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Abstract. Context-free grammars are extended to the case where it is required that at each
derivation step, a fixed number k of nonterminals must be rewritten in parallel. This way of
rewriting constitutes a ‘missing link’ between context-free rewriting, where only one nonterminal
is rewritten in each step (k=1), and EOL rewriting, where always all nonterminals are rewritten.
We approach the study of these families by investigating their computational complexity. In both
the EOL and CF case, as well as for the case k =2, simple dynamic programming membership
algorithms exist (see [13, 22, 29]). We solve the general problem using results from Scheduling
Theory.

Rewriting k symbols at each derivation step corresponds to scheduling the corresponding
derivation forest on k processors. Using Scheduling Theory techniques, we present dynamic
programming membership algorithms that run in polynomial time, for constant k. On the other
hand, it is shown that membership is NP-hard if k is a variable of the problem, even when the
grammar is fixed. An analogous NP-hardness result is shown for the case where the k symbols
to be rewritten are required to be adjacent.
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1. Introduction

In Formal Language Theory, one of the major points of investigation into language
families is their membership and parsing complexity. Some well-known language
families are parsable in polynomial time, such as the context-free languages [8, 29]
and EOL languages [22]. Context-free languages are obtained by sequential rewriting,
i.e., applying a production to a single symbol, whereas EOL languages (see e.g. [24])
are obtained by rewriting all the symbols in parallel. (Moreover, in EOL systems,
also terminal symbols are rewritten.) On the other hand, even modest attempts to
extend the grammars that generate these languages escalate the membership com-
plexity to NP-completeness. An example for this is the ETOL family (see (2, 270,
where one allows more than one set of productions. A rewriting step consists of
selecting one of these sets, and rewriting all the symbols in parallel, using productions
from that set only.

As we have pointed out above, context-free languages are produced by rewriting
one symbol at each derivation step, whereas for EQL languages all symbols are
rewritten. We look at a ‘missing link’ between these two language families, where
one applies productions to a fixed number, , of symbols at each step. Two variations
of this model have been treated [13]. In one case, we choose any k symbols: in the
other case, we insist on these k symbols being adjacent. These grammar families
can be viewed as special cases of regular pattern grammars [ 18, 19] with the patterns
0*10* and 0%(10%)*, respectively. For k = 2, the unrestricted case is well known to
generate languages that are not context-free (see e.g. [13]). For the2-adjacent case,
this has been shown recently [4].

In [13], polynomial time or log? space parsing algorithms were specified for the
case where the grammar is propagating, and k = 2, for both variations. The member-
ship problems for arbitrary k (and propagating grammars), however, were only
proven to be in NP, by establishing a polynomial upper bound on the length of the
shortest derivation for each word in the language.

The algorithms for k =2 presented in (13] are not extendible to the general case.
They all do context-free rewriting, while guessing in addition, how many ‘partners’
a derivation subtree needs from its neighbour subtrees to the left and to the right.
For arbitrary k, this is not sufficient; one needs also information about the order
of rewritings across subtree boundaries. In the case of unrestricted k-rewriting (not
necessarily adjacent) we overcome this difficulty by using results from Scheduling
Theory.

We call a derivation a ‘k-derivation’ if k nonterminals are rewritten.at each step
(i.e., the unrestricted variation). Now, a derivation forest corresponds to a k-
derivation if and only if there exists a k-processor schedule for all internal nodes
of F, and this schedule does not have any idle periods. The k nodes rewritten in
the i step of the derivation are exactly the nodes scheduled in the i*® slot of the
schedule. Thus, the internal nodes of F become the unit-length tasks of the corre-
sponding scheduling problem, and the edges of the forest specify the precedence
constraints between the tasks.
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The problem of finding optimal k-processor schedules for a system of unit-length
tasks subjected to precedence constraints has been studied extensively. For certain
very restricted families of precedence graphs and variable k [16, 23], as well as for
arbitrary precedence graphs and k =2 (3,9, 10], an optimal schedule can be found
in polynomial time. On the other hand, if we allow k to be a variable of the problem
instance, then the corresponding decision problem is NP-complete [26], even for
special families of precedence graphs [ 12, 20, 21, 28]. The complexity of the problem
for fixed k and arbitrary precedence graphs remains open, even for k = 3.

Recently, polynomial algorithms have been presented (6, 7, 12] for finding optimal
schedules for certain families of graphs and fixed k, where the corresponding
problems for arbitrary k are NP-complete [12, 20, 21, 28]. In [5, 6] the notion of
median was used to find optimal schedules for various kinds of forests and other
families of precedence graphs, if  is constant. The median partitions a graph with
at least k components into a ‘hard portion’ and an ‘easy portion’. The hard portion
consists roughly of the k—1 highest (weakly connected) components of the pre-
cedence graph, and the easy portion conists of the remaining components. Note
that the hard portion contains only a constant number of components if k is constant.
The precedence constraints of the easy portion are of no relevance; only its size
needs to be considered. Intuitively, finding an optimal schedule reduces thus to
finding an optimal schedule for the hard portion.

We use the notion of median, together with the fact that scheduling forests
according to height is optimal (see [1, S, 16]), to develop polynomial algorithms for
the membership problem of the (unrestricted) k-rewrite languages if k is constant.
As in [13], we assume here that the grammar is propagating. The parameter k
appears in the exponent of the running time of our algorithms. This is not surprising,
because we show that, if k is a variable of the problem, then the membership
problem is NP-hard. An analogous result is given for the case of adjacent rewriting.
Our algorithm decides that membership is decidable in polynomial time if k is fixed,
even if the grammar is variable. On the other hand, we present fixed grammars,
for which the membership problem is NP-hard? in the adjacent and unrestricted
case, if k is variable.

As a corollary to our reductions, we show that the non-emptiness problem is
NP-hard, where k and the grammar are variable, for adjacent as well as unrestricted
k-rewriting. It has been shown in [14] that the emptiness problem is polynomial if
the grammar is constant and only k is variable.

The plan of this paper is as follows. In Section 2, we define basic notions from
Formal Language Theory and Scheduling Theory. In Section 3, we relate scheduling
on trees to parse trees of our grammars. This is followed by the polynomial
membership algorithm for (unrestricted) k-rewriting, if k and G are constant and

! To start off the process of rewriting k symbols at each step, the first sentential form must have at
least k nonterminals. To avoid trivial results, we extend our grammars in that case by always starting
with an axiom which depends on k

? In our reductions only two terminal symbols are needed. The case of one terminal symbol has been
shown to be in polynomial time [14].
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G is propagating. This algorithm is then extended in the Earley style [8] to yield a
polynomial algorithm even if G is variable. Our algorithms actually solve the parsing
problem, because they can be used to construct the derivation for the given word,
in polynomial time. In Section 4, we show that the membership problem is NP-hard
if k is part of the input and the grammar is fixed, for both versions of rewriting.
As corollaries we show that the non-emptiness problem is NP-hard if both k and
G are variable. We conclude this paper with a summary of all the results and some
open problems.

