently, the consis-

tent linear grammar G returned by APPROX satisfies

and DIKXl12 outputs “1 has a solution. ” E!

9. Approximability and Leamabili~’

Following [10], let H be a minimization problem, let I be any instance of II,

and let A be an approximation algorithm. There are a number of ways we

might wish to measure the performance of A, One measure is to simply

express the size of the approximate solution as a function of the size of

the smallest feasible solution. Consider the minimization problem MIN-CON

(DFA{()> 1},NFAIO> 1}) of Theorem 6.1. In this case, an instance ~ consists of a
collection of positive and negative examples, opt(I) is the number of states in
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the smallest consistent DFA, and for any approximation algorithm A, A(l)

is the consistent NFA produced by A and IA(1) I is the number of states of the

NFA produced. Theorem 6.1 states that if P # NP, then no polynomial-time

algorithm A for MIN-CON(DFA(O’ l}, NFA{O’ l}) can achieve IA( 1)1 < opt( 1)~

for any constant k.

Another reasonable measure is to express the ratio IA( I)\/opt( 1) as a

function of the size of the input (denoted by 111). In the case of MIN-CON, 111

is the total number of letters in all of the examples. Using the quadratic

nonapproximability result of Section 3, we prove a lower bound on the ratio,

given below in Theorem 9.1. Similar bounds could be achieved with the

polynomial nonapproximability results of Section 6, however, the lower bound

obtained would be much lower. Note that if P = NP, then IA(l)l\opt( 1) = 1
for MIN-CON(DFA(O 1),NFA(’) ‘}). For an arbitrary DFA or NFA M, let IIMII

be the number of bits needed to encode M according to some standard

encoding. Recall that [MI is the number of states of M. We assume that

IIMII > IMI.

THEOREM 9.1. If P # NP, then for any e >0, for any polynot?lial-time

approximation algorithm A for MIN-CON( DFAIO’ II, NFA{O’ l}), and for infinitely

many positiue integers c, there are instances I of MIN-CON(DFA{O’1 ), NFA(O’ 1))

such that opt(I) > c, and for which the performance ratio of A satisfies

lb4(I)lt IA(I) I
> 11/1’~14+ e).

opt(I) 2 opt(I)

PROOF. The first inequality holds by our earlier assumption that IIMll >

IMI. To obtain the second inequality, we convert the reduction of Section 3

(which was used to show the quadratic nonapproximability result) to the

two-letter case. A similar conversion was done in Section 6 for the polynomial

nonapproximability result of Section 4.

For any odd number p, let R$’1} map any instance 1’ of l-in-3-SAT to an

instance 1 of MIN-CON(DFAfO’ l}, NFA{O’ ‘1), which consists of the two-letter

examples ~(p, 1’) and =( p, 1’). By Proposition 3.6, and from the fact

that ;X is a log n length bit string, it follows that the total length of all

examples of 1 is at most cp14nJ log n, for some constant c. Also, if 1’ has a

solution, the~ opt(1) s pn, since for any solution ~ of 1‘ there is a pn state

DFA for L(C(p, 7)) (from the proof of Lemma 6.3). If there is a consistent

NFA M with less than p2 states then 1’ has a solution. Then an approxima-

tion algorithm that guarantees

IA(I)I p
<—

opt(l) n

can be used to solve an NP-complete problem as follows: If 1’ has a solution,

then

IA(I) I IA(I)I p
< —,

pn s opt(l) n

which implies that IA(I) I < p2; on the other hand, if 1’ does not have a

solution, then IA(l)) > p2. We conclude that (unless P = NP), no polynomial-
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time approximation algorithm can guarantee

IA(I) I p
<–.

opt(I) n

To complete the proof of the theorem, it suffices to show that the guarantee

IA(I) I ~ /~1~/(14+~)

opt(l)

implies that

IA(I) I p
<–

opt(l) n

for some value of p that is polynomially related to n. By our analysis above

concerning 111, it suffices to show that the inequality

(1)

has a solution for p that is at most polynomially larger than H.

