
ELSEVIER Artificial Intelligence 97 (1997) 325-343

Artificial
Intelligence

Technical Note

The Perceptron algorithm versus Winnow:
linear versus logarithmic mistake bounds
when few input variables are relevant ’

J. Kivinen a,2, M.K. Warmuth b,3, P. Auerc*4,*
a Department of Computer Science, PO. Box 26 (Eollisuuskotu 23),

FIN-00014 University of Helsinki, Finland
h Computer and Information Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA

’ Institute for Theoretical Computer Science, Graz University of Technology, Klosterwiesgasse 32f2,
A-8010 Graz, Austria

Received October 1995; revised May 1996

Abstract

We give an adversary strategy that forces the Perceptron algorithm to make a(kN) mistakes in
learning monotone disjunctions over N variables with at most k literals. In contrast, Littlestone’s

algorithm Winnow makes at most 0(k log N) mistakes for the same problem. Both algorithms use
thresholded linear functions as their hypotheses. However, Winnow does multiplicative updates
to its weight vector instead of the additive updates of the Perceptron algorithm. In general, we
call an algorithm additive if its weight vector is always a sum of a fixed initial weight vector

and some linear combination of already seen instances. Thus, the Perceptron algorithm is an
example of an additive algorithm. We show that an adversary can force any additive algorithm to
make (N + k - 1) /2 mistakes in learning a monotone disjunction of at most k literals. Simple

experiments show that for k < N, Winnow clearly outperforms the Perceptron algorithm also on
nonadversarial random data. @ 1997 Elsevier Science B.V.

Keywords: Linear threshold functions; Perceptron algorithm; Relevant variables; Multiplicative updates;

Mistake bounds

* Corresponding author. Email: pauer@igi.tu-graz.ac.at.

’ A preliminary version appeared in: Proceedings 8th Annual Conference on Computational Learning Theory
(ACM, New York, 1995) 289-296.

’ This work was done while the author was visiting the University of California, Santa Cruz. Supported by

the Academy of Finland and by the ESPRIT Project NeuroCOLT. Email: jkivinen@cs.helsinki.fi.

3 Supported by NSF grant IRI-9123692. Email: manfred@cse.ucsc.edu.

4 Supported by the ESPRIT Project NeuroCOLT.

0004-3702/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved

PIISOOO4-3702(97)00039-8

326 J. Kivinen et al. /ArtiJicial Intelligence 97 (1997) 325-343

1. Introduction

This paper addresses the familiar problem of predicting with a linear clussijer. The

instances, for which one tries to predict a binary classification, are N-dimensional real
vectors. A linear classifier is represented by a pair (w, 0)) where w E RN is an N-

dimensional weight vector and 8 E Iw is a threshold. The linear classifier represented by
the pair (w, 0) has the value 1 on an instance x if w * x 2 8, and the value 0 otherwise.
Each instance x E RN can be thought of as a value assignment for N input variables:
Xi is the value for the ith input variable Xi.

In this paper we study the performance of certain families of learning algorithms for
linear classifiers. We use as a test case monotone disjunctions, which are special linear
classifiers. The monotone k-literal disjunction Xi, V . . . V Xi, corresponds to the linear
classifier represented by the pair (w, l/2) where Wi, = . . . = Wit = 1 and Wj = 0 for j $

{il,. . . , ik}. For a given disjunction, the variables in the disjunction are called relevant

and the remaining variables irrelevant. In this paper we are particularly interested in the

case in which the number k of relevant variables is much smaller than the total number
N of variables.

We analyze the algorithms in the following simple on-line prediction model of learn-

ing. The learning proceeds in trials. In trial t, the algorithm’s current hypothesis is given

by a weight vector wt and a threshold 8,. Upon receiving the next instance xI the algo-
rithm produces its prediction j$ using its current hypothesis. The algorithm then receives
a binary outcome y, and may update its weight vector and threshold to w,+l and dt+l.
If the outcome differs from the prediction, we say that the algorithm made a mistake.
Following Littlestone [8,9], our goal is to minimize the total number of mistakes that
the learning algorithm makes for certain sequences of trials.

The standard on-line algorithm for learning with linear classifiers is the simple Percep-
tron algorithm of Rosenblatt [1.51. An alternate algorithm called Winnow was introduced

by Littlestone [8,9]. To see how the algorithms work, consider a binary vector xt E

(0, qN as an instance, and assume that the algorithm predicted 0 while the outcome
was 1. Then both algorithms increment those weights Wt,i for which the corresponding
input Xt,i was 1. These weights are called the active weights. Neither algorithm changes

the inactive weights, i.e., the weights Wr,i with Xt,i = 0. This causes the dot product to

increase as it should, i.e., wt+l . xt > wt 1 xt. The difference between the algorithms
is in how they increment the active weights. The Perceptron algorithm adds a positive
constant to each of them, whereas Winnow multiplies each of them by a constant that
is larger than one. Similarly, if the prediction was 1 and the outcome 0, then the active

weights are decremented either by subtracting a positive constant or by dividing by a
constant larger than one. The choice of the constants for the updates, as well as the
initial weights and thresholds, can significantly affect the performance of the algorithms.

We call choosing these parameters tuning.

In addition to the two basic algorithms described above, we wish to study a whole
class of algorithms that includes the Perceptron algorithm. To be concrete, let r] denote
the positive constant that is added to or subtracted from the active weights of the

Perceptron algorithm after each mistake, as described above. This constant is called the
learning rate. Recall that j$ and yr are the prediction and the correct outcome at trial t.

J. Kivinen et al./Art$cial Intelligence 97 (1997) 325-343

We can now write the weight vector W, of the Perceptron algorithm as

327

t-1

Wt = Wl + c at,jxjT (1)

j=l

where wt is the initial weight vector and a,,j = (yj -9j)v. In general, we say a learning
algorithm is additive if its weight vector can be written in form (1) for some scalar
coefficients at,j. (The coefficients a,,j for t < j do not appear in (1) , and we consider
them undefined.) Thus, for an additive algorithm, the difference wt - WI is in the

span of the instances x 1, . . . , x,_~. The Perceptron algorithm has the special property

that in the representation (l), a,,j = a,+t,j for all t > j. This property allows for a
more efficient implementation, as the algorithm can compute the next weight vector
from the current instance and the last weight vector. However, this is by no means a
necessary property of additive algorithms in general, and an additive algorithm might

well store all the examples and allow the coefficient a,,j of the jth instance to change as
more information is obtained. In particular, the learning algorithm based on the ellipsoid
method for linear programming [131 is an example of such a more complicated additive

algorithm.
In contrast, the weight vector wr of Winnow can be written in the form

(2)
j=l

where now Pt,j = exp((y, - jj!)v) for some positive learning rate v. Thus, we could

call Winnow an example of multiplicative algorithms. Analogously with the Percep-

tron algorithm, Winnow has the property pr,j = Pr+t,j for all t > j, which simplifies

implementation.
If there is a linear classifier (u, +) such that for all t we have yt = 1 if and only

if u x, > $, we say that the trial sequence is consistent with the classifier (u. G)
and say that the classifier (u, @) is a target of the trial sequence. It is easy to tune

Winnow so that it makes at most O(klogN) mistakes [8,101 on any sequence with a
disjunction of at most k literals as a target. If the tuning is allowed to depend on k, the
tighter bound 0(k + klog(N/k)) is obtainable. This upper bound is optimal to within

a constant factor, since the Vapnik-Chervonenkis (VC) dimension [2,201 of the class
of k-literal disjunctions is fi (k + k log(N/k)) [81 and this dimension is always a lower
bound for the optimal mistake bound.