2. Basic notions and definitions

We assume the reader to be familiar with basic Formal Language Theory, as, e.g.,
in the scope of [15, 24, 25). Some notions need, perhaps, an additional explanation.
An alphaber X is a finite set of symbols. A word w is a finite sequence of symbols,
and |w| stands for its length. The empty word is denoted by A. A language is a set
of words. The reflexive and transitive closure of a language L is denoted by the
Kleene Star and is written as L*. We will identify a singleton set {a} with its element
a whenever this does not cause confusion. The cardinality of a set X is denoted
by #X.

A context-free grammar (CFG) G is a quadruple (X, P, S, 4), where I is the
alphabet of G, 4 is the terminal alphabet of G, X -4 is the nonterminal alphabet
of G, P=(Z—-4)XZ3Z* is the set of productions of G, and Se X -4 is the start
symbol of G. : '

Using standard Formal Language notation, we will write A- x if (A4, x) ¢ P. The
length of the longest right-hand side of a production in G is denoted by Maxr(G).

Let up,...,uccZ* and let (A, w,),... , (A, we)e P. We then say that
UpA Ay . .. Ay directly derives Uow Wy ... Wil in (G, k), and we write

UpA U Ay . .. Al D6 UgW Wy . . . Wi ld.

If u...we_,=A, then we say that UgA\ Az ... Ay directly adjacent-derives
UoW ws ... wely in (G, k), and we write

UOA|A2 e Akuk ‘G,k UogW Wy . .. Wil

(We shall omit k if k=1, and we write then =g, we shall omit G if it is obvious
from the context.)

We denote by =%, and =%, the reflexive and transitive closure of =4, and
=q.« respectively. If u =%, v (u =%, v), we say that u derives v (u adjacent-derives
v, respectively) in (G, k).

A k-derivation (k-adjacent-derivation, respectively) in G is a sequence of words
Wi, ..., Wiy, Such that, forall 1si<| A

Wi DGk Wit (Wi SDg Wigy, respectively)
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together with a mechanism that keeps track of the individual productions applied
at each step. (Such a mechanism is necessary, as there might be more than one way
to obtain w,,, from w,.) We shall not specify this mechanism explicitly, in order to
keep the definitions concise. The length of a k-derivation Wi, ..., W is [, and the
i'" step of this derivation is the process of deriving w;,, from w,

A sentential form (of G) is a word w, such that S =% w.

The (unrestricted) k-language of G is the set

UdG)={wed*: Jue I* such that S=cuand u=%, w}
The adjacent k-language of G is the set
A(G)={wed*: Jue 3* such that S=5 u and u =%, w}.

Note that, in particular, all words directly derived from S are in U.(G) and A(G).
We observe that U,(G) and A,(G) are both the context-free language defined by
the grammar G.

We shall use trees and forests in the usual manner of Formal Language Theory.
The reader is assumed to be familiar with the basic notions, such as root, parent,
child, ancestor, descendant, internal node, and leaf.

The depth of a node v is its distance from the root of its tree, plus 1. The height
of v is the distance to its furthest descendant. Leaves have thus height zero, and
roots have depth one. The height of a forest is the maximal height of its roots. | F|
denotes the number of nodes in F, whereas # F denotes the number of trees in £

If F is a forest, then the bare Jforest of F is the forest obtained by deleting all
the leaves in F; it is denoted by Bare(F).

The child forest of F is the forest obtained by deleting all the roots from F,

A derivation forest is a forest where each internal node is labelled with a nonter-
minal of the grammar. Furthermore, if a node is labelled with the nonterminal A,
and its children’s labellings (from left to right) form the word w, then A > w must
be a production of the grammar. In particular, a k-derivation forest is a derivation
forest that corresponds to a k-derivation.

2.1. Remark. One has to distinguish the height of a k-derivation forest and the length
of a k-derivation; the latter is usually much larger than the former.

Some of these notions are illustrated in the following example.

2.2. Example. Let G be the CFG ({S, A, B, a, b}, P, S, {a, b}), where P consists of
the following productions:

S bAb, S>ABB, - §-35,
A=A, A-q, B-b.

Figs. 1 and 2 each show a derivation forest for SAS =% abbabab. The forest is not
a 3-derivation forest, whereas that in Fig. 2 is a 3-derivation forest. ,
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Fig. 2. A derivation forest that is a 3-derivation forest.

A 3-derivation that corresponds to Fig. 2 is
SAS =3 ABBabAb =G AbBabAb = ; abbabab

(symbols rewritten are underlined).

We proceed now to define schedules on forests. We assume that there are k&
processors (corresponding to rewriting k symbols at each derivation step). Every
node in a forest is considered to be a unit-length task, where the parent-child relation
in the forest specifies the precedence constraints. A k-schedule is then a sequence
of slots, where each slot contains up to k tasks, each slot indicating what tasks are
to be scheduled in the corresponding unit of time. This is formalized in the following
definition.

2.3. Definition. Let F be a forest and let k=1. A k-schedule of F is a function o
mapping the nodes of F onto the set {1,...,1}, for some I < |F|, such that

(i) 1s#o™(i)<kforall 1<k< A

(ii) for each pair of nodes vy, ¥ in F, if v, is a successor of vy, then (1) > o(v,).

The nodes of F are also called tasks. [ is called the length of o, and o~ (i) is
called the ith slot of o

The tasks of slot i are scheduled at time i (i.e., #07'(i) out of the k processors
are assigned a task at that time). There are k — #o (i) idle periods in slot i

A schedule o has p(o) idle periods, where

!
p(o)= % (k=#07'(i))=1- k~|F|.
i=1
A-schedule o is optimal for F if there is no schedule o’ of F with p(o)<p(o).
(Note that optimal schedules have minimal length.) The number of igle periods of
F, p(F), is the number of idle periods in an optimal schedule for F
A schedule ¢ is perfect if p(o)=0.
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2.4. Example. The following is a 3-schedule with idle periods for the bare forest of
the derivation forest of Fig. 2 (rather than showing the nodes, we show the symbols
that they are labelled with):

Time slot
112134

S| B |A]| A

A| B | A

S| A

The following 3-schedule is perfect for the same forest: it correlates with the
derivation in Example 3.6:

Time slot
1 213
S| Al A
A| B | B
S| Al A

It is easy to see that there is a natural correspondence between k-derivation forests
and perfect k-schedules of their bare forests; if vy,..., v, are the nodes labelled
with the symbols that are rewritten in step i, then v, ..., v, appear in slot i of the
corresponding schedule.

Using the above notions of Scheduling Theory, we can now give alternate
definitions of k-derivation forests and k-languages.

2.5. Lemma. (i) A derivation Jforest is a k-derivation forest if and only if its bare forest
has a perfect schedule.

(ii) Let G=(X, P, S, 4) be a CFG. A word w is in U, (G) if and only if there exists
a derivation tree T of w from S in G, such that p(Bare(T)) =k —1.