To see this, let p = n“, and solve for r-. Inequality (1) is equivalent to

log.(c) + log~(log n) + 18 + e
r>

E

Let

C+19+E
r’ =

E

and let p be the smallest odd integer larger than n“. Then, inequality (1) is

satisfied, and since r‘ is a constant, p is clearly polynomial in 11’ I and 1Il. u

A standard measure of performance of an approximation algorithm A is the

asymptotic pe~orrnance ratio (denoted R;) [10], defined by Rj = inf{r > 1: for

some positive integer k,

IA(I) I
<r

opt(I)

for all instances 1 such that opt(I) > k}. Theorem 9.1 above implies that,

unless P = NP, R: is infinite for MIN-CON(DFA{O l}, NFA(O’ l)).

We next introduce another measure of approximation performance which
is motivated by recent work in computational learning theory. Pat-learning

of a class of objects (e.g., of DFAs) requires that from randomly generated

examples of some unknown member of the class (the target DFA), a (possibly

different) member of the same class (called the hypothesis) is produced that is

likely to agree (in a precisely quantified way) with future examples generated

from the same distribution [25]. A relaxation of this definition allows pac-

learning of a class in terms of some other class [22]. For example, to pat-learn

DFAs in terms of NFAs, a learning algorithm may choose its hypothesis from

the class of NFAs. Thus pat-learning of DFAs in terms of NFAs is easier than

pat-learning of DFAs (in terms of DFAs). It follows from [6] that the pac-
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learnability of DFAs in terms of NFAs would be established from the existence

of a polynomial-time algorithm A, and any constants a >0 and ~ < 1, with

the following properties: A, on input of any instance 1 of the MIN-

CON(DFA{O’ 1},NFA{O’ 1)) problem (i.e., finite sets POS and NEG), will produce

a consistent NFA A(I) such that

IIA(I)II s opt(I) acard(I)P, (2)

where opt(I) is the size of the smallest DFA consistent with the examples of 1,

and card(1) is the number of examples of 1. Further, it has been shown that

the existence of an approximation algorithm that produces a DFA whose size

meets the above bound is equivalent to the existence of a learning algorithm

for DFAs (in terms of DFAs) [7].

If we restrict our attention to pat-learning DFAs in terms of NFAs from

poZynomially length bounded examples (all examples with nonzero probability

are at most polynomially larger than the size of the DFA to be learned), then

the results of [6] also give that pat-learnability is implied by the existence of a

polynomial-time algorithm A, and any constants a >0 and ~ <1, such that

on input of any instance 1 of MIN-CON(DFA{O> l}, NFA{O’ l}), A outputs a

consistent NFA A(1) such that

where 11I is the total size of all examples of 1. (Again, for the case where the

learning algorithm must output a DFA and the examples are polynomially

length bounded, the above sufficient condition for pat-learning DFAs has also

been shown to be necessa~ [7].)

Consequently, an approach toward pat-learning of DFAs in terms of NFAs

from polynomially length bounded examples is to produce a polynomial-time

algorithm that satisfies the guarantee of inequality (3) for instances of MIN-

CON(DFA{”> ‘1, NFAtO’ 1]) for which the elements of POS and NEG are polyno-

mially length bounded in the size of the smallest consistent DFA.

All of the nonapproximability results of this paper in fact apply to a

restricted version of MIN-CON in which the size of the elements of POS and

NEG are polynomially length bounded. This can be seen as follows: In each

reduction, the length of the longest example is polynomial in p (a parameter of

the reduction) and n (the number of variables of the instance of l-in-3-SAT).

In all reductions, p s c . opt, for some constant c, and thus if p is chosen at

least as large as n then the length of the longest example is polynomially

length bounded in opt. We complete this section by investigating the implica-

tions that these (and other) reductions have with respect to the performance

criterion given by inequality (3).

Recently, Kearns and Valiant [16] have shown that DFAs are not polynomi-

ally predictable based on any of several well established cryptographic assump-

tions: that deciding quadratic residuosity is hard, that the RSA public key

cryptosystem is secure, or that factoring Blum integers is hard. Their results

hold even if the examples are polynomially length bounded.
Polynomial predictability is equivalent to pat-learnability in terms of

the class of polynomially sized programs (i.e., the hypothesis may be any

polynomial-time algorithm for classification of examples which is representable

with polynomially many bits) [13]. In [16], it is shown that the nonpredictability
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of DFAs, together with the results in [6], imply that there is no polynomial-time

algorithm A for MIN-CON(DFA(O’ 1}, NFA{O ‘)) producing a consistent NFA

A(l) such that inequality (3) holds for any constants a >0 and ~ < 1, unless

the previously mentioned cryptographic assumptions are false.