Thus, for example, if the number k of relevant variables in the target disjunction is
kept constant, the number of mistakes made by Winnow grows only logarithmically in
the total number N of variables. In this paper, we wish to contrast this to the behavior
of additive algorithms, such as the Perceptron algorithm. For any value k 6 N, we show

that any additive algorithm can be forced to make at least (N + k - 1) /2 mistakes in
a trial sequence that has a monotone disjunction of at most k literals as a target. Thus,
even for a constant k, the mistake bound of any additive algorithm grows at least linearly
in N.

328 .I. Kivinen et al./Artijicial Intelligence 97 (1997) 325-343

One might also ask whether there are significant differences within the class of
additive algorithms, when they are applied to learning disjunctions with at most k

literals. The best upper bound we know for learning k-literal monotone disjunctions

with the Perceptron algorithm is 0(kN) mistakes, which comes from the classical

Perceptron Convergence Theorem [41. We also show that the Perceptron algorithm in
its basic form can make 2k(N - k + 1) + 1 mistakes, so the bound is essentially tight.
On the other hand, it is possible to construct an additive algorithm that never makes

more than N + 0(klog N) mistakes. Thus, one can save at least a factor k by choosing
the coefficients at,j in (1) in a more sophisticated manner than done by the Perceptron
algorithm. However, this is only a minor improvement. Our lower bounds show that
when k is small, then the mistake bound of any additive algorithm is exponential in the
optimal mistake bound (in this case essentially the VC dimension).

The lower bounds for additive algorithms and for the Perceptron algorithm are based
on an adversary argument. To show that the advantage of Winnow is not just an artifact

of the adversarial learning model we performed some simple experiments. We found

that with random data, too, the number of mistakes made by the Perceptron algorithm
increases as a function of N much faster than the number of mistakes made by Winnow,
when k is kept as a small constant.

The difference in the performances of the algorithms points out that the multiplicative
algorithms have a different bias in their search for a good hypothesis. Intuitively, Winnow

favors weight vectors that are in some sense sparse, and wins if the target weight vector is
sparse (k < N in the disjunction case). If the target weight vector is dense (k = CI(N)
in the disjunction case) and the instances are sparse (few non-zero components), the

advantage of Winnow becomes much smaller. Note that if it is known that k is close

to N, Winnow can also be tuned so that it simulates the classical elimination algorithm
for learning disjunctions [191. In this case it makes at most N - k mistakes for k literal
monotone disjunctions but is not robust against noise.

We introduce the details of the on-line prediction model and the algorithms we
consider in Section 2. Section 3 gives our adversarial lower bound constructions for the

class of additive algorithms. In Section 4 we show that the Perceptron algorithm is not
the best additive algorithm for our problem. Our experimental results are presented in
Section 5. In Section 6 we discuss some open problems and point out possible extensions
to deal with noisy data and more general concept classes.

2. The prediction model and algorithms

2.1. The basic setting

We use a pair (u, $) to represent a linear classijer with the weight vector u E IF?”

and the threshold I/. The classifier represented by (u, $) is denoted by QU,,+ and defined
for x E RN by Q=,+(x) = 1 if u . x 2 I) and a,,+(x) = 0 otherwise. We are mostly
concerned with the special case x E (0, l}N.

An N-dimensional trial sequence is a game played between two players, the learner
and the teacher. For the purposes of the present paper, we restrict ourselves to learners

J. Kivinen et al. /Art@cial Intelligence 97 (I 997) 325-343 329

that predict using linear classifiers, in a manner we shall soon describe in more detail.
The game has I rounds, or trials, for some positive integer 1. In a trial sequence, trial t
for t = 1) . . . , I proceeds as follows:

(i) The learner chooses its hypothesis (wr, f9,>, with wf E RN and Bt E IR.
(ii) The teacher presents the instance xf E (0, 1)“‘.

(iii) The learner’s prediction is now defined to be 9, = (Pw,,o, (x,).
(iv) The teacher presents the outcome yt E (0, 1).

After the last trial, the teacher must present a target (u, $), with u E IX”’ and I/ E R,

such that a,,*(~,) = y, for all t. The goal of the learner is to minimize the number
of mistakes, i.e., trials with yt # j$. The teacher, on the other hand, tries to force the

learner to make many mistakes.
This worst-case model of prediction, with an adversarial teacher, can be justified by

the fact that there are algorithms that can be guaranteed to make a reasonable number
of mistakes as learners in this model. We soon introduce two such algorithms, the

Perceptron algorithm and Winnow, and their mistake bounds. The model could be made
even more adversarial by allowing the teacher a given number of classi$cation errors,

i.e., trials with @,,g(x,) # yr. On the other hand, we often restrict the teacher by
restricting the target. In this paper we consider the case where the target is required to
be a monotone k-literal disjunction, i.e., to have + = l/2 and II E (0, l}N with exactly

k components ui with value 1.

An on-line linear prediction algorithm is a deterministic algorithm that can act as the
learner in the game described above. A general on-line prediction algorithm would be
allowed to choose as its hypothesis any mapping from (0, l}‘v to (0, 1) instead of a
linear classifier. For the class of on-line linear prediction algorithms to be less powerful

than the full class of on-line prediction algorithms it is essential that the learner is
required to fix its tth hypothesis (wt,6,) before the tth instance xr is given. Otherwise,
the learner could run a simulation of any on-line prediction algorithm and at each trial
choose its hypothesis to be either the constant threshold function (0, -1) or (0, 1)
depending on what the prediction of the simulated algorithm would be on the instance

xt. This would achieve the power of an arbitrary on-line prediction algorithm while
nominally using linear classifiers as hypotheses.

We use the term trial sequence for the sequence S = ((XI, yt) , . . . , (x[, ye)) that
gives the teacher’s part of the game. Given a fixed deterministic learning algorithm, the
learner’s part is completely determined by the trial sequence.

2.2. The Perceptron algorithm and Winnow

Both for the Perceptron algorithm and Winnow, the new hypothesis (w,+I ,6,+,)
depends only on the old hypothesis (w,, 19,) and the observed instance xt and outcome
yr. We call this dependence the update rule of the algorithm. In addition to the update
rule, we must also give the initial hypothesis (WI, 191) to characterize an algorithm. The

most usual initial weight vectors WI are of the form wt = (a,. . . , a) for some scalar
a E R. Note that the definition of a linear on-line prediction algorithm allows the new

hypothesis (w,+t,8,+1) to depend on earlier instances xi and outcomes yi, i < t, and
there are indeed some more sophisticated algorithms with such dependencies.