Proof. Part (i) follows from the said above. Part (ii) follows from the observation
that all k—1 idle periods must be in the first slot of the schedule. Hence, all the
other siots do not have any idle periods, i.e. all the derivation steps but the first
one must be k-derivation steps. [J
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Thus, to determine whether we Uc(G), we are only interested in the number of
idle periods for an optimal schedule for the derivation tree, and not in the schedule
itself, particularly not in its length. The computation of p will depend on the heights
of the derivation subtrees.

A Highest Level First (HLF) k-schedule for a forest F is obtained as follows:

(1) If F consists of at least k trees, then o ~'(1) contains the roots of the k highest
trees (for trees of equal height, the choice is arbitrary).

(2) Otherwise, o~'(1) is the set of all the roots.

(3) The tail of the schedule is constructed similarly, with the nodes in o~'(1)
deleted from F.

Note that the first schedule of Example 2.4 is not optimal and not HLF, whereas
the second one is HLF.

In one of the first papers of Scheduling Theory [16], it was shown that scheduling
upside-down forests according to HLF produces optimal schedules. More recently,
the same was shown for ordinary forests.

2.6. Theorem ([1, 51). Any HLF schedule Jfor a forest is optimal.

3. Membership in U, (G) is polynomial

In this section we shall show that UM, the membership problem for U(Q), is
solvable in polynomial time, where G is a constant propagating CFG and k is a
constant positive integer. A dynamic programming algorithm (see e.g. [6, 13, 29])
for UM will be developed that is based on results from Scheduling Theory, in
particular the notion of median (see (S, 6]). This section is concluded by showing
that a variant of the algorithm solves the membership problem in polynomial time
even when the grammar is not constant, i.e., if it is part of the input.

We shall first develop the needed scheduling theory results. In [6] it was shown
how to schedule a forest on a system of processors where the number of processes
is allowed to vary with time. In our case, the number of processes is always k. If
there were a unique derivation forest for every word to be parsed, then we could
have used the HLF method (Theorem 2.6) to decide whether that forest is also a
k-derivation forest. There may, hqwever, be a family of possible derivation forests
for a given word, as defined by the grammar. We will proceed bottom-up, keeping
track of all those derivation trees that derive subwords of the input word. Even
though the number of these trees may be exponential in the size of the input word,
We can ‘parametrize’ these trees, obtaining a polynomial size characterization. These
parametrized trees will be called frames. A simpler version of this technique is used
in the Younger algorithm for context-free membership [29] of a word w, where each
derivation subtree is parametrized by the start position of the subword of w that it
generates, by the length of the subword, and by the root symbol of this subtree. In
our case, we will parametrize the root symbol, the start and end position of the
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subword within w, the height of the subtree, and the number of its nodes. In [13]
it was shown that for propagating grammars G, the height, and thus also the size,
of the subtrees can be polynomially (in fact linearly) bounded in the length of the
word to be tested for membership.

The number of idle periods for a collection of frames will be computed using the
median, which was introduced and used in [5,6] to present a polynomial time
scheduling algorithm for various kinds of forests and other graphs, assuming that
the number of processes is constant. Intuitively, all those trees in a forest which are
higher than the median are ‘hard’ to schedule; all the other trees are ‘easily’
schedulable.

We shall use the median to show that UM is polynomial. There can be only up
to k-1 trees that are higher than the median. Thus, the portion of a forest that is
hard to schedule consists of at most a constant number of trees. As will be seen
later, the total number of frames for the relevant trees is polynomially bounded.
There will thus be only a polynomial number of collections of frames representing
the *hard’ portions that we need to consider. This will allow us to use a dynamic
programming scheme, by growing height, which leads to a polynomial time algorithm
for UM. '

The following definition is a restriction to forests of the definition given in [5, 6].

3.1. Definition. The k-median of a forest F is one plus the height of the k™ highest
tree of F. If F contains less than k trees, then the median is zero.

The k-high forest of F is the set of all those trees in F which are strictly higher
than the median. The k-low JSorest is the set of the remaining trees.

Whenever & is understood from the context, we shall drop k and write schedule,
median, high forest, and low JSorest. The high forest and low forest of a forest F are
denoted by High(F) and Low(F), respectively.

The following theorem is a restatement of [6, Theorem 3.1], restricted to forests.

3.2. Theorem. Let F be a forest and o be a schedule for High( F) with q idle periods.
Then there is a schedule o' Jfor the whole forest F, such that-

(i) if g=|Low(F)|, then o is at most as long as o;

(ii) if g <|Low(F)|, then o’ has idle periods only in its last siot.

The proof presented in [6]is constructive: in fact, the running time of the algorithm
that constructs ¢’ from o and Low(F) is linear in the size of F Observe that, if o
is optimal for High(F), then ¢ is optimal for all of F. In case (i1), this is immediate
because any schedule with idle periods in only one slot is optimal. In case (i), both
schedules o and o' are of the same length; otherwise, if o' were shorter than o,
then this would give a schedule for High( F) that were shorter than o. Thus, o’ must
be a minimum length schedule for F, because o was such a schedule for a smaller
forest, namely High(F).

FEEIA AR
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Combining Theorems 2.6 and 3.2, we get the following lemma.

3.3. Lemma. Assume that the HLF schedules Jfor High(F) have q idle periods. Then
the HLF schedules for F have

(i) g—|Low(F)| idle periods if g=|Low(F)|, and

(ii) —|F| mod k idle periods otherwise.

Proof. We observe first that an HLF schedule for High(F) is at most as long as an
HLF schedule for F, because High( F) is a subforest of F, and because HLF schedules
are optimal.

For case (i), let o be an HLF schedule for High(F). By Theorem 3.2(i), it follows
that there is a schedule of F which is at most as long as 0. But HLF schedules are
optimal. Thus, in particular, any HLF schedule o’ of F satisfies this property. It
follows thus that o and o’ are of equal length. The number of idle periods of o is
therefore equal to that of o, minus those idle periods ‘filled’ with the nodes from
Low(F), i.e., (i) holds.

To prove (ii), observe that, by Theorem 3.2 (ii), there is a schedule ¢’ for F that

“has idle periods only in its last slot. Such a schedule is optimal; hence, any HLF
schedule of F has the same length as o and the same number of idle periods. Since
the total number of tasks to be scheduled is | F|, the last slot of ¢’ must contain
~|F| mod k idle periods. O

Assume now that, given a CFG G and a constant k, we want to test whether
we U(G), |w|=n.

The following lemma bounds the size of derivation trees, that are relevant to us,
polynomially in n. G is required to be propagating, i.e., without productions of the
form (A, A). Even though it has not been shown that this is actually a normal form,
we will limit ourselves to propagating grammars in the rest of this section.