Our results, given in Corollary 9.2, complement those presented in [16]; we

obtain analogous nonapproximability results for restricted choices of a and ~,

but using the (ostensibly weaker) assumption that P + NP.

COROLLARY 9.2. If P + NP, then for any polynomial-time approximation

algorithm A, and for infinitely many positile integers c, there are instances I of

MIN-CON(DFA{O ~~,NFA{O ‘~) such that opt(I) > c, and for which the per-

formance of A satisjies IIA(I)II > IA(I) I > opt(I)” III P for any of the following

choices of a and p:

(1) for any a 20, when ~ = O;
(2) for a = 1 and a~zy ~ < 1/14;

(3) forany O<a=l+a’ <2andany ~<(l-a’)/14.

PROOF. The inequality IIA(I) II > IA( I )1 follows by assumption on the size

measures. Observe that the inequality IA(I)I < opt(l)l + “’III P is equivalent to

lA(I)l/opt < opt”’ 111’. Case 1 follows from Theorem 6,1. Case 2 is equivalent

to the statement of Theorem 9.1, where ~ = 1/(14 + ●) has been rewritten as

(3 < 1/14. Case 3 follows by an argument similar to the proof of Theorem 9.1.

The only significant modification is that inequality (l), which addresses the

case a‘ = O, is replaced by

opt(I)a’lll(l-~’)’flJ+’)
(l–a’ )/(14+,) P

< (pn)”’(cp1Jn4 ]Ogn) < –,
n

which is equivalent to

Set the constant

c+5+147+Ey
r’ =

E

where

1+ (I’

‘=l–a’”

Then the first odd number p > n” makes the previous inequality true. ❑

Besides the use of different assumptions (i.e., cryptographic versus P # NP),

another difference between our work and that appearing in [16], is that while

the cryptographic based results of [16] rely on the inability to predict DFAs, the

subfamily of DFAs for which we show nonapproximability results is actually

easy to predict. The class of CDFAS accept permutation irulariant languages (W’

is accepted iff any word formed by permuting the characters in w is accepted),

and for each CDFA the start state equals the unique final state. DFAs with

these properties have been shown to be predictable [14], thus the techniques of
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[16] cannot apply to show that the related MIN-CON problem for this restricted

class of DFAs is not polynomially approximable.

10. Conclusion

The problem of finding an approximately small DFA consistent with a finite

sample was investigated. It was shown that unless P = NP, no polynomial-time

algorithm can be guaranteed to produce a DFA, NFA, regular expression, or

regular grammar of size at most polynomially larger than the smallest consis-

tent DFA. The minimum consistent linear grammar problem was also shown to

have similar nonapproximability properties. Our results are summarized by

Theorems 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1, and their corollaries.

It should be noted that the proofs of each of these theorems was noncon-

structive in the sense that the existence of an approximately small NFA

(regular grammar, regular expression, linear grammar, respectively), implies

the existence of a solution to an instance of l-in-3-SAT. The proofs can be

easily modified so as to be constructive, that is, so that from an approximately

small NFA (for example), a solution to the relevant l-in-3-SAT instance can be

found in polynomial time. Of course, since the problem of finding a solution to

a l-in-3-SAT problem reduces in polynomial time to the decision problem, our

observation concerning constructiveness is of dubious interest.

In our definition of approximability (Definition 2.9) we required that

the approximation algorithm must output a representation of size less than the

upper bound. It should be noted that all nonapproximability results of this

paper still hold when the approximation algorithm only decides whether there

exists a consistent representation of size less than the upper bound.

Because the DFAs used in the reductions of this paper were of a very special

form (CDFAS or counter-like DFAs), the proof of Theorem 4.1 (for example)

actually shows the stronger result that for any constant k, MIN-CON(CDFA,
NFA) (and thus MIN-CON(DFA, NFA)) is not opt~-approximable unless p =

NP. As discussed at the end of the previous section, it has been shown that

CDFAS are polynomially predictable [14]. (See [1] for additional results on the

prediction of classes of commutative languages.)