330 .I. Kivinen et al. /Artificial Intelligence 97 (1997) 325-343

The Perceptron algorithm and Winnow are actually families of algorithms, both pa-
rameterized by the initial hypothesis and a learning rate 7 > 0. To give the update rules

of the algorithms, let us first denote by gf the sign of the prediction error at trial t,
that is, (+, = 9, - y,. In their basic forms, both the Perceptron algorithm and Winnow

maintain a fixed threshold, i.e., 0, = 131 for all t. Given an instance xt E (0, l}N, the
sign gy, and a learning rate r], the update of the Perceptron algorithm can be written
componentwise as

Wr+l,i = Wt,i - rtorxr,i

and the update of Winnow as

(3)

Wf+l,i = W,ie
-WlX,,i

(4)

Note that this basic version of Winnow (the algorithm Winnow2 of [81) only uses

positive weights (assuming that the initial weights are positive). The algorithm can be
generalized for negative weights by a simple reduction [81. See Littlestone [91 and
Auer and Warmuth [1] for a discussion on the learning rates and other parameters
of Winnow. Here we just point out the standard method of allowing the threshold to

be fixed to 0 at the cost of increasing the dimensionality of the problem by one. To
do this, each instance x = (xl,. . . ,xN) is replaced by x’ = (1,x1,. . . .xN). Then
a linear classifier (w, 0) with a nonzero threshold can be replaced by (w’, 0) where

w’ = (-8,wt,.. . , WN). This useful technique gives a method for effectively updating
the threshold together with the components of the weight vector.

It is known that if the target is a monotone k-literal disjunction, Winnow makes

0(k log N) mistakes [81. There are several other algorithms that make multiplicative
weight updates and achieve similar mistake bounds [91. The best upper bound we know

for the Perceptron algorithm comes from the Perceptron Convergence Theorem given,

e.g., by Duda and Hart [4, pp. 142-1451. Assuming that the target is a monotone k-
literal disjunction and the instances x, E (0, l}N satisfy Cr&,i < X for some value
X, the bound is 0(kX) mistakes. (Note that always X f N.) In Section 4 we show

that this bound can be tight. We give an adversary strategy that forces a version of the
Perceptron algorithm to make a(kN) mistakes when learning k-literal disjunctions.

As Maass and Tut&i [131 have pointed out, several linear programming methods
can be transformed into efficient linear on-line prediction algorithms. Most notably,
this applies to Khachiyan’s ellipsoid algorithm [6] and to a newer algorithm due to
Vaidya [181. Vaidya’s algorithm achieves an upper bound of 0(N* log N) mistakes
for an arbitrary linear classifier as the target when the instances are from (0, 1)‘. The

Perceptron algorithm and Winnow are not suitable for learning arbitrary linear classifiers
over the domain (0, l}N. Maass and Turin show that in the worst case the number of
mistakes of both algorithms is exponential in N. The proof of the 0(fl log N) mistake
bound for general linear classifiers is based on first observing that arbitrary real weights
in a linear classifier can be replaced with integer weights no larger than O(NocN)>
without changing the classification of any point in (0, l}N. For monotone disjunctions,
all the weights ui and the threshold tJ can directly be chosen from (0, 1,2}, which leads
to the better bound of 0(N log N) mistakes.

J. Kivinen et al./Art#cial InteNigence 97 (1997) 325-343 331

In what follows we assume that the arithmetic operations of the various algorithms
can be performed exactly, without rounding errors.

2.3. Additive algorithms

The main results of this paper are lower bounds for the class of additive algorithms.

Definition 1. A linear on-line prediction algorithm is additive if for all t, the algorithm’s

tth weight vector wt can be written as

t-1

Wt = Wl + C at,jXj

,j=l

(5)

for some fixed initial weight vector WI and for some coefficients at,j E Iw.

As we are considering on-line prediction algorithms, the coefficients at,j in (5) of
course depend only on the instances xi and outcomes yi for i < t.

The Perceptron algorithm is additive. By comparing (3) and (5) we see that we can

take ar,j = -vffj for the Perceptron algorithm.
Consider now Winnow with initial weights WI = 1, learning rate 7 = In 2, and threshold

81 = N = 3. Let x1 = (1, l,O), x2 = (l,O, l), and yl = y2 = 1. This is consistent with

the target ((l,O,O), l/2), and gives w3 = (4,2,2). As the vector w3 -WI = (3,1,1)
is not in the span of {XI, x2}, we see that Winnow is not additive.

Recall that a square matrix A E EL”“‘“’ is orthogonal if its columns are orthogonal to
each other, and orthonormal if it is orthogonal and its columns have Euclidean norm
1. Thus, for an orthogonal matrix A the product ATA is a diagonal matrix, and for an

orthonormal matrix ATA = I where I is the m x m identity matrix.
Consider an orthonormal matrix A E iRWmX”‘. If we think of a vector x E Iw” as

a list of coordinates of some point in m-dimensional space, then Ax can be consid-
ered the list of coordinates of the same point in a new coordinate system. The basis
vectors of the new coordinate system are represented in the original coordinate sys-

tem by the column vectors of A. Thus, orthonormal matrices represent rotations (and

reflections) of the coordinate system. Let us write X = Ax. Rotations preserve an-
gles: is . i = (Aw)~Ax = wT(ATA)x = w . x. In a situation in which this geometric
interpretation is meaningful, it would be natural to assume that the choice of coordi-

nate system is irrelevant, i.e., nothing changes if one systematically replaces x by j;
everywhere.

Definition 2. A linear on-line prediction algorithm is rotation invariant if for all or-
thonormal matrices A E RNxN and all trial sequences S = ((xl, yl), . . . , (xl, yr)),
the predictions made by the algorith_m given the trial sequence S are the same as its

predictions given the trial sequence S = ((Axl, ~1) , . . . , (Axr, yl)) .

In general, being rotation invariant is not necessarily a natural or desirable property
of an algorithm. For instance, the components xt,i of the instances often represent some

332 J. Kivinen et al./Artijicial Intelligence 97 (1997) 32.5-343

physical quantities that for different i may have entirely different units. It is also common
to scale the instances to make, for example, -1 < Xt,i 6 1 hold for all t and i. In such
cases, the original coordinate system clearly has a special meaning. However, there are

several common algorithms that are rotation invariant.
To discuss the rotation invariance of the Perceptron algorithm and Winnow, we extend

them to arbitrary real inputs simply by allowing arbitrary real xt,i in the update rules (3)
and (4). Alternatively, we could have restricted ourselves to rotations that map (0, l}N
to itself, but that would have left us with just variable renamings, which are not very
interesting.

The Perceptron algorithm with zero start vector is rotation invariant. The linear on-
line prediction algorithm one obtains by applying the reduction given by Maass and

Turan to the ellipsoid method for linear programming is also rotation invariant. This
is because the initial ellipsoid used by the algorithm is a ball centered at the origin,

and the updates of the ellipsoid are done in a rotation invariant manner. If one uses
Vaidya’s algorithm for the linear programming in the reduction, one gets an algorithm

that is not rotation invariant. Vaidya’s algorithm uses a polytope that is updated in
a rotation invariant manner, but the initialization of the polytope cannot be rotation
invariant.