34.Lemma. Let G=(Z, P, S, 4) be a CFG, and let we A*, |[wl=n. Thenwe U,(G)
if and only if there exists a k-derivation tree T of w from S in G, such that the height
of Tis at most x(n)=nxk* # S***V/23 gnd | T|< ny(n).

Proof. The bound on the height was shown in [13]. The bound on the total number
of nodes follows now from the propagating property of G; at each tree level, there
can be at most n nodes.

We parametrize now our trees, as outlined before, into frames, and start operating
on frames rather than trees.

* The authors of this paper have proven that y(n) can be reduced to n X(k+#Z)x#3* for U (G),
and to k x = for A, (G).
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3.5. Definition. Let G be the CFG (2,P,S,4), and let w= a,...a, where
© Ay ...,a,€ A

A frame R (of w) is a quintuple (A, I, r, h, ¢), such that Ae S is the root of R,
ls/<r=n, and there is a derivation tree T of q,...a, from A in G, such that its
bare tree has height 4 and ¢ nodes. If the derivation tree is of height zero, i.e. A is
a terminal symbol, then ¢=0 and h = —1.

Atree T as above is called a frame tree for R.

The height of R is h; the size of R, denoted [Rl, is c. An ordered set & of frames
is called a frame collection. The height of R is the maximum of the frame heights
in R. The size of R is the sum of the sizes of the frames in R.

If F is a forest, such that the ith tree in F is a frame tree for the ith frame in &,

for ISiS#F=#®, then F is called a Sframe forest of R.

3.6. Example. The forest of Fig. 1 is a frame forest for the frame collection

{(5,1,3,2,5),(A,4,4,0,1),(5,5,7,2,3)}.

The notions of median, high collection (high forest) and low collection (low
forest) carry over from forests to frame collections in the obvious way. In particular,

P(R) =min{ p(Bare(F)): F is a frame forest of &}.

The following lemma is a restatement of Lemma 2.5, for frames.

3.7. Lemma. Let G =(3,P,S,4) bea CFG. A word w is in Uc(G) if and only if there
exists a frame R =(S, 1, |wl, h, ¢), for some h and ¢, such that p(R) =k -1.

We can now redefine U.(G) in terms of frames, after introducing the analog of
child forests.

3.8. Definition. Let R=(A, [, r, h, ¢) be a frame of a word w, and let & ={R,, . .. , R}
be a frame collection of w, where R; =(A, I, rahyc)foralll<is< J. We say that @
is a child collection of R if: A=A, ....Aje}?, =1, r,=r, and L=r_,+1 for all
2<isj, h=1+max{h,..., h},and c=1+3%'_ .

A child collection of a frame collection R is obtained by choosing a child collection
for each of the frames in % and by taking their union.

By Lemma 3.4, we have only to consider those frames R =(A, I, r, h c) with
h<yx(n)and c< nx(n), as G is propagating. Clearly, there are at most #3 choices
for A, and n choices for each | and r. Since y is a linear function, we get the
following bound.

3.9. Corollary. There are only O(n®) frames which have to be computed while parsing
a word of length n.
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Our main goal is now to show that the number of idle periods of each frame of
a word w is computable in polynomial time. Using Lemma 3.7 and Corollary 3.9,
we get thus a membership algorithm for U(G), that operates in polynomial time,
if k and G are constant.

To compute the number of idle periods of a frame, we need to compute the
number of idle periods of various frame collections. For this purpose we restate
Lemma 3.3, using the frame notation.

3.10. Corollary. Let R be a frame collection. Then

p(High(R)) ~|Low(R)| i p(High(R))=Low(R)],
~|®| mod & otherwise.

p(@)={

Note that [Low(2)| can easily be computed from % ; we just have to sum up the
last components of the frames in Low(®). This operation is linear in #%. But #%
is bounded by the length of the word, w, that we want to test for membership; the
propagating property promises that each frame derives at least one symbol in w.
Thus, Corollary 3.10 implies that computing p(R) reduces to computing
p(High(R)), as long as R = High(R).

By its definition, a high collection consists of at most k —1 frames. It follows thus
from Corollary 3.9 that, in order to parse a word of length n, one has to compute
the idle periods of at most O(n**~") high collections (we recall that k is constant).

The algorithm that we are developing here constructs all the frames using a
dynamic programming schema. Then, the number of idle periods for each possible
high collection is computed, again by dynamic programming. This is done by
recurring on the frame height, as shown below, and by then applying Corollary 3.10
to reduce the resulting frame collection to width <k — 1.

3.11. Lemma. Letj be the number bf frames in a frame collection 2, where 2 = High(2).
Then

0 if2 is empty,
k-j+min{p(R"): R’ is a child collection of 2}
otherwise.

P(9)={

Proof. Obviously, the lemma holds for the empty frame collections. Let thus 2 be
nonempty. By the definition of a high collection, j< k- 1. Hence, the first slot of
an HLF schedule for 2 clearly contains all the ‘roots’ of 2, i.e., the first slot has
k—j idle periods. We recall that, by Theorem 2.6, HLF schedules are optimal. In
the remaining slots of the schedule, there are thus p(R’) idle periods, where R’ is
the child collection of 2 with the minimum number of idle periods. O

Observe that p(R’) can itself be computed as outlined in Corollary 3.10.
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We can now present the membership algorithm for Uc(G). The algorithm first
constructs, via dynamic programming, the set of all the frames for the input word,
w. Then it computes the number of idle periods, looping on all the candidates 2
for high collections (i.e., all collections of up to k—1 frames), by increasing height, -
using the recurrences stated in Corollary 3.10 and Lemma 3.1 1. Finally, the algorithm
tests whether there is a frame that covers all of w, i.e., that is of the form
(A, 1,|wl, h, c), where A, is the start symbol, and that has exactly k-1 idle periods:
by Lemma 3.7, we U.(G) if and only if there is such a frame,

Algorithm UM _

Given: A propagating CFG G =(3, P, A,, 4) and an integer k>0, where I =
{A,,..., A}

Input: A word we 4*, w =A,...A,.