The research presented here suggests a large number of open problems. The

investigation of the approximability of versions of the MIN-CON problem

other than the ones considered here seems appropriate. Can the nonapprox-

imability results (assuming P # NP) for MIN-CON(LIN, LIN) be extended to

MIN-CON(CFG, CFG)? (At present, it is not even known whether it is NP-hard

to find the smallest consistent CFG). In the problem MIN-CON(DFA, NFA),

the approximation algorithm has the “freedom” to output a consistent NFA

instead of a consistent DFA. Further generalizing along these lines, it would be

of interest to know whether similar nonapproximability results may be shown

for MIN-CON(DFA, 2DFA), MIN-CON(DFA, 2NFA), MIN-CON(DFA, LIN),

and MIN-CON(DFA, CFG), etc., where 2DFAs and 2NFAs are the two-way

versions of DFAs and NFAs, respectively. It has been shown that MIN-

CON(DNF, DNF) is not (2 – e)opt-approximable [22], (where DNF denotes
the set of Boolean formulas in disjunctive normal form). Can this result be

strengthened using an adaptation of the methods used here?

Another set of Boolean functions other than DNF that is of interest in

computational learning theory is the set of Boolean decision trees (DT). It has
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been recently shown in [12] that MIN-CON(DT, DT) is not opt + opt P approx-

imable for any constant ~ < 1. The decision trees used in the reduction are

very unbalanced. Let a balanced decision tree (BDT) have the additional

property that all leaves are on the same level. Can it be decided in polynomial

time whether there is a BDT that is consistent with given examples POS and

NEG?

In Section 9, the work of [16] was discussed. These results show nonapprox-

imability for DFAs based on cryptographic assumptions. By relying instead on

the assumption that P # NP, our results strengthen theirs, but only for a

subrange of the parameters a and ~. Can the entire range of results presented

in [16] be proven using only the assumption that P + NP?

Angluin showed in [3] that DFAs are learnable in polynomial time if the

learning algorithm is allowed equivalence and membership queries with respect

to a fixed unknown target DFA. An equivalence query consists of a hypothe-

sized DFA, and the response (of the teacher) is either “correct, the hypo-

thesized DFA and the target DFA are equivalent,” or else a counterexample

word is returned on which the queried DFA and the target DFA disagree. A

membership query is a word w, and the response of the teacher is “yes” iff w

is accepted by the target DFA.

Angluin’s algorithm (call it A) can be used to construct an algorithm B that

solves MIN-CON(DFA, DFA) in polynomial time making use of the following

type of query, which we call a consistency query: A consistency query consists of

a pair (EX, w), where EX is a finite set of labeled examples (each example is a

word, and the label is either “ +” or “ –” indicating whether the word

is a positive or negative example), and w is an additional (unlabeled) word. The

response to the query (EX, w) is “+” if the size of a smallest DFA consistent

with EX and additional positive example w is the same as the size of a smallest

DFA consistent with the examples EX. Otherwise, the response is “ –”.

The algorithm B for MIN-CON(DFA, DFA) using consistency queries

behaves as follows. B receives examples POS and NEG and is to output a

consistent DFA with the minimum number of states. B initializes EX to

POS U NEG (labeling all elements of POS with 66+” and all of NEG with

“ – “), and simulates A. When A asks a membership query “w”, B asks a

consistency query using EX as the example set, and w as the additional word.

Each consistency query produces a new labeled example which is then added to

EX. When A asks an equivalence query with DFA M as an argument,

B checks if M is consistent with POS and NEG. If M is consistent, then B
outputs M and stops, otherwise, B returns to A an inconsistent example of

POS u NEG (the counterexample to A’s equivalence query) and continues the

simulation of A.
The properties of Angluin’s algorithm guarantee that after polynomially

many consistency queries (polynomial in the size of POS, NEG, and the value

opt) the machine output by B has opt states.

An interesting problem is to determine lower bounds on the number

of consistency queries required to produce the smallest consistent DFA

(or a DFA of size at most opt~, where opt is the smallest). Clearly, more

than a logarithmic number of consistency queries are necessary, since a

polynomial-time algorithm could try all possible answers to these queries.

This paper presented a number of very strong nonapproximability proofs for

certain types of NP-hard optimization problems. A final open problem is
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whether similar proof techniques can be used to obtain nonapproximability

results for other classical NP-hard problems.
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