Winnow is not rotation invariant, either. To see this, consider a two-dimensional trial
sequence with xi = (1 , 0)) x:! = (0,l) , and yr = yz = 1. Assume that Winnow uses
the initial weight vector wi = 1 and a threshold such that j$ = 92 = 0. Then after the

two trials, Winnow has the weight vector w3 = (es, e?)
matrix

,4=2-‘/2 ; ‘I . (>
After seeing the counterexamples (Axi, 1) and (Axz,), Winnow has the hypothesis

i& = (evfi, 1). As w3 is linear in e’r and $3 is not, it i! s clear that Winnow cannot be
rotation invariant. To be specific, consider the instance x3 = (I, -r) for some r E IR.
Then ws . x3 = 0, while $3 . Ax3 = r&. Therefore, for some values of r the predictions
of Winnow are not the same for the rotated and the original instances.

We have the following general result.

Consider now the orthonormal

Theorem 3. If a linear on-line prediction algorithm is rotation invariant, then it is an
additive algorithm with zero initial weight vector.

Proof. Let (wt+l, 8,+1) be the hypothesis of a rotation invariant algorithm after it has

seen the instances xi, . . . , xt and outcomes yi , . . . ,yt. We claim that wt+i is in the

subspace spanned by the set X = {xi,. . . ,x,}. It is easy to construct an orthonormal

matrix A E RNxN such that Axi = Xi for i = 1,. . . , t, and Ax = -x for any vector x
that is orthogonal to X. Since Axt = xt, the definition of a rotation invariant algorithm

implies for all x E RN that wt+l . x > Ot+l if and only if wt+i . Ax > 19,+1. Therefore,
wt+i x = wt+l . Ax for all x. If we choose a vector x that is orthogonal to X, we have
wr+i . x = wt+l . Ax = -wt+l . x, so wt+l . x = 0. Hence, wt+r is in the subspace spanned
by X. El

J. Kivinen et al./Artificial Intelligence 97 (1997) 325-343 333

Conversely, consider an algorithm that is additive and has zero initial weight vector.
If further the algorithm’s thresholds Bt and the coefficients a,,j in (5) depend only on
the outcomes and the dot products xi. Xi, then the algorithm is easily seen to be rotation

invariant.

3. Lower bounds for additive algorithms

Given two vectors p E {-l,l}’ and Q E (-1, ljN, we denote by D(p,q) their
Hamming distance, i.e., the number of indices i such that pi # qi+

In the proofs we use some basic properties of Hadamard matrices. A Hadamard

matrix is an orthogonal matrix with its elements in { - 1, 1). Multiplying a row or a
column of a Hadamard matrix by -1 leaves it a Hadamard matrix. Note that if p and

q are two different rows in an N x N Hadamard matrix, we have D(p, q) = N/2. The

following definition gives the most straightforward way of obtaining high-dimensional

Hadamard matrices.

Definition 4. When IZ = 2d for some d, let H, be the n x n Hadamard matrix obtained
by the recursive construction H1 = (I),

Note that every element in the first column of H, is 1, as is every element in the first

row. We also have the following property.

Proposition 5. For n = Zd where d is a positive integer, let H,, be the n x II Hadamard

matrix defined in DeJinition 4. Then for any vector p E { -1,l)” there is an index j

such that D (p, q) 2 n/2 holds if q is the jth column of H,,.

Consider now an additive algorithm and its weight vector given in (5). Its prediction

on the instance x, can depend only on the dot products wt . x1 and xi. xt where i < t.

Thus, for an adversary it would be helpful to have for xr two different candidates

z’ and z” for which these dot products do not differ. This motivates the following
definition.

Definition 6. Let B = ((zi,z’,‘), . . . , (zi, zr)), where zi and z:I are in (0, l}N for all
t. We say that B is a sequence with pairwise constant dot products if for 1 < i < t < 1

we have z: . zi = z[. L$’ and z:’ . zi = zi’ ’ zi’.

Our basic idea is to form a sequence with pairwise constant dot products by choosing

zi to be the tth row of an 1 x I Hadamard matrix, and z:’ = -zi, but a simple trans-
formation is necessary to make the instances binary. We also add some padding to the
instances to handle the case k > 1 efficiently.

Merely having pairwise constant dot products is not sufficient for generating mis-
takes. The adversary needs a target (u, $) that is suitably different from the algorithm’s

334 J. Kivinen et al./Art$cial Intelligence 97 (1997) 325-343

initial hypothesis. To get an idea about this, consider two instance candidates zi and
zy with, say, wr . zi < wt . zy. Depending on the algorithm’s threshold Br, the algo-
rithm may either predict j$ = 0 for both xt = zi and xt = zy, predict j, = 0 for
xr = zi and jt = 1 for xt = zy, or predict j, = 1 for both xr = zi and xy = z:‘.
If the target (u,$) now is such that u . Z: < fi < u . zi, then by choosing ei-
ther zi or z:’ for the tth instance xt the adversary can force the algorithm to make
a mistake regardless of its choice of Br. Note that if the adversary is choosing its

instances from a sequence with pairwise constant dot products and the algorithm is
additive, the condition w, . zi 6 wt . z: is equivalent with wr . zi 6 WI . zy and hence
independent of the updates made by the algorithm. This leads to the following defini-

tion.

Definition7. Let B=((z’,,zy),... , (zi, z;‘)), where zi and z:’ are in (0, l}N for all
t. Let w E I@’ be a weight vector and (II, $> E RN x lR a linear classifier. We say that
the weight vector w and the classifier (u, @) differ at trial t on the sequence B if either

w. zi < w ’ z:I and u. zi > Cc, > u . zy, or w. zi > w. z:’ and u. zi < G < u. zy.

Using the basic idea given above, one can now prove the following result.

Lemma8 Let B= ((z’l,z’l’>,...,(zl’,z~‘)> bea sequence with pair-wise constant dot
products. Consider an additive linear on-line prediction algorithm with the initial weight
vector WI. For any linear classifier (u, +), the adversary can choose a trial sequence
with (u, (I/) as target and xi E {z$, zy} f or all t in such a way that the algorithm makes
a mistake at all tn’als at which WI and (u, t,k> differ on B.

Proof. Consider a trial sequence S = ((xi, yi), . . . , (xl, yr)), in which yr = @Q,(x,)
for t = l,... ,E. Assume that for i = l,... , t - 1 we have xi E {zi, zy}. Let (w,,&)
be the hypothesis of an additive linear on-line prediction algorithm at trial t. Write
w, = wr + x:,’ at,jxj, and assume that the initial weight vector wi and the target
(u, $) differ at trial t on the sequence B.

Consider first the case with WI . zi 6 WI . z:/ and u . zi > Cc, > u . zy. Since B
has pairwise constant dot products, we also have wt . zi < w, . zr. If 8, < wt . zi, the
adversary chooses xt = zy. In this case j+ = 1 and y* = 0, so the algorithm makes

a mistake. Otherwise, the adversary chooses x, = zi, so jr = 0 and yr = 1 and again
the algorithm makes a mistake. The case WI . zi > WI . z:’ and u . zi < rC, < u . zy is

similar. 0

Thus, proving lower bounds is reduced to finding for a given initial weight vector a
sequence with pairwise constant dot products and a target such that the initial weight
vector and the target differ sufficiently often. The sequence we use is given in the
following definition.