Output: accept if we U.(G), otherwise reject.

begin
comment test all words directly derived from S;
if Aj> w then accept;
comment construct all the frames of w, of height A
for i:=1to n do (A, 0,0, —1,0) is a frame;
for h:=0to y(n) do
for all (A, B,...B)ePdo
forall 1sh<...<l<ndo
forall hy, ..., h; with max{h,..., h}=h—-1 do
forall 0<¢,... »G<ny(n) do
if (B, li_y, I, h, ¢,) is a frame orlsisj
then(A, Iy, I, h, c, tottg+)isa frame;
comment compute the number of idle periods for all collections of up to
“k—1 frames;
p({}H=0;
for h:= —1 to x(n) do
for all frame collections R of height 4, consisting of up to k-1 frames,
each of positive height do
begin
q:=00;
for all child collections %’ of % do
begin
2= High(R®");
comment Since the height of 2’ is h— 1, we can recur on p(2);
if p(2) = [Low(@")|
then p(R’):= p(2") - [Low(@)|
else p(R'):= ~|R'| mod k:
q:=min(q, p(R"));
end;
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P(R)i=k=#R +g;

end;
comment This is the membership test:
for h:=1to x(n) do
for c:=2to nxy(n) do ,
if (A, 1, n, h, ¢) is a frame and PUA,L L n A c))=k—-1
then accept
else reject
end;

3.12. Theorem. The above algorithm for UM runs in time polynomial in n,
O(n?tk=1(Maxe(Gr+1+1y if both k and G are constant,

Proof. Determining the frame takes time O(n*™Ma(9*2). { in the exponent for h:
Maxr(G)+1 for lo, ..., I;; Maxr(G) for hy, ..., hj; 2 Maxr(G) for Cy-v., G (see
Lemma 3.4). Enumerating the tuples takes time O(n*k=DMaxt(Gr++1y. 1 1 e
exponent for h, 5(k —1) for the tuples specifying 2 (this is the total number of high
collections that have to be considered): there are up to nlk~OMex(G) o mes in a
child collection of a collection of (k- 1) frames, hence n’*="Max(0) oocinie child
collections; i.e., the total is n**~N(Max(G)r+1 Tpacn dominant term, and thus
the theorem holds. (3 '

We now proceed to prove that the membership problem for UJ(G) is still
polynomial when G is part of the input.

3.13. Theorem. Let k be a fixed positive integer. Then it can be decided in polynomial
time whether we U, (G), Jor any propagating CFG G and word w.

Proof. Observe first that the function x(n) (see Lemma 3.4) is polynomial in the
size of the grammar (actually in the size of its nonterminal alphabet). Hence, the
number of frames is polynomial in the size of w and G. We notice that there are
two flaws in the UM algorithm that cause it not to be polynomial in the size of G.
One is the fact that we have Maxr(G) nested loops while computing all the frames.
The other is the computation of all the child collections (for any collection of up
to k-1 frames, there exist up to n3k~DMaxr(G) Ly collections). We can, however,
also overcome these difficulties by using dynamic programming, similarly as in
Earley’s algorithm (see [8]). This is done by first computing the set of extended
frames of w in polynomial time. These extended frames have two additional
components, a high collection and a median, and they are defined below. Using
extended frames, we can easily compute the number of idle periods of the candidates
for high collections. The acceptance test is analogous to that for constant G.
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An extended frame E is a 7-tuple (A, I, r, h, ¢, %, &), such that: R =(A, [ r, h oc)is
a frame, and there is a child collection of R with median u and high collection %,
(Note that ¥ consists of ordinary frames.)

E is also called an extended frame of the frame R,

Extended frame collections are defined accordingly.

Note that the total number of extended frames is polynomial in the size of G
and w.

Let w=A, ... A,. To compute the set of extended frames for w, we make use
oftuples[A-> B, ... By iyl r b 3, w], where A > B, ... B, is the production used
at the ‘root’ of the frame, i represents the dot in Earley’s tuples [8]; it indicates
that we have already processed frames for By, ..., B; i.e., there exists a frame
collection # with #R = j, the j** frame in & has B; as its root, for 1 <j < i, & covers
Ap ... A, the height of R is h, |R|=c, High(®) = %, and the median of @ is e

We now show how all the tuples, frames, and extended frames can be found in
polynomial time. The frames of height -1 are determined as before. For all produc-
tions A» B, ... B,,

(1) if R=(By, I, 7, n, ¢’) is a frame, then (A-B,...B,1,Lr, h',c', %#,0]is a
tuple, where

__{R if >0,
B {} otherwise.

(2) For all 2si<m, if [A~> By...B,i=1,Lr 0, c, %, '] is a tuple, and
(B, F'+1,r,h" ¢ isa frame, then ([A> B, ... B, i, I, r,max(h’, h"), ¢’ + ", 3 u]is
a tuple, where u is the maximum of u' and the median of H'UR, and ¥ =
{Qe¥'u R:the height of Q is greater than u}.

(3) If(A>B,...B,, m, Lr,hc 3, ] is a tuple, then (A Lrnh+l,c+1,9 1)
is an extended frame, and (A, |, r, h+ 1,¢c+1) is a frame.

Assume now that all frames of height A have been found. Then, using the above
computation, all frames and extended frames of height A +1 can be found (see (3)).
Note that the number of tuples is polynomial in the size of G and w. Hence, the
above computation is polynomial for a fixed h. Since the height of those frames
that we have to consider is bounded by x(n) (see Lemma 3.4), it takes polynomial
time to find all frames and extended frames.

We proceed now to compute the number of idle periods for each possible extended
high collection. The UM algorithm achieved this by recurring from the high collection
2R to each possible child collection R', and from there to the high collection 2 of
R'. We shall attempt to recur from the high collection candidate, R, directly to
each 2 (each possible high collection of a child collection).

Note that all the child collections of an extended frame (A, /, r, h, ¢, %, u) have
the same high collection, 9. Hence, all the child collections of an extended frame
collection have also the same high collection, which can be obtained from the
individual high collections and the medians, as follows.




232 ‘ J. Gonczarowski, M. K. Warmuth

Let #={E,...,E,} be an extended frame collection, where E =
(By Iy ry by iy 5, i), for 1<i<m, and let #=J., %, Let u, be the median of
Then the median of the high collection of all the child collections of ¥ is

M =max{u;:0<i<m).

The desired high collection, 2, is the set of all those frames in & that are higher
than wu.

In order to compute the number of idle periods we operate on collections of up
to k-1 extended frames. The high collection component of each extended frame
contains up to k—1 frames. Hence, # 9% < k*. It follows that the median, u, and
the high collection, 2, can be found in constant time. The size of the low collection
can be computed in constant time after we have found 2; it is

r=|¢l-#%¢-|a|,

because # % roots were removed from & to arrive at the child collection.
We are now ready to rewrite the recurrence of Corollary 3.10. Let %, 2, and r be
as above.

p(2)-r if p(2)>r,
~(|2]+r) mod k otherwise,

p(%)={

Let R be a frame collection. Then
P(R)=min{p(%): ¥ is an extended frame collection of %}.

[tis now easy to see that the above recurrence can be used in a dynamic programming
scheme to compute the number of idle periods for all collections of up to k—1
frames and extended frames. We do this computation according to increasing height.
Since the number of frames and extended frames, as well as the height, is poly-
nomially bounded in the size of G and w, the resulting algorithm runs in polynomial
time. Hence, the theorem holds. a

3.14. Remark. Like the Earley [8] and the Younger [29] algorithm, Algorithm UM
does not only solve the membership problem; the information collected for an input
word w can be used to construct an appropriate k-derivation x,, ... , X = w, where
S-=>x,€P. It is easy to see that the time to do this is bounded by the running time
of Algorithm UM. Similarly, for variable grammars, the algorithm outlined in
Theorem 3.13 also yields an appropriate k-derivation.