Definition 9. Let N = 2d + k - 1 for some positive integers d and k. Let H2d be the
2d x 2d Hadamard matrix given in Definition 4, and for t = 1, . . . , 2d, let h, be the tth
row of H2d. We define BH to be the sequence ((z{ , zy> , . . . , (zk,, , z!$) > where

J. Kivinen et al./Artifcial Intelligence 97 (1997) 325-343 335

z:=((~,J+1)/2,...,(hr,*~+1)/2,0 ,..., O),

z:I= ((W,,l + 1)/2 ,..., (-hr,*d + 1)/2,0 ,..., 0).

Lemma 10. The sequence BH defined in Dejinition 9 has pair-wise constant dot
products.

Proof. Follows from the facts that h,. h,! = 0 for t f t’ and c;, hr,i = - c:, h,,i = 0
fort22. 0

The basic idea of the following lower bound proofs is to first find a monotone I-

literal disjunction that differs with a given initial weight vector at as many trials of BH as
possible. The adversary can then use the sequence BH to force mistakes, as in Lemma 8.
This part of the sequence effectively uses only the first 2d variables and chooses exactly

one of them to be relevant. The adversary is then still free to choose any subset of the
remaining k - 1 variables as relevant, which makes it easy to produce k - 1 additional
mistakes in k - 1 additional trials.

Theorem 11. Let N = 2d + k - 1 for some positive integers d and k. For any additive
linear on-line prediction algorithm with a zero initial weight vector w1 = 0 there is an
N-dimensional trial sequence with a monotone disjunction of at most k-literals as a
target such that the algorithm makes N mistakes on the trial sequence.

Proof. Let BH = ((z~,z;) ,..., (z$, z!&)) be as in Definition 9. We then have zi,, = 1

and zy, = Ofort=l,. . . , 2d. Consider now a vector u E (0, l}N with ut = 1 and ui = 0

for 2 k i < 2d. The components ui for 2d + 1 6 i 6 N are left unspecified for now. The
constraints we have set for u imply u . zy = 0 < l/2 < 1 =u.z: for all t. We always

have 0 . zi = 0 . z:’ = 0. Hence, the zero weight vector and the classifier (u, l/2) differ
on BH at trials 1,. . . , 2d, regardless of how the remaining components u2dfl,. . . , uN
are chosen. By Lemma 8, the adversary can therefore choose the instances from the
sequence BH in such a way that an additive algorithm makes a mistake on every one of
thetrials l,... , 2d when (u, l/2) is the target.

After the first 2d instances chosen from the sequence BH, the adversary continues the
trial sequence with an additional k - 1 trials, in which the instances are unit vectors.
Thus, for t = 2d + l,..., N, we set x~,~ = 1 and xt,i = 0 for i Z t. After seeing the
algorithm’s tth hypothesis (w,, 0,)) the adversary chooses ut = 0 and yt = 0 if wl.xt 3 et,
and u, = 1 and y, = 1 otherwise. Then clearly the algorithm makes a mistake at each
of the trials 2d + 1,. . . , N, and (u, l/2) is a monotone disjunction which at most k
literais and is consistent with the trial sequence. The total number of mistakes made by
the algorithm is 2d + k - 1 = N. 0

Theorem 12. Let N = 2d + k - 1 for some positive integers d and k. For any additive
linear on-line prediction algorithm there is an N-dimensional trial sequence with a
monotone disjunction with at most k literals as a target such that the algorithm makes
at least (N + k - 1) /2 mistakes on the trial sequence.

336 J. Kivinen et al./Artijicial Intelligence 97 (1997) 325-343

Proof. Let WI be the initial weight vector of the algorithm. Define a vector p E
{-l,1}2d byp,=-1 ifwt.zi<wt.zy, and p, = 1 otherwise. According to Proposi-
tion 5, we can choose an index i such that D(p, q) 2 2d-1 when q is the ith column
of the Hadamard matrix H2d. We now partially define the target weight vector u by
setting ai = 1 and Uj = 0 when j < 2d and j # i. By the construction of BH, for
t < 2d we have u . zi = 0 and u . z:’ = 1 when qr = -1, and u . zi = 1 and u . zy = 0
when q, = 1. Therefore, the vector wt and the disjunction (u, l/2) differ at trial t
on BH whenever pr Z qt. By Lemma 8, the adversary can therefore choose a trial
sequence with xt E {zi, zy} for which the algorithm makes at least 2”-’ mistakes at
trials 1,. . . ,2d.

Thus, the adversary can force 2d-’ mistakes in the first 2d trials by choosing the
instances from the sequence Bn. This requires fixing in the target (u, l/2) all the
components Ui with i < 2d, one component to value 1 and the rest to 0. However, the
adversary can still choose for each of the remaining k - 1 components either 0 or 1
completely freely. As in the proof of Theorem 11, this freedom enables the adversary
to easily force k - 1 additional mistakes in the remaining k - 1 trials, in which the
instances are unit vectors. The total number of mistakes is therefore 2d-1 + k - 1 =
(Nfk- 1)/2. El

By the comments made in Section 2, Theorem 11 gives a lower bound of N mis-
takes for the ellipsoid algorithm and for the Perceptron algorithm with zero as its initial
weight vector. Theorem 12 gives a lower bound of (N + k - 1)/2 mistakes for the
Perceptron algorithm with arbitrary initial weight vectors. Both of the above lower
bounds for the Perceptron algorithm allow the algorithm to use arbitrary thresholds
in each trial. In the next section we see that if we assume that the Perceptron algo-
rithm adjusts its threshold in a natural additive manner we can get a sharper lower
bound.

4. Perceptron versus other additive algorithms

In this section we first give an adversary strategy which forces the Perceptron algo-
rithm to make Kl(kN) mistakes. For simplicity we assume that the Perceptron algorithm
starts with weight vector zero and uses a constant learning rate. The basic argument
of this proof also works for more general versions of the Perceptron algorithm, but the
formal proof becomes much more complicated. After presenting the lower bound for the
Perceptron algorithm we show how to construct different additive algorithms that make
O(N) mistakes when the sample is consistent with a k-literal disjunction.

In the following we assume that w, = (wt,c, w,,t, . . . , wt,~) is the weight vector
of the Perceptron algorithm before trial t. The algorithm receives an instance xr =
(l,XI,i,..., x,,N) and predicts 9, = 1 if wt. xt > 0 and 9, = 0 otherwise. After receiving
the correct output y, the weights are updated as wttt = wt + v(yt - j$)x,. If WI = 0
then Q can be set to 1 without changing the predictions of the algorithm. Note that in
this version of the Perceptron algorithm, w,,c can be seen as the threshold used in trial
t, and this threshold is also updated additively.

J. Kivinen et al. /Artificial Intelligence 97 (I 997) 325-343 337

Theorem 13. Let N be the number of variables and m = 2k(N - k + 1) . Then there is a
trialsequence ((x1,yl),(x2,y2),... , (x,,, y,,)) with a monotone k-literal disjunction
as target such that the Perceptron algorithm with the zero initial weight vector WI = 0
makes a mistake in every trial.

Proof. Let Xi V . . . V Xk be the target disjunction. Furthermore let n = N - k, so
m=2k(n+l).WepartitionthemtrialsintogroupsG~,...,G~oflength2(n+1).In
each group Gi the weight wi is learned, so that after the trials in this group, that is at
trial t = 2i(n + 1) + 1, we have

w,,l =...=wr,i=n+l and w,,a = w~,~+I = + . = w,,~ = 0. (6)

Observe that condition (6) is satisfied for i = 0 before the first trial since wi = 0.
Within a group Gi we choose instances such that Xj = 0 holds for all j = 1,. . . , k,

j # i. Thus, Xi is the only relevant variable active during the trials of group Gi. We can
therefore disregard the other relevant variables, and it suffices to find a trial sequence of
length 2(n + 1) over n + 1 variables with X1 as target such that

(i) the Perceptron algorithm makes a mistake in each trial and
(ii) after all the 2(n + 1) trials the weights of the Perceptron algorithm satisfy

W2(n+l)+l,l = n + 1 and w~(~+I)+I,o = ~2(~+1)+1,2 = . . . = ~2(~+1)+1,,,+1 = 0.

The second condition guarantees that (6) holds after the trials in group Gi.
Such a trial sequence can be constructed as follows. For all trials t = 1, . . . ,2(n + 1) ,

we set x,,t = 0 if t is odd and xt,t = 1 if t is even. For all t we set xy,2 = . . . = xr,n+l = 1.

As can be seen by induction, we get w,,t = (t - 1) /2 and w,,a = w,,2 = . . . = w~,~+I = 0

fort = 1,3,... ,2(n + 1) + 1, and w,,t = t/2 - 1 and wt,a = wy,2 = ... = w,,~+I = -1
for t = 2,4, . . . ,2 (n + 1) . Therefore, w, . xt 2 0 holds for odd and w, . x, < 0 for even

trials t. Hence, the Perceptron algorithm makes a mistake in each trial, which was our
first condition. Finally, the second condition is also satisfied since ~2(~+t)+~,t = n + 1

and w~(~+I)+I,o = w2tn+l)+l,2 = . . . = w~(~+t)+t,~+t = 0. This concludes the proof of the
theorem. 0

We now show how any on-line linear prediction algorithm A can be converted into
an additive algorithm A’ such that on any trial sequence the number of mistakes made
by A’ does not exceed the number of mistakes made by A by more than N. Before trial
t, the algorithm A’ first determines the hypothesis (wt,O,) the algorithm A would use

at trial t. The hypothesis of A’ is then chosen to be (qt, 8,) where qr is the projection

of wI into the span of {xl,. . . ,x,-t}. The algorithm A’ is by definition additive and
uses wt = 0 as a start vector. If at a trial t the predictions of A and A’ differ, we have
xr. qt # xt . w,, and therefore xt is not in the span of {xl,. . . , ~~-1). Thus, whenever
A’ makes a mistake but A does not, the dimension of the set {xi, . . . , x,} increases by
one, and this can happen at most N times.

If we choose the algorithm A in the conversion to be the classical elimination algo-
rithm with mistake bound N - k [193, we obtain an additive algorithm with mistake
bound 2N- k. For small k, a better additive algorithm is obtained by taking A to be Win-

now, which yields A’ with a mistake bound N + 0(k log N) . It remains an open question
whether any additive algorithm can exactly match the lower bounds proven in Section 3.

338 J. Kivinen et al./Arti$cial Intelligence 97 (1997) 325-343

5. Experiments

This section describes some experiments performed on instances drawn from a simple

random distribution. The purpose of these experiments is to illustrate that behavior qual-
itatively similar to that predicted by the worst-case bounds can occur on quite natural,
non-adversarial data. We see that even with our random data, Winnow clearly outper-
forms the Perceptron algorithm when a large majority of the variables are irrelevant.
When the proportion of relevant variables is increased, the advantage of Winnow disap-

pears, and when most of the variables are relevant, the Perceptron algorithm performs

at least as well as Winnow.

Our input data distributions are parameterized by the number N of variables and the
number k of relevant variables. The data is noiseless, i.e., a fixed monotone k-literal
disjunction can always predict the outcomes correctly. At each trial we give each input
variable the value 0 with probability 2-‘lk and the value 1 with probability 1 - 2-‘lk.
The value given to an input variable is independent of the values of other input variables
and the values of the input variable at previous trials. Hence, the probability of a positive
instance, i.e., an instance with at least one of the relevant variables set to 1, is l/2.

Note that for large values of k, our setting leads to instances in which a very large
majority of the variables have value 0. This emphasizes the point that our random data

are not meant to simulate any real-world problems. Rather, we use this setting as a

simple way of producing for arbitrary ratios k/N instance sequences with roughly equal
numbers of positive and negative instances. There is also a theoretical reason that makes
this setting interesting. As we have remarked, if at any given trial at most X input
variables have value 1, then the Perceptron algorithm has a worst-case mistake bound

of 0(kX) mistakes. The bounds we know for Winnow do not have such a dependency
on X. Instead, they increase as N increases even if X were kept constant. Hence, we
expect that combining sparse targets with dense instances and dense targets with sparse
instances would most clearly show that Winnow and the Perceptron are incomparable
in the sense that depending on the problem, either algorithm could be better.

For both the Perceptron algorithm and Winnow, there are certain parameters the user
can specify. Here we provide the algorithms with a fixed threshold 0 instead of using

the reduction that allows the algorithms to learn the threshold, too. In addition to the

threshold, each algorithm needs an initial weight vector wt E RN and a learning rate r].
By restricting all the initial weights to be equal, i.e., setting WI = (~1, . . . , WI > for some
wi E JR, we end up with having to provide the three real-valued parameters 8, v, and
WI. The algorithms can be quite sensitive to the values of these parameters, and tuning
them well based only on the data available to the learner is often quite difficult. To
guarantee a reasonable tuning for both algorithms in our comparisons, we have based
the tuning on certain additional information that would not be available in an actual

learning situation.
For Winnow, we used parameter tunings that lead to known worst-case upper bounds.

We chose the tuning used by Auer and Warmuth [11, which at least in some cases
leads to better results than Littlestone’s original tuning [81. The parameter values to be
used depend on whether k < N/e holds. (Here e is the base of the natural logarithm.)
For k < N/e, we take r~ = 0.875, 8 = 0.441, and WI = 2N/5. This guarantees at most

600

500

400

300

200

100

0

J. Kivinen et al./Art$cial Intelligence 97 (I 997) 325-343 339

Winnow, N=200 -+--
Perceptron, N=200 -o--

Winnow, N=400 .++.
Perceptron, N=400 -*--

0 1000 2000 3000
trials

4000 5000 6000

Fig. 1. Cumulative mistake counts for Winnow and the Perceptron algorithm with a monotone 20-literal

disjunction as target.