To see how to retrieve a schedule (i.e. k-derivation), the reader is also referred
to [6]. It is shown there how to schedule a forest when the number of processors
may vary with time.

e e ey e
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4. NP-hard problems

It was shown in Section 3 that the membership problem for U, (G) is polynomial
for constant k, even if G is part of the input. We shall investigate the case where
k is variable and G is constant. Let G=(3, P, S, 4). We first observe that, if G is
fixed, then the membership problem for U,(G) is polynomial. This is true because
for all k>Maxr(G),

U(G)={wed*:Sowe P}.

Membership is thus trivial in these cases. If k<Maxr(G), then k is bounded by a
constant, since G is constant. Hence, membership is polynomial, because we can
apply the UM algorithm. In order to make full use of the fact that k is variable,
we look at k-derivations that start with S*. Note that the results from Section 3 hoid
also if we start rewriting from an axiom, w; we just add a production S- w to the
grammar, where § is the start symbol.

As we shall see in this section, the complexity is changed drastically if k is variable,
even if G is constant; both the unrestricted and the adjacent problems are NP-hard.

Let G=(Z, P, S, 4) be a CFG. The language

UX (G)={wea*:s* =%, w}

is called the extended k-language of G.

The Unrestricted Extended Membership problem (UXM) is now stated as follows:
Given a positive integer k and a word w, is w in UX(G), for a fixed CEG G?

We shall prove the NP-hardness of UXM by reducing to it the problem of 1-1-1
Scheduling (18) [11].

An instance (%, t) of 1S is a set F of q triples and an integer ¢ such that 1 <t < q.
A triplet consists of three tasks with release times in the range [1, 3¢]. Then the
following question is NP-complete (see [11]): Is it possible to schedule, on one
processor, the tasks from ¢ triplets in slots 1 through 31, such that no task is scheduled
before its release time?4

4.1. Example. Let $ have tree triplets of tasks
(r, 73, 1), (T4 Ts, Ts), (17, 75, 75)
with respective release times
(3,4,6), (1,2,4), (1,5,6).

Then the following one-processor schedule is a solution to (F, 2 14, 75, 7, Ty Ty T3.

We shall now present the grammar G to be used in the NP-hardness construction.
Let

G=<{S’ B’ D’ M ma’ b’ c’ d, e’f}’ PYS’ {a) b’ C, d’ e’f})’

* A task with release time r must be scheduled in slot = or l4ter.
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where P consists of the following productions:
S—>aN, S-bN, S-c¢ N-aN, N->bN, No-g
S>aW, S-BW, B->b W-aw, W-BW, W
S>dD, S-e, D-dD, D-e,
S-f

G generates four kinds of trees. One derives f from S, and another one derives a
word in d*e from S. There are, however, two kinds of trees deriving words in
{a, b}*c, depending on the first production chosen. If the first production was S - aN,
then the derivation tree is a narrow tree; otherwise, if S aW was chosen, it is a
wide tree. Every word in {a, b}*c has exactly one wide and one narrow tree. For
an example of a narrow and a wide tree, see Fig. 3.

We shall now describe the reduction. Let (% ¢) be an instance of 1S, where
F={/,...,J,}. Without loss of generality we may assume that for each triplet in
F, all the release times are different. Otherwise, if there are two tasks 7 and 7, with
identical release times, we may assume that r, is always scheduled before 7. We
may thus increase the release time of T, by 1.

Let now J; have release times (ri, ray r3), in increasing order. Then J; is encoded
in the word

w; = a’l"ba’z"u“ba’:"z"ba:‘"’:c.
The corresponding instance of UXM is now the pair (w, k), where
k=3g9+1 and w =f(d*e)*'w, ... w,

Obviously, (w, k) can be constructed in polynomial time from (#, 1), and (w, k) is
polynomial in the size of (&, t). The following example shows the instance of {w, k)
that corresponds to (%, 1) of Example 4.1, and then a k-derivation forest of w.

4.2. Example. Let (, 1) be as in Example 4.1. Then k=10 and
w = f(d®e)®aabbabcbbabaachaaabbe.

S
N

I
*
a

8=
R—F

T—w— g

AN
N
RN
)
b

AN

T—w—g 4

N
"
a

h—g/

N
v
c

\
v

c
(a) (b)
Fig. 3. The two trees for the word a’b2abe. (a) The narrow tree. (b) The wide tree.
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b
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A k-derivation forest is shown in Fig. 4. The corresponding k-derivation is then

(8", f(dD)*aWBWbHN,
f(d*D)°aaWbBWbaN,
f(d*’D)*aaBWbba WhaaN,
f(d*D)*aabBWbbaBWbaaaN,
f(d’D)*aabba WhbaBa WhaaabN,
f(d°D)*aabbaBW bbabaa W baaabb W,
f(d®e)*aabbabcbbabaachaaabbe).

(The symbols to be rewritten are underlined.)

S S S S,
AN I\ N\ f\ |S\
RN TN TN N b N
I |
d D d D a w. b B w h
Y AN Do b TN
AN A Y I "IN
W i
D 2 N N A
AN I\ “ N AN N
d? dll) IBTV a W b N
e e b ¢ 'c L

Fig. 4. A k-derivation for w.
We now proceed to prove the NP-hardness result for the unrestricted case.

4.3. Theorem. UXM is NP-hard.

Proof. Given an instance (#, t) of 1S, we need to show that (#, t) is a solution to
1S if and only if (w, k) is a solution to UXM, where w and k are obtained from
(¥, t) as described above.

Let now _#’ be a solution to (&, 1). We shall first present a derivation forest F of
w from S* Then we will see that there is a k-derivation for F.

We let the first start symbol in S* derive f. The next 2q start symbols derive d3‘e
each, and the last (2g+ 1+ i)th start symbol derives w, for 1<i< q.

As pointed out before, each w; can be derived by either of two trees: a wide one
or a narrow one. If J e #’, then we let w; be derived by a wide tree, otherwise we
let it be derived by a narrow tree.

It remains to be shown that this derivation forest is a k-derivation forest. Note

“first that F has k(3¢ + 1) internal nodes. This is true because the trees deriving d*'e,
as well as the narrow trees, have 3¢+1 internal nodes each, and wide trees have




236 J. Gonczarowski, M. K. Warmuth

three additional nodes. Together with the first start symbol, we obtain thus
1+2q(3t+1)+q(3t+l)+3t=(3q+l)(3t+1) =k(3t+1)

nodes.