3.9kln N + 3.4A + 1.6 mistakes [11, where A is the number of attribute errors in the

instances (hence A = 0 for our experiments). For k 2 N/e, we take 77 = 1, 0 = 0.425,
and w1 = 0.368, which guarantees at most 1.37N + 3.72A mistakes. Even if one would
not know the exact value of k beforehand, choosing between these two sets of parameter

values should be significantly easier than searching through the whole three-dimensional

parameter space for good values.
For the Perceptron algorithm, we fixed v = 1, which can be done without loss of

generality since multiplying all the parameters by a constant leaves the predictions of

the algorithm unchanged. The remaining parameters 8 and wl were chosen empirically
for each individual pair (k, N) .

In our first pair of experiments, we considered the value k = 20 both with N = 200 and
with N = 400. Fig. 1 shows for both values of N, and both algorithms, how the number
of mistakes made in trials 1, . . . , t (“total number of mistakes”) increases as t (“trials”)
increases from 0 to 6000. The curves shown in the figure result from generating for
both values of N ten different trial sequences and then for each algorithm averaging
the mistake counts from these ten sequences. For the Perceptron algorithm, we used the
parameter values 0 = 5.5 and w1 = 1.1 for N = 200, and 0 = 8.7 and WI = 1.2 for
N = 400. These values were chosen because they gave the least total number of mistakes
over another set of ten trial sequences generated with the same parameters. From Fig. 1

J. Kivinen et al./Artijicial Intelligence 97 (1997) 325-343

350

300

250

200

150

100

50

0
0

x ... _,.~ ,,,.. x- -* x x x x

,,.Y
,/.i’

)._*._.)(.-.r(-.+c

x ”
.)._._.*.-.*-

..’

,,d
,,I_.-*’

.pf-‘-
*._.%Y

,..’

i”
/

,I’

,; .*”
,.’

x
,*.’

/
,.i”

.I”
+__+__*.-_t---~--+--+-.+--+-_+_.+__+__~--~__~_.~.

,j
g ;’ *..

_+__*_--t--+--

, .Y,,’ / .‘,* ; f:,’ _~~__o_~~o__-D_.~..~...~..~...~...~...~...~-..~.-.~..~..~..~...~...~,
ti:’ ,>’

.‘/ .a
_.m...n’.

.* .d’ Winnow, N=2@3 -+--
I/ .,’

j<?
Perceptron, N=21)0 -0..

Winnow. N=4Orl .-x.-

g
Perceptron, N~4r)a -SF.-

s”

1 8

1000 2000
I

3000
trials

I I I
4000 5000 6000

Fig. 2. Cumulative mistake counts for Winnow and the Perceptron algorithm with a monotone (N/2)-literal
disjunction as target.

we see how doubling the total number N of variables has very little effect on Winnow,
when the number k of relevant variables is kept as a small constant. The Perceptron
algorithm suffers much more from such a doubling.

In the second pair of experiments, we considered the combinations k = 100 and
N = 200, and k = 200 and N = 400. Thus, exactly half of the variables were relevant.
The results are shown in Fig. 2; the curves have the same meaning as in Fig. 1. For both
values of N, the values 0 = 0.1 and wr = 1.0 turned out to give optimal performance
for the Perceptron algorithm. Here we see that the Perceptron algorithm actually makes
fewer mistakes than Winnow, and both algorithms suffer from doubling the number of
variables (and, hence, the number of relevant variables, too).

It should be noted that if the trial sequence happens to be such that in every instance
the number of irrelevant variables with value 1 is at most one, then the Perceptron
algorithm with parameter values v = 1.0, 0 = 0.1, and wr = 1.0 actually simulates
the classical elimination algorithm for learning monotone disjunctions. The elimina-
tion algorithm makes at most N - k mistakes, which for k close to N is a very
good bound. With the setting we have, for large values of k it is rare to have two
or more irrelevant variables with value 1 at a trial, so in the experiments summarized
in Fig. 2 the Perceptron algorithm has performed much like the elimination algorithm
would.

J. Kivinen et al. /Arttjkial Intelligence 97 (1997) 325-343 341

Winnow, on the other hand, can easily be tuned to simulate the elimination algorithm
exactly (e.g. B = 0.5, WI = 1 .O, and 7 very large). This would lead to improved
performance in the experiments depicted in Fig. 2, with mistakes counts somewhat
lower than those of the Perceptron algorithm. However, the algorithm would then be
extremely sensitive to noise. We therefore felt it reasonable to use the parameter values
suggested by Auer and Warmuth [l] which would guarantee good performance even if
noise were present.

6. Discussion and open problems

We have compared two algorithms, the Perceptron algorithm and Winnow, on the
very restricted problem of learning short monotone disjunctions. A worst-case analy-
sis shows that the number of mistakes the Perceptron algorithm makes can be forced
to be linear in the total number of variables, even if the number of relevant vari-

ables is kept as a small constant. Thus, the bias of the Perceptron algorithm does
not allow it to take advantage of the number of relevant variables being small. The
lower bounds actually apply to a very general class of additive algorithms. In con-
trast, it is known that the number of mistakes Winnow makes is linear in the number
of relevant variables, but only logarithmic in the number of irrelevant variables [8].
Simple experiments show that this effect also occurs outside of our worst-case anal-

ysis: On seemingly natural random data, the Perceptron algorithm suffers from addi-
tional irrelevant variables much more than Winnow. Another feature of the worst-case
bounds, that is to an extent reflected in the experiments, is that the Perceptron al-
gorithm can take advantage of sparse instances: If only few variables are active in

the input at any given time but most of the variables are relevant, the Perceptron al-
gorithm outperforms Winnow at least with the reasonable parameter tuning we have

used.
The linear lower bounds for additive algorithms obviously extend to any class that

contains monotone l-literal disjunctions. On the other hand, Winnow can learn more
general classes than disjunctions, for example r-of-k threshold functions over N variables

with 0(kr log N) mistakes [81. However, when learning general linear classifiers over
N binary variables, both Winnow and the Perceptron algorithm can make exponentially
many mistakes, while certain methods based on linear programming are guaranteed to
make only a polynomial number of mistakes [131.

Even general linear classifiers are really a very restricted concept class. Algorithms that
use linear classifiers as their hypotheses can be extended for more general concept classes

by introducing as new input variables the values of some nonlinear basis functions. This
is especially attractive for algorithms such as Winnow with a mistake bound that is only
logarithmic in the number of irrelevant variables. In this case introducing an exponential
number of basis function leads only to a linear growth in the mistake bounds, assuming
that only very few of the basis functions are relevant. For example, by giving to Winnow
as inputs the values of all possible 3N conjunctions we would get an algorithm that would
learn k-term DNF over N variables with O(kN) mistakes. In this particular case, the
computational problems caused by the expansion of the input dimensionality seem too

342 J. Kivinen et al./Artijicial Intelligence 97 (1997) 325-343

difficult to solve efficiently. However, Winnow, and other multiplicative algorithms [3,
2 1] with logarithmic mistakes bounds, have been successfully applied when the structure
of the basis functions allows simulating an exponential number of input variables and

their weights in polynomial time [5,14,16]. Extending these results is a promising
direction for new theoretical and empirical work.

The fundamental question about any learning algorithm is of course its applicability to
real-world problems. This paper is more aimed at understanding what kind of conditions
favor either Winnow or the Perceptron algorithm. Finding out how different real-word

domains are situated on this scale is an entirely different question that remains open for

empirical study. Related to this is the question of how the algorithms tolerate noise. For

some empirical studies using artificial noisy data, see Littlestone [111. Recently Auer
and Warmuth [l] have shown how Winnow can be modified to cope with a situation
where there is not only noise, but the target is changing over time, as well.

Our lower bound proofs for additive algorithms are not based on a particular ordering
of the instances shown to the algorithms. Consider now using the set of instances we
used in the on-line lower bound proof for training a batch-style additive algorithm. If

one gives any subset of the instances as the training set, then any additive hypothesis
would still be wrong on roughly half of the remaining instances. Thus, we see that

under a distribution that is uniform over the instances used in the bounds, the sample

size required for obtaining a small expected error also grows linearly in N. A similar

reasoning leads to linear lower bounds for the PAC model [191. On the other hand,
Winnow with its worst-case upper bounds can be transformed into a batch algorithm that
achieves a small expected error and PAC style bounds with sample size that is linear in

k log N.
The proofs of the worst-case mistake upper bounds for the Perceptron algorithm

[4] and for Winnow [1, lo] can be understood as amortized analysis in terms of a
potential function. In the case of the Perceptron algorithm, the potential is based on
the Euclidean distance, in the case of Winnow, on an entropic distance measure. The
situation is similar also in on-line linear regression [71. There the Euclidean distance

can be used as a potential function for the gradient descent algorithm, which is additive,
and the relative entropy can be used for an algorithm called the exponentiated gradient

algorithm, which is multiplicative. In the case of regression, it is particularly clear how

sparse targets benefit the multiplicative algorithms and sparse instances the additive
algorithms, both in worst-case mistakes bounds and in actual behavior on random data.
Further, in the regression case the potential functions can be used not only to analyze
the algorithms but to actually derive the updates. It is an open problem to devise a
framework for deriving updates from the potential functions in the linear classification

case.
So far, the evaluation of our algorithms on random data is only experimental. How-

ever, it seems possible to obtain closed formulas for the expected total number of mis-

takes of the Perceptron algorithm in some thermodynamic limit (see, e.g., [17,221).
We wish to study how these closed formulas relate to the worst-case upper bounds
and the adversary lower bounds. Studying this behavior will lead to a deeper under-
standing of how high dimensionality hurts the Perceptron algorithm and other additive

algorithms.

J. Kivinen et al./Artijicial Intelligence 97 (1997) 325-343 343

References

[I] l? Auer and M.K. Warmuth, Tracking the best disjunction, in: Proceedings 36th Symposium on rhe
Foundations of Computer Science, Milwaukee, WI (IEEE Computer Society Press, Los Alamitos, CA,

1995) 312-321.
[2) A. Blumer, A. Ehrenfeucht, D. Haussler and M.K. Warmuth, Learnability and the Vapnik-Chervonenkis

dimension, J. ACM 36 (1989) 929-965.

131 N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, D. Haussler, R.E. Schapire and M.K. Warmuth, How to use

expert advice, Report UCSC-CRL-94-33, University of California, Santa Cruz, CA (1994); extended

abstract in: Proceedings 25th Annual ACM Symposium on Theory of Computing (1993) 382-391.

[4] R.O. Duda and PE. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).

[51 D.F? Helmbold and R.E. Schapire, Predicting nearly as well as the best pruning of a decision tree, in:

Proceedings 8th Annual Conference on Computational Learning Theory (ACM Press, New York, 1995)

61-68.

[61 LG. Khachiyan, A polynomial algorithm in linear programming, Dokl. Akad. Nauk SSSR 244 (1979)

1093-1096 (in Russian); English translation: Soviet Math. Dokl. 20 (1979) 191-194.
[71 J. Kivinen and M.K. Warmuth, Exponentiated gradient versus gradient descent for linear predictors,

Inform. and Comput. 132 (1997) l-63.
[81 N. Littlestone, Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm,

Machine Learning 2 (1988) 285-3 18.
[91 N. Littiestone, Mistake bounds and logarithmic linear-threshold learning algorithms, Ph.D. Thesis, Report

UCSC-CRL-89-11, University of California, Santa Cruz, CA (1989).

[101 N. Littlestone, Redundant noisy attributes, attribute errors and linear threshold learning using Winnow,

in: Proceedings 4th Annual Workshop on Computational Learning Theory (Morgan Kaufmann, San

Mateo, CA, 1991) 147-156.

[1 I] N. Littlestone, Comparing several linear-threshold learning algorithms on tasks involving superfluous

attributes, in: Proceedings 12th International Conference on Machine Learning, Lake Tahoe, CA

(Morgan Kaufmann, San Francisco, CA, 1995) 353-361.

[12 J N. Littlestone, PM. Long and M.K. Warmuth, On-line learning of linear functions, J. Comput. Complexity
5 (1995) l-23.

[131 W. Maass and G. Turin, How fast can a threshold gate learn, in: Computational Learning Theory and
Natural Learning Systems, Voi. I (MIT Press, Cambridge, MA, 1994) 381-414.

[141 W. Maass and M.K. Warmuth, Efficient learning with virtual threshold gates, in: Proceedings 12th
fnternational Conference on Machine Learning, Lake Tahoe, CA (Morgan Kaufmann, San Francisco,

1995) 378-386.

[1.51 E Rosenblatt, The Perceptron: a probabilistic model for information storage and organization in the

brain, Psych. Rev. 65 (1958) 386-407; reprinted in: Neurocomputing (MIT Press, Cambridge, MA,

1988).

[16 J Y. Singer, Adaptive mixture of probabilistic transducers, in: Advances in Neural Information Processing
Systems, Vol. 8 (MIT Press, Cambridge, MA, 1996) 381-387.

I 171 H. Sompolinsky, H.S. Seung and N. Tishby, Learning curves in large neural networks, in: Proceedings
4th Annual Workshop on Computational Learning Theory (Morgan Kaufmann, San Mateo, CA, 1991)

112-127.

[181 PM. Vaidya, A new algorithm for minimizing convex functions over convex sets, in: Proceedings 30th
Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA,

1989) 338-343.

[191 L.G. Valiant, A theory of the learnable, Comm. ACM 27 (1984) 1134-l 142.

1201 V.N. Vapnik and A.Y. Chervonenkis, On the uniform convergence of relative frequencies of events to

their probabilities, Theory Probab. Appl. 16 (1971) 264-280.
I2 1 I V. Vovk, Aggregating strategies, in: Proceedings 3rd Annual Workshop on Computational Learning

Theory (Morgan Kaufmann, San Mateo, CA, 1990) 371-383.

(221 T.L.H. Watkin, A. Rau and M. Biehl, The statistical mechanics of learning a rule, Rev, Mod. Phys. 65
(1993) 499-556.