We call those nodes of F that are labeled with S, N, or W, chain nodes and the
ones labeled with B branch nodes. We construct a, k-derivation for F, All trees in
F, except the leftmost one, have 3t+1 chain nodes each. We rewrite the ith chain
node, 1 <i<3t+1, in the ith derivation step. Since there are 3¢ such trees, we are
missing one more nonterminal in each step. The first step will rewrite the leftmost
start symbol; each of the remaining derivation steps will rewrite one of the 3¢
occurrences of B from the wide trees. (Recall that # ¢’ = t)

To determine where each B is rewritten, we use the schedule o, which is the
solution of (%, 1). Let 7, be the task scheduled at time J, for 1<j =3¢, such that Y
appears in the triplet J. Let the release time of 7; be r. Then 7; corresponds to that
occurence of B in the tree of w; which is obtained at step . We will rewrite this
occurence of B in the (j+ 1)st derivation step. This is valid because, for each task,
the time it is scheduled in o is at least as large as the release time; i.e., j=r, and
thus j+1>r.

All the B’s are thus rewritten in different derivation steps (recall that all the
scheduling times are different). Hence, F is a k-derivation forest of w, l.e. we
UX(G).

We shall now prove the converse direction. Let (%, 1) be an instance of 1S, and
let ¥ and w be obtained from (#, 1) as described above. It will be shown that
we UX,(G) implies that (%, ¢) has a one-processor schedule of the required form.
Let F be a k-derivation forest of w. Clearly, F consists of k=3g+1 trees, one for
each start symbol. It follows from the structure of the grammar that the first tree
derives f from S, the next 29 symbols derive d*'e each, and the (2g+1+i)th tree
derives w;, for I<isg.

We shall now see that there are exactly 3t wide trees in F. The tree that derives
w; is either wide or narrow: it contains 3¢+ 1 chain node in both cases. Moreover,
each of the trees deriving d*'¢ has 3¢+1 internal nodes, and the tree deriving f has
a single one. Each wide tree has three additional internal nodes; the branch nodes.
The total number of internal nodes, except for the branch nodes, is thus s=
3q(3t+1)+1.

There are 3g occurrences of b in w. It follows thus that there are s'¢ {0,...,3q}
branch nodes in F. Note now that the number of internal nodes must be a multiple
of k=3g+1, ie,

s+s'=0mod k.

But the only s’ that satisfies the above equality is s’ =3t There are thus 3¢ branch
nodes in F, i.e., F contains exactly ¢ wide trees. The total number of internal nodes
of F is thus (Bg+1)(3t+1) = k(3t+1), and, therefore, the k-derivations of F must
have 3¢+1 steps.
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We observe that each of the trees, except for the first one, has height 3¢+1, the
height of the first tree is one. Thus, each derivation step, except for the first one,
has to rewrite all the chain nodes, and exactly one of the branch nodes.

We proceed to construct the solution to (%, 1) from F. Let #’ be the set of all
those triplets J; that correspond to words w; with wide derivation trees. We shall
now construct the one-processor schedule o of the tasks in ¢,

A branch node at depth i corresponds to a task with release time i —1. The step
at which it is rewritten into b, say j, will indicate that the corresponding task is
scheduled at time j—1. Note that j =i, hence j— 1= Since each branch node is
written in a different derivation step, between 2 and 3¢+ 1, we obtain thus a valid
one-processor schedule; hence, (#’, 1) is a solution to 1S, (O

We now prove a similar NP-hardness result for adjacent rewriting.
Let G=(Z, P, S, 4) be a CFG. The language

AX( (G)={we a*. 5 =%, w}

is called the extended adjacent k-language of G.

The Adjacent Extended Membership problem (AXM) is stated as follows: Let G
be a fixed CFG. Given a positive integer k and a word w, is w in AX(G)?

We shall prove the NP-hardness of AXM by reducing to it the Exact Three Cover
problem (X3C).

An instance (%, t) of X3C consists of a nonnegative integer ¢ and a set {J1,..., S}
of integer triplets in the interval [1,3¢]. Thenitis NP-complete to ask whether there
is a subset $’ of %, such that #$'=1 and each integer in [1, 3¢] occurs exactly once
in #’. The above problem was first proved to be NP-complete in [17].

4.4. Example. Let ¢ ={(3, 4,6),(1,2,5),(1,5, 6)}. Then the first two triplets form a
solution to (g, 2).

Note the similarity between X3C and 1S. X3C may be regarded as a one-processor
scheduling problem, where each task has to be scheduled at its release time.

Without loss of generality we may assume that 9> 3¢, otherwise, we may pad the
problem as follows.

Let f=r+1, and let

j=}u{(3z+1,3}+2,3t+3)}

w{J: J contains one element from {1,...,3¢} and two elements from
{36,3e+1,3t+2)}.

Obviously, (j, f) has a solution if and only if (#, t) has a solution, and #ﬁ >3(t+1).
The grammar

G=({Aﬂ B) D’ E’ N)S’ W’ W" a’ b’ C’ d’ e}’P’S’ {a’ b’ c’ d) e})’

e e T T
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that will be used in the NP-hardness construction, has the following set of produc-
tions:

S>N, N->AN, N->BN, N->c¢ A-A, B->B, A-a, B-),
S>W, S>BW', W>AW, W-ABW', W

W'WwW, W-BW,

§-D, §-d, D-E D-e E-D, E-d

G generates three kinds of trees, dummy trees generating strings over {d, e}, and
wide and narrow trees, similarly as in the UXM reduction. Examples of a wide and
a narrow tree for a’b’abc are shown in Fig. 5; contrast threse with the trees in
Example 4.1.

We shall now describe the reduction. Let F={J,,..., J,}. Let the ith triplet, J,
be (ry, ry, r3), such that the integers are listed in mcreasmg order. Now J; is encoded
as in the UXM reduction, into

w;, = a’-"ba’i""'ba””f'ba""ic.
The instance of AXM correspondingto (%, t) is the pair(w, k), such that k=(3t+1)q,
and w=1ow, ... w, where

_{d(e"d")"/z' ed?™" if 3t is even,

d(ed?)'TV297  otherwise.

Obviously, (w, k) is constructible from (#, t) in polynomial time and space.
The derivation forest of Fig. 6 corresponds then to the instance of X3C from
Example 4.4.

s s

I I

N W

I\ /7 N\

A N a w

I 1\ [ / 1\

A A N A A B W

I 11\ [ N NI

A A B N A A B B W

I N N AN I AN

A A B B N A A B B w

[ N B TN I N N T A AN

A A B B A N A A B B A B W

N N N IR N N e

A A B B A B N A A B B A B W

L L Y N T e T T

a a b b a b ¢ a a b b a b ¢
(a) (b)

Fig. 5. Two trees for the word a®b*abe. (a) The narrow tree (b) The wide tree.
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Y -

Sll S 5
Ny ) 2\ i
N 7\ L /"N AN
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Fig. 6. A k-derivation for w.

4.5. Example. The derivation forest for
& 0=({(3,4,6),(1,2,5),(1,5,6)}, 2)

is shown in Fig. 6. This forest is an adjacent k-derivation forest for k = 21; at each
step, all the nonterminal symbols in a sentential form are rewritten.

4.6. Theorem. AXM is NP-hard

Proof. Using similar arguments as in the first part of the proof of Theorem 4.3, 1t
can easily be seen that w e AX, ( G) if the given instance of X3C, (#, 1), has a solution,
where (w, k) is obtained from (4, 1) as described above; we use wide trees for triplets
participating in the solution, and narrow trees for the other triplets.

For the converse direction, let we AX (G). We shall prove the existence of an
exact 3-cover §'c 4.

We first show that each block of symbols rewritten at any one step starts at the
right end of the sentential form. Observe that Iwi...wl=k and |ow,|=
k—=q+(3t+1). But, by our assumption, (3¢+1) < g, and, hence, [ow,|< k.

Since our grammar G is non-erasing, it follows that every symbol in w, must
have been obtained at the last derivation step. Similarly, all ‘parents’ of these symbols
must have been obtained at the previous step, and so forth. Recall now that
[wi|=3¢+1. From the structure of the grammar and from the said above it follows
now that the derivation of w, from S, and therefore the whole derivation of w,
consists of 3¢+2 steps. It can now easily be seen that the derivation of w, from S
must be of the same length. In particular, the rightmost symbol must be rewritten
3t+2 times; otherwise, w, could not be of length 3¢+ 1. Since rewriting is adjacent,
the k rightmost symbols in every sentential form are rewritten.

We observe now that every sentential form must contain exactly k nonterminals.
Let us assume on the contrary that there is a nonterminal, X, with k nonterminals
to its right. The number of symbols to the right of X can, however, not decrease,
because G is propagating. X can thus never be rewritten, since it is not one of the
k rightmost symbols, and we arrive at a contradiction.
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We shall determine the number of those nonterminals in each sentential form
that participate in the derivation of w;... w,. Call these (occurrences of) non-
terminals proper and all others dummy. Let X, ..., X;,,,, w be the sentential forms
of our adjacent k-derivation. Then, obviously, x, contains q proper nonterminals,
all of them start symbols. We prove that there are ig+ 1 proper nonterminals in x;
for 1<i=<3¢, and (3t+1)q proper nonterminals in X3041-

We recall that all nonterminals in each sentential form x,, . . . , X3,4, are rewritten
simultaneously. Thus, all the dummy nonterminals in a sentential form must be the
same. Each derivation step can, therefore, result in either a block of d’s or a block
of e’s. The word w contains 3t+1 such blocks. There could not have been any
dummy nonterminal in x;,.,, because |w, . .. wy| = k. It follows thus that the ith block
first appears in x, for 1<i=<3t+1. Hence, the number of proper nonterminals
increases by the number of d’s an e’s obtained at a derivation step. We conclude
that ig + 1 proper nonterminals occur in x, 1 <i<3¢, and (3t+1)q proper nonter-
minais occur in xj,.,.

Note now that a narrow tree contributes i symbols to x. A wide tree usually
contributes i; however, it contributes i + 1, if it is a tree for w;, and i is a2 member
of the triplet J. The only possibility to obtain ig+1 proper nonterminals in x; is
having g — 1 trees contribute i symbols each and one tree contribute i + 1 symbols.
Since 1=<i=3¢, there are thus ¢ wide trees in the derivation forest. Moreover, for
each i, 1 <i=<34, exactly one of these trees contributes an (i+1)st symbol to x.
Hence, the ¢ triplets encoded in the wide trees cover the set {1,...,3:. O

4.7. Remark. In the grammars used in the reductions of Theorems 4.3 and 4.6, we
have made use of six terminal symbols. Note that we could have encoded these
symbols in binary notation without changing the correctness of the reductions.
Hence, UXM and AXM are NP-hard even if we restrict ourselves to a two-letter
alphabet. For the case of UXM, this is best possible, because in [14] it is shown
that for one-letter alphabets, UXM is polynomial. On the other hand, if both k and
the grammar are variable, then the non-emptiness problem is already NP-hard, both
for adjacent and unrestricted rewriting, as shown below. We contrast this result
with the fact that the emptiness problem for U,(G) is polynomial if k is variable
but G is constant (see [14]).

4.8. Corollary. The nonemptiness problem is NP-hard for U,(G) and A,(G), if k and
G are variable. :

Proof. We shall outline the proof for U, (G). The proof for A.(G) will be analogous.
In Theorem 4.3, we have encoded each instance of 1S into a word, w. Given the
same instance of 1S, we construct now a grammar that derives only the word w.
First, we introduce the production S-S, ... S,. We recall that k = 3g+1, and that
w is of the form f(d’'e)*w, ... w,
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Let now TD....., TD,,., be the (unique) derivation trees of S(d*e)* and let
Tqu...,...i and TW,,, ., be the narrow and wide trees for w;, respectively. We replace
S at the root of TD; by S, for lsi<2g+1, and we replace S by S, in TN, and
TW, for 2q+2< i<3q+1. Note that TN, and TW, have the same root symbol.
Then, we index all other nonterminal symbol in these trees by a unique index, and
we add to the grammar all those productions that derive these trees

It is easy to see that the size of the resulting grammar is polynomial in the size
of the instance of 1S, because each tree contains at most 3t+4 nonterminals.
Obviously, w is in the k-language of this grammar if and only if there is a solution
to the given instance to 18. Hence, the corollary holds. O

5. Summary

We have investigated the complexity of the membership problem for a variety of
cases. Table 1 gives us an overview of the results obtained. There is one entry missing
in this table, where only k is variable, and both G and w are constant. In [14} it is
shown that, for this case, the unrestricted k-lang{xage membership problem is in P,
also for nonpropagating grammars (starting with S*).

Table 1.
Constant Variable Result Remarks
k G w in P Propagating G, for the unrestricted case
G kw NP-hard  Starting with S, both cases
w k G NP-hard Both cases

Note that the problem for fixed w and variable G and k yields a nonemptiness
problem; given a grammar, we can always replace every terminal symbol by the
empty word, A. Then the fixed word A is in the resulting language if and only if the
language is non-empty. Hence, deciding nonemptiness is NP-hard in this case. On
the other hand, nonemptiness is in P if only k is variable (see [14]).

The main open problem is the complexity of the adjacent membership problem
for constant k. This problem is also unsolved for the case where only & is variable.
Similarly as for unrestricted rewriting, one can construct a scheduling problem,
where perfect schedules correspond to k-adjacent derivations, This scheduling
problem does, however, not correspond to a natural situation of resource allocation
and has thus not been investigated previously. In particular, the notion of median
is not applicable to this ‘adjacent scheduling’ problem.

Our polynomial membership algorithms work only for propagating grammars.
The membership complexity for non-propagating grammars is stil] open. The
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propagating property is essential for Lemma 3.4, which bounds the size of a
derivation forest, and thus the number of frames, polynomially in the size of the
grammar and of the input word.

Also, it would be interesting to know which of the above NP-hard problems are
in NP, and hence NP-complete. This has been shown in [14] for the UXM problem,
i.e., where the grammar is fixed. The corresponding problem, where the grammar
is part of the input, remains open.
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